
Cost Sharing and Clustering under
Distributed Competition

Dissertation

zur Erlangung des akademischen Grades des
Doktors der Naturwissenschaften (Dr.rer.nat.)
an der Universität Konstanz
Fachbereich Informatik und Informationswissenschaft

vorgelegt von

Martin Hoefer
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Deutsche Zusammenfassung

Das Internet ist mittlerweile ein zentraler Bestandteil der weltweiten wirtschaftlichen
und gesellschaftlichen Entwicklung. Daher ist es wichtig, die grundlegenden Prozesse
zu verstehen, die bei der Entwicklung, Verwaltung und Nutzung des Internet eine
Rolle spielen. Im Gegensatz zu anderen Netzwerken, die in der Informatik und der
Mathematik seit Jahrzehnten untersucht werden, wird das Internet nicht zentral ge-
plant oder verwaltet. Firmen, Behörden und andere Institutionen arbeiten gemein-
sam und verteilt daran, Server einzurichten, Verbindungen zu legen, Daten zu ver-
schieben oder Webangebote bereitzustellen. Viele dieser Akteure sind wirtschaftlicher
Natur, ihr Hauptanliegen ist das Kaufen und Verkaufen von Produkten. Das Inter-
net ist daher mehr als nur ein Netzwerk, es ist ein Markt. Wichtige Aspekte wie
z.B. Investitionen in Topologie und Server, Verwaltung und Updates, Absicherung
von Subsystemen etc. müssen daher unter marktwirtschaftlichen und insbesondere
spieltheoretischen Gesichtspunkten analysiert werden.

Das Internet ist nicht nur wirtschaftlichen Prozessen ausgesetzt, es bietet auch
eine Plattform für Kommunikation und Vernetzung. Auf dieser Grundlage entste-
hen soziale Netzwerke zwischen den beteiligten Akteuren. Die Analyse sozialer Net-
zwerke ist ein wichtiger Forschungsgegenstand in der Soziologie mit Auswirkungen
auf angrenzende Fachgebiete wie Wirtschaftswissenschaften, Mathematik und Infor-
matik. Ein neues, wichtiges Teilgebiet dieser Forschung besteht darin, die Wechsel-
wirkung sozialer Netzwerke mit (wirtschaftlicher) Entscheidungsfindung zu verste-
hen.

In dieser Arbeit werden zwei grundlegende Modelle für nicht-kooperative Spiele
vorgestellt, mit denen sich wirtschaftliche Interessen im Internet und Einflüsse sozialer
Netzwerke auf Entscheidungen der Akteure analysieren lassen. Aspekte wie Ex-
istenz, Berechenbarkeit und soziale Güte stabiler Zustände wie reiner Nash Gle-
ichgewichte sowie approximativer Nash Gleichgewichte stehen bei der Analyse der
Modelle im Vordergrund.

Im ersten Teil der Arbeit werden Spiele betrachtet, in denen die Spieler eine
Menge von Rohstoffeinheiten kaufen und deren Kosten aufteilen müssen. Jeder
Spieler hat eine bestimmte Anforderung an die Art und Menge der gekauften Ein-
heiten. Die Spieler können beliebige Beiträge für den Kauf von Rohstoffen anbi-
eten. Sobald der Gesamtbeitrag aller Spieler für eine Rohstoffeinheit die Kosten
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übersteigt, gilt die Einheit als gekauft. Ein Spieler möchte dabei seine Anforderung
mit möglichst geringem eigenen Kostenbeitrag erfüllen. Das Modell wird in Kapi-
tel 3 formal eingeführt und in den Kapiteln 4 und 5 auf mehrere Probleme aus dem
Bereich Service Installation, Facility Location und Netzwerkdesign angewendet, die
einfache Modelle für fundamentale Fragestellungen im Internet liefern. Generell gibt
es schon für sehr kleine Instanzen der Spiele keine oder nur sehr teuere reine Nash
Gleichgewichte. Dagegen gibt es für eine Reihe von Teilklassen der Spiele approxi-
mative Nash Gleichgewichte mit kleinen konstanten Gütegarantien. Diese Zustände
können ausserdem effizient berechnet werden. In den Algorithmen werden beste-
hende Techniken aus der linearen Optimierung sowie neue kombinatorische Ansätze
verwendet. Kapitel 6 skizziert eine interessante, realistische Erweiterung des Modells
auf nutzungsbasierte Rohstoffkosten.

Im zweiten Teil der Arbeit wird ein Ansatz betrachtet, der es erlaubt, Cluster-
ing von Graphen spieltheoretisch zu modellieren. Dadurch lassen sich zum Beispiel
Zugehörigkeits- und Mitgliedschaftsentscheidungen von Akteuren im Kontext sozialer
Netzwerke untersuchen. Jeder Spieler ist ein Knoten im Graph und entscheidet,
welchem von mehreren möglichen Vereinen, Gruppen oder Clustern er angehört.
Der Wert dieser Entscheidung für den Spieler hängt dabei von der Entscheidung
aller anderen Spieler und der Struktur des Netzwerkes ab. Die betrachteten Spiele
sind Teilklassen von Polymatrix Spielen, in denen die Summe der Bewertungen eines
Zustands durch die Spieler intuitive und bekannte Indizes für Clusterings nachbilden.
Alle in diesem Teil der Arbeit betrachteten Spiele sind Potenzialspiele, d.h. sie haben
mindestens ein reines Nash Gleichgewicht, das durch einen Prozess des iterativen
Strategiewechsels gefunden werden kann. Der Schwerpunkt der Analyse liegt in der
Dauer dieses Prozesses und der Berechenbarkeit von guten Nash Gleichgewichten
und sozial optimalen Zuständen. In Kapitel 7 wird das Modell formal eingeführt.
In Kapitel 8 werden Spiele untersucht, die sich aus zwei Teilspielen zusammenset-
zen, einem für verbundene und einem für nicht verbundene Spieler. Es werden
besondere Bedingungen an die Bewertungen in Spielen mit 2 Strategien hergeleitet.
Unter diesen Bedingungen können das beste Nash Gleichgewicht und sozial opti-
male Zustände einfach charakterisiert und effizient berechnet werden. In Kapitel 9
werden Spiele auf Basis des populären Index Modularity betrachtet. Das Hauptre-
sultat ist ein Beweis der NP-Härte für das Finden des sozial optimalen Zustands und
des besten Nash Gleichgewichts. Dies liefert die ersten grundlegenden theoretischen
Einsichten in die Modularity-Optimierung und bestätigt eine zuvor in der Literatur
formulierte Vermutung über den Komplexitätsstatus.
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Chapter 1

Introduction

One of the unique artefacts and dynamic driving forces in modern society is the
Internet. It represents not only a network but a virtual platform for exchange that
is jointly developed, built and maintained by millions of users worldwide. It offers
unique opportunities in human history in all parts of everyday life. Therefore it is
important to understand the dynamics and forces that underlie the development of
the Internet. A straightforward way for computer scientists is to model and analyze
it as a graph, which allows to study networking problems. This has been done in-
tensively for many networks and network problems during the last decades, which
came from fields like operations research, computer science, and mathematics. The
study of these model has generated valuable insights into applications from domains
like public traffic, supply chains, scheduling, programming, parallel computing, etc.
However, unlike most of these networks, the Internet is not centrally built or main-
tained. Instead, there are a number of decentralized public and private parties that
jointly create, develop and improve it. In fact, many of the parties concerned with
development and use of the Internet are companies that in essence buy and sell prod-
ucts and thus act as economic agents in a market. To interpret their behavior and
to analyze their incentives, it is necessary to understand the Internet as a market, a
place of competition and cooperation. This leads to an economic and, in particular,
a game-theoretic approach to study the behavior of agents and the results of their
actions on the network.

For example, consider the topology of the Internet. At present it is still subject to
change and development. A lot of independent parties are concerned with building
and maintaining connections. Some of them, like global players in business and
industry, hold a lot of servers and connections throughout different parts of the
world. Some interesting questions with respect to the topology development of the
Internet are the following:
– Why are certain links in the Internet established?
– Who is interested in building and maintaining them, who will profit from them?

1



2 CHAPTER 1. INTRODUCTION

– Are players motivated to cooperate in the creation of a link?
– How do these interests change if the topology changes?
– What would be the most profitable topology, and who would establish the links?

Answers to these questions are very important for improving the structure of the
Internet. Insights could be used to guide public authorities, telecommunications
firms and other parties concerned with building computer networks. They could see
how to establish cheap networks that other selfish parties and companies will be mo-
tivated to pay for, maintain and use. This could lead to an improved topology. But
maybe cheap networks are not stable - i.e. some parties might always be motivated
to change a given network and establish other links. One can certainly think of
many interesting insights, and at present there is still only very little understanding
of this development and the underlying dynamics.

The development of the Internet concerns many more aspects than topology,
for instance package routing and congestion, service installation, facility and server
location, maintenance, security and cryptography, etc. All these are similarly influ-
enced by economic decisions of the involved parties. More generally, the Internet
poses fundamental questions about the incentives and optimization processes of eco-
nomic agents in competitive environments. Similar questions have been studied for
decades in economics and game theory, and there is a large body of mature research,
of well-motivated and established mathematical concepts that a rigorous investiga-
tion can rely on. The distinctive and new aspect is that the Internet is a network
and an inherently computational environment, so algorithmic, graph-theoretic and
game-theoretic aspects need to be combined.

The Internet is influenced by economic agents, and in turn, it creates affiliations
and social ties between them. In fact, such social ties and social networks always
evolve between humans and crucially influence our lives. Thus, not surprisingly,
there has been an enormous research interest in these concepts in many disciplines.
Only recently, however, scientists are starting to understand the influence of social
networks on economic decision making. Typical research questions concern struc-
tural properties and topology of equilibrium networks, or the influence of a given
network on existence and structure of equilibria in a market or a game.

1.1 Game Theory, Computation, and Networks
The connection between computer science and game theory has been explored for
many years. One of the most central concepts in game theory, which we will study in
this thesis, are non-cooperative strategic games. They were proposed and studied by
Nash [Nas51] in the late 1940s, who showed the existence of a mixed-strategy equi-
librium in any game. A central problem has been to compute such an equilibrium



1.1. GAME THEORY, COMPUTATION, AND NETWORKS 3

for a game represented in normal form by a large payoff table. For games with two
players Lemke and Howson [LH64] proposed a solution algorithm in 1964, which
has striking similarities with the simplex algorithm [Dan63] for linear program-
ming (LP) [NW88]. While the simplex algorithm is known to be inefficient [KM72],
it was only recently that a similar result was shown for the Lemke-Howson algo-
rithm [vSS06]. Papadimitriou [Pap94] defined the complexity class PPAD of search
problems, for which a solution is guaranteed to exist by a parity argument. Recently,
finding a mixed Nash equilibrium in strategic games for any number of players has
been shown to be PPAD-complete [DGP06, CD06]. It is now widely believed that
any algorithm for finding mixed Nash equilibria must be inefficient. For the case of
two players this is surprising, because if the payoffs of every state sum to 0, a simple
application of LP can be used to find a mixed equilibrium in polynomial time. More
generally, the evidence for hardness of finding mixed equilibria stands in marked con-
trast to existing efficient algorithms for LP [Kha79]. This is even more remarkable
in light of the fact that many results from the last decades on various equilibrium
concepts rely on LP techniques. For example, in cooperative games [MvN47] Deng
et al. [DIN97] present and review a variety of these connections. In fact, a significant
portion of the results in this thesis is also proven using LP duality.

While problems of computing equilibria have a long history on the edge of game
theory and computer science, the recently emerging field of algorithmic game the-
ory is driven by problems dealing with networks. A prominent way to capture
game-theoretic networking problems is by formulating a non-cooperative strate-
gic game with selfish agents. Stable outcomes (e.g. networks, allocations, connec-
tions) of interactions of these agents then correspond to Nash equilibria. Typi-
cally, introducing the dynamics of selfish behavior gives rise to a variety of new
issues. In particular, outcomes representing Nash equilibria can be much more
costly than social optimum solutions. Papadimitriou [Pap01] refers to this cost
increase due to selfish behavior as the price of anarchy. The price of anarchy
has been studied in a large number of games dealing especially with network-
ing issues, such as load balancing [CKV02, CV02, Rou04], routing and congestion
[AAE05, CK05b, CDR03, Rou03, RE02], facility location [DGK+05, Vet02], and flow
control [AKP+02, DGH03, She95]. As there might be more than one Nash equilib-
rium in a game, it is natural to consider how costly an outcome of a game must be
to be stable. This minimum cost increase that is needed for any Nash equilibrium
has been termed the price of stability [ADK+04]. The price of stability has been
considered most notably in network design [ADTW03, ADK+04, FKL+06, SM04]
and congestion games [CK05a].

The results on non-cooperative games and their equilibria build the basis for
the analysis of incentives in more regulated environments. In particular, the area
of computational mechanism design treats problems of how to design and compute
rules and regulations for games to ensure certain agent behavior. Mechanism de-
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sign is a traditional branch in standard game theory with important applications in
economics and business. An institution, called the mechanism, collects private in-
formation from the agents, determines an outcome, and specifies a payment for each
agent. The agents have private valuation functions, which determine the value of
the outcome to them. They are hoping to get an outcome maximizing their personal
utility, which depends on the valuation and the payments. The mechanism, however,
tries to implement some social goal, which can be contrary to the agents private in-
terests. Thus, the agents can be motivated to report wrong or biased information to
influence the decision of the mechanism. The use of this concept was motivated by
the problem to design efficient protocols for Internet applications with selfish partic-
ipants. Moreover, the concept has been applied to computational problems from a
diverse set of domains like combinatorial auctions and e-commerce [dVV03, Par01],
scheduling [HMU07, NR01], broadcasting network design [FPS01, JV01, BdFFM04],
or routing [FPSS02, NR01]. An extensive overview of important results in algorith-
mic game theory and computational mechanism design is given in a forthcoming
book by Nisan et al. [NTRV07].

In addition to these rather computational issues, there is an evolving branch of
economics and sociology to study game-theoretic models for social network creation.
Some of these works regard the network as a fixed parameter of the game, while
others consider network creation as an outcome of strategic interaction. This line
of research was initiated by Myerson [Mye77], who imposed a decomposition for
a cooperative game based on connectivity of players in a graph. He provided an
allocation rule now known as Myerson value to allocate welfare to groups of players.
The extensions of this model are numerous, and an exposition of the most important
developments is given in the books of Slikker and van den Nouweland [SvdN01] and
Jackson and Dutta [DJ03]. Jackson [Jac04] provides an excellent introduction and
overview of more recent work.

1.2 Overview of the Thesis
In this thesis we consider strategic games that model important aspects of network-
ing under distributed competition. Chapter 2 provides some fundamentals of game
theory to facilitate the access to the contents of later chapters. We study two frame-
works of games, which have quite different characteristics and applications. Hence,
the thesis is divided into two parts, and each one treats a single framework for a
class of games.

Cost Sharing and Service Installation

In the first part we study games in which players are to specify investments for
establishing a feasible set of resources for usage. In equilibrium the strategies of
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players then represent a cost sharing of a feasible set of established resources.
In Chapter 3 we present the formal model of investment games, outline some

basic properties, and remark on how our model relates to other prominent cost
sharing games.

Chapter 4 contains a treatment of covering games in which the game is based
on the formal model of a covering integer program with non-negative coefficients
[Vaz00, Chapter 13.2]. Important examples that fall into this class are for instance
variants of Vertex Cover or Set Cover problems. In addition, we treat an
extension based on facility location problems. These games can be used as simple
models for a variety of distributed resource and service installation scenarios. We
provide tight bounds for prices of anarchy and stability in general and special cases,
and study the existence and computation of exact and approximate Nash equilibria.

Investment games are a generalization of the connection game, which has been
proposed by Anshelevich et al. [ADTW03] in the context of Steiner network creation.
These games were proposed as a simple model for the topology development in the
Internet. A drawback is that players in this game can have incentives to create
disconnected networks, while a crucial feature of the importance of the Internet is
global connectivity. In Chapter 5 address this issue by considering tree connection
games, in which the created network must be connected. We show hardness and
approximation results for Nash equilibria in this game. Furthermore, a more complex
network creation game, the backbone game, is introduced and initial results on the
cost and complexity of Nash equilibria are derived.

In Chapter 6 an adjustment to investment games is outlined. In the wholesale
investment game each player is required to specify her investments and the set of
resources she intends to use. The cost of a resource unit then increases with the
number of players that decide to use it. The model generates an economy of scale,
a reasonable and frequent property of standard economic models. We provide tight
bounds on the price of anarchy but leave a deeper study of this game for future
work.

Clustering and Affiliations

In the second part we study games in which players correspond to vertices in a graph.
The strategies of players represent clustering decisions, and the utility functions
compose well-known clustering indices. These games serve as models for distributed
graph clustering problems. They can also be used to model incentives in affiliation
decisions of players embedded in a social network.

Chapter 7 describes a suitable formal framework for the study of such clustering
games. This enables us in Chapter 8 to consider games corresponding to unweighted
MaxCut and MaxAgree problems. Also, a more general class of games is studied
involving symmetric (2× 2) games played by pairs of players. As prices of anarchy
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and stability might not be well-defined, we focus on the complexity of computing
Nash equilibria.

In Chapter 9 we consider games that correspond to optimizing the recently popu-
lar modularity clustering index [GN04]. We provide bounds on the prices of anarchy
and stability and study computational issues of Nash equilibria. In particular, while
finding a Nash equilibrium can be done in polynomial time, finding the best Nash
equilibrium and the social optimum state is NP-hard. This resolves a recent conjec-
ture about the complexity of finding clusterings that maximize the modularity index.

For a more detailed summary and evaluation of the results see Chapter 10 and,
in particular, Table 10.1 on page 144.



Chapter 2

Preliminaries

This chapter introduces formal concepts and measures used for the analysis in this
thesis. In the next Section 2.1 the concepts of a strategic game and a Nash equilib-
rium are defined along with the important classes of congestion and potential games.
Section 2.2 presents ideas to measure social welfare and cost in games. In particular,
prices of anarchy and stability are defined and the connections to performance ra-
tios for approximation algorithms are outlined. Section 2.3 introduces concepts and
classes from complexity theory to study the complexity of computing Nash equilib-
ria. A focus is put on tools to characterize the behavior of best-response iterations.
Finally, graphs are a central concept in our results, and for reference Section 2.4
outlines the notation used throughout.

This chapter concentrates on concepts relevant for the results in this thesis. In
addition to the references in the text we refer the reader to standard literature
for further discussions. For a cumulative introduction into various aspects of game
theory see [AH02]. A treatment of complexity theory and approximation algorithms
is given in [GJ79, Hoc96, Vaz00].

2.1 Strategic Games
The last decades have seen a variety of game-theoretic models and interesting solu-
tion concepts [AH02, OR94, vD91], but each of these concepts has certain advantages
as well as drawbacks. In this thesis we consider concepts that arise from some of the
most foundational and most frequently explored game-theoretic ideas. We consider
strategic games, which are a model to capture the interaction of a number of non-
cooperative competitive selfish agents. In the simplest setting each player has a set
of actions or strategies, of which she can pick one. The vector of chosen strategies,
called a strategy profile or state, yields a certain value to each player. Hence, as
we assume each player is selfish, the values of different states influence her choice of
action. Changing her action causes changes in the state and might motivate other

7
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players to reevaluate their choices. The aim of game theory is to characterize the
properties and outcomes of this dynamic decision making process.

In general, there are many parameters that can crucially influence the players
in their decisions. Hence, in standard non-cooperative game theory the model of a
strategic game usually comes with a number of limiting assumptions, which we also
use here. First, players are assumed to be myopic, i.e. at any given point of time they
only evaluate their strategy choices against the current choices of the other players.
They do not use any memory, learning, or foresight to induce or anticipate certain
behavior of other players. Second, players are assumed to be non-cooperative, i.e.
they do not form any coalitions and do not evaluate or take a coordinated action.
Third, nothing is assumed on the process of how players are coordinated in their
decision making. Instead, at any point of time any player is allowed to switch to
any different strategy. Sometimes we deviate from this assumption and consider
an iterative process, in which in each iteration one player is allowed to deviate to
her best strategy choice at the moment. Such a process is called a best response
iteration. Of interest is to find and characterize states from which no player has an
incentive to unilaterally move away. Under the outlined assumptions these are the
stable states of the game and are thus most likely to evolve if the game is played over
a longer period of time. A game considered in this thesis can formally be defined as
follows.

Definition 2.1 A strategic game Γ = ([k],S, util) is a tripel, in which

• [k] is the set [k] = {1, . . . , k} of the k players,

• Sp is a set of strategies sp ∈ Sp for player p ∈ [k] and S = S1 × . . . × Sk is
the set of strategy profiles or states s ∈ S, and

• utilp : S → R is a utility function indicating the preference over the states
for player p ∈ [k].

A game is called symmetric if Sp = Sq for any players p, q ∈ [k], and for any
two states s, s ′ ∈ S such that s ′ results from permuting the strategies of s, we have
utilp(s

′) = utilq(s) if s ′p = sq.

For convenience s−p denotes a profile excluding p, hence for s ∈ S and s =
(s1, . . . , sk) the profile s−p = (s1, . . . , sp−1, sp+1, . . . , sk). Similarly, S−p denotes the
set of all profiles s−p. Note that in a symmetric game it suffices to specify the utility
function for just one player e.g. util1, since the utility values for all other players
can be easily extracted from the values of util1 for symmetric states. In games, in
which the strategy spaces of the players are finite, lp = |Sp| denotes the number of
strategies. If all players have the same number of strategies, their number is denoted
by l.
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We will always assume that players want to maximize their utility and we are
interested in characterizing the stable states of the game. If for player p and sp, s

′
p ∈

Sp the strategy sp delivers better utility than strategy s ′p for every profile s−p, then
p will never pick s ′p. In this case s ′p is dominated by sp.

Definition 2.2 For a player p ∈ [k] and strategies sp, s
′
p ∈ Sp in a strategic game,

if
utilp(sp, s−p) ≥ utilp(s

′
p, s−p) for all s−p ∈ S−p,

then sp dominates s ′p. sp is a dominant strategy if it dominates all s ′p ∈ Sp.

Clearly, a state composed of dominant strategies is a stable state of the game.
The existence of dominant strategies, however, is a very strong assumption as play-
ers must have a universal preference in the game. Also, dominant strategies are
not necessary for stability within a group of myopic non-cooperative players. The
necessary and sufficient condition is that there is a state, which encompasses all the
local preferences of players. Each player is motivated to pick a strategy that returns
the best utility only against the current choices of other players. These strategy
choices are captured by a best-response function, which for a profile s−p returns the
set of strategies sp ∈ Sp resulting in optimal utility for player p.

Definition 2.3 The best-response function brp : S−p → 2Sp of player p in a game
Γ is defined as

brp(s−p) = { sp ∈ Sp | ∀s ′p ∈ Sp : utilp(sp, s−p) ≥ utilp(s
′
p, s−p) }

An element sp ∈ brp(s−p) is called a best-response strategy or best response for p

against s−p. We denote by utilp(brp, s−p) the utility utilp(sp, s−p) for any strategy
sp ∈ brp(s−p).

The stable states of the game are composed of a collection of best responses.
They were first studied by John Nash [Nas51], are called pure Nash equilibria, and
will be denoted NE throughout.

Definition 2.4 A state s is called a pure Nash equilibrium (NE) if each player
plays a best-response sp ∈ brp(s−p) for all p ∈ [k], or equivalently

utilp(sp, s−p) ≥ utilp(s
′
p, s−p) for all p ∈ [k] and s ′p ∈ Sp (2.1)

It is simple to note that there can be more than one NE in a game. In addition,
some games have no NE, e.g. the symmetric game of Matching Pennies for two
players. The intuition is that there are two players, and each one has a penny. Each
player decides, which side of her penny should show up. If both players choose the
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Head Tail

Head 1,-1 -1,1

Tail -1,1 1,-1

Figure 2.1: Matching Pennies for two players

same side, player 1 receives the penny from player 2. Otherwise, player 2 receives
the penny from player 1. The utility values are given in Figure 2.1. This notation
is standard for so-called (2 × 2) games, games with 2 players and 2 strategies per
player. The strategy of player 1 yields the row, the strategy of player 2 yields the
column. From the cell that indicates the current state player 1 gets a utility given
by the first number, and player 2 gets a utility given by the second number.

The existence of games without NE raises natural questions that we will address
repeatedly in later chapters.

– Does a given game have one/more than one NE?
– What structural properties are exhibited by the NE of a game?

Congestion and Potential Games

There are several classes of games that have at least one NE. One of the most
prominent classes are congestion games [Ros73]. They have attracted an enormous
amount of research interest, because they yield a natural general model to study the
competitive usage of a set R of resources in a large variety of contexts.

Definition 2.5 A congestion game ([k], R,S, late, util) is a strategic game with a
set of resources R and

• each strategy sp ∈ Sp is a subset sp ⊆ R, for all p ∈ [k],

• there is a latency function later : N→ R for each r ∈ R, and

• the utility of player p is utilp(s) = −
∑

r∈sp later(|{q ∈ [k] | r ∈ sq}|).

In this model players are to pick a set of resources for usage (e.g. a path to
route through a traffic network). The disutility for a player is the sum of latencies
incurred by the resources. A resource creates a different (usually a larger) latency
if more players are using it in their strategies. Interestingly, a congestion game is
guaranteed to possess a NE. This is easier to understand for the class of potential
games [MS96].
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C D

C -3,-3 -18,-1

D -1,-18 -12,-12
(a)

C D

C -2 0

D 0 6
(b)

Figure 2.2: (a) A Prisoner’s Dilemma game; (b) corresponding potential Φ

Definition 2.6 A strategic game is called a potential game if there is a function
Φ : S → R such that for every player p, every state s ∈ S, and every strategy
s ′p ∈ Sp

utilp(s
′
p, s−p) − utilp(sp, s−p) > 0⇔ Φ(s ′p, s−p) −Φ(sp, s−p) > 0.

Φ is called ordinary potential or simply potential of the game. Φ is called weighted
potential if

utilp(s
′
p, s−p) − utilp(sp, s−p) = wp · (Φ(s ′p, s−p) −Φ(sp, s−p))

for some positive numbers wp > 0. In case wp = wq for all p, q ∈ [k], function Φ

is called exact potential.

Rosenthal [Ros73] showed that congestion games are potential games by provid-
ing a potential function. Monderer and Shapley [MS96] proved equivalence of both
classes. For an example consider the symmetric (2 × 2) game in Figure 2.2. It is
a variant of the famous Prisoner’s Dilemma. Two players have jointly committed
a crime, were captured, and are now interrogated by the police separately and si-
multaneously. Each player has two strategies: cooperation (C) or defection (D). If
they both cooperate, the police has no substantial evidence against them and they
are imprisoned for a short period of 3 months. If one defects by confessing and the
other one does not, the confessant receives a mild verdict of 1 month and the other
one a harsh verdict of 18 months. If they both confess, they both go to jail for
one year each. The remarkable property in the Prisoner’s Dilemma is that the only
NE is (D,D), as D is a dominant strategy for both players. The NE, however, is
catastrophal, because the players are sentenced to a much higher penalty than in
the case of cooperation. Note that the Prisoner’s Dilemma is a potential game, and
the exact potential is given in Figure 2.2(b). In fact, every symmetric (2× 2) game
has an exact potential [Blu93, You98], and we use this property to define potentials
for clustering games in Chapter 8.

In potential games a single function Φ is able to indicate for every state and
every player whether there is a profitable strategy switch. Thus, if the state s is no
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NE, there is still a player who can strictly improve her utility. By switching to such
a strategy the potential strictly decreases. Hence, a sequence of strictly improving
best-response steps can never return to a state s encountered previously. If the state
space S is finite, there must exist a state of minimum potential, which must be a
NE. The following theorem from [MS96] is now obvious.

Theorem 2.1 A potential game with finite S has at least one NE.

The proof suggests that best-response iteration can be used to obtain a NE.
This process, however, can take a large number of steps. We make the details of
this observation more precise in Section 2.3.

Pure and Mixed Nash Equilibria

Another way to guarantee the existence of an equilibrium is to create a continuous
strategy space by allowing each player p to play a probability distribution over Sp.
In particular, the new strategy space for a player p becomes the set of probability
distributions over the elements sp ∈ Sp, which are in this context called pure strate-
gies. A distribution over pure strategies is called mixed strategy. In his seminal
work John Nash [Nas51] proved the existence of an equilibrium in mixed strategies
for every strategic game. The concept is referred to as mixed Nash equilibrium and
is denoted mixed NE throughout. In the consideration of mixed strategies players
pick a pure strategy only with a probability. It is assumed that players specify their
distributions knowing only the distributions of other players. Then the game is
played like a random experiment, whose outcomes cannot be changed individually.
In a mixed NE no player can improve her expected utility of this random experiment
by changing only her personal probability distribution. While such a model can be
a reasonable choice in some situations, the widespread use in mathematics and eco-
nomics stems from appealing theoretical properties, in particular, from guaranteed
existence. The main question is, however, whether mixed strategies make sense.
What does it mean for a person to ”play a mixed strategy” in a decision context?
For the games considered in this thesis, we have come to the conclusion that mixed
strategies are an interesting, but sometimes unintuitive concept. Thus, our analy-
ses consider states in pure strategies that exactly or approximately satisfy the NE
inequality (2.1). More details on mixed NE are discussed in Chapters 3 and 7.

2.2 Social Cost and Approximation
In the definition of a strategic game given in the last section there is no consideration
of social cost or welfare of states. The only cost that is considered is specified by
the player-specific utility functions, and these functions merely serve to define a
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preference relation over the states for each player. However, in many scenarios it is
natural to consider social cost or welfare to evaluate the performance of states with
respect to certain societal criteria (e.g. total/maximum amount of utility, fairness
of utility distribution etc). In particular, the discussion of the Prisoner’s Dilemma
in the last section yielded the total number of months spent in prison by both of
the players as a natural choice for the definition of a social cost. This definition -
social cost or welfare as sum of player utilities - is a prominent and intuitive way to
measure social quality. Throughout this thesis we only measure social quality of a
state as the sum of player utilities. A reasonable choice for a social cost or welfare
function has to take the considered scenario and the intended application of the
model into account. Our choice is therefore not necessarily a good choice for every
game, but for the games considered in forthcoming chapters it bears an intuitive
and straightforward meaning.

Definition 2.7 The social quality of a state s ∈ S is measured by a function
welfare : S → R or cost : S → R. We define the welfare(s) =

∑
p∈[k] utilp(s)

and cost(s) = −
∑

p∈[k] utilp(s). The social optimum s∗ is the state of minimum
social cost and maximum social welfare

We use cost or welfare depending on the context of the game. The games of Part I
involve players minimizing their cost when making an investment. In these games
we strive to minimize social cost, i.e. the total disutility of all players. The games of
Part II involve players maximizing payoffs generated by the graph structure when
making a clustering decision. In these games we strive to maximize social welfare,
i.e. the total payoffs for all players. For the remainder of this section we concentrate
on social cost. It is easy to adjust the definitions to social welfare maximization.

It is natural to consider structural and quantitative questions about the game
and the social cost of certain states.

– Which one is the state s∗ minimizing cost?

– Which one is the best/worst NE in terms of cost?

– How much worse is the best/worst NE than s∗ in terms of cost?

Especially the last question creates a connection to typical questions that are consid-
ered frequently in theoretical computer science and the analysis of approximation
algorithms. In particular, let us consider a minimization problem in an abstract
formulation, which encompasses a large number of problems regularly considered in
computer science. The following presentation is mainly restricted to the consider-
ation of minimization problems, and we only remark how we adjust the definitions
to maximization problems.
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Definition 2.8 A minimization problem Π = (I,Z, feas, c) is given by

• a set of instances I and a set of possible solutions Z,

• a function feas : I → 2Z , which returns the set of feasible solutions to an
instance I ∈ I, and

• a cost function c(I, feas(I)) ∈ R assigning a cost to every feasible solution to
any instance I ∈ I.

The goal is to find for each instance I ∈ I the feasible solution z∗ ∈ feas(I) such
that c(I, z∗) ≤ c(I, z) for all z ∈ feas(I).

We generally assume that for each instance there is a non-empty set of feasible
solutions, otherwise there is nothing to optimize. An example for a minimization
problem is the Vertex Cover problem [GJ79].

Problem 2.2 (Vertex Cover) Given a graph G = (V, E) and a cost function
c : V → R+

0 , find a set of vertices V ′ ⊆ V containing for each edge at least one
incident vertex, for which

∑
v∈V ′ c(v) is minimal.

Here an instance I is a simple undirected graph G. A feasible solution to an instance
is given by a set of vertices that contains for each edge in graph G at least one incident
vertex. The set of feasible solutions is composed of all such subsets satisfying this
property. The cost function measures the cardinality of a feasible vertex set z, and
thus is optimized by a set of minimum cardinality.

In complexity theory, it is assumed that the representation of any instance I of
a minimization problem and any feasible solution z to I can be given by strings
over a finite alphabet. Then an algorithm, i.e. a program on a generic model of
computation like the Turing machine, is used to obtain the desired solution z with
minimum c(I, z). Most interesting minimization problems turn out to be NP-hard,
i.e. most likely not solvable in a number steps that is polynomial in the size of the
representation of I. We defer to [GJ79] and the next section for more complexity
theoretic considerations. Hence, the theory of algorithms has shifted to consider
tractable approximation algorithms[Vaz00]. They run in time polynomial in the
input size and return solutions that have a cost within a guaranteed factor of the
optimum cost. This serves to reveal the trade-off between tractability and cost
optimization that is inherent in an approximation algorithm. In order to render
the following concepts well-defined, it is assumed that the cost function satisfies
c(I, z) ≥ 0 for every feasible solution z to the instance I and cost(s) ≥ 0 for every
state s of the strategic game under consideration. In addition, it is tacitly assumed
that 0

0
:= 1 for all ratios to be defined. This serves to consistently obtain a ratio of

1 whenever numerator equals denominator.
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Definition 2.9 For a solution z to an instance I of a minimization problem the
approximation ratio β(I, z) is given by

β(I, z) =
c(I, z)

c(I, z∗)
.

For maximization problems we define β(I, z) similarly using the inverse ratio.

Definition 2.10 A deterministic (approximation) algorithm for a minimization or
maximization problem defines a function algo : I → Z that yields for each instance
I exactly one solution z. The performance ratio of the algorithm is given by the
largest approximation ratio of any computed solution

sup
I∈I

β(I, algo(I)).

The performance ratio can be given as a function of the length of the represen-
tation of I.

To characterize the degradation of social cost in a NE we take a similar straight-
forward approach and define what has been termed the coordination ratio [KP99]
or the price of anarchy [Pap01]. This serves to capture the inherent trade-off in the
social cost obtained by competitive optimization on the one hand and by centralized
and coordinated optimization on the other hand.

Definition 2.11 For a state s of a strategic game Γ and a social cost function cost

the approximation ratio β(s) is given by

β(s) =
cost(s)

cost(s∗)
.

For welfare functions we define β(s) similarly using the inverse ratio.

Definition 2.12 The coordination ratio or the price of anarchy for a strategic game
Γ and a social cost or welfare function is the largest approximation ratio of any NE

sup
s∈S is NE

β(s).

We drop the argument s from the approximation ratio β whenever context allows.
In comparison to the performance ratio some differences remain. Most notably, the
concepts of game and NE are used similarly to instance and solution, however, for a
given game there might be several NE. A deterministic algorithm, however, outputs
exactly one solution to a given problem instance. The fact that several NE can be
present in a game is a motivation to consider the best NE in terms of social cost.
This measures how good a stable solution can get in terms of social cost and is thus
termed the price of stability.
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Definition 2.13 The price of stability for a strategic game Γ and a social cost or
welfare function is the smallest approximation ratio of any NE

inf
s∈S is NE

β(s).

It is easy to see that both prices of anarchy and stability can easily become
unbounded even in (2 × 2) games. An example is the Prisoner’s Dilemma (see
Figure 2.2), in which the only NE is arbitrarily worse in social cost than the optimum
state. Another problem with the definition is that some games do not have NE.
One alternative is to consider the measures for mixed NE, which are guaranteed to
exist. In this thesis, however, we take a different approach. We consider the price
of anarchy and stability only for the subset of games in which NE exist. For the
study of general games we introduce a different notion that captures for a state s

the difference from a NE. This concept captures a scenario, in which there must
be a significant improvement to motivate a player to change her strategy. For
example, this can be due to a cost for strategy switches or a limited ability to
obtain strategies that yield optimal utility values. For the following definition we
assume utilp(brp, s−p) ≥ 0 for all utility and best-response functions utilp and brp.

Definition 2.14 For a state s of a strategic game Γ with utility minimizing players
the stability ratio α(s) is given by

α(s) = sup
p∈[k]

utilp(s)

util(brp, s−p)
.

For utility maximizing players we define α(s) as the supremum over the inverse
ratio.

Again, we drop the argument s from α whenever context allows. The stability
ratio measures by how much state s allows selfish users to unilaterally decrease
their utility. The ratio is 1 for a NE. This is the basis to formulate the following
approximate equilibrium concept.

Definition 2.15 A state s of a strategic game Γ with stability ratio at most α and
approximation ratio at most β is called an (α,β)-approximate NE.

The concept of (α,β)-approximate NE poses an obvious two-parameter opti-
mization problem: On the one hand one strives to find a state with social cost as
small as possible, on the other hand this might exclude stable solutions if the price
of stability is high (or the game has no NE). In these cases it is interesting to study
the properties of states s with a good trade-off between these two objectives, which
are represented by the stability and approximation ratios of s. A NE is a (1, β)-
approximate NE, the state s∗ with optimum social value is a (α, 1)-approximate NE.
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The price of anarchy (stability) for a game with social cost or welfare is the largest
(smallest) β such that there exist (1, β)-approximate NE in the game.

The concept of (α,β)-approximate NE is closely related to the more prominent
concept of ϵ-NE [Eve57]. While our ratios are relative parameters, ϵ-NE are states
that violate the Nash inequality (2.1) by an absolute value of at most ϵ. ϵ-NE are
invariant to adding a constant to all payoffs, (α,β)-approximate NE are invariant
to scaling all payoffs by a positive factor. As the games in this thesis are studied
in combination with approximation algorithms for combinatorial optimization prob-
lems, we use (α,β)-approximate NE as a stability concept with relative performance
measures.

2.3 Computational Complexity
In the previous sections we have introduced tools to study existence and approxi-
mation problems for NE in strategic games with social cost function. In this section
we describe concepts to study complexity theoretic questions in games.

At the very heart of complexity theory in computer science lies the concept of the
Turing machine, the definition of classes P and NP, and the notions of completeness
and hardness with the most famous variants, the NP-completeness and NP-hardness.
For a detailed introduction to these concepts, the underlying assumptions and inter-
esting extensions we refer the reader to the classic textbook by Garey and Johnson
[GJ79]. In the context of games some interesting questions concerning complexity
are:

– How hard is it to decide whether a given game has a NE?
– How hard is it to compute a NE for a given game if it exists?
– How hard is it to compute the NE with best/worst social cost?
– How hard is it to compute the state of best/worst social cost?

Note that the answers to these questions depend on the representation of the game
and can become quite trivial. Suppose the game Γ is represented in normal form as
in Figures 2.1 and 2.2 by a large table listing all utility and social cost values for all
possible states s ∈ S. Then for each of the mentioned tasks there is a polynomial
time algorithm. In particular, the algorithm works by scanning for every state all
the states that differ in exactly one strategy and comparing the utilities for each
player. As the length of the input is in Θ(k|S |), we can then find all NE of the game
in time at most quadratic of the input size. By evaluating the social cost we can
also find best/worst states and/or NE in the same time.

If the game is represented in some succinct manner, however, the questions for
NE can become much harder to answer. For example, the completeness results
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for finding mixed NE outlined in Section 1.1 assume a succinct representation as
graphical game (see [KLS01]). For each game considered in this thesis we will outline
a succinct representation. It is easily observed that most of the computational
tasks involving NE can become NP-hard problems. For example, for the games in
Chapters 4 and 5 evaluating the best-response functions brp(s) for a state s can
already pose an NP-hard minimization problem. Thus, given a game and a state s,
even the decision if s is not a NE becomes an NP-hard problem. The problem of
deciding the existence of a NE is even unlikely to be in NP, and so is any of the
problems involving best/worst NE. In addition, for some of the games in Chapters 4
and 5 deciding whether a game allows a NE is NP-hard. For special classes of games,
however, it is possible to draw a more differentiated picture. For each class of games
considered in this thesis, we present specific answers in the corresponding chapters.

While for some games even deciding the existence of a NE is an NP-hard problem,
for congestion and potential games we have already seen that the decision problem
is trivial. It is not surprising that computing the best or worst NE in a succinctly
represented potential game can be NP-hard. This can be shown easily, for instance
for a class of congestion games with social cost as sum of latencies [IMN+05]. But
the problem of finding just a single (not necessarily best or worst) NE belongs to a
different complexity class. NE correspond to states, which are local optima with re-
spect to the potential function and a neighborhood of single player strategy switches.
If there are polynomial time algorithms to evaluate the potential function and to
find for each player and each state a state with improved utility (if it exists), then
the problem of finding a NE is in the class PLS defined for local search problems. We
outline some details on this connection and introduce the complexity class formally.
The starting point is the underlying concept of a local search problem. We present
the definition for minimization problems, and as before it can be adjusted easily to
maximization problems.

Definition 2.16 A local search (minimization) problem Λ = (I,Z, feas, neigh, c)
is given by

• a set of instances I and a set of possible solutions Z,

• a function feas : I → Z, which returns the set of feasible solutions for an
instance I ∈ I,

• a neighborhood neigh(I, z) ∈ 2feas(I) assigning a set of neighbors to every
feasible solution z ∈ feas(I) to any instance I ∈ I, and

• a cost function c(I, z) ∈ R assigning a cost to every feasible solution z ∈
feas(I) for every instance I ∈ I.
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The goal is to find for each instance I ∈ I a feasible solution z∗l ∈ feas(I) such that
c(I, z∗l ) ≤ c(I, z) for all neighbors z ∈ neigh(I, z∗l ). The solution z∗l is called a local
optimum.

For instance, we can consider a class of finite potential games as instances, the
states of a game as feasible solutions, the set of states that differ in the strategy
choice of at most one player as the neighborhood of a state, and the potential as cost
function. Then finding a NE in this class of potential games satisfies the definition
of a local search problem. For complexity considerations it is important, whether
for a given instance I and a feasible solution z the evaluation of neighborhood and
cost functions and the check for local optimality of z can be done in polynomial
time. Formally, we again assume that instances and solutions are represented as
character strings over a finite alphabet. In addition, the representation of a feasible
solution z is polynomial in the representation of the corresponding instance I, i.e.
|z| ≤ poly(|I|) where poly is a polynomial of constant degree.

Definition 2.17 A local search problem Λ is in the class PLS (Polynomial time
Local Search) if there are three polynomial time algorithms AΛ, BΛ and CΛ with the
following properties.

• Given a string x, algorithm AΛ determines if x is an instance of Λ and in this
case produces some feasible solution z ∈ feas(x).

• Given an instance I and a string x, algorithm BΛ determines if x is a feasible
solution x ∈ feas(I) and in this case calculates the cost c(I, x).

• Given an instance I and a solution z, algorithm CΛ determines if z is a local
optimum. If this is not the case, CΛ returns a neighbor z ′ ∈ neigh(I, z) with
strictly better cost c(I, z ′) < cost(I, z).

PLS was introduced by Johnson et al. [JPY88]. It captures the intuition that
there is a local search algorithm that efficiently computes a starting solution. Then
it iteratively uses efficient steps to move to better neighboring solutions. This is not
necessarily a polynomial time algorithm to solve the local search problem, because
it might use an exponential number of iterations to reach a local optimum. Hence,
it is of interest to characterize the hardest local search problems in PLS, which is
done by reduction and a completeness definition.

Definition 2.18 For Λ1, Λ2 ∈ PLS a reduction from Λ1 to Λ2 consists of two
polynomial time computable functions g and h such that

• h maps instances I of Λ1 to instances h(I) of Λ2
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• g maps a solution to the mapped instance z2 ∈ feas(h(I)) and the correspond-
ing instance I of Λ1 to a solution g(z2, I) ∈ feas(I).

• for all instances I of Λ1, if z2 is a local optimum for h(I) of Λ2, then g(z2, I)
is a local optimum for I of Λ1.

We say that Λ1 reduces to Λ2.

Reductions for PLS are similar to standard reductions for NP. For each instance
of Λ1 we can construct with h in polynomial time an instance of Λ2. If Λ2 is solved,
then we can use g to turn the local optimum z2 in polynomial time into a local
optimum for Λ1. Hence, in this case Λ2 is at least as hard as Λ1. Note that the
reduction is transitive.

Lemma 2.1 If Λ1 reduces to Λ2 and Λ2 reduces to Λ3, then Λ1 reduces to Λ3.

Thus, if every problem of PLS reduces to Λ1 and Λ1 reduces to Λ2, then every
problem of PLS reduces also to Λ2. We call such a property PLS-hardness.

Definition 2.19 A problem is called PLS-hard if all problems in PLS reduce to it.
A problem Λ ∈ PLS is called PLS-complete if all problems in PLS reduce to Λ.

This yields similar notions as the well-known NP-hardness and NP-completeness.
If a PLS-hard problem can be solved in polynomial time, then with the help of the
reductions every problem in PLS can be solved in polynomial time. The difference
between hardness and completeness is that the corresponding problem must be part
of PLS. The class of PLS-hard problems can include any sorts of problems, e.g.
decision problems, optimization problems, or search problems. The PLS-complete
problems represent in this sense the hardest local search problems in PLS. Johnson et
al. [JPY88] introduced PLS and provided a PLS-complete local search problem called
Circuit Flip. In addition, there are a number of intuitive PLS-complete problems
with natural neighborhood functions, e.g. the Travelling Salesman Problem
with the k-Opt neighborhood for any fixed k [Kre89]. PLS-completeness means the
problem is one of the hardest in a class including a set of intuitive and frequently
studied local search problems. It was shown that for any PLS-complete problem and
any standard local search algorithm with arbitrary pivoting and tie-breaking rules
there exist instances for which the algorithm needs exponential running time [Yan97,
Theorem 13]. Thus, PLS-completeness implies that the standard local search ap-
proach can fail to provide a local optimum in reasonable time. However, nothing has
been said about different solution algorithms, and in fact it is unknown, whether a
local optimum can be found in polynomial time for all problems in PLS. However,
there is some evidence [JPY88] that no problem in PLS is inherently intractable in
the usual sense.
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Theorem 2.3 If a problem in PLS is NP-hard, then NP = co-NP.

For the results in this thesis, the MaxCut problem is of special interest.

Problem 2.4 (MaxCut) Given a simple undirected graph G = (V, E) and a func-
tion c : E → R+, find a partition of V into two sets V1 and V2 such that the value
of the edge cut

∑
e∈E∩(V1×V2)

c(e) is maximal.

A natural representation for a solution is to encode the partition as a bitstring
of length |V |, which considers one vertex for each position and encodes as 0 or 1
the partition side on which the vertex is located. For the local search maximization
problem we add a neighborhood function called Flip. For any solution it consists
of all bitstrings of Hamming distance at most 1. This naturally corresponds to all
partitions that differ only in the assignment of at most one vertex. The following
theorem has been shown in [SY91].

Theorem 2.5 Finding a local optimum for MaxCut with the Flip neighborhood
is PLS-complete.

MaxCut can be interpreted easily as a game by considering each vertex as
a player that chooses the partition as a strategy. This game has been previously
considered as party affiliation game [FPT04] or cut game [CMS06]. The utility for
a player p in a given state s is given by utilp(sp, s−p) = 1

2

∑
sq ̸=sp

c(p, q). The
social welfare function is given by the sum of players utilities. In a best response
step a player tries to increase the values of cut edges. It is easy to verify that the
utility increase of a player in such a step corresponds to half the increase of the
welfare function. Therefore, the sum of player utilities yields both, the welfare and
a potential for the game. The following corollary is now immediate.

Corollary 2.1 Finding a NE in a potential game is PLS-hard.

Recall that this result is dependent on the representation of the game. It holds
for games that allow a succinct representation like the MaxCut game, which can
be encoded using the graph and the associated edge values. Thus, for potential
games a best-response iteration can take a number of steps exponential in the size
of a succinct representation of the game until arriving at a NE. In general, utility
and best-response functions might not be polynomial time computable. Thus, the
existence of the required algorithms in Definition 2.17 is not guaranteed, and the
local search problems posed by finding a NE in arbitrary congestion and potential
games are not necessarily in PLS. For all potential games considered in this thesis,
however, the corresponding local search problems are in PLS. Hence, for the MaxCut
game the problem is PLS-complete. More information about the complexity of
classes of potential games and properties that lead to polynomial or exponential
time best-response iterations can be found in [FPT04, ARV06].



22 CHAPTER 2. PRELIMINARIES

2.4 Graphs
Let us introduce some concepts from graph theory and their notation that is used
throughout the thesis. A graph or undirected graph G = (V, E) is a pair of two
multisets, the vertices V = {v1, . . . , vn} and edges E = {e1, . . . , em}, for n,m ∈ N.
Each edge e ∈ E is a two-element subset e = {v,w} ⊆ V . For a digraph or directed
graph edges are ordered pairs of vertices. A graph is called simple if there are no
edges {v, v} ∈ E for any v ∈ V and each edge appears at most once in E. A simple
graph that includes all possible edges is called complete or a clique.

The following concepts for graphs generalize to directed graphs in the obvious
way. An edge {u, v} and a vertex u are called incident. In a digraph an edge (u, v) is
an outgoing edge for u and an ingoing edge for v. Two vertices u and v are adjacent
if there is an edge {u, v} ∈ E. The degree of a vertex v is the number of edges incident
at v and is denoted by deg(v). The neighborhood of a vertex u is the set of adjacent
vertices N(u) = {v ∈ V | {u, v} ∈ E}. A graph is called regular if every vertex has
the same degree.

A subgraph G ′ = (V ′, E ′) is a graph such that V ′ ⊆ V and E ′ ⊆ E. An induced
subgraph G[E ′] = (V ′, E ′) is a graph such that E ′ ⊆ E and V ′ is exactly the set of
incident vertices of the edges in E ′. Similarly, the induced subgraph G[V ′] = (V ′, E ′)
is a graph such that V ′ ⊆ V and E ′ is exactly the set of edges incident only with
vertices from V ′. A simple graph is called a path P , if the vertices can be numbered
such that vi is adjacent to vi+1 for i = 1, . . . , n − 1, and to vi−1 for i = 2, . . . , n,
and there are no other edges. n is called the length of the path. A cycle is a path
of length at least 3 with an additional edge between v1 and vn. A tree T is a graph
for which no subgraph is a cycle. If a tree has one vertex that is connected to all
other vertices, it is called a star. A graph is called connected if it contains a path for
every pair of vertices and unconnected otherwise. A component C of a graph G is
a maximal connected subgraph, i.e. for a component C there is no other connected
subgraph of G that contains C as a subgraph.

A cluster C of a graph G is a subset of the vertices V . A clustering C of G is a
partition of V into mutually disjoint clusters. A x-clustering of G is a partition of
V into at most x mutually disjoint clusters.
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Investment Games
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Chapter 3

Formal Framework

Service installation, facility and server location, and network creation are some
important aspects in the development of the Internet. In the first part of this
thesis we study a general class of investment games, which allows to derive strategic
games for optimization processes concerning all these aspects. More generally, our
model allows to turn a large class of optimization problems with a covering aspect
into a strategic cost sharing game.

An investment game can be outlined as follows. There are k players in the
game, and there is a set R of resources. Each player p has an associated constraint
validp ⊂ NR that specifies possible combinations of resources that should be bought.
She insists on fulfilling this constraint. Each resource r ∈ R is available for purchase
in costly integer units, in particular, for each resource there is a unit cost c(r) ∈ R≥0.
A unit of resource r is considered bought if the corresponding cost c(r) is paid for. A
strategy for a player is an investment function sp : R→ R≥0, which specifies for each
resource r how much payment player p is willing to contribute to units of r. For
simplicity we assume that the number of bought units of resource r is determined by
the total amount of payment offered by all players to resource r. The bought units
of a resource are considered by all players to satisfy their constraints, no matter
whether this player contributes to the cost or not. A player p insists on satisfying
her constraint validp. If there are several strategies that would do, she chooses the
one minimizing her total investment

∑
r∈R sp(r).

Investment games are models for cost and usage sharing of resources. In these
games we assume that players make investment decisions to purchase certain re-
sources. For such decisions one is usually required to specify a concrete investment
and not to take a randomized action. As was argued in [ADTW03] treating these
games as a random experiment is rather unnatural given the motivation for the
model. Hence, the following chapters address the existence and computability of
exact and approximate NE in pure strategies. Our intuition does not rule out that
a convincing application of mixed NE in investment games exists. At least from
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a technical perspective it is an interesting direction for future work to explore the
properties of mixed NE in these games.

Investment games are closely related to non-cooperative cost sharing games based
on the Shapley value [ADK+04]. In these games a strategy is not an investment
function but a subset of resources. The cost of a resource unit is split between
players requesting it in a pre-defined way, e.g. equally [ADK+04] or based on player
weights [CR06]. Games with equal cost sharing scheme are easily shown to be
potential games and have NE, the price of anarchy is Θ(k) and the price of stability
Θ(log k). In addition, they possess a fairness aspect to exclude free riders, players
that get their constraint satisfied without contributing to the cost. However, this
is achieved by sacrificing generality and allowing players only a much smaller set of
actions. Also, the techniques used for analysis rely in large parts on characterizing
best responses and potential functions, which is fundamentally different from our
approaches to investment games in the next chapters.

Another recently prominent model for competitive resource allocation has been
proposed by Johari and Tsitsiklis [JT04]. In the simplest model players submit bids,
and a resource is then distributed proportionally to the size of the players bids. The
utility of a player is a function of the acquired share minus the bid. Using the fact
that utility functions are concave and strategy spaces are continuous, these games
can be shown to possess unique, but inefficient NE. The price of anarchy is 4

3
, and

this is best possible for a certain class of fixed-price resource sharing policies [JT05].
In contrast to our investment games, this model represents an approach to model
distribution of established resources to players. It is also technically different be-
cause it assumes divisible resources and concave utility functions, which are major
ingredients for the proof techniques.

Considering our analysis and proof techniques, the closest relations exist to mech-
anisms and cooperative games for cost sharing and combinatorial optimization. We
outline these connections and related work in the following chapters, which treat
games based on specific problems in detail. In addition, investment games are re-
lated to numerous works from the last decades on various cost sharing models for
selfish agents. As a starting point the reader is referred to [You94].

Definition and Initial Observations

Definition 3.1 An investment game ([k], R,S, util, c, valid) is given by

• a set [k] = {1, . . . , k} of k players, and a set R of resources,

• the state space S = S1×. . .×Sk, and for each player p ∈ [k] a set of strategies
Sp, for which sp ∈ Sp is a function sp : R→ R≥0,
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• the utility functions utilp defined as

utilp(sp, s−i) =

{
−|sp|, if bought(p) ∈ validp

−∞ otherwise

with |sp| =
∑

r∈R sp(r), and

• c : R→ R≥0 specifies for each resource r ∈ R a non-negative unit cost c(r),

• bought : S → NR specifies for each state s the number of bought resource
units and is given by

boughtr(s) =

⌊∑
p∈[k] sp(r)

c(r)

⌋
for each resource r ∈ R,

and

• validp ⊆ NR is the set of feasible combinations of resources for player p.

In these games a player is meant to make a costly investment into certain re-
sources. Hence, utility represents cost for a player, and by maximizing her utility
a player minimizes her cost contribution. Consequently, we consider social cost
cost(s) = −

∑
p∈[k] utilp(s). Note that any state s of finite social cost must pay

for a set R of resource units that satisfies all constraints validp. We will implicitly
assume in all our games that at least one such set exists. Then in every NE a feasi-
ble set of resource units is purchased, as each player prefers to purchase completely
any feasible solution rather than leaving her constraint unsatisfied. For a NE and a
social optimum state s∗ we can derive the following properties:

• Each bought resource unit is required by at least one player for constraint
satisfaction.

• For each resource unit of a resource r the total amount offered for its purchase
is either c(r) or 0.

• In a NE a player contributes only to resource units that are mandatory to
satisfy her constraint.

In particular, in a state s∗ minimizing function cost a valid set R of resource units
of minimum total cost is exactly purchased. We denote such a set by R∗ and note

cost(s∗) = −

k∑
p=1

utilp(s
∗
p, s

∗
−p) =

k∑
p=1

|s∗p| = c(R∗). (3.1)

Finding a solution R∗ poses a minimization problem of Definition 2.8. A NE repre-
sents a cost sharing of a (not necessarily optimal) solution to the underlying opti-
mization problem.
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Chapter 4

Covering and Facility Location
Games

This chapter studies covering games as a special class of investment games. For
introduction consider the important special case of vertex covering. Recall the def-
inition of Vertex Cover as Problem 2.2 in Section 2.2. Based on this covering
problem a vertex cover game for k players can be described as follows. In a graph
G each player p owns a set Ep ⊆ E of edges. Each player strives to cover her edges.
For each vertex v ∈ V there is a non-negative cost c(v), and a strategy for a player
p is a function sp : V → R≥0 specifying an offer to costs of each vertex. The cost of
a strategy sp for player p is the sum of all money she offers for the vertices. Once
the sum of offers of all players for vertex v exceeds its cost it is considered bought.
Bought vertices are considered to be in the cover and can be used by all players to
cover their incident edges. Each player strives to minimize her cost, but she insists
on covering her edges. Similarly to the optimization problem we call a game un-
weighted if all vertices have equal costs, and weighted otherwise. We refer to games
with a planar graph G as planar games.

Now consider an instance of Vertex Cover as an integer linear program [NW88].
For each vertex v ∈ V there is a binary variable xv indicating whether it is in the
cover or not. Furthermore, for each edge e = {u, v} there is a constraint xu + xv ≥ 1

ensuring that e is covered. The cost of a vertex is given by the cost value c(v),
which appears in the objective function.

Min
∑
v∈V

c(v)xv

subject to xv + xu ≥ 1 for all {u, v} ∈ E

xv ∈ {0, 1} for all v ∈ V.

Suppose for a vertex cover game the underlying optimization problem is described by
the above integer program. Then a player strives to purchase resources represented
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by vertices to satisfy the constraints corresponding to her edges. Here a variable
corresponds to xu = boughtu(s), and is thus raised to 1 if the sum of money
offered to vertex u by the players exceeds c(u). Thus, validp for player p contains
the vectors x such that for each edge {u, v} ∈ Ep the inequality xu + xv ≥ 1 holds.
Hence, we can specify the remaining parts of the Definition 3.1 for investment games
to get a formal description of the vertex cover game.

Definition 4.1 A vertex cover game is an investment game in which resources and
constraints are given as follows.

• The resource set R = V is the vertex set of a simple undirected graph G =
(V, E).

• Each player p has an edge set Ep ⊆ E. For the constraint bought(s) ∈ validp

if and only if boughtu(s) + boughtv(s) ≥ 1 for all (u, v) ∈ Ep.

For a succinct representation it is sufficient to encode the graph G, the cost
function c, and the edge sets Ep of the players. In this game a social optimum
solution corresponds to an optimum solution to the underlying instance of Vertex
Cover. This formulation of the game allows a straightforward translation to games
based on arbitrary integer covering problems [Vaz00, Chapter 13.2].

Problem 4.1 (Integer Covering Problem) Given two index sets R and T and
non-negative constants a(t, r), b(t), c(r) ≥ 0 for all t ∈ T and r ∈ R, find an
optimum solution to the following covering integer program (CIP):

Min
∑
r∈R

c(r)xr

subject to
∑
r∈R

a(t, r)xr ≥ b(t) for all t ∈ T

xr ∈ N for all r ∈ R.

A covering game is based on an instance of the Integer Covering Problem.
Each player p owns a subset of the constraints which she strives to satisfy. To
reveal similarities with investment games for facility location and tree connection,
we denote this set by Tp. Integral units of a resource r have cost c(r). In accordance
with the vertex cover game we use n for the number of resources and variables and
m for the number of constraints.
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Definition 4.2 A covering game is an investment game in which constraints are
given as follows.

• For each game there is a covering integer program with n variables and m

constraints.

• Each player p has a subset of constraints Tp ⊆ T . For the constraint bought(s) ∈
validp if and only if

∑
r∈R a(t, r) · boughtr(s) ≥ b(t) for all t ∈ Tp.

For a succinct representation it is sufficient to encode the constraint parameters
a(t, r) and b(t), the cost function c, and the constraint sets Tp of the players.

The rest of this chapter is organized as follows. In the following Section 4.1 we
shed some light on how covering games are embedded into recent developments in
the literature. Section 4.2 presents some initial observations in the covering game.
In Section 4.3 we characterize cost and complexity of exact NE. There are upper and
lower bounds of Θ(k) on the prices of anarchy and stability (Theorems 4.2 and 4.3),
and it is NP-hard to determine the existence of a NE (Theorem 4.5). Section 4.4
presents efficient algorithms for computing approximate NE. For set cover games
it is possible to compute (f , f )-approximate NE in polynomial time (Theorem 4.7),
in which f denotes the maximum frequency of any elements in the sets. For vertex
cover (2, 1)-approximate NE exist in any game (Theorem 4.8), and the ratio of f = 2

is tight (Theorem 4.9). In Section 4.5 we argue that for the subclasses of set cover
games with integrality gap 1 and singleton players optimal NE exist (Theorems 4.10
and 4.11), and the proofs provide polynomial time algorithms to compute optimal
NE or near-optimal approximate NE, respectively. In the case of singleton players
the results can be extended to set multi-cover games (Corollary 4.2), which have
a slightly different constraint structure. In addition, for this class of games an
exact (but possibly expensive) NE can be computed in polynomial time (Theorem
4.12). Section 4.6 translates almost all techniques and results for covering games to
a class of facility location games (Theorems 4.14 - 4.18). The underlying problems
do not stem from covering integer programs and represent another extension of the
constraint structure. Finally, Section 4.7 contains a discussion on how our techniques
are connected to results obtained in related games. In particular, it displays the
close relations to a class of recently proposed cooperative games based on the same
covering and facility location problems.

4.1 Previous and Related Work
Covering games represent a new way to model cost sharing between selfish agents in
this scenario. They are most closely related to recent variants of cooperative games
and mechanism design problems based on optimization. Devanur et al. [DMV05]
considered cost sharing mechanisms for set cover and facility location problems. In
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these models every player corresponds to a single element or terminal and has a
private utility (i.e. a willingness to pay) for being in the cover. The goal of the
mechanism is to collect information about utility values, pick a subset of elements
to be covered, find a minimum cost cover for the subset, and distribute costs to cov-
ered players such that no coalition can be covered at a smaller cost. A truthful or
strategyproof mechanism allows no player to lower her cost by misreporting her util-
ity value. In [DMV05] truthful mechanisms for set cover and facility location games
were presented. For set cover games this work was extended [SLWC05, LSW05]
to the consideration of different social desiderata like fairness aspects and model
formulations with elements or sets being agents.

The mechanism design scenario models selfish service receivers who can either
cooperate to an offered cost sharing or manipulate. Players may also be excluded
from the game depending on their utility. A major goal has been to derive good cost
sharing schemes that guarantee truthfulness or budget balance. Our game, however,
is strategic and non-cooperative in nature and allows players a much richer set of
actions. In our game each player is motivated to participate in the game. We
investigate distributed uncoordinated service installation scenarios rather than a
coordinated environment with a mechanism choosing customers, providing service
and charging costs.

Closer to our covering game are cooperative games proposed in [DIN97, GS04,
IMM05] based on covering and facility location. In these games each player has a
single constraint or terminal, and each subset of players has a cost value associated
with it. This value is the cost of an optimum cover for this subset of players only. A
solution concept is a distribution of cost to the players. In these games each player
contributes generally, and does not need to specify exactly how much is paid to which
resource. Recently, Immorlica et al. [IMM05] presented bounds for cross-monotonic
cost sharing schemes. For each coalition of players these schemes distribute the cost
to the players such that every player is better off if the coalition expands. The
authors showed that for vertex cover no more than O(n− 1

3 ), for set cover no more
than O( 1

n
), and for uncapacitated facility location no more than 1

3
of the cost can

be charged to the agents with a cross-monotonic scheme, respectively.

When cross-monotonicity and budget balance cannot be achieved, a different
desirable concept in a cooperative game is a core solution [PS03]. Specifically, the
core is the foremost stability concept in cooperative games, and it includes cost
allocations that assign any coalition of players at most the cost associated with this
coalition. Deng et al. [DIN97] and Goemans and Skutella [GS04] showed that the
core of cooperative integer covering and facility location games is non-empty if and
only if the integrality gap of the underlying problem is 1. The main arguments rely
on LP-duality, and a deeper discussion of the connections to these works is given in
Section 4.7.
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4.2 Initial Observations
The following initial observations can be used to simplify a covering game. Suppose
a constraint of the integer program is not included in any of the constraint sets of
the players. This constraint has no influence on the game. Hence, in the follow-
ing w.l.o.g. we assume that the sets Tp form a partition of the constraint set. In
particular, for the vertex cover game this means E =

∪k

p=1 Ep.
Suppose a constraint t is owned by a player p and a set of players Q ⊂ [k],

p ̸∈ Q. Now consider a NE for an adjusted game in which the constraint is owned
only by player p. In this NE a player q ∈ Q has no better strategy to satisfy the
constraints in Tq−t. However, t is satisfied as well, potentially by a different player.
If t is added to Tq again, q has no incentive to deviate from her strategy as her
covering requirement only increases. The NE for the adjusted game yields a NE
in the original game. Hence, we assume that all constraint sets Tp are mutually
disjoint, as all our results for NE and approximate NE continue to hold if the sets Tp
are allowed to overlap. In particular, in the vertex cover game we assume all edge
sets are mutually disjoint.

For the vertex cover game there is a decomposition property. Suppose the graph
G[Ep] induced by edge set Ep of player p is not connected. The player has to cover
edges in each component, and her optimum strategy decomposes to cover both com-
ponents independently at minimum cost. Hence, we can form an equivalent game
in which the edges for each of the kp components are owned by a different subplayer
p1, . . . , pkp . Any approximate NE of this equivalent game can be translated to the
original game, and the stability ratio can only improve. Hence, for deriving approx-
imate NE we assume that the edges of each player form only a single connected
component. This property can be translated to other covering games, however, it
does not seem to have a similar intuitive meaning.

4.3 Cost and Complexity of Nash Equilibria
In this section we consider bounds on the quality of NE in vertex cover games and
on the hardness of deciding their existence. In general it is not possible to guarantee
their existence, they can be hard to find or expensive. At first, observe that the
price of anarchy in the vertex cover game is exactly k. This result continues to hold
for general covering games.

Theorem 4.2 The price of anarchy in the covering game is exactly k.

Proof. Consider a star in which each vertex has cost 1 and each player owns a
single edge. The centralized optimum cover R∗ is the center vertex of cost 1. If each
player purchases the vertex of degree 1 incident to her edge, we get a NE of cost k.
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(a) (b)

Figure 4.1: Vertex cover games for two players without NE. (a) Weighted game;
(b) unweighted game. Numbering of edges indicates player ownership. For the
weighted game numbers at vertices indicate vertex costs.

Therefore, the price of anarchy is at least k. On the other hand, k is a simple upper
bound. If there is a NE, in which R with c(R) > kc(R∗) is purchased, there is at
least one player p who pays more than c(R∗). She could unilaterally improve by
purchasing R∗ all by herself. As the argumentation for the upper bound does not
use specific properties of the vertex cover game, it continues to hold for all covering
games. □

Note that the price of anarchy is k even for very simple games, in which every player
owns only one edge and G is a tree. Hence, in the following we consider existence
and quality of the best NE in a game.

Lemma 4.1 There are planar vertex cover games for two players without NE.

Proof. We consider the game for two players in Figure 4.1(a) for an ϵ > 0. For
this game we consider the four possible covers. A cover including all three vertices
cannot be bought in a NE, because vertex u is not needed by any player to fulfill the
covering requirement. Hence, any player contributing to the cost of u could feasibly
improve by removing these payments. Suppose the cover purchased in a NE includes
v1 and v2. If player 1 contributes to v1, she can remove these payments, because
she only needs v2 to cover her edge. With the symmetric statement for v2 it follows
that player 1 does not contribute in such a NE. Player 2, however, cannot purchase
both v1 and v2, because buying u offers a cheaper alternative to cover her edges.
Finally, suppose u and v1 are in the cover. In a NE, in which this cover is purchased,
player 1 does not contribute to the cost of u. Player 2, however, cannot purchase u

completely, because v2 offers a cheaper alternative to cover the edge (u, v2). With
the symmetric observation for the cover of u and v2, we conclude that there is no
feasible cover that can be purchased in a NE. With similar arguments we can prove
that the game on K4 depicted in Figure 4.1(b) has no NE. This proves the lemma.
□
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Figure 4.2: A game with k = 8, for which the price of stability is close to (k− 1).
Numbering of edges indicates player ownership. Indicated vertices have cost ϵ ′ ≪ 1,
vertices without labels have cost 1.

Note that every game with less edges, vertices, or players than the game in Fig-
ure 4.1(a) is guaranteed to have a NE.

Theorem 4.3 The price of stability in the weighted vertex cover game is at least
k− 1. The price of stability in the unweighted vertex cover game is at least k+2

4
.

Proof. Consider a game as depicted in Figure 4.2. The social optimum cover
includes the center vertex of the star and three vertices of the K4-gadget yielding a
total cost of 1+3ϵ ′. If the center vertex of the star is in the cover, and if we assume
that there is a NE, in which such a cover is purchased, none of the other players
can contribute to vertices of the K4-gadget incident to edges of player 1 and 2. For
this network structure, however, we noted before that players 1 and 2 cannot agree
on a set of vertices covering their edges. Therefore, in all NE of the game the star
center must not be bought. In turn, this requires all other adjacent star vertices to
be in the cover. Under these conditions the best feasible cover includes the vertex
that connects K4 to the star yielding a cost of k−1+3ϵ ′. Such a NE is obtained by
assigning each player to purchase a leaf vertex of the star - including the vertex that
also belongs to K4. Players 1 and 2 are assigned to purchase one of the additional
K4 vertices, respectively. With ϵ = 3ϵ ′(k−2)

1+3ϵ ′ we get a bound of k − 1 − ϵ. Thus, if ϵ
tends to 0 the bound becomes arbitrarily close to k− 1, which proves the first part
of the theorem. For the unweighted case we simply consider the game graph with
all vertex costs equal to 1. A similar analysis delivers the stated bound and proves
the second part of the theorem. □

The existence of games without NE raises the question, whether we can decide for a
given game that is has a NE or not. We prove that this decision problem is NP-hard
using a reduction from 3-Satisfiability (3SAT) [GJ79].



36 CHAPTER 4. COVERING AND FACILITY LOCATION GAMES

Figure 4.3: Extended triangle used in the proof of Theorem 4.5. This game does
not have any NE. To stabilize the extended triangle in the gadgets described below,
a third player can either buy u1 completely, then the first two players can pay for
u2 and v1; or reduce the cost of v1 of 0.5, allowing the first two players to pay 0.9
for v1 and 1.6 for v2.

Problem 4.4 (3-Satisfiability) Given a set of boolean variables and a set of
clauses over the variables in conjunctive normal form with exactly three variables
per clause, is there an assignment of variables such that every clause evaluates to
true?

Theorem 4.5 It is NP-hard to determine whether (1) an unweighted vertex cover
game or (2) a weighted vertex cover game for 2 players has a NE, even if the graphs
G[Ep] are forests.

Proof. We present the reduction for weighted games and then show how to adjust
it for unweighted games. Given an instance of 3SAT we introduce for every variable
a gadget with a decision player. This player owns the edges of two stars, denoted as
the true star and the false star. The number of leaves of the (false) true star is equal
to the number of (negated) non-negated occurrences of the variable in the clauses
of the instance. The cost of each center vertex is equal to the number of leaves, the
cost of the leaves is equal to 1. In addition, we include a direct connection between
the centers of the stars. At the leaves of the stars we add extended triangle gadgets
depicted in Figure 4.3. This gadget represents a game without a NE, which can be
shown along the lines of the proof of Lemma 4.1. At each leaf vertex of the stars we
install an extended triangle gadget. As no pair of gadgets is directly connected, this
introduces only two new triangle players. The leaf vertices of the stars become the
u1-vertices of the gadgets. An example variable gadget is depicted in Figure 4.4(a).
For each clause we introduce a new clause player. She owns a star of three edges

connecting a new center vertex of cost 1 to three extended triangle gadgets. We let
the edges connect to triangles of the false or true star of a variable gadget depending
on whether the variable appears negated or non-negated in the clause, respectively.
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(a) Gadget for a variable occurring non-negated in two clauses and negated in
three clauses.

(b) Gadget for a clause.

Figure 4.4: Variable and clause gadgets. The edges owned by triangle players are
numbered, while edges owned by decision and clause player are unlabeled. Vertex
labels represent corresponding costs, all unlabeled vertices have cost 1.
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In particular, the edges connect to the v1-vertices of the extended triangles. As we
have installed a sufficient number of these gadgets, we construct the network such
that no two edges of different clause players are incident at the same vertex. An
example of a clause gadget is depicted in Figure 4.4(b).

Suppose there is a satisfying assignment for the instance of 3SAT. Then we
construct a NE as follows. If a variable is true in the assignment, we pick the center
vertex of her false star and all leaf vertices of the true star of its gadget to be in the
cover and let the decision player pay for it. All extended triangles incident to the
false star then allow a stable cost distribution, in which u2 and v1 are bought by
the triangle players (see Figure 4.3). In the case a variable is false, we pick the leaf
vertices of the false star and adjust the assigned payments accordingly. As we have
a satisfying assignment for the 3SAT instance, this stabilizes at least one triangle
gadget per clause. So each clause player has the chance to reduce the cost of the
vertices of the remaining two incident triangles by 0.5 each. The triangle players
can then purchase the v1 and v2 vertices in the remaining unstabilized gadgets (see
Figure 4.3). This assignment leaves no player an incentive to defect and forms a
NE.

Now suppose there exists a NE. Then a decision player can either purchase one
or both of the star centers. Once she purchases the center of a star, she is not
willing to contribute anything to the leaf vertices of the star. Thus, if she does
not contribute to the extended triangles attached to a star, the clause players must
help the triangle players agree upon a cover. However, a clause player can only
contribute a total cost of 1 to the triangle vertices, because otherwise she can pick
her star center as a cheaper alternative. The minimum cost reduction that she
can achieve at every v1 vertex of her incident triangle gadgets is 1/3, which is not
enough to allow for a stable cost assignment in all triangles. Hence, we need to
have the decision players purchase the stars such that they trigger a stable cover
in at least one extended triangle from each clause. Furthermore, as they can only
trigger a stable cover in triangle gadgets attached to one of their stars, this naturally
translates to a satisfying assignment for the 3SAT instance.

Finally, we use the transformations mentioned in the introduction to obtain an
equivalent game by merging all decision players into one player and all clause players
into another player. Note that we have introduced only two triangle players, whose
edges form a partition of all edges from the extended triangle gadgets. The class of
decision players shares endpoints only with one of the triangle players. The same
is true for clause players and the other triangle player. Hence, we can merge the
players again forming an equivalent game with only two players. This proves NP-
hardness for weighted games and two players, even in the case of the graphs induced
by the set of edges of each player are forests.

For unweighted games we replace the extended triangles by the games on K4

depicted in Figure 4.1(b). Vertices labeled u1 and v1 indicate where to connect the
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decision and clause player stars, respectively. In the variable gadgets the star centers
have cost 1. In addition, we introduce a number of new players such that edges of
the true and false stars are each owned by a different player. For a clause player we
now install two stars instead of one star. The stars have different centers, but leaf
vertices from the same K4 gadgets. Observe that in every variable gadget players
in equilibrium contribute only to the leaves of at most one star. Furthermore, a
clause player must invest at least a cost of 1 to stabilize a K4 gadget. Hence, if
at least one gadget per clause is stabilized by the decision players, there exists a
NE. On the other hand, this condition is also necessary, because the centers of the
clause stars allow the clause players to stabilize at most two K4 gadgets. This proves
NP-hardness.

To show that the result holds even when the graphs G[Ep] are forests, note that
the two stars of a clause player can be shared among two distinct players and the
above reasoning is still correct. It can be checked that all graphs G[Ep] in this game
are forests. In this case it can be checked in polynomial time whether a state is
a NE, because Vertex Cover can be solved in polynomial time on trees. The
problem of deciding whether a NE exists, when restricted to these instances, is also
in NP and so is NP-complete. This proves Theorem 4.5. □

4.4 Approximate Nash Equilibria
The results of the previous section showed that cheap NE can be absent from the
game, even from very simple variants of the vertex cover game. This section explores
whether there exist weaker notions of stability in this game or not. In particular, it
examines the trade-off between efficiency and stability by considering existence and
algorithmic computation of approximate NE. Recall from Definition 2.15 that for
an (α,β)-approximate NE the stability ratio α ≥ 1 specifies the violation of the NE
inequality, and β ≥ 1 is the approximation ratio of the social cost. We first outline
an algorithm for approximate NE for set cover games. To clarify the relation with
Vertex Cover, we use a similar notation for elements and edges.

Problem 4.6 (Set Cover) Given a set E of elements, a set M ⊆ 2E of sets
M ⊆ E, and a cost function c : M → R≥0, find a subset R ⊆ M such that∪

M∈R M = E and
∑

M∈R c(M) is minimal.

In terms of the vertex cover problem a vertex v would be represented as a set M of
incident edges. A set cover game is a covering game based on an instance of Set
Cover. We denote by Ep the elements player p strives to cover, and by

f = max
e∈E

|{M ∈ M | e ∈ M}|
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the maximum frequency of any element in the sets. Note that a vertex cover game is
a set cover game with f = 2, because every edge is incident to exactly two vertices.

For set cover games we show that (f , f )-approximate NE can be computed in
polynomial time. For vertex cover games we show that (2, 1)-approximate NE exist
and that this result is tight.

Algorithm 1: (f , f )-approximate NE for set cover games
sp(M)← 0 for all players p and sets M1

sp(e)← 0 for all players p and elements e2

while there is an uncovered element e do3

Let p be the player owning element e, and let γp(e)← mine∈M c(M)4

Increase payments: sp(M)← sp(M) + γp(e) for all M with e ∈ M5

Add all purchased sets to the cover6

Reduce set costs: c(M)← c(M) − γp(e) for all M with e ∈ M7

Theorem 4.7 Algorithm 1 returns an (f , f )-approximate NE for set cover games
in polynomial time.

Proof. The algorithm can clearly be implemented to run in polynomial time. To
show the approximation ratio, we remark that any run of Algorithm 1 is also a run of
the primal-dual f -approximation algorithm for minimum set cover (see for instance
[Vaz00, chapter 15]). So it remains to show that the stability ratio is equal to f as
well.

After the execution of the algorithm, consider player p and her best move taking
into account the payments of all other players q ̸= p. For that purpose, we define
new costs cp(M) for each set M, by letting cp(M) = c(M) −

∑
q ̸=p sq(M). The

theorem is proven if the sum of the payments of player p is not greater than f times
the cost of the cheapest set cover of Ep with respect to the costs cp.

From the algorithm, we know that for any set M we have
∑

q∈[k] sq(M) ≤ c(M),
hence

sp(M) ≤ c(M) −
∑
q ̸=p

sq(M) = cp(M).

Also from the algorithm, we know that for any set S that includes one or more
elements of Ep, we have sp(M) =

∑
e∈M∩Ep

γp(e), so for any such M,

∑
e∈M∩Ep

γp(e) ≤ cp(M).
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Now consider a set cover R∗
p of Ep that has minimum cost with respect to the cost

function cp. This yields:∑
M∈R∗

p

∑
e∈M∩Ep

γp(e) ≤
∑

M∈R∗
p

cp(M) = cp(R∗
p).

Since R∗
p is a set cover of Ep, the charge γp(e) of each element e in Ep is counted at

least once in the left-hand side above. Hence,∑
e∈Ep

γp(e) ≤
∑

M∈R∗
p

∑
e∈M∩Ep

γp(e) < cp(R∗
p),

and this implies ∑
M∈M

sp(M) = f ·
∑
e∈Ep

γp(e) ≤ f · cp(R∗
p),

which proves the theorem. □

Our arguments are also implicitly used in [JV01], in which dual payments and core
solutions in cooperative games are considered. Alternatively, it is possible to employ
these results to show that the resulting stability ratio is f . A proof along these lines
is given for the primal-dual Algorithm 3 for the UFL game below in Section 4.6.2.
For remarks on the connection to cooperative games see Section 4.7.

For the case of vertex cover, we show that the algorithm can also be used to
share the cost of any social optimum cover R∗ by a (2, 1)-approximate NE.

Theorem 4.8 For every vertex cover game there is an (2, 1)-approximate NE.

Proof. Consider a vertex cover game on a graph G with vertex costs c(v) and an
arbitrary optimal solution R∗. We turn R∗ into a (2, 1)-approximate NE in two
phases. The first phase is a run of Algorithm 1 on a restricted graph, i.e, the graph
G[E2] from the set E2 of edges, for which both end vertices are in R∗. After the
first phase we obtain new vertex costs c ′ by reducing each c(v) by the payments
made by edges from E2 to v. We then remove all purchased vertices from G and R∗

to obtain G ′ and R ′. The second phase uses insights from Theorem 4.10 to assign
the remaining costs c ′ to the edges of G ′. The key observation is that after the
first phase, the remaining graph G ′ is bipartite, and R ′ is a minimum weight vertex
cover for G ′.

Lemma 4.2 The graph G ′ is bipartite. R ′ is a minimum weight vertex cover for
G ′.

Proof. In the first phase, the algorithm considers the set of edges E2 for which both
incident vertices are in R∗. Note that every odd cycle of G has at least one edge in
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E2. Thus, if E2 is empty, then G must be bipartite, and the lemma follows. Other-
wise, Algorithm 1 is called with E2, which assigns budgets γi(e) to edges e ∈ E2 and
reduces the vertex costs accordingly. In each step, the cost function c is adjusted,
the costs of both incident vertices of e are reduced by γi(e). As both these vertices
are in R∗, it remains an optimal cover after the adjustment. After considering all
edges of E2, the algorithm removes all purchased vertices with cost c(v) = 0 from
R∗ and G, along with all incident edges. This leaves R ′ optimal for the resulting
graph G ′ and proves the second part of the lemma. Due to the algorithm, all edges
of E2 are considered. This adjustment breaks every odd cycle of G. Hence, in R ′

every vertex v ∈ V ′ has frequency 1, and G ′ is bipartite. □

For the remaining game given by G ′ we show below in Theorem 4.10 that there is an
exact NE, in which the remaining cost of R ′ is exactly paid for. It can be obtained
by assigning values of an optimal solution y∗ of the LP-dual as cost shares to the
edges. In addition, we here create a budget for the edges e ∈ E ′ with γi(e) ← y∗

e,
which is offered to both incident vertices. By dual feasibility this does not overpay
any vertex. Furthermore, the total contribution is c(v) for every vertex v ∈ R∗.
This property allows to use proof idea of Theorem 4.7 to show that the stability
ratio is bounded by 2. By dropping all payments to vertices v ̸∈ R∗ in the end, we
obtain a cost sharing of R∗ with stability ratio at most 2. This proves the theorem.
□

For lower bounds on the ratios we note that any algorithm to find an (α,β)-appro-
ximate NE in the set cover game can be used as an approximation algorithm for
the set cover problem with approximation ratio min(α,β). The argument follows
simply by considering a game with one player. This observation can be combined
with recent results on the complexity status of Set Cover. In particular, Set
Cover cannot be approximated in polynomial time to a factor of o(log |M|) unless
P = NP [AMS06]. Thus, a polynomial time algorithm for (O(log |M|), O(log |M|))-
approximate NE is all we can hope for. For the special case of weighted Vertex
Cover a recent result [KR03] suggests that if P ̸= NP and the unique games conjec-
ture [Kho02] holds, there is no polynomial time algorithm to approximate Vertex
Cover by a factor of 2 − ϵ. Thus, in this case our algorithm delivers the best
factors that are (based on current complexity theoretic beliefs) achievable in poly-
nomial time. Note that both bounds apply only to polynomial time computability.
We now show that in vertex cover games the frequency f = 2 is also a lower bound
for the stability ratio, in a much stronger sense.

Theorem 4.9 For any α < 2 and β ≥ 1 there is an unweighted vertex cover game
without (α,β)-approximate NE.

Proof. The proof follows with a game on the complete graph K4x for a given natural
number x ∈ N. We assume the vertices are numbered v1 to v4x and distribute the
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Figure 4.5: From left to right the edges owned by the players in the first, second,
and third classes of players for K8. The first and second class consist of four players
each, the third class of two players. Players in the first class own a single edge, while
players in other classes own cycles of length 4.

edges of the game to 2x2+x players in x+1 classes as follows. In the first class there
are 2x players. Every player p from this class owns only a single edge (vp, v2x+p).
Then, for each integer j ∈ [1, x−1] there is another class of 2x players. A player p in
one of the classes owns a cycle of four edges (vp, vp+j), (vp+j, v2x+p), (v2x+p, v2x+p+j)
and (v2x+p+j, vp). Finally, there are x players in the last class. Each player p in
this class also owns a cycle of four edges (vp, vx+p), (vx+p, v2x+p), (v2x+p, v3x+p) and
(v3x+p, vp). See Figure 4.5 for x = 2 and the distribution of the 10 players into 3
classes on K8.

Any feasible vertex cover of a complete simple graph is composed of either all or
all but one vertices. For a cover of all 4x vertices we can simply drop the payments
to one vertex. This reduces the payment for at least one player. In addition, it
increases the cost of some of the deviations as the players must now purchase the
uncovered vertex in total. The stability ratio of the resulting state can only decrease.
Therefore, the minimum stability ratio is obtained by purchasing a cover of 4x − 1

vertices.
So w.l.o.g. consider a state in which a cover of 4x−1 vertices is bought, including

all but vertex v4x. Note that some player subgraphs do not include v4x, and there
are only two types of player subgraphs - a single edge or a cycle of length 4. First,
consider a player subgraph that consists of a single edge and both end vertices are in
the cover. If the player contributes to the cost of the incident vertices, she can drop
the maximum of both contributions. Thus, if she contributes more than 0 to at least
one of the vertices, her incentive to deviate is at least a factor of 2. Second, consider
a player subgraph that consists of a cycle of length four and all vertices are in the
cover. Label the four included vertices along a Euclidean tour with u1, u2, u3 and
u4. Let the contributions of the player to uj be yj for j = 1, 2, 3, 4, respectively. To
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Figure 4.6: Edges of players that have an edge incident to v8. Numbering of players
as described in the text. Edge labels indicate player ownership.

optimally deviate from a given state, the player picks one of the possible minimum
vertex covers {u1, u3} or {u2, u4} and removes all payments outside this cover. A
factor of α bounding her incentives to deviate must thus obey the inequalities

4∑
j=1

yj ≤ α(y1 + y3) and
4∑

j=1

yj ≤ α(y2 + y4).

Note that a player might also contribute to vertices outside her cycle. These addi-
tional contributions, however, would unnecessarily tighten the bounds and require
an increase in α. Therefore, in order to find the minimum α that is achievable we
assume the player contributes only to vertices inside her subgraph. Summing the
two inequalities yields

(2− α)

4∑
j=1

yj ≤
4∑

j=1

yj,

so either her overall contribution is 0 or α ≥ 2. Hence, to construct a state with
stability ratio of no more than 2, all 4x− 1 vertices in the cover must be purchased
by the 2x players whose subgraph includes v4x.

For the rest of the proof we concentrate on these 2x players. We will refer to
player p, if she includes vp in her subgraph, for p = 1, . . . , 2x− 1. All these players
own cycle subgraphs. The player that owns the edge (v2x, v4x) is labeled player 2x.
See Figure 4.6 for an example on K8. We consider the contribution sp(vj) of player
p to vertex vj for all p = 1, . . . , 2x and j = 1, . . . , 4x − 1. Observe that for each
player the set {v2x, v4x} forms a feasible vertex cover. To achieve a stability ratio
α, we must ensure that each player can only reduce her payments by a factor of at
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most α when switching to this cover. In the case of player 2x only {v2x} is needed,
so we must ensure that she can reduce her payments by at most α when dropping
all payments but s2x(v2x). As v4x is not part of the purchased cover, its’ cost of 1
must be paid for completely by a player that strives to use it in a deviation. This
yields the following set of 2x inequalities:

4x−1∑
j=1

sp(vj) ≤ α(sp(v2x) + 1) for p = 1, . . . , 2x− 1

4x−1∑
j=1

s2x(vj) ≤ αs2x(v2x)

We again strive to obtain the minimum ratio α possible. In the minimum case
no vertex gets overpaid, i.e.

∑2x

p=1 sp(vj) = 1 for all j = 1, . . . , 4x − 1. Using this
property in the sum of all the inequalities gives

4x− 1 =

4x−1∑
j=1

2x∑
p=1

sp(vj) ≤ α

(
2x− 1+

2x∑
p=1

sp(v2x)

)
≤ 2xα,

which finally yields α ≥ 2 − 1
2x

. This proves that in the presented game no (α,β)-
approximate NE with α < 2 − 1

2x
exists. Thus, for every ϵ > 0 we can pick

x ≥ (2ϵ)−1, which then yields a game without (2 − ϵ, β)-approximate NE for any
β ≥ 1. □

This lower bound is best possible for the considered class of games. For the players
that include v4x in their subgraph, assign player p to contribute 1 − 1

2x
to vp and

v2x+p for p = 1, . . . , 2x− 1. Player 2x is assigned v2x completely and the remaining
cost of 1

2x
at every other vertex. This yields a (2− 1

2x
, 1)-approximate NE.

It would be interesting to see if this lower bound is connected to the integrality
gap of the above given integer program for Vertex Cover. Such a relation exists
for approximate budget balanced core solutions in the cooperative game [JV01]. Our
result, however, is mainly due to the fact that the majority of players is sufficiently
overcovered leaving only a small number of contributing players. It seems that under
these conditions a relation to the integrality gap is more complicated to establish.
A discussion on the relation between our games and cooperative games based on
covering problems can be found in Section 4.7.

Some classes of Vertex Cover can be approximated to a better extent. For
example, there is a PTAS for Vertex Cover on planar graphs [Bak94]. It is
therefore natural to explore if it is possible for planar games to find covers with
approximation and stability ratio arbitrarily close 1. The bad news is that in general
there are also limits to the existence of cheap approximate NE even for planar games.
In particular, Theorem 4.9 provides a lower bound of 1.5 on the stability ratio for
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unweighted planar games. For weighted planar games there is an additional Pareto
relationship between stability and approximation ratios that yields a stability ratio
close to 2 for states in which near-optimal covers are bought.

Corollary 4.1 For any α < 1.5 and β ≥ 1 there is a planar unweighted vertex
cover game without (α,β)-approximate NE. For any α < 2

2β−1
and β < 7

6
there is a

planar weighted vertex cover game without (α,β)-approximate NE.

Proof. With the planarity of K4 and Theorem 4.9 the first part follows. For the
second part consider a game from Figure 4.1(a) with ϵ > 0. Here every state with
finite stability ratio and β < 2+ϵ

2
returns R∗ = {v1, v2}. How good can this cover be

in terms of the stability ratio? If player 1 contributes, she can always drop payments
to the one vertex to which she contributes the most. If her contribution is greater
than 0, her deviation incentive is at least a factor of 2. If we assign player 2 to
purchase the whole cover, this delivers α = 2

1+ϵ
< 2 for all ϵ > 0. Hence, once an

algorithm returns (α,β)-approximate NE with β < 2+ϵ
2

, then for this game any such
cover has α > 2

1+ϵ
. Solving for ϵ we get the bound, which proves the second part of

the corollary. □

So the better an algorithm is required to be in terms of social cost, the more it
allows for selfish improvement by a factor close to 2. Note that these lower bounds
apply directly to any algorithm with or without polynomial running time.

4.5 Games with Cheap Nash Equilibria
In contrast to general covering games there are some classes that have optimal NE.
The first class are integral set cover games, in which the integrality gap of the linear
programming relaxation is 1. The integrality gap is the ratio of the cost of the
optimal solution in which all variable values are integers over the cost of the optimal
solution of the linear relaxation in which variables are allowed to be fractional.

The second class are singleton set cover games, in which each player owns only a
single element. The results for this class can be extended to set multi-cover games,
in which each player strives to cover her element by a certain number of sets, but
each set is available for purchase only once.

Theorem 4.10 If a set cover game has an underlying CIP with integrality gap 1,
the price of stability is 1 and an optimal NE can be found in polynomial time.

Proof. Consider the LP-relaxation of the underlying CIP derived by setting xM ≥ 0
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instead of xM ∈ N. The dual of this relaxation is

Max
∑
e∈E

γe

subject to
∑
e∈M

γe ≤ c(M) for all M ∈ M

γe ≥ 0 for all e ∈ E.

We can find the optimum primal solution x∗ and the optimum dual solution γ∗

in polynomial time. Note that x∗ is integral and thus defines a feasible cover due
to an integrality gap of 1. Both x∗ for the primal and γ∗ for the dual have the
same value. Now assign each player to pay sp(M) =

∑
e∈Ep∩M γ∗

ex
∗
M. The theorem

follows if the cover is purchased and every player plays a best-response. We first
show that the cover is purchased. If x∗M > 0, then due to complementary slackness
the inequality

∑
e∈E γ

∗
e ≤ c(M) is tight, hence by this assignment all the purchased

sets get exactly paid for. Now we prove that x∗ is a collection of best responses.
For a player p consider an adjusted game, which is derived by iteratively removing
elements and payments of other players. Upon removing an element e, we remove
its contribution from the costs of sets M including e. This yields a cost function

cp(M) = c(M) −
∑

e ̸∈Ep,e∈M

γ∗
ex

∗
M.

It captures the reduced problem, in which an optimum solution corresponds to a
best response for player p. Note that for this reduced problem the solution x∗ is
still feasible. By obtaining the dual for the reduced problem we can set the covering
requirement to 0 for every removed element e for e ̸∈ Ep. Then γ∗ still repre-
sents a feasible solution to the LP-dual of the reduced problem. It has the same
value as x∗ for the primal. LP-duality yields that both x∗ and γ∗ must be opti-
mal solutions to the reduced primal and dual problems. Thus, the payment of p

is a best response. This proves that the optimum solution can be paid for in a
NE. As there is a polynomial time algorithm to solve linear programs [Kha79], it is
possible to compute an optimal NE in polynomial time. This proves the theorem. □

For illustration of the arguments consider a vertex cover game on a bipartite
graph G, which is known to have an integrality gap of 1, see Figure 4.7(a). To
obtain an optimum dual solution one can employ a flow network using a standard
construction [KT06] by adding a source and a sink vertex, see Figure 4.7(b). Each
of these two vertices is then connected by directed edges to all vertices from one
partition of the graph. The additional edges are directed away from the source
to the sink and receive as capacity the cost of the incident vertex from G. All
edges from G receive infinite capacity. A maximum flow in this network yields an
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(a) (b) (c)

Figure 4.7: (a) A vertex cover game with an optimal NE. Edge numbering indicates
player ownership, vertex numbering indicates cost. (b) Dual variables correspond to
maximum flow values in an extended graph. It yields a cost sharing of an optimum
cover indicated by filled vertices. Edge numbering represents top-down flow, labels
of a vertex v are p :sp(v). (c) Player 2 plays a best response, because in the reduced
problem the flow over her edges stays feasible. Edge numbering represents top-down
flow, vertex numbering indicates cost, filled vertices constitute an optimum cover.

optimum solution to the corresponding LP-dual of Vertex Cover in G. The dual
variables correspond to the flow values on the edges. They can be used to construct
a cost sharing of an optimum vertex cover. To show that this represents a NE,
Figure 4.7(c) illustrates the problem of finding a best response for player 2. For the
reduced problem the flow over her edges is still feasible, hence by LP-duality it lower
bounds the optimum cover cost. As the flow also yields a feasible strategy, player 2
plays a best response.

For singleton set cover games we prove a similar result. The proof, however, is
along different lines. It does not immediately yield an efficient algorithm to compute
an optimal NE, however, it allows us to obtain (1+ ϵ,O(log |M|))-approximate NE
in time polynomial in |M|, k and ϵ−1, for any constant ϵ > 0.

Theorem 4.11 If a set cover game has singleton players with |Ep| = 1, the price of
stability is 1 and (1+ϵ,O(log |M|))-approximate NE can be computed in polynomial
time, for any constant ϵ > 0.

Proof. Consider a solution R to the underlying instance of Set Cover and a set
M ∈ R. Consider the elements that remain covered if M is dropped out of R. The
corresponding players can be assumed to contribute nothing to the cost of M. Now
consider the set of remaining players QM that are covered in R only by M. For each
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p ∈ QM independently consider the case, in which M is unavailable. Her cheapest
strategy to cover her element must then purchase a different set than M. We denote
the cost of this other set by cMp . A set is called stabilized if c(M) ≤

∑
p∈QM

cMp . For
a stabilized set M we assign the players to pay

sp(M) =

(
cMp∑

p∈QM
cMp

)
c(M) for M with p ∈ QM, (4.1)

and sp(M) = 0 otherwise. This obviously yields a best response for p. Thus,
stabilized sets can be purchased by the players without incentives to deviate.

A solution R is called exchange minimal if all sets M ∈ R are stabilized. It
is possible to use the above mentioned proportional assignment of the costs for
stabilized sets M to players in QM. This will give them no incentive to deviate. In
addition, note that overcovered players, whose elements appear in more than one
set of R, are never included in any QM, and are thus assigned no payments. This
implies that this cost distribution of an exchange minimal solution is a NE. Note
that it is possible to exchange unstabilized sets with the sets purchased by player
deviations. This results in a feasible cover of reduced cost. In particular, this implies
that R∗ is an exchange minimal solution, and thus the price of stability is 1.

This property suggests a procedure that converges to a NE. We start with an
approximate cover, exchange unstabilized sets, and decrease the cost of the cover
until it can be purchased in a NE. The problem with this approach is the running
time, as there might be an exponential number of exchange steps. Here we borrow
a trick from Anshelevich et al. [ADTW03] and adjust the set costs such that each
exchange operation guarantees a minimum improvement.

Using a well known greedy approximation algorithm [Hoc96, Chapter 3], we
obtain a starting solution R with β = Hn, in which we denote n = |M| and
Hn ∈ Θ(logn) is the n-th harmonic number. Then consider an exchange step, in
which this cover is transformed into a different cover R ′. In order to guarantee
a minimum improvement of the cost, let ϵ > 0 and define κ = ϵc(R)

(1+ϵ)nβ
. Before

determining the best responses of a player, we reduce the cost of every set currently
in the cover by κ (assuming ϵ small enough such that κ < minM∈M c(M)). However,
for sets outside the cover we assume that they still have full cost. If there is an
unstabilized set under these conditions, the exchange step improves the cost by at
least κ. After the step we reduce costs of the sets entering the cover and reinstall
the original cost of the set leaving the cover. The algorithm runs until no further
improving exchange steps are possible. Hence, in total the algorithm makes at most
(1+ϵ)nβ

ϵ
such exchange steps. This proves a polynomial bound on the running time.

If the algorithm has terminated, we assign players to purchase the cost of the
cover as described above. Note, however, that due to our cost reduction each set
in the cover has a remaining unpaid cost of κ. Suppose in the final solution R ′
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we have n ′ = |R ′| sets. This creates a remaining cost of at most κn ′ to be paid
for. These costs are distributed to the players such that each player gets a global
share proportional to the costs already assigned, i.e. player p contributes a share of
|sp|/(c(R ′) − n ′κ) of the remaining costs. Note that this might require a player to
pay for sets not needed for covering her element. To establish the stability ratio of
(1+ ϵ), note that the increase for player p in this step is only

|sp|
κn ′

c(R ′) − κ
≤ ϵc(R)|sp|

α(1+ ϵ)(1− ϵ)c(R ′)
≤ ϵ|sp|.

Hence, even if all additional payments of player p contribute to sets she does not
need for coverage, she cannot decrease her payments by more than a factor of (1+ϵ).
This proves the bound on the stability ratio and establishes the second part of the
theorem. □

In fact, finding an exchange minimal solution poses a local search problem in
PLS. Note that the described procedure is a local search algorithm. It is in essence
similar to an adjusted best response iteration, in which in each iteration the players
from a set [k]M for an unstabilized M are scheduled to simultaneously choose their
best responses.

More generally, one might wonder if the existing FPTAS to compute an ap-
proximate local optimum for any problem in PLS [OPS04] can be used to obtain
approximate NE with stability ratios arbitrarily close to 1. It computes a solution
such that the social cost cannot be improved by more than a factor ϵ by moving to
a solution from the neighborhood. Instead, we strive to find a cost sharing such that
the utility of every player cannot be improved by more than a factor of ϵ by changing
her strategy. This turns out to be a significant difference. Consider for instance the
class of congestion games, for which finding a NE is a problem in PLS. In this case,
the FPTAS computes an approximate local optimum of the potential. However, the
state only approximates the value of the potential and does not yield the same result
for the stability ratio. In fact, for any given polynomial time computable α, finding
a state with stability ratio at most α in these games is PLS-complete. Furthermore,
there are starting states from which the standard local search algorithm requires an
exponential number of steps until the stability ratio drops below α [SV07].

It is straightforward to extend Theorem 4.11 to singleton set multi-cover games.
An instance of Set Multi-Cover is given by an instance of Set Cover and an
additional covering requirement b(e) ∈ N for each element e ∈ E. The goal is to find
a set R ⊆ M of minimum cost such that each element e is included in at least b(e)
sets from R. A set multi-cover game is an investment game based on an instance of
Set Multi-Cover. In particular, each player owns a subset of elements and strives
to cover each element e by b(e) sets, which must be bought. Note that each set
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is available for purchase only once. This introduces constraints into the underlying
integer programming formulation that violate the structure of a CIP. Nevertheless,
we get the following corollary.

Corollary 4.2 If a set multi-cover game has singleton players with |Ep| = 1, the
price of stability is 1 and (1 + ϵ,O(log |M|))-approximate NE can be computed in
polynomial time, for any constant ϵ > 0.

Proof. We show how to adjust the arguments of the proof of Theorem 4.11. Con-
sider a feasible cover R and a set M ∈ R. When removing M from R we consider
only the set of players QM with elements e, for which the covering extent drops
below b(e). Then, if each player p ∈ QM purchases the cheapest set Mp ̸∈ R con-
taining her element e, we obtain a new feasible cover. If this new cover has higher
cost, the set M is assumed to be stabilized. Otherwise, the cover drops in cost, and
hence it is possible to construct an iterative procedure that converges to an exchange
minimal cover with only stabilized sets. Now consider an exchange minimal cover
R. The same assignment rule as in Equation (4.1) is used to distribute the cost to
the players, i.e. the cost of a stabilized set M is assigned to the players in QM pro-
portionally to the cost of their deviations. If an element e is covered more than b(e)
times, the corresponding player does not contribute, because she does not appear
in any of the sets QM. Hence, she has no incentive to deviate. Consider a player p

with and element e that is covered exactly b(e) times. The cheapest set Mp ̸∈ R
that contains e is considered as her best deviation for each of the b(e) sets of R
that contain e. Thus, p is assigned to pay at most min(c(M), c(Mp)) for each set
M ∈ R with e ∈ M. This obviously forms a best-response for p. Thus, an exchange
minimal cover can be purchased in a NE. This proves that the price of stability is 1.
The rest of the theorem follows by constructing the same algorithm with exchange
steps and adjusted set costs as in the proof of Theorem 4.11. In particular, there
is a similar greedy approximation algorithm for Set Multi-Cover [Vaz00] as for
Set Cover with a performance ratio of H|M| to compute a starting solution. The
corollary follows. □

Another possible extension of the singleton case is to consider a threshold τp for
each player p. Player p would rather stay uncovered if her assigned payments exceed
τp. The outlined procedure finds an approximate NE with stability ratio arbitrarily
close to 1 for this case of set cover and set multi-cover games as well.

Finally, we contrast the pervious two theorems with a procedure to compute
an exact (but not necessarily cheap) NE. Note that in a step of the local search
procedure a player is assigned to fully purchase the unbought set Mp she is deviating
to. Using a similar idea it is possible to construct an exact NE without cost sharing,
i.e. every set is either bought completely by one player or not contributed to at all.
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Algorithm 2: Exact NE for singleton set multi-cover games
sp(M)← 0 for all p ∈ [k] and M ∈ M1

Construct directed graph Gs = (M, E) with e = (M1,M2) ∈ E iff2

M1 ∩M2 ̸= ∅ and c(M1) < c(M2)
while there remain uncovered elements do3

for every remaining element e do4

if e is uncovered and included in exactly b(e) sets Me then5

for every unbought set M ∈ Me do6

Assign p owning e to contribute sp(M)← c(M)7

Remove edges (M ′,M) with bought sets M ′8

Redirect edges (M ′,M) to (M,M ′) with unbought sets M ′9

Drop e from consideration10

Find a sink in Gs and drop the corresponding set from consideration11

Theorem 4.12 Algorithm 2 returns an exact NE for singleton set multi-cover games
in polynomial time.

Proof. Clearly, Algorithm 2 can be implemented to run in polynomial time. It
constructs a directed acyclic graph Gs, which contains a directed edge between sets
M1 and M2 if and only if there is a player that prefers M1 over M2. If at any
point in time a set M is dropped from consideration, it represents a sink in Gs.
Hence, at this point for each remaining player with e ∈ M it is the most expensive
set that contains her element. None of these players will contibute anything to M,
as they all have sufficiently many and cheaper alternatives to satisfy their covering
requirement. As previous players were not motivated to purchase M, no player has
an incentive to contribute to M.

When a player p is assigned to contribute, she is left with the set Me of exactly
b(e) sets to cover her element e. In this case all other sets, in which e appears,
have been dropped because they were too expensive. Thus, p is not motivated to
contribute to any other sets than those of Me. Every other player q will only use
the sets of Me for free, and this does not allow p to lower her contribution. Thus,
her contribution is a best response, which proves the theorem. □

Unfortunately, the proposed algorithm can compute worst-case NE. Reconsider
the singleton vertex cover game with a star network used to obtain a lower bound
for the price of anarchy. Suppose the fixed cost is 1 for the leaf vertices and 1 + ϵ

for the center vertex. Algorithm 2 assigns each player to purchase the leaf vertex
incident to her edge. This obviously yields a NE which is arbitrarily close to k times
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more costly than s∗.
It is an interesting open problem to adjust the results of this section to cope with

general covering games. In particular, the two main obstacles in generalizing the
techniques are the presence of multi-unit resources and best-responses purchasing
non-trivial combinations of resource units.

4.6 Facility Location Games

4.6.1 Introduction and Basic Properties
Game-theoretic models for facility location have a long history dating back to the
work of Hotelling [Hot29]. In the area of competitive location game-theoretic models
for spatial and graph-based facility location have received a high attention during
the last decades [ELT93, MFT96]. These models consider facility owners as players
that selfishly decide where to open a facility. Clients are behavioral, e.g. they are
assumed to connect to the closest facility and represent a revenue a player gets from
opening a facility. Recent examples of this kind of location games are also found
in [Vet02, DGK+05]. According to our knowledge, however, none of these models
consider the clients as players that need to create connections and facilities without
central coordination. In this section we propose such a model within our framework
of investment games. We first restrict ourselves to one of the most simple variants,
the uncapacitated facility location problem.

Problem 4.13 (Uncapacitated Facility Location) Given a graph G = (T ∪
F, T × F) with vertex sets F of nf facilities and T of nt clients or terminals, a non-
negative opening cost c(f) for each facility f, and a non-negative connection cost
c(t, f) for each edge (t, f), find a non-empty subset of facilities F ⊂ F such that∑

f∈F c(f) +
∑

t∈T minf∈R c(t, f) is minimal.

The goal in Uncapacitated Facility Location is to pick a subset of opened
facilities and to connect each terminal to exactly one opened facility at minimum
total cost. We denote an optimum solution by F∗ and refer to metric Uncapaci-
tated Facility Location if the connection costs obey the triangle inequality in
the graph G. The classic integer programming formulation is due to Balinski [Bal61].

Min
∑
f∈F

c(f)yf +
∑
t∈T

c(t, f)xtf

subject to
∑
f∈F

xtf ≥ 1 for all t ∈ T

yf − xtf ≥ 0 for all t ∈ T, f ∈ F

yf, xtf ∈ {0, 1} for all t ∈ T, f ∈ F.

(4.2)
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Even for this simple version the integer program is not a CIP, as there are negative
coefficients in the constraints. We construct an investment game based on an in-
stance as follows. Each of the players holds a set Tp ⊆ T of terminals. The set of
resources R is composed of all facilities F and all possible edges T × F. For ease of
notation, we split a strategy for player p into two components, capturing the offers
to the connection and opening costs, respectively. In particular, sp = (scp, s

o
p), in

which scp : T × F → R≥0 and sop : F → R≥0. For the variables we again suppose
that yf = boughtf(s) and xtf = bought(t,f)(s) using a similar split for function
bought to refer to facilities and connections. Hence, if the total offers of all players
exceed the cost of a connection or facility, the corresponding variable is raised to 1.
In this case the connection or facility is considered bought or opened, respectively.
Finally, for each player p the constraint validp(s) is set true if all the inequality
constraints corresponding to any terminal t ∈ Tp are satisfied. Each player thus
insists on having all her terminals connected by a bought connection to at least one
opened facility.

Definition 4.3 A UFL game is an investment game in which resources and con-
straints are given as follows.

• The resource set is given by R = F∪ T × F, in which F is a set of facilities and
T a set of terminals

• Each player p has a terminal set Tp ⊆ T . For the constraint bought(s) ∈
validp if and only if

∑
f∈F bought(t,f)(s) ≥ 1 and boughtf(s)−bought(t,f)(s) ≥

0 for all t ∈ Tp and f ∈ F.

In a metric UFL game the connection costs satisfy the triangle inequality.

For a succinct representation it is sufficient to encode the sets of facilities F and
terminals T , the cost function c and the terminal sets Tp of the players.

It is possible to apply some of the simplifications observed Section 4.2. For the
remainder of this section we assume that the sets Tp form a partition of the terminal
set T . In particular, this means that in a NE connection costs are not shared
between players. Note that the facility location game can be cast as a connection
game studied in [ADTW03] and Chapter 5 in the following way. Consider the
complete bipartite graph given by facilities and terminals and all edges directed
from terminals to facilities. Then introduce a new source vertex s and introduce a
directed edge from each facility f to s. The cost of (f, s) is the opening cost of c(f).
In this connection game each player strives to connect all her clients to s with bought
edges at the minimum cost. In this way facility location games are a special case of
directed single source connection games [ADTW03]. Note that if we were building
the connection game with undirected edges, the corresponding facility location game
would allow players to connect to facilities using other players connections.
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4.6.2 Exact and Approximate Nash Equilibria
This subsection presents results on exact and approximate NE for the metric UFL
game. Lower bound constructions are mainly derived by using the following trans-
formation to turn a vertex cover game with graph G = (V, E) into a metric UFL
game. The set of facilities F is given by the vertex set V of the graph G. For the
opening costs c(f) = c(v). The terminal set T is given by the edge set E. For each
terminal t corresponding to (u, v) ∈ E we specify the connection costs for edges
between t and the two facilities corresponding to u and v. These edges are termed
basic edges. All other edge costs are given by the shortest path metric over basic
edges.

Even in the metric UFL game the price of anarchy is exactly k. The lower bound
is derived by an instance with two facilities, f1 with cost k and f2 with cost 1. Each
player p has one terminal tp, and all connection costs are 0. The argumentation
follows Theorem 4.2. The upper bound of k is also easily translated to metric and
non-metric UFL games. To derive a bound on the price of stability, we note that
there are games without NE.

Lemma 4.3 There is a metric UFL game without NE.

Proof. The proof follows by translating the game of Figure 4.1(a) into a metric
UFL game. We set the cost of vertex u to 1.5 and the cost of each basic edge to 1.
In NE no player will consider to pay a connection cost of 3 to connect a terminal
to a facility because it is always possible to open another facility and connect the
terminal with a total cost of less than 3. Hence, in NE only basic edges are bought
and the total connection cost is 3. Then the opened facilities identify a feasible
vertex cover for the original instance. This proves the lemma. □

We can use this game to make the price of stability as large as k− 2.

Theorem 4.14 The price of stability in the metric UFL game is at least k− 2.

Proof. Consider the game in Figure 4.8. This game is in essence obtained by
transformation from the game in Figure 4.2. In addition to the transformation there
are two major adjustments. First, instead of the unweighted game in Figure 4.1(b)
we attach the game in Figure 4.1(a) to the star of players 3, . . . , k. Second, after the
transformation we must adjust opening and connection costs to ensure the property
that in NE no non-basic edges are purchased. It is easy to verify that for the
presented game this property holds. The argumentation then follows the proof of
Theorem 4.3. In particular, suppose there is a NE in which the facility in the center
of the star composed by players 3, . . . , k is bought. In this case players 1 and 2 must
agree on opening some of the cheap facilities. This is not possible due to Lemma
4.3. If, however, the center facility of the star is not bought, each of the players
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Figure 4.8: A metric UFL game with k = 9, for which the price of stability is
arbitrarily close to k− 2. Filled vertices are terminals, empty vertices are facilities.
Numbering of terminals indicates player ownership, labels of facilities indicate open-
ing costs. All basic solid edges have cost 1, all basic dashed edges cost ϵ. All other
connection costs are given by the shortest path metric.

4, . . . , k pays for the connection and opening costs of the corresponding leaf facility
resulting in a total cost of 1+ ϵ for each player. Player 3 can connect to the cheap
facility and contribute a cost of ϵ to the opening cost. Then player 1 can contribute
the remaining cost of ϵ/2 and connect her two terminals at a cost of 2ϵ. Player 2
purchases one of the facilities of cost ϵ and the connection to it. This yields a NE
of cost (k − 2)(1 + ϵ) + 4.5ϵ. The social optimum solution has cost 1 + (k + 3)ϵ.
Thus, if ϵ tends to 0, the lower bound becomes arbitrarily close to k− 2. □

The next theorem sheds light on the hardness of deciding NE existence.

Theorem 4.15 It is NP-hard to decide whether a metric UFL game has a NE.

Proof. The theorem follows directly by modification of the transformation for the
vertex cover game. If we transform the variable and clause gadgets of Figure 4.3
using a cost of 1 for each basic edge, then every non-basic edge has cost at least 3.
Thus, in NE no non-basic edge is purchased, as a player can always open another
facility and connect a terminal with a basic edge with smaller cost. The set of
opened facilities in NE identifies a feasible vertex cover for the original gadget. □

Thus, NE can be quite costly and may not exist. For some classes of games, however,
there is a cheap NE. In particular, as outlined in the introduction, results on the
connection game [ADTW03] can be used to show that singleton UFL games (with a
single terminal per player) allow for an iterative improvement procedure similar to
the one presented for singleton games in Section 4.5. Hence, the price of stability is
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1, and for metric games a (1+ϵ, 1.52)-approximate NE can be found using a recent
1.52-approximation algorithm [MYZ02] to compute a starting solution. We show
here that for games with integrality gap 1 optimal NE exist and can be computed
efficiently.

Theorem 4.16 For any metric UFL game, in which the underlying UFL problem
has integrality gap 1, the price of stability is 1, and an optimal NE can be computed
in polynomial time.

Proof. The proof works by adjusting the proof of Theorem 4.10. Reconsider
the IP formulation (4.2) and its corresponding LP-relaxation obtained by relaxing
yf, xtf ≥ 0. The integrality gap is assumed to be 1, so the optimum solution (x∗, y∗)
to (4.2) is also optimal for the relaxation. The LP-dual is

Min
∑
t∈T

γt

subject to γt − δtf ≤ c(t, f) for all t ∈ T, f ∈ F∑
t∈T δtf ≤ c(f) for all f ∈ F

γt, δtf ≥ 0 for all t ∈ T, f ∈ F.

(4.3)

We can find the optimum dual solution (γ∗, δ∗) in polynomial time. It has the same
value as (x∗, y∗) for (4.2). Now assign each player to pay sop(f) = y∗

f

(∑
t∈Tp δ

∗
tf

)
to the opening cost of each facility f. By complementary slackness this assignment
purchases every facility exactly. In addition, if a terminal t is connected to facility
f then x∗tf = 1 and γt − δtf ≤ c(t, f) is tight. As x∗ is integral, for each terminal
x∗tf = 1 for exactly one opened facility, and we can let the owning player p con-
tribute scp(t, f) = x∗tf(γ

∗
t − δ∗tf) to c(t, f) for every facility f. This assignment exactly

purchases each facility of F∗.
To show that the assignment creates a set of best responses, we again consider

the situation for a single player by removing terminals of other players along with
the dual payments. Suppose we remove a terminal with all constraints in which
appears. In addition, we remove the contribution of these constraints from the costs
of resources. For a terminal t there are at most two dual variables greater than 0:
δ∗tf for t connected to f and γ∗

t . Hence, the reduced problem with the cost function

cp(f) = c(f) −
∑
t ̸∈Tp

x∗tfδ
∗
tf and cp(t, f) = 0 for all f ∈ F, t ̸∈ Tp,

and cp = c otherwise captures the problem of finding a best response for player p.
(x∗, y∗) still gives a solution to this reduced problem. Furthermore, the remaining
dual variables give a feasible solution to the LP-dual of the reduced problem. LP-
duality shows that (x∗, y∗) is still optimal. This proves that the payment functions
are best responses and form a NE. □
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For general games we consider approximate NE.
Theorem 4.17 For the metric UFL game there is an algorithm to derive (3, 3)-
approximate NE in polynomial time.
In Algorithm 3 we denote a terminal by t, a facility by f, and the player owning t by
pt. The algorithm raises budgets for each terminal, which are offered for purchasing
the connection and opening costs. Facilities are opened if the opening costs are
covered by the total budget offered, and if they are located sufficiently far away
from other opened facilities.

Algorithm 3: Primal-dual algorithm for (3,3)-approximate NE
In the beginning all terminals are unconnected, all budgets Bt are 0, and all
facilities closed. Raise budgets of unconnected terminals at the same rate
until one of the following events occurs. B denotes the current budget of
unconnected terminals. A terminal t is tight with facility f if Bt ≥ c(t, f).

1. An unconnected terminal t goes tight with an opened facility f. In this
case set t connected to f and assign player pt to pay scpt(t, f)← c(t, f).

2. For a facility f not yet definitely closed the sum of the budgets of
unconnected and indirectly connected terminals t pays for opening and
connection costs:

∑
t max(Bt − c(t, f), 0) = c(f). Then stop raising the

budgets of the unconnected tight terminals. Also,

(a) if there are opened facility f ′ and terminal t ′ with
c(t ′, f) + c(t ′, f ′) ≤ 2B, set f definitely closed and all
unconnected terminals t tight with f indirectly connected.

(b) Otherwise open f and set all terminals directly connected to f,
which are tight with f and not yet directly connected to some
other facility. For each such terminal assign player pt to pay
scpt(t, f)← c(t, f) and sopt(f)← Bt − c(t, f).

In the end connect all indirectly connected terminals to the closest opened
facility and assign the corresponding players to pay for the connection cost.

For the approximation ratio of 3 we note that the algorithm is a primal-dual
method for metric Uncapacitated Facility Location [MP03, PT03]. For the
analysis of the stability ratio consider a single player p and her payments. Note
that the algorithm stops raising the budget of a terminal by the time it becomes
directly or indirectly connected. First, we show that for the final budgets

∑
t∈Tp Bt

is a lower bound on the cost of any deviation for player p. For any terminal t we
denote by f(t) the facility t is connected to in the calculated solution.
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Lemma 4.4 c(t, f) ≥ Bt for any terminal t and any opened facility f ̸= f(t).

Proof. Suppose there is such a facility for a terminal that is indirectly connected at
the end of the algorithm. This is a contradiction, because then the terminal would
have been tight to an opened facility during the run of the algorithm. If this happens,
t gets directly connected to f. Otherwise suppose t is directly connected to f(t).
Then, f and f(t) are within a distance of 2Bt, which is too close for both of them to
be open. As t is directly connected to f(t), either f(t) or both f and f(t) are opened
at a time when the current budget B ≥ Bt. If f is opened first and the algorithm
tries to open f(t), then with t there is a terminal c(t, f) + c(t, f(t)) = 2Bt ≤ 2B.
Thus, f(t) must stay closed. Otherwise, if the algorithm tries to open f after f(t),
then f must be closed for the same reason. □

Proof. [of Theorem 4.17] Lemma 4.4 shows that if a player has a deviation that
improves upon Bt, it must open a new facility and connect some of her terminals
to it. By opening a new facility, however, the player is completely independent of
the cost contributions of other players. Using the argumentation of [PT03] the final
budgets yield a feasible solution to the dual of the LP-relaxation. In the coopera-
tive game they form a 3-approximately budget balanced core solution [JV01]. Now
suppose there is a deviation for a player that opens a new facility f, connects a
subset of her terminals Tf to f, and reduces her cost below the sum of the budgets,
i.e. c(f) +

∑
t∈Tf c(t, f) <

∑
t∈Tf Bt. This, however, would mean that the coalition

formed by Tf in the cooperative game can improve upon their budgets, which is a
contradiction to Bt having the core property. Hence, we know that

∑
t∈Tp Bt is a

lower bound on every deviation cost. Finally, note that for every directly connected
terminal t ∈ Tp player p pays Bt. A terminal t becomes indirectly connected only if
it is unconnected and tight to a facility f by the time f is definitely closed. Facility
f becomes definitely closed only if there is another previously opened facility f ′ at
distance 2Bt from f. Hence, there is an edge c(t, f ′) ≤ 3Bt by the triangle inequality.
So in the end player p pays at most 3Bt when connecting an indirectly connected
terminal to the closest opened facility. This establishes the bound on the stability
ratio. □

Our proof uses results for cooperative games to lower bound the deviation possibil-
ities of a player p that are not influenced by the contribution of other players than
p. Note that it is possible to derive a self-contained proof as for Algorithm 1 before.

Finally, we discuss some observations regarding lower bounds on the stability
ratio. There is no polynomial time algorithm for metric Uncapacitated Facility
Location with an approximation ratio of 1.463 unless NP ⊂ DTIME(nO(log logn))
[GK99]. This transfers to a lower bound for the stability ratio in terms of polynomial
time computability. In addition, there is a game giving a constant lower bound
in terms of existence. Reconsider the UFL game obtained from transforming the
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vertex cover game of Figure 4.1(a). The structure of the graph is fixed as well as all
connection costs. Therefore, as there is no NE, any feasible solution can represent
only an (α,β)-approximate NE with α > 1. By appropriate adjustment of edge
costs one can obtain a small bound of α > 1.097 [Hoe06a].

4.6.3 Connection-Restricted Facility Location Games

This section presents an extension based on Connection-Restricted Facility
Location problems as considered in [GS04]. The problem is again to open a set of
facilities and connect terminals to them at minimum total cost. Instead of the con-
straints yf−xtf ≥ 0, which guarantee that terminals can only be connected to opened
facilities, the connection restriction is generalized. In particular, for each facility f

there is a set Af of feasible subsets of terminals that can be connected simultaneously
to f. The set of terminals that connect simultaneously to f must be included in Af.
This formulation allows for instance capacity, quota, or incompatibility constraints
and thus encompasses several well-known generalizations of the problem. In these
cases the connection requirements are still expressable by a polynomial number of
linear inequalities, which is not true for general Connection-Restricted Facil-
ity Location. Nevertheless, for investment games based on this problem (denoted
as CRFL games) some of the previous results can be extended to hold. In particular,
lower bounds on the prices of anarchy and stability follow simply by extension. The
price of anarchy can be unbounded, as there might be infeasible assignments, which
no player can resolve unilaterally.1 In the following we show that for subclasses of
these games cheap NE exist in the CRFL game. We restrict to complete CRFL
(CCRFL) games in which for Af ∈ Af and A ⊆ Af it holds A ∈ Af.

Theorem 4.18 For any complete CRFL game, in which a partially conic relaxation
of the underlying CRFL problem has integrality gap 1, the price of stability is 1.

Proof. We can formalize Connection-Restricted Facility Location by an
integer program as follows:

1Consider players 1 and 2 owning terminal t1 and t2, respectively. There are two facilities f1
and f2, for which Af1 = {{t1}} and Af2 = {{t2}}. All opening and connection costs are 1. Suppose
t1 pays for c(f2) and c(t1, f2) and t2 for c(f1) and c(t2, f1). Then both player constraints are
violated, and they both have infinite cost. However, no player can remove payments of others, so
no player can unilaterally obtain a feasible solution. Therefore, the state is a NE of unbounded
cost.
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Min
∑
f∈F

c(f)yf +
∑
t∈T

c(t, f)xtf

subject to
∑
f∈F

xtf ≥ 1 for all t ∈ T

(yf, x1f, . . . , xntf) ∈ Af for all f ∈ F

yf, xtf ∈ {0, 1} for all t ∈ T, f ∈ F.

Here Af = {(0, . . . , 0)}∪{(1, χAf
) | Af ⊆ T feasible for f} ⊆ {0, 1}nt+1, and χAf

denotes
the characteristic vector of the subset Af. Following the argumentation in [GS04] it
is possible to use the conic hull of the sets Af to derive a linear relaxation:

Min
∑
f∈F

c(f)yf +
∑
t∈T

c(t, f)xtf

subject to
∑
f∈F

xtf ≥ 1 for all t ∈ T

(yf, x1f, . . . , xntf) ∈ cone(Af) for all f ∈ F.

For this program a dual can be given by

Max
∑
t∈T

γt

subject to
∑
t∈Af

γt ≤ c(f) +
∑
t∈Af

c(t, f) for f ∈ F and Af ∈ Af.

Now we can apply the same arguments given before in Theorems 4.10 and 4.16.
An integral optimum solution (x∗, y∗) to the LP-relaxation represents a partition of
the terminal set T into a collection of feasible sets A∗

f , one for each facility f. The
constraints corresponding to these sets hold with tightness. Because of completeness
we can assign each player p to pay for each of her terminals t the amount scp(t, f) =
c(t, f) as connection cost to f with t connected to f. For the opening costs sop(f) =∑

t∈A∗
f
∩Tp γ

∗
t − c(t, f), in which γ∗ is the optimum solution to the dual. In total

this pays exactly for all costs of the solution by duality. Suppose now a player can
connect her terminals differently at a cheaper cost. This means that she can reduce
at least one of the costs γt corresponding to a terminal t by choosing at least one
other set Af ′ for some facility f ′. The new reduced payments would exactly pay for
c(f ′) +

∑
t∈Af ′

c(t, f ′). Hence, the original payments coming from γ∗
t would violate

the dual constraint, as they are strictly greater. This is a contradiction to γ∗ being
the optimal dual solution. □

Note that in case one can optimize over the cones in polynomial time we can also
compute the best NE in polynomial time. In particular, this is the case if the cone
can be described by a polynomial number of linear inequalities.
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Finally, we observe that there are singleton CCRFL games (in which every player
has exactly one terminal) without any pure NE. In particular, insights from [ADTW03]
and Theorem 4.11 that prove existence of optimal NE cannot be extended to this
class of games. For example, consider a game with two clients T = {t1, t2} as play-
ers.2 There are two facilities f1 and f2. All connection costs are 0. The opening
costs are c(f1) = 2.2 and c(f2) = 1. The set Af1 = 2T , whereas f2 has a capacity
constraint of xt1f2 + xt2f2 ≤ 1, which yields Af2 = {{t1}, {t2}}. In every feasible so-
lution f1 must be open, but f1 can never be paid for in a NE. Note, however, that
the integrality gap of the underlying problem is not 1, because we can assign each
player fractionally xt1f1 = xt2f1 = xt1f2 = xt2f2 = 0.5 and open both facilities to a
degree of y1 = y2 = 0.5. This satisfies all constraints and yields a total cost of 1.6,
which is strictly less than for any feasible integral solution.

4.7 Discussion
This section clarifies the relations to the work on cooperative covering and facility
location games. There is a strong connection between LP-duality and the core of
a cooperative game. In particular, Deng et al. [DIN97] showed that the core of
cooperative integer covering games is non-empty if and only if the integrality gap of
the underlying problem is 1. Goemans and Skutella [GS04] showed a similar result
for connection-restricted facility location games. The main arguments rely on LP-
duality. In fact, they are reused and extended in the proofs of our Theorems 4.10 and
4.18. Given the results for the core, one could be tempted to think Theorems 4.10
and 4.18 result as immediate corollaries, because stability analysis for NE in our
games needs to avoid cheap deviations only for a subset of the coalitions that are
considered for the core – coalitions represented by single players. In this sense the
NE is a weaker concept than the core. But our theorems are not at all corollaries,
as in our game the investments of a player alter the cost of optimal solutions for
other players. This feature leads to a different analysis for solution concepts. In
our case overcoverage becomes a central problem that needs to be resolved in a way
that provides cheap solutions with low incentives to deviate. The proofs employ
the fact that if the integrality gap is 1, overcovered players do not contribute. The
remaining analysis is then similar to the cooperative case. This actually shows that
Theorems 4.10 and 4.18 extend to hold for coalition-proof NE in our game, in which
every player coalition is allowed to reallocate payments.

Avoiding uncontrolled overcoverage is also the main idea of applying primal-dual
algorithms to get approximate NE. Some of the arguments in the proof of Theorem
4.7 can be found in the context of cooperative games [JV01, PT03]. A proof using
these arguments is given for Theorem 4.17: at first show that the overcovering

2We thank an anonymous reviewer for pointing out this example to us.
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problem is resolved in a feasible way; then the cost allocation part is taken care of,
and the remaining analysis can be assembled from cooperative games.

Note that the way primal-dual algorithms cope with overcovering in set cover
and UFL games is crucial to get the same bound for the stability ratio as for the ap-
proximation ratio. We have tested other primal-dual algorithms e.g. the primal-dual
2-approximation algorithm for Steiner Forest [AKR95, GW95] in the context of
the connection game, see Chapter 5. In this case the underlying integer program
is not an Integer Covering Problem, and in fact it is possible to observe that
the stability ratio for the calculated payments can be strictly higher than 2. For
the covering problems considered in this paper there are usually greedy algorithms
that yield best approximation ratios, thus it would be appealing if their performance
translates to the stability ratio as well. In the cooperative setting these algorithms
yield the same factor for competitiveness, the analogous notion in cooperative games
as our stability ratio. The main reason is that the method of dual fitting [Vaz00],
which is used to analyze approximation ratios, can also be used for bounds on com-
petitiveness (or equivalently budget balance) for solutions in an approximate core of
cooperative games. In our non-cooperative case these algorithms might not handle
overcovering well and introduce unbounded incentives to drop contributions. Thus,
for recently proposed greedy methods the approximation ratio does not translate to
the stability ratio.

Lemma 4.5 The payments computed by the greedy O(log |M|)-approximation algo-
rithm for Set Cover yield an unbounded stability ratio. The payments computed
by recent greedy O(1)-approximation algorithms for Uncapacitated Facility Lo-
cation [JMM+03, MYZ02] yield a stability ratio of Ω(k).

Proof. For the first part consider a vertex cover game with a path of 4 vertices:
e1 = {v1, v2}, e2 = {v2, v3}, and e3 = {v3, v4}. The inner vertices have small cost
c(v1) = c(v2) = 1, the other ones large cost c(v0) = c(v3) = 10. There are three
players with Ep = {ep}. Assume w.l.o.g. greedy picks v1 first, then players 1 and 2
are assigned to pay 0.5 to v1. In the next iteration v2 is picked, and player 3 must
purchase it all by herself. Then player 2 has an unbounded stability ratio.

For the second part consider one of the recent greedy methods presented in
[JMM+03]. These methods raise the budgets of each player simultaneously. If
a facility is paid for, it is opened and contributing terminals are connected. A
connected terminal t is possibly reconnected in later iterations if a facility is opened
to which t has a smaller connection cost. Consider a game outlined in Figure 4.9.
There are two facilities, both have opening cost k−1−ϵ. Player 1 can connect with
a cost of 0 to the left facility and with a cost of 1 to the right one. All other players
can connect with cost k to the left facility and cost k − 1 to the right one. Using
a dual ascending greedy algorithm the first facility that is opened is the left one at
a time the budgets are k − 1 − ϵ, and the cost of k − 1 − ϵ is paid completely by



64 CHAPTER 4. COVERING AND FACILITY LOCATION GAMES

Figure 4.9: An example game yielding a high stability ratio for approximate NE
using greedy algorithms. Facilities are empty vertices, labels indicate opening cost.
Terminals are filled vertices, labels indicate player ownership. Edge labels indicate
connection costs. All other connection costs are given by the shortest path metric.

player 1. Later, when budgets are k− ϵ
k−1

, the right facility is also opened, and the
costs are purchased by the other players. Now player 1 can reduce her costs by a
factor of k− 1− ϵ by dropping the contributions to the left facility and purchasing
the connection to the right one. The stability ratio becomes at least k− 1− ϵ.

Recent variants of greedy algorithms use different techniques, e.g. in [MYZ02]
scaled opening costs are combined with a method of [JMM+03] and a final greedy
opening routine. Our argumentation can be adjusted to hold for all these variants. □



Chapter 5

Connection Games

This chapter studies investment games in the setting, in which they were proposed
by Anshelevich et al. [ADTW03]. The connection game for k players can be de-
scribed as follows. For each game there is an undirected graph G = (V, E), and a
nonnegative cost c(e) associated with each edge e ∈ E. The set of resources R = E

is the set of edges of the graph. If
∑

p∈[k] sp(e) ≥ c(e) for an edge e, it is consid-
ered bought. Each player wants to connect a subset of vertices of the graph by a
network of bought edges with the least possible investment cost. We start by formu-
lating the underlying combinatorial optimization problem. The Steiner Forest
problem [Vaz00, GW95, AKR95] is defined as follows.

Problem 5.1 (Steiner Forest) Suppose we are given a graph G = (V, E), non-
negative edge costs c(e) ≥ 0 for each e ∈ E, and a subset of vertices T ⊆ V called
the terminals. Furthermore, there is an equivalence relation on T expressed by the
connection requirement function connect : T × T → {true,false}. The problem is to
find a forest T ⊆ E such that for each pair (t, t ′) with connect(t, t ′) = true there
is a path between t and t ′ in T and the total cost

∑
e∈T c(e) is minimal.

Function connect naturally extends to every subset V ′ ⊆ V of vertices to indicate
if a solution must contain an edge from the cut (V ′, V −V ′) in the graph. A special
case of Steiner Forest is Steiner Tree, in which the function connect is true
for every pair of terminals. Steiner Tree was one of the first problems shown
to be NP-complete [Kar72]. It cannot be approximated by a factor of 96

95
unless

P=̃ NP [CC02], and this extends to Steiner Forest. We can formally define the
connection game as follows.

Definition 5.1 A connection game is an investment game, in which resources and
constraints are given as follows.

• The resource set R = E is the edge set of a simple undirected graph G = (V, E).

65
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• Each player p has a set of terminals Tp ⊆ T ⊆ V. For the constraint
bought(s) ∈ validp if and only if there is a subnetwork Tp ⊆ E connect-
ing the vertices Tp and boughte(s) ≥ 1 for all e ∈ Tp.

For a succinct representation it is sufficient to encode the graph G, the cost function
c, and the terminal sets Tp of the players. As in the previous chapter we could
formulate the connectivity requirement in the game definition using the constraints
of an integer program for Steiner Forest [GW95], which involves the cuts of the
graph and the function connect. We then can apply similar simplifications as in
the previous chapter, i.e. the function connect is assumed to encompass exactly the
connection requirements of the players, and the set of terminals T is exactly the union
of the player sets Tp. For this game a social optimum solution solves the underlying
instance of Steiner Forest. Finding an optimum strategy for a single player
poses an instance of Steiner Tree. In fact, there are several integer programming
formulations for Steiner Tree and Steiner Forest [Pol03], each of them models
the connection requirement in a different way. Primal-dual algorithms based on these
programs are not directly applicable to obtain cheap approximate NE as it was the
case for covering games. So we rather use combinatorial approaches to obtain cheap
NE. For the rest of this chapter T ∗ denotes a social optimum forest. The subtree of
T ∗ that player p uses to connect her terminals is denoted by Tp.

5.1 Tree Connection Games
In this chapter we deal with the class of tree connection games (TCG), which are
games with tree connection requirements.

Definition 5.2 In a connection game there are tree connection requirements if for
any two terminals t1, tj+1 ∈ T there is a sequence of players p1, . . . , pj and terminals
t2, . . . tj such that player pi wants to connect the terminals ti, ti+1 ∈ Tpi for i =
1, . . . , j.

Note that tree connection requirements require every feasible solution network to
be connected. A TCG can be thought of as a splitting of a single global player into
k players, which preserves the overall connection requirements. For the subclass of
TCGs with |Tp| = 2 we use the term path tree connection game (PTCG). A different
subclass of the TCG are single source connection games (SSG) [ADTW03], in which
there is one source terminal s with s ∈ Tp for all players p. SSGs are closely related
to facility location games as was discussed in Section 4.6.1.

Basic properties for investment games outlined in Chapter 3 yield that for a NE
of the (tree) connection game the network of bought edges is a (tree) forest, the total
contribution to each edge e is either c(e) or 0, and each player contributes only to
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the subtree of bought edges that she needs to connect her terminals. Rather than
using LP-duality the algorithms in this chapter rely on a player-based assignment
technique. An outline is given in the following framework. The input is a feasible
tree satisfying the connection requirements of all players. In each iteration it picks
a player, assigns payments, removes the player, and reduces the edge costs by the
amount she paid. The framework terminates if there is no player left. The exact
assignment of payments is specified in several different ways in later sections of this
chapter. As candidates for this elimination process we consider leaf players.

Definition 5.3 A terminal t of a player p is a lonely terminal if t ∈ Tp and t ̸∈ Tq
for any q ̸= p. A player p is a leaf player if she owns at least one lonely terminal
and at most one non-lonely terminal.

In a PTCG with at least two players each leaf player has exactly one lonely terminal.
In this case we will use tp to denote the lonely terminal of leaf player p.

Algorithm 4: Algorithmic Framework
Input: A feasible tree T
Output: Strategies s1, . . . , sk distributing the cost of T
c1(e) = c(e) for all e ∈ E1

for iter← 1 to k do2

p is a leaf player if possible; otherwise an arbitrary player3

Call a procedure, which either determines sp or improves T4

if procedure returns a new tree then5

exit and restart the framework with new tree6

Set citer+1(e)← citer(e) − sp(e) for all e ∈ E7

Remove p, contract edges e of cost citer+1(e) = 08

For an intuitive understanding of this framework and the notion of a leaf player
consider a PTCG with two terminals per player. Construct a connection requirement
graph Gcrg as follows. The vertex set of Gcrg is T . The edge set is created by
introducing a single edge for each player between her terminals. Hence, in Gcrg

each player is associated with an edge. If we run the framework, each player will
be removed, some players under the label “leaf players”, and some as “arbitrary
players”. The players picked as arbitrary players during the run of the framework
compose a set of edges, which breaks every cycle in Gcrg. They will be removed
without getting payments assigned. A leaf player in an iteration corresponds to an
edge incident to a “leaf” vertex of degree 1. In the special case of a PTCG the
framework picks players in an ordering that is similar to an inverse BFS ordering in
Gcrg.
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The rest of this chapter is organized as follows. In the next Section 5.2 we outline
how TCGs connect to related work on network creation games. In Section 5.3 we
study exact NE and show that every PTCG has an optimal NE, hence the price
of stability is 1 (Theorem 5.2). For three or more terminals per player, however,
the price of stability is at least k − 2 (Theorem 5.3) and it is NP-hard to decide
NE existence (Theorem 5.4). Section 5.4 describes an algorithm to obtain (2, 1)-
approximate NE for TCGs (Theorem 5.6). The ideas can be used to get (2 +
ϵ, 1.55)- and (3.1 + ϵ, 1.55)-approximate NE in polynomial time for PTCGs and
TCGs, respectively, and any constant ϵ > 0. A discussion of the proof techniques
is given in Section 5.5. Section 5.5.1 reveals that the analysis for our algorithm for
approximate NE is tight (Theorem 5.9), and our algorithm is shown to improve upon
a previously proposed method (Theorem 5.10). Also, there cannot be any algorithm
with better performance based only on the tools we used for design and analysis
in this thesis. Finally, Section 5.5.2 discusses the possibility to use our techniques
to analyze more complicated network design games. For a backbone game we show
that in a special case the price of stability is 1 (Theorem 5.11) and approximate NE
with stability ratio (1 + ϵ) can be obtained in polynomial time, for any constant
ϵ > 0 (Theorem 5.12).

5.2 Previous and Related Work
The connection game was introduced and studied by Anshelevich et al. [ADTW03].
Both prices of anarchy and stability are Θ(k). It is NP-hard to determine if a given
game has a NE. There is a polynomial time algorithm that finds a (4.65 + ϵ, 2)-
approximate NE, for any constant ϵ > 0. For SSGs, in which each player needs
to connect a single terminal to the source, a polynomial time algorithm finds a
(1+ ϵ, 1.55)-approximate NE, for any constant ϵ > 0. We denote these algorithms
by ADTW-SS for the single source and ADTW for the general case. More recently,
we have studied connection games in a geometric setting. In [HK05] we showed
bounds on the price of anarchy and the minimum incentives to deviate from an
assignment purchasing the social optimum network. The case of two players and
two terminals per player was characterized in terms of prices of anarchy and stability,
approximate NE, and best-response dynamics.

The Shapley cost sharing variant of the investment game [ADK+04] mentioned
earlier in Chapter 3 was proposed in the context of directed connection games, and
prices of anarchy and stability were shown to be Θ(k) and Θ(log k), respectively.
Several additional special cases have been considered, mostly related to the open
problem of characterizing the price of stability for undirected networks. The price of
stability for a variant of undirected minimum spanning tree creation was shown to
be O(log log k) in [FKL+06]. A splittable connection game and the price of anarchy
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for an iterative player arrival protocol were treated in [CCLE+06].

Network creation as a cost sharing problem has been studied intensively in coop-
erative games and mechanism design. Cooperative games based on Steiner Tree
and Minimum Spanning Tree problems have been considered for decades, see
for instance [Bir76, Meg78, GH81]. In these games each terminal is a player and
the cost for a coalition is the cost of a minimum spanning or minimum Steiner
tree for their terminals only. The existence of core solutions in these games was
considered for instance in [Meg78, SK95]. While the core can be empty, the exis-
tence of a core solution depends on the integrality gap of a corresponding integer
programming formulation. However, in contrast to covering and facility location
games [DIN97, GS04] an integrality gap of 1 is not necessary for the existence of
core solutions. Also, in the connection game every player corresponds to a certain
connection requirement and not to a terminal. A player might not be satisfied with
a connection to some arbitrary terminal. Thus, there is no simple applicability of
LP methods to finding (approximate) NE in TCGs.

More recently, Jain and Vazirani [JV01] studied cost sharing mechanisms for the
Steiner Tree problem. In particular, they considered a multicast perspective:
there is a single source and each player has a private valuation for being connected
to it. The mechanism should pick a subset of terminals, pick a tree connecting them
to the source, and distribute the costs to players such that certain social desider-
ata are met. They showed how to derive cross-monotonic cost sharing schemes,
which translated into a 2-approximate budget balanced group-strategyproof cost
sharing mechanism. This work was extended recently in [KLS05, GKPR07] to simi-
lar cost sharing mechanisms for variants of Steiner Forest with multiple source-
sink pairs.

The TCG is related to network creation models for social networks [Jac04] men-
tioned in the introduction. However, all these network creation games take a social
network perspective and associate each player with a vertex. In this way they are
similar to cooperative games based on Minimum Spanning Tree and Steiner
Tree. Players can only create incident edges and do not consider more complex
connection requirements as in the connection game. Thus, properties and analyses
of these games are very different from our approach here. They are more closely re-
lated to clustering games considered in Part II of this thesis, and we mention some
recent directly related works in Section 8.1. Closely related to these models is a
network creation game studied in [FLM+03, CP05, AEED+06, DHMZ07], in which
the utility for a player is given by the costs of the links established by the player
plus the sum of shortest path lengths to all other players.
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5.3 Cost and Complexity of Nash Equilibria
In this section we examine cost and complexity properties of NE in TCGs. We first
observe that the price of anarchy is as large as k, even in the PTCG. Consider a
graph with two vertices and two parallel edges e1 and e2, in which each player wants
to connect both vertices. Edge e1 has cost k, e2 cost 1. If each player is assigned to
purchase a share of 1 of e1, the state is a NE and the price of anarchy becomes k.
Note that k is also an upper bound using the arguments in the proof of Theorem 4.2.
In contrast, the price of stability for the PTCG is 1 as every such game has a NE
that allows to distribute the cost of T ∗.

Theorem 5.2 For any social optimum tree T ∗ in a PTCG there exists a NE in
which T ∗ is exactly purchased. The price of stability in the PTCG is 1.

Proof. We use the framework of Algorithm 4 with the optimum tree T ∗ as input
to construct an optimal NE. In line 4 we use the following Procedure ExactNash.
As the optimum T ∗ is provided as input, the procedure only outputs a strategy sp.
The resulting algorithm is similar to ADTW-SS [ADTW03] for SSGs.

In the description T e denotes the part of T ∗ rooted at s, which is located below
edge e. When assigning the cost of e to player p the procedure uses cost functions cep
for G with cep(e

′) = sp(e
′) for e ′ ∈ T e, cep(e ′) = 0 for e ′ ∈ T ∗\T e and cep(e

′) = c(e ′)
otherwise. The definition of ceh is accordingly. Note that the creation of player h

(line 9) and building her function sh (lines 23-25) have no influence on the output
and can be dropped from the procedure. The consideration of player h, however, is
useful for proving correctness of the algorithm.

We must show that the algorithm composed of the framework Algorithm 4 using
Procedure ExactNash yields a NE in which T ∗ is bought. As a first observation
it is possible to create an equivalent game as follows. For the task of distributing
the cost of T ∗ we can drop all vertices outside of T ∗ from consideration. Instead,
we can consider the complete graph GT ∗ on the vertices of T ∗. Edge costs csp are
determined by the cost of shortest paths in G with respect to c. Note that each
player considers only paths as deviations. Furthermore, as no player is assigned a
contribution to an edge outside T ∗, a player has to purchase the full cost of every
such edge she uses in a deviation. Hence, replacing G and c by GT ∗ and csp does not
alter the cost of best deviations at any point in the algorithm. Thus, in the following
we assume that c satisfies the triangle inequality and that T ∗ is a minimum spanning
tree of G.

Trivially, the algorithm works correctly for every PTCG with only one player.
Hence, we assume as our induction hypothesis that the algorithm works correctly
for every PTCG with k − 1 players. Then consider a PTCG with k players. Our
induction step is represented by the first iteration of the framework. We must show
that the result of this iteration is a PTCG with k − 1 players such that T ∗ is an
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Procedure ExactNash(T ∗, c, p) - NE cost distribution of T ∗

Input: The social optimum tree T ∗, a cost function c and a selected player p

Output: A strategy sp for p

Create global player h accumulating all players except p9

Set sp(e)← sh(e)← 0 for all e ∈ E10

if p has no lonely terminal then11

return sp12

if p has no non-lonely terminal then13

Set sp(e) = c(e) for all e ∈ Tp and return sp14

Let s be the vertex with the non-lonely terminal of p15

for each edge e ∈ T ∗ in reverse BFS order from s do16

if e is a bridge then17

Assign sq(e)← c(e) to some player q, for which e ∈ Tq18

else19

if e ∈ Tp then20

Find the cheapest path Ap excluding e for player p under cep21

Assign sp(e)← min(c(e), cep(Ap) − sp(T e))22

if e ∈ Th then23

Find the cheapest tree Ah excluding e for player h under ceh24

Assign sh(e)← min(c(e) − sp(e), c
e
h(Ah) − sh(T e))25

return sp26
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optimum solution under the resulting cost function c2. The induction hypothesis
can then be used to argue that it allows a NE cost distribution for the remaining
k − 1 players. If player p has no incentive to deviate from sp, a NE evolves that
distributes the cost of T ∗. Thus, it remains to show the following two properties for
the induction step:

1. Strategy sp assigned to player p allows her no cheaper deviation.
2. T ∗ is optimal for the remaining k− 1 players under cost function c2.

We attack the proof by further adjusting the game. All costs of edges in T ∗ not
purchased by p must be purchased by some of the other players. Thus, we suppose
that all players except p are represented by the global player h, who accumulates all
terminals except those of p. Procedure ExactNash assigns costs to both players p

and h. Naturally, if at the end of the procedure player h has no incentive to deviate
from sh, then property 2 is fulfilled. Hence, both properties are fulfilled if there is a
NE distributing the cost of T ∗ in the game for players h and p. It remains to prove
the following lemma.

Lemma 5.1 For the reduced game with two players p and h Procedure ExactNash
computes a NE in which T ∗ is purchased.

Proof. We show that at the end of the procedure no player has a possibility to
lower her contributions by changing her strategy, and that the calculated strategies
yield connections of bought edges - i.e. T ∗ is fully paid for. Note that the game
actually represents a single source game for players p and h with a single source
vertex s. For the rest of the proof we consider T ∗ rooted at s and use terms higher
and lower to refer to edges and vertices at a closer and further distance from s in
T ∗, respectively.

The first argument concerns the question if a player can lower her contributions.

Lemma 5.2 The payments computed by Procedure ExactNash allow no cheaper fea-
sible deviation for players p and h.

Proof. With the similarity of Procedure ExactNash to ADTW-SS the lemma fol-
lows directly from [ADTW03, Theorem 3.2] for player p. For player h, however, the
argument is more complicated.

Recall that T e denotes the part of T ∗ below edge e. We denote by T u the part of
T ∗, which is below a vertex u. Note that we assume e ̸∈ T e, but u ∈ T u. Consider
sp and sh at the end of an iteration, in which Procedure ExactNash has assigned
the cost of some edge e = (u, v) for which we assume u is higher than v. It is not
obvious that the construction of ceh leads to an equilibrium strategy for player h.
Consider a vertex u where multiple subtrees join. We assume that for each edge
ej below u the contribution of h to T ej + ej is small enough, i.e. T ej + ej is the
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cheapest way under ceh to connect the terminals of h in T ej to T ∗\T ej . But player
h owns terminals in possibly all subtrees T ej , and when constructing the payments
for edges of a single T ej + ej the contribution to the respective other subtrees was
considered to be 0. Can h pick a different, cheaper tree to connect her terminals in
T u to T ∗\T u that improves upon her calculated contribution? We give a negative
answer to this question as follows. Assume the procedure assigned payments for
each T ej + ej, and that u is the first vertex at which sh(T u) is not optimal for h.
Cost function cuh with cuh(e

′) = sh(e
′) for e ′ ∈ T ∗ and cuh(e

′) = c(e ′) for e ′ ∈ E\T ∗

captures the optimization problem faced by player h. In fact, we will see that T ∗ is
indeed the optimum network under cuh, hence player h sticks to her contribution.

Suppose u is the first vertex, at which player h has a deviation Ah that is cheaper
than T ∗ under cuh (i.e. the current contribution of h to T ∗). W.l.o.g. Ah includes
all edges of cost 0, in particular all edges purchased completely by p and all edges
of T ∗ outside T u. Let T ej be a tree that is not completely part of Ah. Consider
for each terminal t of h located in T ej the path from t to u in Ah. We denote
this set of paths by Pej . Let Pej

1 be the set of subpaths from Pej containing for
every P ∈ Pej the first part between the terminal of h and the first vertex w ̸∈ T ej .
This vertex always exists because u ̸∈ T ej . It is in T ∗ because in our adjusted
game T ∗ covers all vertices in G. The network A

ej
h =

∪
P∈Pr

1
ej
P was considered as a

feasible deviation when constructing the payments for T ej + ej, as it connects every
terminal in T ej to a vertex of T ∗\T ej . Furthermore, the payments of p were the
same, hence the cost of Aej

h was the same. Using the assumption that u is the first
vertex for which T u is not optimal for h, we know that cuh(A

ej
h ) ≥ cuh(T ej+ej). After

substituting A
ej
h by T ej +ej in Ah, the new network is not more costly than T ej +ej.

To show that this new network is also feasible, suppose we iteratively remove a path
P ∈ Pej

1 . Then there might other terminals whose connections to u use parts of P .
The last vertex w of P is the first vertex of P outside of T ej , and it stays connected
to u as P is the first part of a path to u. All other vertices of P are in T ej and
are connected by T ej and ej. Hence, all terminals affected by the removal of P are
finally reconnected to u. In this way Ah can be transformed into T ∗ without cost
increase. This contradicts the assumption that Ah is cheaper than T ∗ and proves
that T ∗ is optimal under cuh. Therefore, player h cannot lower her contribution. □

Figure 5.1 depicts the argument for player h. Vertex u has two subtrees for which
the payments were assigned independently. The subtree Ae1

h of Ah, which is assumed
to be cheaper than T e1 , is drawn in bold. A vertex w represents the first vertex
outside T e1 on a path in Ah, and it can be either completely outside T u (like w1 for
t1) or in another T ej (like w2 for t2). Replacing A

e1
h by T e1 and e1 yields a feasible

network that is not more expensive.
We have shown that the players have no incentive to move away from their

assigned payments due to cost improvement. In addition, we need to show that the
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Figure 5.1: Transformation of Ae1
h into T e1 . Solid edges in the marked area belong

to T e1 , bold edges to A
e1
h . Replacing A

e1
h in Ah by T e1 and e1 yields a feasible

network for player h that is not more expensive than Ah under cuh.

payments suffice to pay for the cost of T ∗.

Lemma 5.3 The payments computed by Procedure ExactNash purchase T ∗.

First, consider the structure of Ah in an iteration when assigning costs of edge e.
Consider a terminal tj of player h, and let Tj and Aj be the paths between s and tj in
T ∗ and Ah, respectively. The following lemma about the structure of Ah generalizes
[ADTW03, Lemma 3.4] to player h with more than two terminals. It similarly holds
for player p and her minimum cost deviation Ap.

Lemma 5.4 If edge e cannot be paid for using the assignment procedure of the
algorithm, there is a minimum cost alternative tree Ah for player h with the following
property. For any tj there are two vertices vj and wj on Aj such that all edges on
Aj from tj to vj are in Tj ∩ T e, all edges between vj and wj are in E\(Tj ∩ T e), and
all edges between wj and s are in T ∗\T e.

Proof. The proof is by contradiction, i.e. if Ah violates this lemma, it can be
transformed into a tree for player h that satisfies the properties of the lemma and
is not more expensive. Suppose edge e is the first edge that cannot be paid for.
Consider the path Aj from a terminal tj to s. Once it reaches a vertex outside T e,
there is a connection of cost 0 to s, because all vertices from the graph are in T ∗.
In this case we can adjust Ah to satisfy the lemma without cost increase.
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Now suppose Aj leaves Tj to T e\Tj and re-enters Tj below e at another vertex.
Consider the edges e ′ ∈ Tj ∩ Aj of T e such that Aj excludes edges from T e ′ . Let
e ′
low be the lowest of these edges. We denote by f ̸∈ Aj the edge directly below
e ′
low on Tj (see Figure 5.2(a)). Recall our assumption that e was the first edge that

could not be paid for. By the time the algorithm was trying to purchase T f + f, it
found that the contribution of player h to T f was optimal to connect all terminals
of h in T f to T ∗\T f. As the payment functions and the adjusted cost function ceh
are built adaptively, we know that this is still true in the present iteration. We can
use the repairing construction from Lemma 5.2 to replace the respective parts of Ah

with T f + f. This yields a new feasible network that is not more expensive and uses
all edges of Tj from tj to e ′

low. Hence, in the new network e ′
low is not considered

anymore as one of the edges e ′ ∈ Tj∩Aj, for which Aj excludes edges from T e ′ . Thus,
iteratively Ah can be transformed without cost increase into a network obeying the
lemma. □

Note that the argument can be extended to see that the vertices vj build a “frontier”
in Te in the sense that Ah does not use any edge of T e above any of the vertices
vj. The vertices vj are similar to the deviation points used in the proof for SSGs
in [ADTW03].
Proof. (of Lemma 5.3) Now we prove that the payments assigned by Procedure Ex-
actNash pay for e. Denote by T e

p the part of the path between s and the lonely
terminal tp, which is located in T e. We consider two cases and show in each case
how to build a better network than T ∗ if Lemma 5.3 is violated.

Case 1: Suppose there is an edge f ∈ Ah ∩ T e
p . Then for a vertex v incident to f,

Ah includes all edges from T h∩Tv, in particular the vertex where T e
p joins Th.

If player h deviates to Ah and player p sticks to her payments, this yields a
feasible network with cost less than or equal c(Ah) + c(Ap) < c(T ∗).

Case 2: Assume that Ah excludes all edges from T e
p . Then Ap departs from T e

p

at some vertex d. However, as e is the first edge, which cannot be paid
for, it is optimal for player h use the contribution to T d to connect all her
terminals located in T d to d. Ah can be transformed into a network including
T d without cost increase. By assumption d is not part of Ah, so the repaired
network T d might be (part of) a component, which is not connected to the
source s anymore. This connection is then established by Ap. Figure 5.2(b)
depicts this constellation. The structure of Ah ensures that the other terminals
of h outside T d are still connected either to s or to T d. Note that if Ap uses
other edges of T e outside Ah, we must ensure that h contributes to these
edges, because otherwise the cost for p could be increased. However, we can
again apply the same arguments to transform Ah such that a feasible network
without cost increase is created.
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(a) (b)

Figure 5.2: (a) A violation of the structure of Lemma 5.4, as Aj leaves and returns
to T e below e. As T f + f is the cheapest way to connect the terminals of h in
T f to T ∗\T f, it is possible to replace Aj by Tj for every terminal tj ∈ T f of h.
This generates a feasible network that is not more expensive than Ah under che .
(b) Improvement step for T ∗ if it cannot be paid for. T d is optimal for h to connect
all her terminals of T d to d. Player p also sticks to her contributions in T d and
establishes a connection to s with Ap, which ensures feasibility.

Hence, if the costs cep(Ap) and ceh(Ah) do not allow to pay for T e + e, there is a
cheaper network than T ∗ that can be constructed in one of the two ways described.
This is a contradiction and proves Lemma 5.3. □

The previous lemmas show that no player has a possibility to lower her contributions
and that the cost of T ∗ is paid for. This proves Lemma 5.1. □

As Lemma 5.1 captures the crucial part of our induction, Theorem 5.2 follows. This
proves that the price of stability in the PTCG is 1. □

If the Algorithm 4 uses Procedure ExactNash with T ∗, then it computes an op-
timum NE. For classes of PTCGs posing efficiently solvable Steiner tree problems
(e.g. for constant k [DW72]), an optimal NE can be computed in polynomial time.
Unfortunately, these advantageous properties are restricted to the PTCG. In a SSG
with at most three terminals per player it is NP-hard to decide whether the game
has a NE or not. Furthermore, the price of stability is at least k− 2. We first show



5.3. COST AND COMPLEXITY OF NASH EQUILIBRIA 77

Figure 5.3: A SSG without a NE. Vertex labels indicate player ownership, edge
labels are used for identification in the analysis given in the text.

that there is a SSG in which for every (α,β)-approximate NE α > 1.0719. This
means that in every solution there must be a player who can reduce her contribution
by at least a factor of 1.0719. In particular, this game has no exact NE. In addition,
we provide an initial lower bound for the stability ratio of approximate NE in which
T ∗ is purchased. Our bound of α > 1.1835 is, however, significantly lower than the
bound of α ≥ 1.5 shown in [ADTW03] for general connection games.

Lemma 5.5 There is a SSG in which for every (α,β)-approximate NE α > 1.0719.
For (α, 1)-approximate NE the bound increases to α > 1.1835.

Proof. Consider the game in Figure 5.3. Note that the topology results from
translating the vertex cover game of Figure 4.1(a) into a facility location game and
then into a SSG game as described in Sections 4.6.1 and 4.6.2. However, we suppose
that c(ej) = 1 for j = 3, . . . , 9. Furthermore, we set c(e1) = c(e2) = x and try to
adjust the value x such that the minimum achievable stability ratio is maximized.

Consider any (α,β)-approximate NE. Clearly, the network purchased must be
connected and include all terminals and the source s. Once players purchase a net-
work with cycles, they can drop edges until the network becomes a tree. In addition,
they only need edges on paths between s and a terminal t. Dropping unnecessary
edges from the network only decreases the payments of players and increases the cost
of possible deviations. Such a transformation decreases the stability ratio. Thus,
the minimum stability ratio is obtained for a state that distributes the cost of a tree
network with only terminals as leaves. The following case analysis derives bound for
the stability ratio in each class of trees including some subset of the edges {e1, e2, e3}.

Case 1.1 : Suppose only e1 is included in the tree (the case with only e2 is sym-
metric). We set up inequalities to place a general upper bound on certain
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deviation possibilities. These upper bounds can only be strengthened if cer-
tain parts of the network are purchased and the player has to contribute less
to the respective edges. sp(e) denotes the contribution of player p to edge e.

|s1| ≤ α(s1(e2) + s1(e7) + s1(e1) + s1(e4)) ≤ α(2+ x+ s1(e1))
|s2| ≤ α(s2(e1) + s2(e9)) ≤ α(1+ s2(e1))

The cheapest tree in this case has cost 4 + x, hence adding the inequalities
yields the best possible bound of 4+ x ≤ α(3+ 2x), and thus α ≥ 1+ 1−x

3+2x
.

Case 1.2: Suppose only edge e3 is bought. Any such network has cost at least 5.
In this case

|s1| ≤ α(s1(e2) + s1(e5) + s1(e6)) ≤ 3α

|s2| ≤ α(s2(e1) + s2(e9)) ≤ α(1+ x),

so the stability ratio in these networks is at least α ≥ 1+ 1
4+x

. This is dominated
by the bound of Case 2.2.

Case 2.1: Suppose e1 and e3 are purchased (the case with e2 and e3 is symmetric).
It is possible to set up inequalities representing meaningful deviations as in
Case 1.1 and to get a lower bound of α ≥ 1+ 1−x

3+2x
.

Case 2.2: Suppose e1 and e2 are purchased. We bound some deviations by

|s1| ≤ 3α

|s2| ≤ α(1+ s2(e1))

|s2| ≤ α(1+ s2(e2))

It is easy to see that the minimum case is achieved by setting y := s2(e1) =
s2(e2). This yields

2+ 2x− 2y ≤ 3α

1+ 2y ≤ α(1+ y)

For a stability ratio α > 1 we need x > 0.5. Then the bound of Case 1.2 is
dominated by the one of Case 2.1. Hence, finding the optimum x poses the
optimization problem

max
x∈(0.5,1)

max
y∈[0,x]

min
(

4+ x

3+ 2x
,
2+ 2x− 2y

3
,
1+ 2y

1+ y

)
.

In the optimum case all inner terms are equal. This results in an optimum

y∗ =
x− 3+

√
x2 − 2x+ 7

2
.
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Substitution yields the problem

max
x∈(0.5,1)

min

(
4+ x

3+ 2x
,
5+ x−

√
x2 − 2x+ 7

3

)
.

Again, the inner bounds must be equal to yield the optimum. It gives x ≈
0.68548 and a lower bound on α > 1.07195.

Case 3: Finally, suppose all three e1, e2 and e3 are purchased. Then the network
includes three additional edges. In this case the network allows the same
deviation bounds as the network of Case 2.2, but it is more costly. The
minimum stability ratio is not obtained in this case.

Finally, for the case, in which T ∗ must be bought, let x be arbitrarily close to 1.
Then T ∗ includes both edges e1 and e2 of cost x, and the corresponding bound of
Case 2.2 approaches

lim
x→1

5+ x−
√
x2 − 2x+ 7

3
= 2−

√
2

3
> 1.1835

This proves the lemma. □

We can embed the game of Figure 5.3 into the construction for the price of anarchy.
The resulting game does not have a cheap NE.

Theorem 5.3 The price of stability in the SSG is at least k− 2.

Proof. We combine the game of Figure 5.3 with the game that maximizes the price
of anarchy. We use c(e1) = c(e2) = 0.75 for simplicity and note that the analysis of
Lemma 5.5 can be repeated to see that the corresponding game has no NE. Consider
the resulting game depicted in Figure 5.4.

Suppose there is a NE without the edge of cost k− 2− ϵ. Then players 3, . . . , k

must be connected with the edge of cost 1, so they all have a direct connection to
the source. They do not contribute anything to the cost of the remaining edges of
cost O(ϵ). Thus, the game for players 1 and 2 reduces to the one of Figure 5.3.
Lemma 5.5 shows, however, that in this case there can be no NE. Hence, in any
NE the players must purchase the edge of cost k − 2 − ϵ. Consider the following
strategies: Players 3, . . . , k purchase the costly edge and the additional edge of cost
ϵ to s in equal shares; player 1 purchases two edges of cost ϵ; player 2 purchases
one edge of cost ϵ and one of cost 0.75ϵ. There is such a strategy combination that
forms a NE. Hence, as ϵ tends to 0, the price of stability becomes arbitrarily close
to k− 2. □
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Figure 5.4: A SSG with price of stability arbitrarily close to k − 2. Vertex labels
indicate player ownership, edge labels indicate cost.

Theorem 5.4 In the SSG it is NP-hard to decide whether a game has a NE.

Proof. We briefly outline the proof, which uses a reduction from 3SAT (Problem 4.4
defined in Section 4.3) similar to the one shown for vertex cover games in the proof
of Theorem 4.5. For an instance of 3SAT a SSG is constructed as follows. For each
variable xp we introduce a variable player p and a gadget depicted in Figure 5.5(a).
It consists of a single terminal of p and two connections to the source s. A player
has a true path to s including an edge epT and a false path including an edge epF.
For each clause Cq we introduce two clause players q1 and q2 and a gadget depicted
in Figure 5.5(b). It consists of a game of Figure 5.3 and an alternative connection
to the source by a side gadget. This side gadget includes three edges epT or epF.
These edges are the ones from the true or false path of the corresponding gadgets
for the variables appearing in Cq. For instance the gadget for a clause (x1∨x2∨x3)
includes edges e1F, e2F and e3T from the variable gadgets of variables x1, x2 and x3
(c.f. Figure 5.5(b)). There is only one edge epT and one edge epF for each variable
xp in the whole graph.

Suppose the 3SAT instance has a satisfying assignment. Then we assign the
variable players to purchase the edges of the true or false path corresponding to
their assignment. This results in a total cost of 2 for each of them. Then, in each
clause gadget one of the epT or epF edges is bought. For a clause Cq we assign
player q1 to purchase the three edges of cost 1 directly connecting her terminals to
s. Player q2 is assigned to purchase two edges of the side gadget of total cost 1.75,
which connect her terminal to one edge bought by a variable player. It is easy to
note that in this case no player has a possibility to connect her terminals with a
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(a) Gadget for a variable. (b) Gadget for a clause (x1 ∨ x2 ∨ x3).

Figure 5.5: Variable and clause gadgets. Vertex labels indicate player ownership.
Numeric edge labels indicate cost, all unlabeled edges have cost 1.

lower cost by choosing a different strategy.

On the other hand suppose there is a NE. If for a clause gadget player q2 does
not use edges of the side gadget to connect her terminal, an analysis similar to the
proof of Lemma 5.5 tells us that q1 and q2 do not agree upon a set of edges to
purchase. Hence, player q2 does contribute only to edges of her side gadget. In
addition, this implies that no clause player contributes to the cost of edges epT or
epF. Thus, these edges must be fully bought by the variable players. However, to
ensure a connection through the side gadgets for each clause player q2, there must
be for each clause gadget at least one edge epT or epF purchased by the variable
players. As each variable player purchases exactly one of her true or false paths,
this directly yields the desired satisfying assignment for the 3SAT instance.

This proves that in general deciding the existence of a NE is NP-hard. Our
constructed games, however, involve only players with at most three terminals each.
For such a player the optimum Steiner tree can be found in polynomial time [DW72],
and thus it is possible to recognize a NE in polynomial time. Hence, for this special
case the problem is NP-complete. □



82 CHAPTER 5. CONNECTION GAMES

5.4 Approximate Nash Equilibria
Similar to the covering and facility location games in the last chapter NE for TCGs
can be hard to find or very expensive. This section studies the existence and com-
putability of cheap approximate NE providing a trade-off between efficiency and
stability. In contrast to the Algorithms 1 and 3, the algorithms here do not rely on
LP-duality. Instead, they use the concept of connection sets [ADTW03] which are
special sets of edges of T ∗.

Definition 5.4 A connection set S of player p is a subset of edges of Tp, such that
for each connected component C in T ∗ \ S either

1. there is a terminal of p in C, or
2. any player that has a terminal in C has all of her terminals in C.

For any non-terminal vertex of degree 2 in T ∗ the incident edges belong to the same
connection sets, so for convenience we assume that T ∗ has no such vertices. Suppose
we assign a player to purchase exactly a single connection set. If she switches to
a cheaper set of edges connecting her terminals, this keeps the purchased network
feasible and improves upon the cost of T ∗. Hence, the cost of a connection set
for a player lower bounds any of her deviation cost. Thus, if T ∗ is purchased by
assigning every player to pay for at most α connection sets, the state forms an
(α, 1)-approximate NE. Note that a subset of a connection set also is a connection
set.

5.4.1 An Algorithm for PTCGs
In connection games with two terminals per player the edges of T ∗ can be partitioned
into equivalence classes SQ such that e and e ′ belong to the same class iff Q =
{q : e ∈ Tq} = {q : e ′ ∈ Tq}.

Lemma 5.6 In connection games with two terminals per player each SQ forms a
connection set for all players q ∈ Q which is maximal under the subset relation. In
the PTCG connection sets SQ form a contiguous path.

The lemma can be proved rather easily by assuming the contrary and deriving
contradictions to the definition of connection sets and tree connection requirements.

We call a connection set SQ needed by Q. For the rest of this section we silently
consider only maximal connection sets and not explicitly mention a player, as this
information is given implicitly by the player subtrees the set is located in. For de-
riving approximate NE we again use the framework Algorithm 4. In line 4, however,
we use a different procedure to assign the costs. For a leaf player p we pick two
connection sets and assign p to purchase them. If p is not a leaf player, sp = 0.
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We must carefully choose the connection sets that are assigned to a leaf player
p. For instance, there might be two connection sets, which are needed by player
sets differing only by p. If p is assigned to purchase none of these sets, then after
the player is removed in line 7 of Algorithm 4, the two connection sets will be
needed by the same player set. As aruged above, however, this identifies them
as one connection set. Hence, in this case two distinct connection sets would be
considered as one connection set after removal of p. Naturally, this would destroy
our argumentation if this connection set is assigned to another player considered in
later iterations. In addition, a connection set needed only by p must be assigned to
p, because otherwise it will remain unpurchased. Avoiding these problems provides
candidate connection sets for the assignment to p.

Definition 5.5 A connection set is called an endangered set for player p if

1. it is needed only by p. We call such a connection set a personal set.

2. it is needed by the set of players Q ∪ {p}, and there is another connection set
(called a forcing set) needed by the set Q, with Q ̸= ∅ and p ̸∈ Q. We call
such a connection set a community set.

Indeed, for any leaf player there are at most two endangered sets.

Lemma 5.7 For any leaf player in a PTCG there are at most two endangered sets.

Proof. As there is only one personal set, we must show that there is at most one
community set. Assume for contradiction that for a leaf player p there are several
community sets. Arbitrarily pick two distinct forcing sets S ′

1 and S ′
2 with player sets

Q1 and Q2, respectively. The corresponding community sets are denoted S1 and S2.
We denote Q = Q1 ∪Q2.

Consider the tree T ∗. Upon removal of S1 and S2 three components evolve. Two
of them (denoted C1 and C2) each contain one terminal of p. As the subtree Tp

for each player is a path, the third component (denoted C3) contains a terminal of
each player in (Q1 ∪Q2) − (Q1 ∩Q2). For the first two cases we suppose there is no
forcing set in C3.

Case (a): S ′
1 and S ′

2 are located in C1 and C2, each in a different component. Hence,
after removal of S ′

1 and S ′
2 components C4 and C5 evolve (see Figure 5.6(a)).

Now all terminals of players in Q are distributed to C3, C4 and C5. If the
underlying graph structure allows it, we can reconnect these components into
a component and C1 and C2 into a second component. This would yield a
disconnected graph that satisfies the connection requirements. This is a con-
tradiction to the presence of tree connection requirements, no matter whether
such a connection is actually possible with the edges from the underlying graph
or not.
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Case (b): S ′
1 and S ′

2 are located in C1 and C2, both in the same component. Hence
the other component holds a terminal of each of the players in one set, w.l.o.g.
we assume C1 a terminal from each player in Q1. As S ′

1 is in C2, all players
of Q1 need both S1 and S2, so Q1 ⊂ Q2. Hence, in C3 there is one terminal of
each player of Q2 −Q1. In C2 there is only one terminal of each player in Q1.
If we remove S ′

2, we split off a new component C4 containing one terminal of
each of the players in Q2. S ′

1 is, of course, located in C4, because it is needed
by a subset of the players. If we remove S ′

1, we get a new component C5 with
a terminal of each of the players in Q1 (see Figure 5.6(b)). In C4 one terminal
of each of the players in Q2 −Q1 remains. So if we connect C4 and C3 into a
component, there is no need to connect this new component to the rest of the
tree. This again violates the tree connection requirements.

Case (c): Suppose one forcing set (w.l.o.g. S ′
1) is located in C3. This means that

Q1 ∩ Q2 = ∅. The tree requirements ensure, however, that for each pair of
players q1 ∈ Q1 and q2 ∈ Q2 there is a sequence of players that transitively
require a connection between q1 and q2. Note that p cannot be part of this
sequence as she is a leaf player. In particular, this means there is at least
one player whose path includes either S1 or S ′

1. This is a contradiction to the
definition of community and forcing sets.

This proves that there is only one community set, which yields at most two endan-
gered sets for a leaf player. □

In line 4 of Algorithm 4 we thus simply assign a leaf player to purchase the en-
dangered sets. This ensures that all connection sets of T ∗ are assigned, and the
connection sets considered and assigned in later iterations correspond to original
connection sets. Then the algorithm works correctly. It can be combined with
recent approximation algorithms to yield the following theorem.

Theorem 5.5 In a PTCG a (2+ϵ, 1.55)-approximate NE can be computed in poly-
nomial time, for any constant ϵ > 0.

Proof. The algorithm assigning endangered connection sets is still inefficient, be-
cause it requires T ∗ as input. For the translation into a polynomial time algorithm
we use the idea presented in [ADTW03] and applied in detail in the proof of Theo-
rem 4.11. It is possible to use a β-approximation algorithm for Steiner Tree to
get an initial approximation T . Assume this tree is optimal and assign connection
sets to a leaf player. After the assignment consider each of her sets independently.
In particular, for a connection set SQ assume a cost of 0 for all e ∈ T \SQ and
calculate the shortest path in G between the terminals of p. If SQ is not optimal,
then replace it with the cheapest path and output the improved network. In this
way the network T can feasibly be improved, which yields a restart of Algorithm 4
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(a)

(b)

Figure 5.6: Component structures in the presence of more than two community sets
for player p. Replacing connection sets S1, S2, S ′

1, and S ′
2 with dashed edges creates

feasible, unconnected networks. Filled vertices are terminals of p.

on the improved network. To ensure a polynomial number of restarts, fix parameter
κ = ϵc(T )

(1+ϵ)nβ
in the beginning (with ϵ small enough to ensure κ < mine∈E c(e)). For

checking optimality of a connection set SQ, temporarily reduce the cost of each edge
in SQ by κ. Then a cheaper path improves the cost of the tree by at least an amount
of κ. This yields at most (1+ϵ)nβ

ϵ
restarts of the framework. After the algorithm has

run to completion, a last post-processing step is needed to restore the original costs
of the edges. The remaining cost of at most κ is split between all players propor-
tionally to the total contribution of each player to the cost of the tree. By repeating
the analysis of Theorem 4.11 this yields at most an ϵ-factor deterioration in the
stability ratio. The theorem follows with the recent 1.55-approximation algorithm
for Steiner Tree [RZ05]. □

5.4.2 An Algorithm for TCGs
In this section we adjust the idea of assigning connection sets to get (2, 1)-approximate
NE for TCGs with any number of terminals per player. Each player (denoted as
parent player) is divided into a set of child players with two terminals per player.
The child players have the same terminals as the parent player, and they are dis-
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(a) (b)

Figure 5.7: (a) Distribution of hierarchical players 1-4 for a parent player p; (b) dis-
tribution of personal players I-VI in the subtree marked Tmc in (a). Bold edges
indicate personal sets of personal players after the assignment of the algorithm

tributed such that the child player game is a PTCG. Then, the algorithm assigning
endangered sets can be used to assign T ∗ such that each child player purchases
at most two connection sets. The union of these connection sets yields only two
connection sets for the parent player.

Theorem 5.6 For any social optimum tree T ∗ in a TCG there exists a (2, 1)-
approximate NE in which T ∗ is exactly purchased.

Proof. The following pattern is used to divide a leaf parent player p into hierar-
chical and personal child players. Then we process these child players such that the
union of assigned connection sets forms two connection sets for p. This suffices to
prove the theorem. For our division of player p it is possible to disregard all non-
lonely terminals of p but one, as the corresponding connection requirements can be
left for other players to satisfy. Denote this last remaining non-lonely terminal by
troot. If the player has only lonely terminals, we pick troot arbitrarily. Then consider
T ∗ rooted at troot in BFS-order. For an edge e needed only by p, the tree connection
requirements guarantee that the subtree below e is also needed only by p. Contract
all such edges that are needed only by p. Denote this adjusted tree by Tadj and
consider it again in BFS-order rooted at troot. For each vertex t ∈ Tp we introduce
a new child player. She gets assigned t and the nearest ancestor vertex that is a
terminal of p (see Figure 5.7(a)). These child players are termed hierarchical players.

Consider the portions of the tree that were contracted to form Tadj. For each
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maximal connected subtree Tmc ⊆ Tp that is needed only by p, let vmc be the root
vertex that represents Tmc in Tadj. Let player q be the first hierarchical child player,
who got assigned the root vertex vmc. This player strives to connect upwards in
Tadj. Now we consider Tmc in DFS-order and consider the first encountered terminal
of p. If this is not the root vmc, we relocate child player q to this terminal. For each
new terminal tx encountered in the DFS order, we introduce a new child player and
assign her terminals tx−1 and tx. Except for the remaining hierarchical players at
vmc there is only one child player with a lonely terminal in Tmc at all times during
this assignment. Finally, consider the last terminal t in the DFS-scan of Tmc. We
assign all hierarchical players connecting downward in Tadj to t instead of the root
vmc. Child players introduced in the DFS-scan of the components Tmc are called
personal players, because they divide parts needed only by p (see Figure 5.7(b)).

After the division of a parent player the algorithm for PTCGs is used to as-
sign connection sets. In any iteration a leaf child player is picked and assigned to
purchase her endangered sets, however, we prefer to pick personal over hierarchical
leaf players. Thus, the procedure works roughly bottom up to troot. Finally, one
connection set for the parent player p is formed by the union of all personal sets
for the child players. The other connection set is the union of the community sets.
Actually, a slightly stronger statement holds.

Lemma 5.8 If the child players of a parent player p are created and eliminated in
the described way, the removal of the child players’ personal and community sets
creates only components that contain terminals of p, respectively.

To see the argument, we first have a closer look at the structure of endangered and
forcing sets.

Lemma 5.9 For any leaf player in a PTCG the personal, community, and forcing
sets share a common vertex if they exist.

Proof. If there is no forcing set, there is no community set and the lemma follows
trivially. So let there be a forcing set SQ needed by player set Q. Suppose for a leaf
player p the sets do not share a vertex. Remove the community set, and let C1, C2

be the components with and without the lonely terminal of p, respectively.

Case (a): Suppose SQ is in C2 and remove it. This splits C2 into two components.
We denote by C ′

2 the remaining component including the terminal of p. The
other component is denoted by C3, and it contains one terminal of each player
in Q. Now remove all edges that connect to the lonely terminal tp of p in
C1. Connect all resulting components except for t to C3. Then connect the
vertex v to C ′

2 (see Figure 5.8(a)). All connection requirements are met, but
there is a solution with two components. This contradicts the presence of tree
connection requirements. Hence, SQ must be in C1.
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Case (b): Suppose SQ is in C1 and remove it. Similar to Case 1 we refer to C ′
1 and

C3 as resulting components after removal of SQ. Now suppose there is another
player q with a terminal located in C ′

1. Tq can only include one of SQ and SQ+p,
so q ̸∈ Q, and she must have both her terminals in C ′

1. Again isolate the lonely
terminal tp. Then construct two components, one consisting of t, C2 and C3;
the other one consisting of all other components (see Figure 5.8(b)). This
generates a feasible solution with two components, which is a contradiction of
tree connection requirements. Once there are no terminals in C ′

1, there can be
no connection sets in C ′

1, except for the personal set Sp needed only by p. It
remains to show is that Sp must be located in C ′

1.

Case (c): Suppose Sp is in C2 and remove it. Again we denote C ′
2 the component

with the terminal of p and C3 the other one. Observe that C3 must contain all
terminals of Q. Then remove SQ from C1 generating C ′

1 and C ′
3. We can isolate

the components containing terminals of Q from the rest of the components
(see Figure 5.8(c)). A feasible network with two components is possible, which
contradicts the presence of tree connection requirements.

If Sp exists, it is in C ′
1, and the three connection sets share a Steiner vertex. Other-

wise, the two connection sets meet at the lonely terminal of p. This concludes the
proof of Lemma 5.9. □

Proof. (of Lemma 5.8) We use an inverse induction to show the lemma. Suppose the
algorithm has assigned all edges to child players. We reverse the elimination order
of child players and consider player and edge additions instead of player removals
and edge contractions. The child player that was eliminated last is now the one that
is inserted first. It is obvious that for the first inserted (i.e. last eliminated) child
player the lemma holds. This is the base case of our induction. Now suppose the
property holds after we have inserted in the reverse order a given number of child
players from one or more parent players and their assigned edges. Then consider
the insertion of an additional child player q of a parent player p. This can be either
a hierarchical or personal child player. Recall the elimination order outlined above.
Player q can have a personal set. Consider the union of all personal sets of child
players of p eliminated later (i.e. inserted already). By the induction hypothesis
after removal of this union every evolving component contains a terminal of p. If
in addition to that the personal set of q is removed, the only additional component
that evolves is the lonely terminal of q. This proves the induction for the personal
sets.

For the community sets the case is more complicated. Consider the hierarchical
players. Their community sets are always needed by at least one additional player,
which is not a child player of p. If the inserted player q is a hierarchical player,
consider her terminal in the lower of the two subtrees Tmc containing her terminals.
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(a) (b) (c)

Figure 5.8: Component structures when endangered sets do not share a vertex.
Replacing solid with dashed edges creates feasible, unconnected networks. Filled
vertices are terminals of p.
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This lower terminal is in the component newly created by the removal of her com-
munity set. This is ensured by the hierarchical structuring and the fact that other
players are also present on the community set.

If q is a personal player, we consider the subtree Tmc that she is located in.
Recall that Tmc is needed only by p, and note that the root vertex vmc of Tmc does
not have to be a terminal of p. In addition, vmc might be incident to community sets
of hierarchical players. The complete subtree Tmc must be purchased by p, hence
it consists completely of personal and community sets of child players of p. The
lemma is proven if we can show that every vertex in Tmc is either a terminal of p
or connected by personal sets to a terminal of p. In addition, the root vmc must
be connected by personal sets to the terminal of the hierarchical players connecting
downward in the tree (if any). This serves to keep the above given argument for
hierarchical players feasible. Now consider as an additional invariant that for every
connected subtree T ′ ⊆ Tmc the vertex v ′ closest to troot is connected by personal sets
to the terminal considered last during the DFS-scan of T ′. Due to the DFS-based
construction of personal players we always eliminate first the player constructed last
in Tmc. Consider the subtrees q is located in. At the current time she is inserted
last, so in turn of the players present she was eliminated first. Therefore, we know
she was constructed last, and because of that she cannot have only a community set.
So if q has a community set, she also has a personal set. Then, due to the properties
shown in Lemma 5.2, there is a Steiner vertex v between these sets. Suppose now
the endangered sets of q are contracted, then by construction the lonely terminal
of the second-last introduced child player or a hierarchical player is joined with v.
Using the induction hypothesis and the fact that v is connected with a personal set
to the lonely terminal of q, we see that the invariant holds in Tmc. In particular,
every vertex stays connected by a path of personal sets to a terminal of p, and hence
no component without a terminal of p can evolve once all community sets of p are
removed from T ∗. For illustration see Figure 5.7(b), in which the bold lines indicate
the personal sets of the child players I-VI. This proves the induction hypothesis for
community sets of hierarchical and personal players, and Lemma 5.8 follows. □

The splitting for a leaf parent player p creates two edge sets, which upon removal
yield only components including terminals of p. If such a set is removed, all resulting
components must be reconnected to form a feasible network. Hence, these edge sets
are connection sets for p. It also ensures that in our induction we can add the
community (personal) sets of q to the sets of community (personal) sets of other
child players of p. This completes the proof of Theorem 5.6. □

The next lemma ensures that the assignment of personal and community sets for a
leaf parent player p does not depend on the splitting of the other parent players.
In an iteration of our framework we can thus assign edge costs to a parent player
p assuming an arbitrary splitting of other parent players. This ensures that the
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algorithm can find the correct personal and community sets for child players in
polynomial time.

Lemma 5.10 The endangered sets of child players of a leaf parent player p are
independent of the division of other parent players.

Proof. Again we use an inductive argument based on a single child player. Suppose
we have a child player q of parent player p, who is removed from the game. Consider
an arbitrary splitting of the other parent players into child players obeying the tree
connection requirements. The personal set of q is independent of the splitting of
the other parent players, which proves the lemma for the personal set.

Suppose q has a community Sc set needed by Q∪ {q} and a forcing set Sf needed
by Q. We denote by v the vertex that both sets connect to. Consider a different
player p ′ with a child player in Q and Q ∪ {q}. T p ′ cannot have a terminal at v

and must not include any other edges incident at v than the two edges in Sc and
Sf. Otherwise the tree connection requirements would require a different set of child
players of p ′ on Sc and Sf, which would contradict the assumption that a community
set for q is present. Now consider a different splitting of p ′, which results in different
player sets needing Sc and Sf. There must be at least one child player of p ′ needing
each of these sets, because they are both in T p ′ . However, as there is no terminal
or alternate connection at v that is in T p ′ , any child player of p ′ needing Sc also
needs Sf. Hence, Sc remains the community set for q. This argument can easily be
adjusted for more players. □

Theorem 5.7 In a TCG a (3.1 + ϵ, 1.55)-approximate NE can be computed in
polynomial time, for any constant ϵ > 0.

Proof. Procedure ApproxNash sketches and summarizes the described steps to
compute approximate NE for general TCGs. The complete algorithm again uses Al-
gorithm 4, and in line 4 it calls Procedure ApproxNash to assign some cost of T ∗ to
the parent player p. Note that for TCGs we can use the improvement steps on con-
nection sets to obtain a polynomial time algorithm using the same scaling ideas as in
Theorem 5.5. As each connection set is now a tree, we use the 1.55-approximation
algorithm [RZ05] for Steiner Tree not only to compute a starting solution, but
also to compute improvements for connection sets. This yields a stability ratio of
3.1+ ϵ. The theorem follows. □
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Procedure ApproxNash(T , c, p, κ) for computing (3.1+ϵ, 1.55)-approximate
NE for TCGs

Input: A feasible tree T , a cost function c, a selected player p, a constant κ

Output: A payment function sp or a tree T +

Pick a non-lonely terminal as troot27

Disregard all non-lonely terminals of p except for troot from her set Tp28

Generate Tadj by contracting subtrees Tmc only needed by p29

Create hierarchical players on Tadj30

Expand Tadj and create child players on each Tmc31

Run algorithm for child players of p; prefer choice of personal over32

hierarchical leaf players
Assign p to purchase connection sets assigned to her child players33

for each of the two connection sets S do34

Create cS by cS(e)← c(e) − κ for e ∈ S and cS(e)← c(e) otherwise35

Create GS by contracting all edges of T \S.36

Run 1.55-approximation algorithm on GS and cS for terminals of p37

if returned solution S ′ is cheaper than S under cS then38

return T − S+ S ′39

return sp40

5.5 Discussion

5.5.1 Tightness of the Bounds
Our Procedure ApproxNash and ADTW proposed in [ADTW03] both rely on the
concept of connection sets. In this section we will argue that with respect to connec-
tion games the analytic power of connection sets is limited. In particular, algorithms
that approach the problem of finding good approximate NE relying on connection
sets cannot achieve a significantly lower stability ratio.

The difference between our algorithm and ADTW is that the assignment proce-
dure used by ADTW does not employ the structural information of our child player
splitting. With the structure of TCGs a splitting of parent players and a hierarchical
elimination order are possible. This avoids the matching step ADTW uses to assign
edge costs to players. This is crucial for achieving a guarantee of two connection
sets.

Similar to our algorithm ADTW does not employ cost sharing of edges. The next
theorem shows that no deterministic algorithm using only T ∗ as input can improve
the guarantees even if it uses cost sharing. Thus, ADTW for general connection
games and our algorithm for TCGs yield optimal stability ratios with respect to this
class of algorithms. Our algorithm provides a better guarantee on TCGs, because
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(a) (b)

Figure 5.9: Optimal trees T ∗ for games yielding tightness of the analysis of the
algorithms. One player can have a cheap additional edge of cost 1 + ϵ connecting
her terminals. This is unknown to the algorithms and thus gives a lower bound on
the stability ratio of (a) 3−ϵ for general connection games and (b) 2−ϵ for TCGs.

ADTW can assign three connection sets to a player of a TCG with a cheap alternate
path.

Theorem 5.8 For any ϵ > 0 there is a connection game such that any deterministic
algorithm using only T ∗ as input constructs a state with stability ratio at least 3−ϵ.

Proof. Consider a game with two terminals per player and an optimal solution T ∗

of cost 3k− 3 shown in Figure 5.9(a). All edges of T ∗ have cost 1. There is at least
one player that pays a cost of 3− 3

k
. One player can have an alternative path of cost

(1 + ϵ) outside T ∗. As this path is not known to the algorithm, the best approach
is to equilibrate payments between players. It assigns each player p to pay a cost
of 3 − 3

k
for parts inside her path Tp. As k approaches infinity, the stability ratio

becomes arbitrarily close to 3. □

Theorem 5.9 For any ϵ > 0 there is a PTCG such that any deterministic algo-
rithm using only the optimum solution T ∗ as input constructs a state with stability
ratio at least 2− ϵ.

Proof. An argument similar to the proof of the previous theorem for the game in
Figure 5.9(b) shows that it is optimal to assign each player to contribute a cost of
2− 1

k
within her subtree. So as a deterministic algorithm working only with T ∗ our

algorithm delivers the optimum worst-case guarantee. □

Theorem 5.10 For any ϵ > 0 there is a PTCG for which ADTW constructs a
(3− ϵ, 1)-approximate NE.
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Proof. Consider the game in Figure 5.9(b). ADTW proceeds as follows. At first
each player is assigned to purchase her personal set. Afterwards, it picks two termi-
nals of a player and assigns the path to be purchased by players that include parts of
the path in their subtree. In particular, the terminals are assigned to purchase edges
of the path. In the following iterations the paths to the purchasing terminals are
assigned to other terminals and so on. Finally, a player is assigned to purchase all
edges that were assigned to her terminals. The distribution of edges to terminals is
done in a matching step. This is optimal for the general case, but for TCGs it might
yield an unlucky assignment. If in our example the assignment starts by picking
player 2, the matching can assign player 1 to purchase two connection sets. With
the personal set this results in three connection sets. If all edges have cost 1 and
there is an alternative path of cost arbitrarily close to 1, player 1 yields a stability
ratio of arbitrarily close to 3. □

These tightness results cannot be easily strengthened for the polynomial time vari-
ants of the algorithms, because they heavily depend on tightness results and solu-
tion properties of the underlying approximation algorithms for Steiner Tree and
Steiner Forest. It is, for instance, not known, whether the performance ratio of
the recent 1.55-approximation algorithm [RZ05] is tight.

5.5.2 Backbone Games

In this section we discuss the possibility of extending the algorithm design techniques
used in this thesis to more complicated network creation games. It is easy to observe
that the notion of connection sets is closely tied to properties of the Steiner Tree
and Steiner Forest problems [Hoe04]. The framework of our algorithms, how-
ever, can be used in other contexts. As an exposition we outline the backbone game,
an extension of the connection game to groups of terminals. A group of terminals
is simply a set of terminals, but we use the name group for easy reference. In the
backbone game each of the k players has a set of groups of terminals. The player
strives to connect at least one terminal from each of her groups into a connected net-
work. The rest of the game is similar to the connection game, i.e. each player picks
a payment function as strategy and can use bought edges for free. The backbone
game becomes the connection game for singleton groups. Thus, some important
results translate directly by restriction. The price of anarchy is k, and the price of
stability at least k− 2. It is NP-hard to decide whether a given game has a NE, and
there are games, for which any (α, 1)-approximate NE the stability ratio α ≥ 3

2
(c.f.

[ADTW03]). Finding the optimum network for a single player is the network design
problem of the Group Steiner Tree (GSTP) [RW89, GKR00].The problem of
finding a social optimum network T ∗ of the backbone game generalizes the GSTP in
terms of forest connection requirements, so we term this Group Steiner Forest
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(GSFP). There are polylogarithmic approximation algorithms for the GSTP, but we
are not aware of any such results for the GSFP. In the following we thus concentrate
on algorithms for games, in which the solution is guaranteed to be connected. The
general case represents an interesting field for future work.

In a single source backbone game (SBG) each player p has one group of gp

terminals and there is a single source vertex s. The connection requirement of player
p is satisfied, if there is a connection of bought edges from s to least one terminal
of her group. Note that the price of anarchy is still exactly k as the arguments and
the example from the beginning of Section 5.3 translate directly. It is possible to
use techniques of this and previous chapters to show that the price of stability is 1
and cheap approximate equilibria can be found in polynomial time.

Theorem 5.11 For any social optimum forest T ∗ in a SBG, there exists a NE in
which T ∗ is exactly purchased. The price of stability in the SBG is 1.

Proof. Consider T ∗ in BFS order from the source s. We use a reduction to
connection games. Construct a new graph G ′ = (V ′, E ′) by adding an artificial
vertex up for each player p. Let U = {u1, . . . , uk} and V ′ = V ∪ U. Connect up

to all terminals of player p with an artificial edge of prohibitively high cost c(E).
The single source game in G ′, in which each player strives to connect up to s, is
called the corresponding connection game (CCG). The social optimum T ∗ for the
backbone game corresponds to a social optimum tree for the CCG and vice versa, as
the degree of every up in the optimum tree is 1. Note that a cheapest deviation for
a player in both games consists of a path. Applying the algorithm ADTW-SS in the
CCG every player p gets assigned exactly one artificial edge, and every reasonable
deviation for player p in G ′ also includes only one such edge incident to up. This
yields a correspondence of deviation paths, and the calculated NE for the CCG is also
a NE for the backbone game. Furthermore, if an edge of T ∗ cannot be purchased
in the CCG, there is a possible network improvement step, as in each improved
network of the CCG all vertices up have degree 1. Hence, the improvement step of
ADTW-SS in the CCG yields a better feasible network for the backbone game. To
obtain an optimal NE it suffices to simply apply ADTW-SS in the CCG. □

Theorem 5.12 In a SBG a (1 + ϵ, O(logn log k log(maxp gp)))-approximate NE
can be computed in polynomial time, for any constant ϵ > 0.

Proof. Suppose we are given an β-approximate network T . Again, the argument
uses the scaling ideas as presented in the proofs of Theorems 4.11 and 5.5. We
reduce the cost of every edge by a cost of κ = ϵc(T )

(1+ϵ)αn
with ϵ > 0. As ADTW-SS

offers an improvement step, we can iteratively improve the network T in poly-
nomial time. This yields a (1 + ϵ, β)-approximate NE in polynomial time. We
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only point out two important observations that crucially aid the adjustment. First,
both T and possible optimal deviations include exactly one artificial edge in the
CCG. Hence, rather than constructing the CCG we consider the cheapest devia-
tion path for a player p from any of p’s terminals to s in the original game. This
avoids to include the costly artificial edges into consideration, which for instance
prevents us to translate approximation results for Steiner Tree to the GSTP.
Second, to ensure a constant 1 + ϵ and polynomial running time, for each game
a non-asymptotical upper bound on β is needed, which must be polynomial in n

and k. We cannot hope for a constant, as GSTP generalizes set cover. Using an
algorithm [BHRZ97] to solve the GSTP with β = (1 + ln k

2
)
√
k we can compare

its solution against more recent efficient methods for the GSTP with asymptotical
polylogarithmic performance guarantees [GKR00, FRT04]. In this way the solu-
tion network is an O(logn log k log(maxp gp))-approximation, but never more than
a ((1+ ln k

2
)
√
k)-approximation of T ∗. □

Interestingly the stability ratio from the connection game translates to the backbone
game – in contrast to approximation ratio. The results extend to SBGs on directed
graphs and games, in which each player p has a threshold τp on her maximum
contribution and rather stays unconnected if her assigned share exceeds τp. These
results translate from ADTW-SS and connection games. In a backbone game with
a single source group consider edges between the terminals of this group. No player
includes them into her best deviations. Furthermore, they do not appear in the
optimum forest T ∗. Hence, we can construct an equivalent SBG with a source ver-
tex by introducing and contracting edges between all terminals of the source group.
Thus, the previous results also extend to this case.



Chapter 6

Extensions

The model of investment games offers a number of interesting extensions. Of par-
ticular practical interest is the following wholesale variant, in which resource cost
increases due to the number of players that use the resource for constraint satisfac-
tion. This cost increase allows to specify the extent to which players can deviate
and use resources bought by other players for free. This is the key property that
causes a high price of anarchy in the investment game.

A strategy in a wholesale investment game is again a function sp specifying the
payments as before. For each resource r ∈ R there is a fixed cost c(r). We consider
only single unit resources. In regular investment games a resource is available to all
players for constraint satisfaction if the fixed costs are paid for. In the wholesale
game we instead assume that a resource r is available to a set of players Q if the
sum of payments by these players exceed a bundle cost c(r, |Q|). The bundle costs
are specified by c(r, i) = cap(i)c(r) using the main ingredient, the function cap.
This function captures how much capacity must be installed for a certain number
of players, or how large the resource units must be that a certain number of players
can jointly use them. Naturally, cap is assumed to be non-decreasing, hence a larger
set Q results in more capacity and cost. However, cap is assumed to be concave,
which results in an economy of scale with a wholesale aspect: the more players
strive to make r available for constraint satisfaction, the smaller is the cost increase
for an additional player. This is a standard modeling assumption in economics
(see e.g. [Man03, pp. 281f]), and it has been used by computer scientists to study
e.g. network design problems with capacity cost [AA97, And04, CHKMS06]. Again,
the foremost interest of a player is to pick sp such that the resources available to
her suffice to satisfy her constraint. If there are several strategies that would do so,
she picks the one that minimizes her total investment represented by sp. A formal
definition can be given as follows.

97
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Definition 6.1 A wholesale investment game ([k], R,S, util, c, cap, valid) is given
by

• a set [k] = {1, . . . , k} of k players, and a set of resources R,

• the state space S = S1×. . .×Sk, and for each player p ∈ [k] a set of strategies
Sp, for which a strategy is a function sp : R→ R≥0,

• the utility functions utilp defined as

utilp(sp, s−p) =

{
−|sp|, if bought(s, p) ∈ validp

−∞ otherwise

with |sp| =
∑

r∈R sp(r), and

• cap : N → R is a non-decreasing, concave function with cap(0) = 0 and
cap(1) = 1,

• c : R → R≥0 specifies for each resource r ∈ R a non-negative cost, and c :
R× N→ R yields the adjusted cost c(r, i) = cap(i)c(r),

• bought : S × [k] → 2R specifies for each state s and each player p the set of
resources available to the player

boughtr(s, p) = max
Q⊆[k]−p

⌊
sp +

∑
q∈Q sq(r)

c(r, |Q|+ 1)

⌋
for each resource r ∈ R,

and

• validp ⊆ 2R is a constraint function for player p ∈ [k].

Note that we assume that a resource is available to player p if there is any subset
of players, with which p can jointly purchase the bundle cost. For every NE and
every social optimum solution, the concavity of cap ensures that for each resource
r there is always a unique maximal set of players to which r is available. We denote
this set by Qr

For the problem of optimizing the social cost in regular investment games one
can find the optimum solution to the underlying optimization problem, i.e. a set R
of items that satisfies the constraints validp at minimum total cost. Instead, for
the wholesale game it is necessary to fix the sets of players using a resource. Hence,
in the wholesale game R = (Qr)r∈R is the vector of maximal player subsets Qr.
This specifies the set of resources available to each player and suffices to determine
feasibility and total bundle cost.
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Note that by concavity and monotonicity cap(k) ∈ [1, k] for all k ≥ 1. In the
case cap(k) = 1 for all k ≥ 1, the game becomes the original investment game, as
there is no cost increase due to the availability to more than one player. In case
cap(k) = k the game exhibits a decomposition property that allows no suboptimal
NE. For intermediate functions cap we consider the price of anarchy. Let R∗ be
the solution purchased by a social optimum state s∗, and R∗

p a the set of resources
available to p. W.l.o.g. we assume that R∗

p is minimum in the sense that no resource
can be removed without hurting feasibility of validp. We extend the cost function
c to the vector c(R) =

∑
r∈R cap(|Qr|)c(v) and note (c.f. Equation (3.1))

cost(s∗) = −

k∑
p=1

utilp(s
∗
p, s

∗
−p) =

k∑
p=1

|s∗p| = c(R∗).

The price of anarchy can be bounded as follows.

Theorem 6.1 The price of anarchy in the wholesale investment game is exactly
k/cap(k).

Proof. First, we prove the lower bound. Consider a vertex cover game with a
star network, in which every player owns a single edge and each vertex v has cost
c(v) = 1. If every player purchases the leaf node incident to her edge, a NE of cost k
evolves. The optimum solution, however, consists of the center vertex v and has cost
cap(k)c(v) = cap(k). This proves that the price of anarchy is at least k/cap(k).

For the upper bound consider any NE s. In addition, let R−
p be a minimum cost

cover for player p in case she is alone in the game. In general it could be R∗
p ̸= R−

p ,
because R∗

p can be cheaper for p due to the presence of other players. Thus,∑
r∈R−

p

c(r) ≤
∑
r∈R∗

p

c(r). (6.1)

The concavity of cap ensures that with other players purchasing parts of R−
p it

becomes even more attractive for p as deviation, because p must only purchase the
additional cost increase. As s is a NE, the cost of R−

p must therefore be an upper
bound on the contribution of p to the cost of Rp:∑

r∈Rp

sp(r) ≤
∑
r∈R−

p

c(r).

Since s is a NE, all bundle costs of the purchased resources must be fully paid for.
Using the bound from (6.1) we get

k∑
p=1

∑
r∈Rp

sp(r) ≤
k∑

p=1

∑
r∈R−

p

c(r) ≤
k∑

p=1

∑
r∈R∗

p

c(r). (6.2)
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For convenience we define function ∆cap(i) = cap(i) − cap(i − 1). Consider the
following procedure of constructing a lower bound on the cost of the social optimum
solution. Iteratively add players and the cost of their choices R∗

p to the solution. The
presence of the i-th player on her cover R∗

i adds at least a cost ∆cap(i)
∑

r∈R∗
i
c(r)

to the cost of R∗. As cap is concave, ∆cap is monotonic decreasing. Hence, we can
lower bound cost(s∗) = c(R∗) by

k∑
i=1

∆cap(i)
∑
r∈R∗

i

c(r) ≤ c(R∗). (6.3)

We now choose k orderings, in which to construct the social optimum solution,
such that each player appears in each position exactly once (e.g. by making k

cyclic rotations of the initial ordering of players). Then for each ordering the above
inequality (6.3) holds. By summing all these inequalities we get

k∑
p=1

k∑
i=1

∆cap(i)
∑
r∈R∗

p

c(r) = cap(k)

k∑
p=1

∑
r∈R∗

p

c(r) ≤ kc(R∗).

Together with (6.2) and cost(s∗) = c(R∗) this yields

cost(s) =

k∑
p=1

∑
r∈Rp

sp(r) ≤
k∑

p=1

∑
r∈R∗

p

c(r) ≤ k

cap(k)
cost(s∗),

which proves the theorem. □

The theorem implies that once cap(k) = k every NE is socially optimal. In fact,
a similar argumentation shows that in this case there is always an optimal NE. On
the other hand, we have very recently obtained the following results [Hoe07a], which
extensively use the insights of Chapter 4. The same properties are conjectured to
hold for all games considered in the previous chapters.

Theorem 6.2 For wholesale covering games the following results hold.

• The price of stability in the wholesale vertex cover game is Θ
(

k
cap(k)

)
.

• For every cap with cap(k) < k, there is a class of vertex cover games with k

players such that it is NP-hard to decide whether a game has a NE.

• An adaptation of Algorithm 1 computes (f, f)-approximate NE for any whole-
sale set cover game.
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• For singleton wholesale set multi-cover games the price of stability is 1, and
(1 + ϵ, β)-approximate NE can be obtained in polynomial time from any β-
approximate solution to the underlying optimization problem. In addition, an
exact NE can be computed in polynomial time.

The consideration of economies of scale generates a trade-off for the optimality
of NE. However, recall from the lower bound construction for the price of anarchy
that the structure of bad NE is not disrupted. Instead, the improvement results
from an increase in the optimum solution cost due to the increase in resource cost.
If cap(k) = k, a social optimum solution is a combination of personal optimum
solutions for the players. In general, the cost increase tends to align personal objec-
tives with social objectives by reducing the possibility that myopic strategy switches
(negatively) influence other players preferences.

We only considered single unit resources in this model, because the amount
offered to a resource r is used to determine availability and the player set Qr. If
the amount is used for both determination of the number of units bought and the
availability to players, then there are disambiguities, in which a larger number of
units are available to a smaller set of players and less units to a larger set of players.
It is an interesting open problem how to formulate a sensible adaptation to such a
scenario.
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Part II

Clustering Games
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Chapter 7

Formal Framework

Computing and characterizing a meaningful partition of the vertices of a graph is a
general problem, which has long been studied in graph theory and computer science.
Recently, there have been many new variants and applications in various domains
such as social networks [GD03, GN04], biological networks [PDFV05, GA05], and
the Internet [FLGC02, AA03]. In addition, there have been efforts to understand
the effects of social relationships as a game or as a parameter for economic deci-
sion making [DJ03, Now06]. In the second part of the thesis we study games for
graph clustering as a model, in which selfish agents group themselves into clusters or
communities in a given networked environment. The underlying problem of graph
clustering is to find for a simple undirected graph G a clustering C∗ maximizing
a revenue function (called clustering index). The index captures preferences and
trade-offs for evaluating the quality of a given partition and thus can be quite dif-
ferent based on the application. The optimization is sometimes subject to further
restrictions, e.g. there might be an exact requirement or an upper bound on the
number of clusters.

In our clustering games each player is considered to be a vertex in a graph
G = (V, E). So in all our games V = [k], and thus n = k. Therefore we use the
same notation for a player as for her vertex in G. She plays a strategic two player
game with every other player. We refer to these games as bilateral games. The
payoffs of the bilateral games depend on how the players are located within the
graph. The strategy a player picks is assumed to be her cluster, and thus she can
choose it only once and must stick to it in all bilateral games she plays. A state
s corresponds to a clustering C of G. We exploit that some natural and recently
popular clustering indices can be interpreted as welfare(s) for clustering games
with natural and intuitive payoffs.

All games considered in this part are potential games, hence NE represent an
intuitive equilibrium concept with guaranteed existence. The following chapters
will focus on characterizing NE. Mixed NE in these games can also be a reasonable
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concept when probabilistic clustering models are considered, in which each vertex
is allowed to partially belong to several clusters. This is an interesting direction for
future work.

Clustering games are special classes of polymatrix games. Polymatrix games
were proposed by Yanovskaya [Yan68] and are a well-studied class of games. How-
son [How72] proposed a recursive algorithm to find a mixed NE. This algorithm was
later refined and extended to more general games [Eav73, MZ91]. Characterizations
for the structure of the set of mixed NE were provided by Ouintas [Qui89]. Re-
cently, Papadimitriou showed how to compute a correlated equilibrium [Aum74] in
succinctly represented polymatrix games in polynomial time, while computing the
best correlated equilibrium with respect to sum of player utilities is NP-hard [Pap05].

Directly related to clustering games are graphical games [KLS01], a different
prominent class of strategic games associated with graphs. Similar to clustering
games, each player is represented by a vertex in a graph. However, this graph
serves to specify the influence of utility changes. In contrast to clustering games,
the utility of a player in graphical games depends only on the strategy choices
of her neighbors. While a correlated equilibrium can be computed in polynomial
time [Pap05], computing the best correlated equilibrium with respect to sum of
player utilities is NP-hard [PR05]. Elkind et al. [EGG06] showed that if the game
is based on a 3-regular graph, it can be PPAD-complete [Pap94] to find a mixed
NE, however, for paths it can be done in polynomial time. Very recently, Elkind et
al. [EGG07] provided ideas to obtain mixed NE with maximum social welfare for
certain subclasses of graphical games in polynomial time.

Graphical representation of influences in games is, in fact, a popular idea in recent
research. Some other notions and frameworks exploiting this idea are for instance
multi-agent influence diagrams [KM03], for which games with a graph specifying
utility influence can be constructed. Another concept are local-effect [LBT03] and
action graph games [BLB04], in which there is a graph with a vertex for each strategy
of each player. The edges of the graph again represent a mutual influence on utility
values. In contrast to the results in this thesis, however, none of these works connects
and applies game-theoretic ideas to graph clustering.

Definition and Initial Observations

The clustering games we consider in this part are a subclass of polymatrix games.
A polymatrix game [Yan68] can be defined as follows.



107

Definition 7.1 A polymatrix game is a strategic game ([k],S, util, Γpq), which is
given by

• a set [k] = {1, . . . , k} of k players,

• the state space S = S1×. . .×Sk, and for each player p ∈ [k] a set of strategies
Sp,

• for every set {p, q} ⊆ [k] of players a strategic game Γpq = ({p, q},Sp ×
Sq, util

pq), and

• for each player p ∈ [k] a utility function

utilp(sp, s−p) =
∑
q ̸=p

utilpqp (sp, sq).

In a polymatrix game each pair of players {p, q} plays a bilateral game Γpq. The
strategy for a player, however, is the same in all bilateral games she plays. The
utility for a strategy choice is the sum of utilities she obtains in the bilateral games.
For all games considered in this part of the thesis we use the social welfare function
welfare to measure the quality of states. Furthermore, for all games considered
in this part we use potential games with exact potentials as bilateral games. This
implies that the corresponding polymatrix games are exact potential games as the
following simple observation shows:

Consider the game Γpq and its exact potential function Φpq. W.l.o.g. we scale
the potentials Φpq such that the corresponding constants are wp = wq = 1 in all
potentials. Since the utility utilp is the sum of utilities utilpqp , the potential Φ for
the polymatrix game can be constructed as the sum of potentials for the bilateral
games,

Φ(s) =
∑
p∈[k]

∑
q∈[k],q>p

Φpq(s).

Note that the utility change for a single player equals the sum of utility changes
in her bilateral games, which are given by the respective differences of the bilateral
potentials. If a player now switches her strategy, these potentials are the only ones
that change their value and contribute exactly this difference to Φ(s). Thus, Φ(s)
correctly captures the utility change for the strategy switch of a single player.

Observation 7.1 If all games Γpq are exact potential games, then the polymatrix
game Γ is an exact potential game and has at least one NE.

As social value function we use welfare(s) =
∑

p∈[k] utilp(s). A simple condition
under which optimal NE exist in a polymatrix game is as follows. Suppose for each
game Γpq each state yields payoff values, which are equal for both players. In this
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case social welfare becomes a potential for the game. Hence, the NE are exactly
the local optima of welfare with respect to strategy changes of single players. In
particular, the state maximum welfare is a NE. We refer to this subclass of games
as welfare optimizing games.

Definition 7.2 A polymatrix game is welfare optimizing if each state of every game
Γpq yields the same payoff for both players p and q.

Note that even for the special case of symmetric (2 × 2) bilateral games, in
which the game becomes a potential game [Blu93, You98], a polymatrix game can
have bad properties. In particular, prices of anarchy and stability might not be
reasonable measures, because payoffs can have mixed signs, or unbounded as in
the case of bilateral Prisoner’s Dilemma games. For welfare optimizing games with
welfare(s∗) ≥ 0, however, the price of stability is 1, and this will be the case
for almost all clustering games considered in the following chapters. In terms of
complexity, recall the MaxCut game presented in Section 2.3. This game can be
cast as a welfare optimizing polymatrix game: set the payoffs of the bilateral game
for an edge e = {u, v} to c(e) for both u and v when they play different strategies
and 0 for both otherwise. Bilateral games for unconnected players have all payoffs
0. Using this adjustment it is obvious that in a succinctly represented polymatrix
game finding a NE is PLS-hard, and finding a NE with optimal welfare is NP-hard.



Chapter 8

Simple Clustering Games

In this chapter we consider a basic model of clustering games. A simple clustering
game is a polymatrix game, which has only two types of bilateral games: one for
connected players and one for unconnected players. Furthermore, as the graph is
undirected and vertices (i.e. players) carry no further attributes, it is natural to
assume that the bilateral games are symmetric.

Definition 8.1 A simple clustering game is a polymatrix game, in which players,
strategies and bilateral games are specified by

• an undirected graph G = (V, E) with the set of players V,

• the same set of strategies Sv for every player v ∈ V,

• two symmetric games Γ c = ({u, v},Su × Sv, util
c) and Γd = ({u, v},Su × Sv,

utild) for two players, and

• for every {u, v} ⊆ V a bilateral game Γuv = Γ c if {u, v} ∈ E, and Γuv = Γd

otherwise.

For a succinct representation it is sufficient to encode the graph G and the payoff
values for the games Γ c and Γd.

The rest of this chapter presents results on several special cases of simple clus-
tering games. In the next Section 8.1 we outline related work on the class of games
we are considering. Section 8.2 treats games based on optimizing unweighted Max-
l-Cut and MaxAgree problems. In both games finding a NE is possible in poly-
nomial time, but finding optimal NE is NP-hard. However, while in Max-l-Cut
games the price of anarchy drops with the number of possible strategies, in MaxA-
gree games it can stay Θ(

√
n) for structural reasons (Theorem 8.1). In Section 8.3

we extend MaxCut and MaxAgree games with two strategies to clustering games
with symmetric (2× 2) bilateral games. As relative performance measures like the
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price of anarchy are unbounded or not well-defined for the general class of games,
we concentrate on computational properties. In particular, such clustering games
always allow finding a NE in polynomial time (Theorem 8.2). For a subclass of
neighborhood independent games even the social optimum and the best/worst NE
can be computed in polynomial time (Theorems 8.3 and 8.4). Finally, Section 8.4
provides some interesting directions for future work.

8.1 Previous and Related Work
Our model of a simple clustering game fits into a recent stream of works that
study polymatrix games with (2 × 2) bilateral games with respect to an under-
lying graphical relationship of players. It is a generalization of a game considered
by Bramoullé [Bra07], which concentrates on the subclass of symmetric (2×2) anti-
coordination games. In these games the NE are the states in which players choose
different strategies. Furthermore, there is no game played by unconnected play-
ers, and the analysis in [Bra07] considers properties and structure of NE in some
particular classes of graphs.

While in our model the graph is fixed and specified in advance, there are several
works on polymatrix games, in which the graph is endogenous. In particular, (2×2)
anti-coordination games on endogenous graphs were studied in [BLPGVR04]. Much
more work, see for instance [Blu93, Ell93, You98, BD01], has been done for network
creation and (2 × 2) coordination games, in which the NE are the states (1,1) and
(2,2). In contrast to our model, all these games allow only connected players to
play a bilateral game. In addition, there has been no focus on social welfare and
computation of NE and optimum states. Instead, properties of the network structure
and payoff properties in NE were analyzed [BV06], or stochastically stable states
were characterized [JW02, GVR05], which are observed frequently in an infinite
random process of perturbed best response iteration.

MaxCut is a standard problem in graph theory and computer science and has
been studied for decades. The MaxCut game has been used as an introductory ex-
ample in Fabrikant et al. [FLM+03]. It was studied by Christodoulou et al. [CMS06]
in terms of convergence time to NE and social welfare of states obtained after a
polynomial number of best response steps. They also considered MaxAgree games
and studied similar aspects.

8.2 MaxCut and MaxAgree Games
Consider the following simple game in which players are actors in a conflict network,
and each one has to pick one of two teams she wants to join. Her objective is to
minimize the conflicts within her team, or equivalently, to maximize the number
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of neighbors in the opposite team. Formally, we can cast this as a simple cluster-
ing game of Definition 8.1 with the symmetric (2 × 2) bilateral games depicted in
Figure 8.1.

Γ c 1 2

1 0,0 1,1

2 1,1 0,0

(a) Connected Players

Γd 1 2

1 0,0 0,0

2 0,0 0,0

(b) Unconnected Players

Figure 8.1: Payoffs in the MaxCut game.

This game is the unweighted version of the MaxCut game we outlined in Sec-
tion 2.3 and Chapter 7. The following set of results is well-known and easy to
derive.

Lemma 8.1 For the unweighted MaxCut game we have the following:

• The game is welfare optimizing, hence the price of stability is 1, and any NE
represents a local optimum under the Flip neighborhood (c.f. Section 2.3).

• The price of anarchy is exactly 2.

• Finding an optimal NE is NP-hard.

• Every best response iteration can take at most m ≤ n(n−1)
2

steps before reaching
a NE.

Thus, an arbitrary NE can be obtained in polynomial time, but finding an optimal
one is NP-hard.

For the bound on the price of anarchy note that the value of 2 is due to the
restriction to two strategies. In fact, as each player plays a best response, she
always avoids the cluster with the larger part of her neighbors. Therefore, for each
player in NE at least half of her incident edges are counted towards welfare. In the
optimum solution, however, at most the total degree is counted towards welfare, and
thus any NE must have an approximation ratio of no worse than 2. This ratio is
tight in a game on a cycle graph with four players.

Now suppose the game is played with l ≥ 2 strategies. Connected players still
receive a payoff of 1 each when choosing different strategies. This is equivalent to
the unweighted Max-l-Cut problem in graphs. Note that all results of Lemma 8.1
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transfer to this game. For the price of anarchy, however, the following lemma pro-
vides more specific bounds.

Lemma 8.2 The price of anarchy in the Max-l-Cut game is at most 1+ 1
l−1

. This
bound is tight for l ≤ n

2
.

Proof. Note that in every NE of this game the players play the maximum number
of possible different strategies. For the upper bound consider the decision each
player faces. In a NE s she picks a strategy for which she has the least number of
neighbors playing it. Thus, each player drops at most a fraction of 1

l
of her incident

edges out of the cut. Hence, we have welfare(s) ≥ 2m
(
1− 1

l

)
= 2m(l−1)

l
. With

welfare(S∗) ≤ 2m the bound follows.
For a lower bound we consider a complete bipartite graph Kl,l. For a state s, in

which players form l clusters of two connected players each, we can verify that it
represents a NE s with welfare(s) = 2l(l−1) as there are l(l−1) edges in the cut.
Otherwise, in the optimum solution s∗ we assign l−2 arbitrary players to play strate-
gies 3, . . . , l. The remaining ones are assigned to play strategies 1 and 2 depending
on the bipartition they are located in. This state achieves welfare(s) = 2l2 = 2m.
This gives a lower bound of l2

l(l−1)
= 1+ 1

l−1
on the price of anarchy. □

With an increasing number of possible strategies the price of anarchy drops. The
upper bound is valid even if the number of players is allowed to grow simultaneously.
It is tight for complete bipartite graphs of sufficient size. For l > n

2
the price of

anarchy is likely to drop even faster than the upper bound suggests. In particular,
for l = n strategies the price of anarchy is 1.

Now consider the case, in which a player picks her strategy not only to be uncon-
nected to players with a different strategy, but also to be connected to players with
the same strategy. We call this the MaxAgree game, as the problem of maximizing
social welfare is the corresponding version of the MaxAgree problem for corre-
lation clustering [BBC04, GG06]. The payoffs for the MaxAgree game with l = 2

strategies are given in Figure 8.2, the extension to more strategies is straightforward.

For the MaxAgree game with any number of possible strategies it is easy to
observe the following results.

Lemma 8.3 For the MaxAgree game we have the following:

• The game is welfare optimizing, hence welfare is an exact potential, NE are
local optima of welfare, and the price of stability is 1.

• Finding an optimal NE is NP-hard [GG06].
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Γd 1 2

1 1,1 0,0

2 0,0 1,1

(a) Connected Players

Γ c 1 2

1 0,0 1,1

2 1,1 0,0

(b) Unconnected Players

Figure 8.2: Payoffs in the MaxAgree game.

• Every best response iteration can take at most n(n−1)
2

steps before reaching a
NE.

Obviously, for MaxAgree and Max-l-Cut games there are some identical properties.
However, the price of anarchy behaves quite differently.

Theorem 8.1 For the MaxAgree game the price of anarchy is at most min(l, n). It
is Ω(l) for l ∈ O(

√
n), and at least

√
n/2 for l ≥

√
n.

Proof. In a NE s for a game with l strategies, each player picks the one that
maximizes her utility. Each of the strategies allows her to count a certain number
of existing edges and non-existing edges towards her payoff. In any case, however,
there is always one strategy that yields a payoff of at least utilu(s) ≥ n−1

l
. Summing

this for all players we get welfare(s) ≥ 1
l
(n(n−1)). The upper bound follows with

welfare(s∗) ≤ n(n−1) and the observation that no more than n different strategies
can be played in any state.

For a lower bound with constant l we construct a graph for any x ∈ N, x ≥ l

as follows. We introduce l cliques of x vertices each. In addition, each vertex has
exactly x − 1 connections into each of the l − 1 other clusters. Hence, the graph
is l(x − 1)-regular. An example for x = l = 4 is shown in Figure 8.3. A bad NE
s can be given as follows. For each clique let all players play the same strategy,
which is different from the one of all other cliques. Then each player gets a payoff of
x− 1 from the connections within the clique and a payoff of l− 1 for the remaining
unconnected players in different cliques (see Figure 8.3(b)). If she changes to a
strategy of a different clique, her payoff is x−1 for the connections to the new clique.
But within this clique there is one player that is not a neighbor. Thus, she gets only
l − 2 for the remaining unconnected players with different strategies. This yields
x+l−3 < x+l−2, and so the state s is a NE. Note that welfare(s) = xl(x+l−2), but
the social optimum has at least welfare(s∗) ≥ xl(l(x−1)) for the state in which all
players play the same strategy. We get a price of anarchy of xl

x+l−2
. We have n = xl,
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(a) (b)

Figure 8.3: A MaxAgree game with a bad NE. (a) Optimum solution s∗; (b) a bad
NE s. welfare counts twice the displayed existing (solid) and non-existing edges
(dashed).

hence if we obey l = O(
√
n), then for growing n we get x = Ω(

√
n). In this case

the price of anarchy asymptotically approaches l for growing n.
For l ≥

√
n this construction yields a lower bound of

√
n/2 with x ∈ N cliques

of x vertices each. Then x =
√
n ≤ l, so s might not be a NE if a player can profit

by picking a totally new strategy. Her payoff for such a choice, however, would be
x − 1 < 2x − 2, hence s remains a NE. The same analysis as above delivers the
bound of

√
n/2. □

Best response iteration is equivalent to a local search algorithm in Max-l-Cut
and MaxAgree games. Therefore, it is possible to obtain near-optimal NE in poly-
nomial time. First obtain an initial state by using an approximation algorithm,
and then allow players in a best response iteration to converge to a NE. This pro-
cess can take only n(n−1)

2
iterations and can only improve the approximation ratio.

For Max-l-Cut there are approximation algorithms based on semidefinite program-
ming with performance ratio 1/

(
1− 1

l
+ 2 ln l

l2

)
[FJ97, MR99]. For MaxAgree there

is a PTAS yielding a (1 + ϵ)-approximation in polynomial time, for any constant
ϵ > 0 [BBC04, GG06]. Using these algorithms one can obtain exact NE with the
same approximation ratio in polynomial time. While for Max-l-Cut games this im-
proves only slightly over the price of anarchy, the improvement for MaxAgree games
is significant. In MaxAgree games uncoordinated dynamics can end up in NE that
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are much worse than states obtained by centralized optimization.

8.3 Clustering Games with Two Strategies
Let us consider the class of simple clustering games with symmetric (2×2) bilateral
games. We denote these games for short as 2-clustering games. The notation for
payoffs of the bilateral games is given in Figure 8.4.

Γ c 1 2

1 ac, ac dc, cc

2 cc, dc bc, bc

(a) Connected Players

Γd 1 2

1 ad, ad dd, cd

2 cd, dd bd, bd

(b) Unconnected Players

Figure 8.4: Payoffs in 2-clustering games.

In order to derive expressions for welfare and potential functions for this game,
it is possible to simplify the game by subtracting cc and cd from every entry of the
connected and unconnected edge game, respectively. This does not alter the payoff
differences for the players and preserves the incentives. In addition, the welfare of
every state reduces by exactly 2m(cc − cd) + n(n− 1)cd. Thus, w.l.o.g. we assume
cc = cd = 0.

It is well-known [Blu93, You98] that every symmetric (2×2) game is a potential
game. Assuming cc = cd = 0, the potentials Φc and Φd can be given by

Φc =

(
ac 0

0 bc − dc

)
Φd =

(
ad 0

0 bd − dd

)
. (8.1)

For a state s the set of players playing strategy 1 is denoted V1, their number
n1 = |V1|, and for a player v the number n1(v) = |N(v) ∩ V1| denotes the number
of neighbors playing 1. V2, n2 and n2(v) are defined analogously for strategy 2. We
consider the size of the cut of a state s, which is the number of edges connecting
players that play different strategies, and denote this number by m12.

8.3.1 Welfare and Potential
If dc = dd = 0, then the game becomes welfare optimizing. If a 2-clustering game
is not welfare optimizing, we can use two transformations into welfare optimizing
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games either with equivalent welfare or with equivalent potential. In particular, we
outline transformations into a game of the type in Figure. 8.5.

Γ c 1 2

1 Ac, Ac 0,0

2 0,0 Bc, Bc

(a) Connected Players

Γd 1 2

1 Ad, Ad 0,0

2 0,0 Bd, Bd

(b) Unconnected Players

Figure 8.5: Payoffs in transformed welfare optimizing games.

For welfare it does not matter how the payoff of a bilateral game is distributed
among the participating players. Hence, we can as well assume dc in Γ c is given in
equal parts to both players when they play different strategies. Then, using previous
arguments we can reduce every entry in the game by dc

2
. This removes mdc from

the welfare of every state, but leaves the welfare differences of states unaltered. The
same argument holds for Γd and dd. With

Ac = ac −
dc

2
Bc = bc −

dc

2
Ad = ad −

dd

2
Bd = bd −

dd

2

we get a welfare optimizing game Γw of the form of Figure 8.5 with an equivalent
welfare function. This game is not equivalent in terms of incentives, as we change
the payoff differences for a player in the states. Thus, it might have different NE.

Now consider the potentials in Equation (8.1). If we use

Ac = ac Bc = bc − dc Ad = ad Bd = bd − dd

the new welfare optimizing game exhibits the same potential for bilateral games, and
hence the same potential as the original game. We get a welfare optimizing game
Γp of the form of Figure 8.5 with the same potential function. This game is not
equivalent in terms of social welfare, as we subtract different payoffs from different
states. Thus, it might have a different state s∗ of optimal welfare.

The appealing property in welfare optimizing games is that they allow to concen-
trate on one function describing both welfare and potential. Although by restriction
to MaxCut games finding the best/worst NE for 2-clustering games is NP-hard, in
some special cases it can be done in polynomial time. Let us analyze the underlying
characteristic function of the welfare optimizing game of Figure 8.5 more closely.
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We denote Sc = Ac + Bc, Sd = Ad + Bd and D = Ac − Ad. Potential and welfare
functions of the welfare optimizing game in Figure 8.5 are

Φ(s) = welfare(s)

=
∑
v∈V1

n1(v)Ac + (n1 − n1(v) − 1)Ad +
∑
v∈V2

n2(v)Bc + (n2 − n2(v) − 1)Bd

= n(n− 1)Bd + n2
1S

d − (2(n− 1)Bd + Sd)n1 +m12(Sd − Sc) +
∑
v∈V1

deg(v)D

+
∑
v∈V2

deg(v)(Bc − Bd)

= n(n− 1)Bd + n2
1S

d − (2(n− 1)Bd + Sd)n1 + 2m(Bc − Bd) + (Sd − Sc)m12

+
∑
v∈V1

deg(v)(D − Bc + Bd)

= n(n− 1)Bd + 2m(Bc − Bd) + n2
1S

d − (2(n− 1)Bd + Sd)n1 + (Sd − Sc)m12

+(Sd − Sc + 2D)
∑
v∈V1

deg(v)

It is possible to drop the constant terms n(n− 1)Bd + 2m(Bc − Bd) from every state
and derive a characteristic function Ψ(s) given by

Ψ(s) = n2
1S

d − (2(n− 1)Bd + Sd)n1 + (Sd − Sc)m12 + (Sd − Sc + 2D)
∑
v∈V1

deg(v).

It captures both potential and welfare in welfare optimizing games. Hence, potential
and welfare depend - in addition to the payoffs - only on three parameters of the
game: the number n1 of players playing strategy 1, their degrees

∑
v∈V1

deg(v)
and the cut size m12. Observe that the choice of payoffs for the MaxCut game in
Figure 8.1 actually singles out the parameter m12 in Ψ(s).

For each game that is not welfare optimizing, the results can be used to derive
Ψw(s) and Ψp(s) characterizing welfare and potential. The functions result from
plugging in the payoffs of the welfare optimizing games Γw and Γp into the parameters
Ac, Bc, Ad and Bd as described above. In both cases Sc = ac + bc − dc and Sd =
ad + bd − dd. However, whereas Dp = ac − ad, the value Dw = Dp + dd−dc

2
. This

yields an equivalent potential function Φ ≡ Ψp and an equivalent welfare function
welfare ≡ Ψw with

Ψp(s) = n2
1S

d − ((n− 1)(2bd − 2dd) + Sd)n1 + (Sd − Sc)m12

+(Sd − Sc + 2Dp)
∑
v∈V1

deg(v)

Ψw(s) = Ψp(s) + (n− 1)n1dd + (dd − dc)
∑
v∈V1

deg(v).
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Now that we have a more insightful expression for potential and welfare at hand,
the main result of this section is easy to see.

Theorem 8.2 Finding a NE in a 2-clustering game can be done by best response
iteration from an arbitrary starting state in O(nm2) iterations.

Proof. Consider the potential Φ. The value of n1 can range from 0 to n, which
constitutes the factor n in our guarantee. Note that m12 and

∑
v∈V1

deg(v) can take
at most O(m) different values each. Hence, the total number of possible combina-
tions for these parameters yields a total of O(nm2) different values for Φ. As a best
response iteration must strictly increase Φ in each step, every such iteration takes
O(nm2) steps to reach a local optimum. This proves the theorem. □

We define function ∆util
v , which captures the incentive of a single player v to pick

strategy 1 instead of 2 given the profile s−v. In our formula the value n1,−v denotes
the number of players other than v playing strategy 1.

∆util
v (s−v) = utilv(1, s−v) − utilv(2, s−v)

=
1

2
(Φ(1, s−v) −Φ(2, s−v))

= Sdn1,−v − (n− 1)(bd − dd) +
1

2
(Sd − Sc)(n2(v) − n1(v))

+
1

2
(Sd − Sc + 2Dp) deg(v).

8.3.2 Neighborhood independency
By restriction to the MaxCut game it is NP-hard to obtain a NE optimizing welfare

in 2-clustering games. In this section we show that the cut m12 is the key param-
eter that causes hardness of this problem. In particular, we consider neighborhood
independent games defined as follows.

Definition 8.2 A 2-clustering game is called neighborhood independent if Sc = Sd.

Note that the definition does not postulate any requirements on the type of the
involved games, i.e. the payoff structure of Γ c and Γd can still be of any kind - e.g. as
in (anti-)coordination games and/or Prisoner’s Dilemma games. To provide a more
intuitive understanding of the restriction consider the values ∆util

v (s−v), which are
now given as

∆util
v (s−v) = Sdn1,−v − (n− 1)(bd − dd) + Dp deg(v).

The incentive to prefer strategy 1 for a player v depends only on deg(v) and the
number n1,−v of other players playing 1. It is independent of the property, whether
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these players are direct neighbors of v or not. Hence, the strategy choices of players
are independent of the neighborhood. Potential and welfare are cut independent
and amount to

Φ(s) = Sdn2
1 − ((n− 1)(2bd − 2dd) + Sd)n1 + 2Dp

∑
v∈V1

deg(v)

Ψw(s) = Φ(s) + (n− 1)n1dd + (dd − dc)
∑
v∈V1

deg(v).

With this formulation we can argue that states of maximum welfare can be obtained
in polynomial time.

Theorem 8.3 States of maximum and minimum welfare in neighborhood indepen-
dent games can be computed in O(n logn) time.

Proof. If 2Dp + dd − dc = 0, then the game Γp has the same bilateral games for
existing and non-existing edges. Hence, in this game G can be assumed to be a
complete or empty graph, in which the desired fraction of players playing 1 can be
derived directly. As the welfare function Ψw depends only on n1, either all players
playing a single strategy is optimal, or we can use the derivative of Ψw to fractionally
optimize and round n1 directly to the optimal value n∗

1. Assigning any set of n∗
1

players to 1 yields a state of maximum welfare. Finding the state of minimum
welfare can be done similarly.

If 2Dp + dd − dc < 0, then for any given number n1 of players playing 1 the
maximum welfare is obtained with

∑
v∈V1

deg(v) being minimal. Thus, to get a
state of maximum welfare, we can simply start with sv = 2 for all v ∈ V and then
iteratively switch players to 1 in non-decreasing order of their degrees. The state of
maximum welfare encountered in this procedure is a social optimum. For the state of
minimum welfare we can use the same procedure to switch players in non-increasing
order of degrees. Ordering the players is the most time-consuming operation and
yields the stated bound on the running time. If 2Dp + dd − dc > 0, then all previous
observations hold with inverted orderings. □

Note that for each game there are states of maximum and minimum welfare that
exhibit a degree separation property (DSP).

Definition 8.3 A state s of a 2-clustering game has the degree separation property
(DSP) if it exhibits a threshold y such that either

• deg(v) ≤ y if sv = 1 and deg(v) ≥ y otherwise, or

• deg(v) ≥ y if sv = 1 and deg(v) ≤ y otherwise.

Potential and welfare functions have the same structure, so the proof of Theorem 8.3
can be applied to show similar results for states of maximum and minimum potential.



120 CHAPTER 8. SIMPLE CLUSTERING GAMES

Corollary 8.1 There are states of maximum/minimum potential/welfare in neigh-
borhood independent games that have the DSP and can be computed in O(n logn)
time.

This provides a characterization and a procedure to find states with optimal welfare
or potential. The case for best and worst NE, however, is slightly more complicated,
as in this case the welfare must be optimized over the local optima of the potential.
The following lemma proves useful in later observations. It provides an interesting
insight about the existence and potential values of NE with the DSP.

Lemma 8.4 Suppose there is a NE s in a neighborhood independent game with a
number of n1 players playing 1. Then there is a NE s ′ with n1 players playing 1,
which has the DSP and Φ(s ′) ≥ Φ(s).

Proof. For the proof we consider two cases. In the first case Dp ≥ 0. Suppose s does
not have the DSP. We consider the player u ∈ V2 of largest degree and exchange
her strategy choice with a player v ∈ V1 of smaller degree. This is shown to yield
a new NE s ′ with Φ(s ′) ≥ Φ(s). Therefore, iteratively a NE with the DSP and a
larger potential value than s can be constructed. In particular, consider the a player
u ∈ V2 in s of largest degree. s does not have the DSP, so there is at least one
player v ∈ V1 with deg(v) < deg(u). s is a NE and u plays 2, which means her
incentive to switch to 1 is ∆util

u (s−u) ≤ 0. All players w ∈ V2 have deg(w) ≤ deg(u)
and Dp ≥ 0. This yields ∆util

w (s−u) ≤ ∆util
u (s−u) ≤ 0. To create s ′, we exchange

the strategy choices of players u and v. Observe in the definition of function ∆util
w

that if holding n1,−w fixed, we do not alter the strategy preferences of any of the
players w ∈ V − {u, v}. In s ′ player u is assigned to play 1 along with all players
of higher degree. Player v ∈ V ′

2, who is assigned to play 2 in s ′, has lower degree.
With n ′

1,−v = n1,−u we know that ∆util
v (s ′−v) ≤ ∆util

u (s−u) ≤ 0. Therefore, in s ′ player
v sticks to 2. The case is similar for player v ∈ V1 in s. She plays 1 in s, so the
incentive to prefer 1 to 2 is ∆util

v (s−v) ≥ 0. Player u ∈ V2 has larger degree, and
as n ′

1,−u = n1,−v, we know that ∆util
u (s ′−u) ≥ ∆util

v (s−v) ≥ 0. Hence, in s ′ player u

sticks to 1. This proves that s ′ is a NE. The switch of u and v keeps n1 fixed, but
it increases

∑
v∈V1

deg(v). This yields Φ(s ′) ≥ Φ(s).
In the second case Dp < 0. It is possible to repeat the proof of the previous case

with inverted orderings. In particular, pick player u ∈ V2 to be of smallest, and
player v ∈ V1 of larger degree. Then the inverted degree ordering cancels out the
negativity of Dp and yields an identical argumentation. This proves the lemma. □

The following theorem shows that finding optimal NE in neighborhood independent
games can also be done in polynomial time.

Theorem 8.4 A NE of maximum or minimum welfare in neighborhood independent
games can be computed in O(n2) time.
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Proof. We consider two cases for the proof. For minimum welfare it is possible to
apply the same arguments by exchanging cases and adjusting degree orderings. For
convenience, we will adjust ∆util

v to be a function taking as argument the number
n1,−v of other players playing strategy 1.

In the first case (2Dp + dd − dc)Dp ≥ 0. If
∑

v∈V1
deg(v) increases, then potential

and welfare both increase or both decrease. Thus, for a fixed number n1 of players
with sv = 1 the state with maximum potential also maximizes the welfare. Using
Lemma 8.4 this is a state with the DSP, and this proves the theorem for this case.

In the second case (2Dp + dd − dc)Dp < 0. If
∑

v∈V1
deg(v) increases, then the

potential increases and the welfare decreases, or vice versa. For a fixed number n1 of
players with sv = 1 a state minimizing the potential maximizes the welfare. Instead
of assigning strategy 1 to players with more favorable degrees as in the proof of
Lemma 8.4, we must now assign strategy 1 to players with more unfavorable degrees.
However, the potential must remain in a local maximum.

We fix an integer x ∈ [0, n] and try to construct the best NE with a fixed number
of n1 = x players for strategy 1. For a player v consider the value ∆util

v (x − 1) for
any state which satisfies n1,−v = x − 1 and the value ∆util

v (x) for any state with
n1,−v = x. Clearly, for any NE with n1 = x all players v playing strategy 1 must
have ∆util

v (x−1) ≥ 0. In turn, every player v that satisfies this property is a candidate
to play 1 in a NE with n1 = x. Accordingly, every player with ∆util

v (x) ≤ 0 is a
candidate to play 2. If a player v has ∆util

v (x − 1) > 0 and ∆util
v (x) > 0, she must

play 1 in any NE with n1 = x. We will say she is a required candidate for strategy
1. Similarly, if both values are strictly less than 0, she is a required candidate
for strategy 2. Note that each player is either a candidate for both strategies, a
required candidate for one strategy, or no candidate at all. Thus, if one of the
following conditions occurs, there can be no NE with n1 = x:

• A player is no candidate at all.

• There are strictly less than x candidates for strategy 1.

• There are strictly more than x required candidates for strategy 1.

Otherwise, there is at least one NE with n1 = x. For the one with the best
welfare we fix all required candidates to the corresponding strategies. If Dp ≥ 0, the
incentive to switch to 1 increases with increasing degree. In this case the required
candidates for 1 are the players with highest degree (if any). If their number is
smaller than x, we pick for the remaining players for strategy 1 the candidates for
both strategies with smallest degree. This yields the NE with n1 = x and largest
welfare, because in this case the welfare decreases with the sum of degrees. Similarly,
if Dp < 0, the required candidates for strategy 1 are the players of smallest degree.
Here we choose for the remaining players the candidates for both strategies with
highest degree. This shows that with an ordered representation of players we can



122 CHAPTER 8. SIMPLE CLUSTERING GAMES

obtain in linear time the best NE for a fixed number x of players playing strategy
1. The bound on the running time follows, and the theorem is proven. □

8.4 Open problems
In this chapter we have introduced the class of simple clustering games. We have
scratched the surface by studying several interesting special cases, but naturally a
lot of open problems remain. It would be interesting to adjust upper and lower
bounds on the price of anarchy for MaxAgree games to provide a tight characteriza-
tion of the efficiency of NE in this game. Another interesting question is whether the
favorable properties observed for neighborhood independent games can be extended
to a more general class of games. Finally, there are many other clustering indices
for graphs (e.g. MinDisAgree [GG06]), which can form a natural basis for dis-
tributed clustering and affiliation decisions. They can be formulated and explored
in a competitive environment within our framework.



Chapter 9

Modularity Games

In this chapter we consider welfare optimizing polymatrix games based on a clus-
tering index called modularity [GN04], which is defined as follows. For a graph
G = (V, E) the modularity q(C) of a clustering C is given by

q(C) =
∑
C∈C

[
|E(C)|

m
−

(
|E(C)|+

∑
C ′∈C |E(C,C ′)|

2m

)2
]

, (9.1)

in which E(C,C ′) denotes the set of edges between vertices in clusters C and C ′,
and E(C) = E(C,C). Note that C ′ ranges over all clusters, so that edges in E(C) are
counted twice in the squared expression. This is to adjust proportions, since edges
in E(C,C ′), C ̸= C ′, are counted twice as well, once for each order of the arguments.
Rewriting Equation (9.1) into the more convenient form

q(C) =
∑
C∈C

[
|E(C)|

m
−

(∑
v∈C deg(v)
2m

)2
]

(9.2)

reveals an inherent trade-off: to maximize the first term, many edges should be con-
tained in clusters, whereas minimization of the second term is achieved by splitting
the graph into many clusters of small total degrees. The first term is also known as
edge coverage [Gae05]. To translate modularity optimization into our framework, we
employ a second formulation that depends on the edges included into the clustering.
In particular, we can assign a value of

c(u, v) =


1

2m
−

deg(u) deg(v)
4m2

, if {u, v} ∈ E

−
deg(u) deg(v)

4m2
, if {u, v} ̸∈ E

123
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to each edge possible in G. The modularity is then given by summing over the
values of all existing and non-existing edges covered by the clusters:

q(C) =
∑
C∈C

∑
u,v,∈C

c(u, v). (9.3)

Modularity games are defined as follows. Each two player game Γuv is a game with
n strategies. The payoff for a pair (u, v) of players playing different strategies is
both 0. If they play the same strategy, the payoff is c(u, v) for both of them.

Definition 9.1 A modularity game is a polymatrix game, in which players, strate-
gies, and bilateral games are specified by

• a simple undirected graph G = (V, E) with the set of players V,

• the same set of n strategies Sv for every player v ∈ V, and

• for every {u, v} ⊆ V a bilateral game Γuv = ({u, v},Su × Sv, util
uv) with

utiluvu (su, sv) = utiluvv (su, sv) =

{
c(u, v) if su = sv

0 otherwise.

For a succinct representation it is sufficient to encode only the graph G. Modularity
games are clearly welfare optimizing, and so the price of stability is 1. Note that
welfare(s) of a state s does not completely correspond to the modularity value of the
induced clustering. In Equation (9.3) we must additionally count one non-existing
self-loop for each player v, i.e. the formula includes the value for a non-existing edge
{u, u} for each u ∈ V . Hence, for a state s and the corresponding clustering C we
have

welfare(s) = q(C) +
∑
v∈V

1

deg(v)2
.

It is possible to adjust welfare to equal q(C) by subtracting (n−1)−1 deg(v)−2 from
every utility value for every player v in every of the n − 1 bilateral games she is
playing. This adjustment affects only the price of anarchy. All other properties of
the game studied here remain the same. In particular, the new game has the same
NE and the same optimal NE. Thus, for simplicity we stick to the above outlined
unadjusted version of the game.

The rest of this chapter is organized as follows. In the following Section 9.1 we
overview directly related previous work on the modularity clustering index. Sec-
tion 9.2 contains results on the cost and complexity of NE of modularity games.
The price of anarchy can be as large as Ω(n) (Theorem 9.1). While finding a NE
can be done in polynomial time by best response iteration (Corollary 9.1), find-
ing optimal NE and social optimum clusterings is NP-hard (Corollary 9.2). This
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result is a consequence from the NP-hardness of optimizing the modularity index
(Theorem 9.4). Section 9.3 adjusts all results for the case in which the game allows
only two strategies (Theorem 9.5 - Corollary 9.3). Finally, Section 9.4 outlines open
problems that arise from the results of this chapter.

9.1 Previous and Related Work
The graph clustering problem has been studied by mathematicians and computer
scientists since the early 1970s [KL70]. Recently, there is a growing interest in the
complex systems literature due to applications in physics and biology. In this con-
text modularity was proposed as a new clustering index [GN04]. It immediately
prompted a number of follow-up studies concerning different applications and pos-
sible adjustments of the measure (see, e.g. [FB07, ZMW05, MRC05, FPP06]). Also,
a wide range of algorithmic approaches has been considered, for example based on a
greedy agglomeration [New04, CMN04], spectral division [New05, WS05], simulated
annealing [GSPA04, RB06] and extremal optimization [DA05]. None of these algo-
rithms, however, produces optimal partitions, as our results show that modularity
optimization is NP-hard. This has been speculated before [New05], but no formal
arguments or proofs were provided.

Optimizing modularity is connected to the equipartition problem for graphs. In
this problem vertices are weighted, and the goal is to partition the graph into con-
nected subgraphs such that the weights are distributed as equal as possible [Sim99].
In particular, the problem of optimizing modularity with a fixed number of clus-
ters for trees can be cast as tree equipartition with degrees as vertex weights and
partition differences penalized by the l2-norm [Sch01].

The modularity index is similar to clustering indices recently proposed under
the name correlation clustering [BBC04, GG06], cluster editing [SST04], or per-
formance [Gae05]. These indices and modularity both count the number of edges
covered by the clusters. While correlation clustering indices count non-existing edges
between clusters, modularity relies on a term based on degree sums instead. In par-
ticular, the problem of optimizing these indices is equal to the problem of optimizing
modularity in n

2
-regular graphs.

9.2 Cost and Complexity of Nash Equilibria
The modularity game is welfare optimizing, so the price of stability is 1. The price
of anarchy, however, is significantly higher.

Theorem 9.1 The price of anarchy in the modularity game is at least n
2
− 1.
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(a) (b)

Figure 9.1: A modularity game with a bad NE. (a) Optimum solution s∗; (b) a bad
NE s.

Proof. Consider the graph in Figure 9.2. It consists of two cliques of size n
2
, which

are connected by a matching of size n
2
. The graph is n

2
-regular, and has m = n2

4

edges. The graph is regular, so each existing edge covered by the clustering has a
value 1

n2 − n2

n4 = 1
n2 to the players. Each covered non-existing edge has value − 1

n2 .
It is easy to see that a state s∗ with two strategies, one played by each clique (see
Figure 9.1(a)), obtains a welfare value of

welfare(s) = n(
n

2
− 1)

1

n2
=

1

2
−

1

n
.

The value approaches 1
2

as n grows large. Now consider the state s with n
2

strategies,
each one played by the vertices of exactly one matching edge (see Figure 9.1(b)).
We first show that this state is a NE. Each player has a utility of 1

n2 . Consider a
player v that changes her strategy. She can either join a different cluster or create a
new cluster by herself. If she joins a different cluster, she loses one edge and gains
exactly one new edge, as each cluster contains exactly one player from the same
clique as v. In addition, however, she must also include a non-existing edge to the
second vertex present in the cluster, which results in a utility of 0. If she instead
creates a new cluster by herself, she loses one edge and gets a utility of 0. Hence,
no strategy switch increases her utility, so s is a NE. It has

welfare(s) = n
1

n2
=

1

n
,
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which yields the desired result and proves the theorem. □

The next lemma bounds the range of possible modularity values for any clustering
of a graph.

Lemma 9.1 For any clustering C of any graph G the modularity value

−
1

2
≤ q(C) < 1.

Proof. The definition of modularity directly implies an upper bound of 1. A
modularity value of exactly 1 requires total edge coverage. However, if an edge is
covered, there is also a reduction by the quadratic term of the cluster it is located
in. Therefore, a modularity value of 1 can never be achieved and the inequality is
strict. Nevertheless, the bound is tight. For a sufficiently large graph with single
edge components the value of the obvious component-wise clustering gets arbitrarily
close to 1.

For the lower bound consider the contribution of a single cluster C to q(C).
We denote by mC = |E(C)| and m−

C =
∑

C ′∈C,C ′ ̸=C |E(C,C ′)|. This yields as the
contribution

mC

m
−

(
mC

m
+

m−
C

2m

)2

Note that this expression is strictly decreasing in m−
C. In addition, when varying

mC there is only a maximum point at mC =
m−m−

C
2

. Hence, the contribution of a
cluster is minimized when mC = 0 and m−

C as large as possible. To minimize the
modularity value it is thus necessary to pick clusters such that all edges run between
them. Then

q(C) = −
1

4m2

∑
C∈C

|{(u, v) ∈ E | u ∈ C, v ̸∈ C}|2.

As (x+ y)2 ≥ x2 + y2 for all non-negative numbers x and y, this sum is minimized
when edges are aggregated as much as possible. In the worst case there are exactly
two clusters, and all edges run between them. Then q(C) = − 1

2
, and the lemma is

proven. □

Observe that finding an arbitrary NE can be done in polynomial time by best
response iteration from any starting solution. The potential (and welfare) function
of our game can only take as many values as there are for expressing modularity
of a clustering. Lemma 9.1 shows that each clustering C has − 1

2
≤ q(C) < 1. As

4m2 ·q(C) is an integer, there are at most 6m2 modularity values. This restricts the
values for our potential functions and yields the following direct corollary.
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Corollary 9.1 Finding a NE in a modularity game can be done by best response
iteration from an arbitrary starting state in at most 6m2 iterations.

When we try to obtain the best NE, or equivalently s∗, the problem gets more
complicated. In particular, we show that the problem of finding the clustering of
maximum modularity in a graph is NP-hard. This naturally extends to finding the
best NE and the social optimum in our game, as the adjustment of q(C) to welfare

has no effects on the optimality of states. To tackle the proof, we start with a formal
definition of the decision problem underlying modularity maximization.

Problem 9.2 (Modularity) Given a graph G and a number K, is there a clus-
tering C of G, for which q(C) ≥ K?

Note that we may ignore the fact that, in principle, K could be a real number in the
range [0, 1], because 4m2 ·q(C) is integer for every partition C of G and polynomially
bounded in the size of G.

The hardness result for Modularity is based on a transformation from the
following decision problem.

Problem 9.3 (3-Partition) Given a set A = {a1, . . . , a3x} or 3x numbers such
that the sum

∑3x

i=1 ai = xb and b/4 < ai < b/2 for an integer b and for any
ai ∈ A, is there a partition of these numbers into x sets, such that the numbers in
each set sum up to b?

We show that an instance A = {a1, . . . , a3x} of 3-Partition can be transformed
into an instance (G(A), K(A)) of Modularity, such that G(A) has a clustering
with modularity at least K(A), if and only if a1, . . . , a3x can be partitioned into x

sets of sum b each.
It is crucial that 3-Partition is strongly NP-complete [GJ79], i.e. it remains NP-

complete if the input is represented in unary coding. This implies that no algorithm
can decide the problem in time polynomial even in the sum of the input values,
unless P = NP. More importantly, it implies that our transformation need only be
pseudo-polynomial.

The reduction is constructed as follows. From an instance A of 3-Partition,
construct a graph G(A) with x cliques H1, . . . , Hx of size a =

∑3x

i=1 ai each. For each
element ai ∈ A we introduce a single element vertex, and connect it to ai vertices in
each of the x cliques in such a way that each clique member is connected to exactly
one element vertex. It is easy to see that each clique vertex then has degree a, and
the element vertex corresponding to element ai ∈ A has degree xai. The number of
edges in G(A) is m = x

2
a(a + 1). See Figure 9.2 for an example. The size of G(A)

is polynomial in the unary coding size of A, so that our transformation is indeed
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Figure 9.2: An example graph G(A) for the instance A = {2, 2, 2, 2, 3, 3} of 3-
Partition. The resulting graph has k = 2 cliques H1 and H2. Vertex labels
indicate the corresponding numbers ai ∈ A.

pseudo-polynomial. Before specifying bound K(A) for the instance of Modulari-
ty, we show three properties of maximum modularity clusterings of G(A). Together
these properties establish the desired characterization of solutions for 3-Partition
by solutions for Modularity.

Lemma 9.2 In a maximum modularity clustering of G(A) none of the cliques
H1, . . . , Hx is split.

Proof. We consider a clustering C that splits a clique H ∈ {H1, . . . , Hx} into different
clusters and then show how to obtain a clustering with strictly higher modularity.
Suppose that C1, . . . ,Cg ∈ C, g > 1, are the clusters that contain vertices of H. For
i = 1, . . . , g we denote by

• ni the number of vertices of H contained in cluster Ci,

• mi = |E(Ci)| the number edges between vertices in Ci,

• fi the number of edges between vertices of H in Ci and element vertices in Ci,

• di be the sum of degrees of all vertices in Ci.
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The contribution of C1, . . . ,Cg to q(C) is

1

m

g∑
i=1

mi −
1

4m2

g∑
i=1

d2
i .

Now suppose we create a clustering C ′ by rearranging the vertices in C1, . . . ,Cg into
clusters C ′,C ′

1, . . . ,C ′
g, such that C ′ contains exactly the vertices of clique H, and

each C ′
i, 1 ≤ i ≤ g, the remaining elements of Ci (if any). In this new clustering the

number of covered edges reduces by
∑g

i=1 fi, because all vertices from H are removed
from the clusters C ′

i. The edges connecting the clique vertices to other non-clique
vertices of Ci are now inter-cluster edges. For H itself there are

∑g

i=1

∑g

j=i+1 ninj

edges that are now additionally covered due to the creation of cluster C ′. In terms
of degrees the new cluster C ′ contains a vertices of degree a. The sums for the
remaining clusters C ′

i are reduced by the degrees of the clique vertices, as these
vertices are now in C ′. So the contribution of these clusters to q(C ′) is given by

1

m

g∑
i=1

(
mi +

g∑
j=i+1

ninj − fi

)
−

1

4m2

(
a4 +

g∑
i=1

(di − nia)
2

)
.

We define ∆ = 4m2(q(C ′) − q(C)) and find

∆ = 4m

(
g∑

i=1

g∑
j=i+1

ninj − fi

)
+

((
g∑

i=1

2dinia− n2
ia

2

)
− a4

)

=

(
4m

g∑
i=1

g∑
j=i+1

ninj − 4m

g∑
i=1

fi +

(
g∑

i=1

ni

(
2dia− nia

2
))

− a4

)

Using the equalities 2
∑g

i=1

∑g

j=i+1 ninj =
∑g

i=1

∑
j̸=i ninj and m = x

2
a(a+ 1), and

rearranging terms we get

∆ = −a4 − 2x(a2 + a)

g∑
i=1

fi + a

g∑
i=1

ni

(
2di − nia+ x(a+ 1)

∑
j ̸=i

nj

)

≥ −a4 − 2x(a2 + a)

g∑
i=1

fi + a

g∑
i=1

ni

(
nia+ 2xfi + x(a+ 1)

g∑
j ̸=i

nj

)
.

For the inequality we use the fact that di ≥ nia + xfi, which holds because Ci

contains at least the ni vertices of degree a from the clique H. In addition, it
contains both the clique and element vertices for each edge counted in fi. For each
such edge there are k − 1 other edges connecting the element vertex to the k − 1

other cliques. Hence, we get a contribution of xfi in the degrees of the element
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vertices. We combine the terms ni and one of the terms
∑

j ̸=i nj, use the fact that∑g

j=1 nj = a, and calculate

∆ ≥ −2x(a2 + a)

g∑
i=1

fi + a

g∑
i=1

ni

(
2xfi + ((x− 1)a+ x)

g∑
j̸=i

nj

)

= a

g∑
i=1

(
2xfi(ni − a− 1)) + ((x− 1)a+ x)

g∑
j=1,j ̸=i

ninj

)

≥ a

g∑
i=1

(
2xni(ni − a− 1) + ((x− 1)a+ x)

g∑
j=1,j ̸=i

ninj

)
.

For the last step note that ni ≤ a − 1 and ni − a − 1 < 0 for all i = 1, . . . , g. So
increasing fi decreases the modularity difference. For each vertex of H there is at
most one edge to a vertex not in H, and thus fi ≤ ni. By rearranging and using the
fact that a ≥ 3x we get

∆ ≥ a

g∑
i=1

ni

(
2x(ni − a− 1) + ((x− 1)a+ x)

g∑
j=1,j ̸=i

nj

)

≥ a((x− 1)a− 3x)

g∑
i=1

g∑
j=1,j ̸=i

ninj

≥ 3x2(3x− 6)

g∑
i=1

g∑
j=1,j ̸=i

ninj > 0,

as we can assume x > 2 for all relevant instances of 3-Partition. This shows that
any clustering can be improved by merging each clique completely into a cluster.
This proves the lemma. □

Next, we observe that the optimum clustering places at most one clique com-
pletely into a single cluster.

Lemma 9.3 In a maximum modularity clustering of G(A) every cluster contains
at most one of the cliques H1, . . . , Hx.

Proof. Consider a maximum modularity clustering. The previous lemma shows
that each of the x cliques H1, . . . , Hx is entirely contained in one cluster. Assume
that there is a cluster C which contains at least two of the cliques. If C does not
contain any element vertices, then the cliques form disconnected components in the
cluster. In this case it is easy to see that the clustering can be improved by splitting
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C into distinct clusters, one for each clique. In this way we keep the number of edges
within clusters the same, however, we reduce the squared degree sums of clusters.

Otherwise, we assume C contains y > 1 cliques completely and in addition some
element vertices of elements aj with j ∈ J ⊆ {1, . . . , x}. Note that inside the y cliques
y

2
a(a− 1) edges are covered. In addition, for every element vertex corresponding to

an element aj there are yaj edges included. The degree sum of the cluster is given
by the ya clique vertices of degree a and some number of element vertices of degree
xaj. The contribution of C to q(C) is thus given by

1

m

(
y

2
a(a− 1) + y

∑
j∈J

aj

)
−

1

4m2

(
ya2 + x

∑
j∈J

aj

)2

.

Now suppose we create C ′ by splitting C into C ′
1 and C ′

2 such that C ′
1 completely

contains a single clique H. This leaves the number of edges covered within the cliques
the same, however, all edges from H to the included element vertices eventually drop
out. The degree sum of C ′

1 is exactly a2, and so the contribution of C ′
1 and C ′

2 to
q(C ′) is given by

1

m

(
y

2
a(a− 1) + (y− 1)

∑
j∈J

aj

)
−

1

4m2

((y− 1)a2 + x
∑
j∈J

aj

)2

+ a4

 .

Considering the difference ∆ = 4m2(q(C ′) − q(C)) we note that

∆ = −4m
∑
j∈J

aj +

(
(2y− 1)a4 + 2xa2

∑
j∈J

aj − a4

)
= 2(y− 1)a4 + 2xa2

∑
j∈J

aj − 4m
∑
j∈J

aj

= 2(y− 1)a4 − 2xa
∑
j∈J

aj

≥ 18x3(9x− 1) > 0,

as x > 0 for all instances of 3-Partition.
Since the clustering is improved in each case, it is not optimal. This is a contra-

diction. □

The previous two lemmas show that any clustering can be strictly improved to
a clustering that contains x clique clusters, such that each one completely contains
one of the cliques H1, . . . , Hx (possibly plus some additional element vertices). In
particular, this must hold for the optimum clustering as well.
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Now that we know how the cliques are clustered we turn to the element vertices.
As they are not directly connected, it is never optimal to create a cluster consisting
only of element vertices. Splitting such a cluster into singleton clusters, one for each
element vertex, reduces the squared degree sums but keeps the edge coverage at the
same value. Hence, such a split yields a clustering with strictly higher modularity.
The next lemma shows that we can further strictly improve the modularity of a
clustering with a singleton cluster of an element vertex by joining it with one of the
clique clusters.

Lemma 9.4 In a maximum modularity clustering of G(A) there is no cluster com-
posed of element vertices only.

Proof. Consider a clustering C of maximum modularity and suppose that there is
an element vertex vi corresponding to the element ai, which is not part of any clique
cluster. As argued above, we can improve such a clustering by creating a singleton
cluster C = {vi}. Suppose Cmin is a clique cluster for which the sum of degrees is
minimal. We know that Cmin contains all vertices from a clique H and probably
some other element vertices for elements aj with j ∈ J for some index set J. The
cluster Cmin covers all a(a−1)

2
edges within H and

∑
j∈J aj edges to element vertices.

The degree sum is a2 for clique vertices and x
∑

j∈J aj for element vertices. As C
is a singleton cluster, it covers no edges, and the degree sum is xai. This yields a
contribution of C and Cmin to q(C) of

1

m

(
a(a− 1)

2
+
∑
j∈J

aj

)
−

1

4m2

(a2 + x
∑
j∈J

aj

)2

+ x2a2
i

 .

Again, we create a different clustering C ′ by joining C and Cmin to a new cluster C ′.
This increases the edge coverage by ai. The new cluster C ′ has the sum of degrees
of both previous clusters. The contribution of C ′ to q(C ′) is given by

1

m

(
a(a− 1)

2
+ ai +

∑
j∈J

aj

)
−

1

4m2

(
a2 + xai + x

∑
j∈J

aj

)2

,

so that the difference ∆ = 4m2(q(C ′) − q(C)) is given by

∆ = 4mai −

(
2xa2ai + 2x2ai

∑
j∈J

aj

)

=

(
2xa(a+ 1)ai − 2xa2ai − 2x2ai

∑
j∈J

aj

)

= ai

(
2xa− 2x2

∑
j∈J

aj

)
.



134 CHAPTER 9. MODULARITY GAMES

At this point recall that Cmin is the clique cluster with the minimum degree sum.
For this cluster the elements corresponding to included element vertices can never
sum to more than 1

x
a. In particular, as vi is not part of any clique cluster, the

elements of vertices in Cmin can never sum to more than 1
x
(a− ai). Thus,∑

j∈J

aj ≤
1

x
(a− ai) <

1

x
a,

and so ∆ > 0. This contradicts the assumption that C is optimal. □

We have shown that for the graphs G(A) the clustering of maximum modularity
consists of exactly x clique clusters, and each element vertex belongs to exactly one
of the clique clusters. Finally, we are ready to state the main result.

Theorem 9.4 Modularity is strongly NP-complete.

Proof. For a given clustering C of G(A) we can check in polynomial time whether
q(C) ≥ K(A), so clearly the decision problem Modularity ∈ NP.

For NP-completeness we transform an instance A = {a1, . . . , a3x} of 3-Partition
into an instance (G(A), K(A)) of Modularity. We have already outlined the
construction of the graph G(A) above. For the correct parameter K(A) we consider
a clustering in G(A) with the properties derived in the previous lemmas, i.e. a
clustering with exactly x clique clusters. Any such clustering yields exactly (x−1)a
inter-cluster edges, so the edge coverage is given by∑

C∈C∗

|E(C)|

m
=

m− (x− 1)a

m
= 1−

2(x− 1)a

xa(a+ 1)
= 1−

2x− 2

x(a+ 1)
.

Hence, the clustering C = (C1, . . . ,Cx) with maximum modularity must minimize

deg(C1)
2 + deg(C2)

2 + . . .+ deg(Cx)
2 .

This requires to equilibrate the element vertices according to their degree as good
as possible between the clusters. In the optimum case we can assign each cluster
element vertices corresponding to elements that sum to b = 1

x
a. In this case the

sum of degrees of element vertices in each clique cluster is equal to a. This yields
deg(Ci) = a2 + a for each clique cluster Ci, i = 1, . . . , x, and gives

deg(C1)
2 + . . .+ deg(Cx)

2 ≥ x(a2 + a)2 = xa2(a+ 1)2 .

Equality holds only in the case, in which an assignment of b to each cluster is
possible. Hence, if there is a clustering C with q(C) of at least

K(A) = 1−
2x− 2

x(a+ 1)
−

xa2(a+ 1)2

x2a2(a+ 1)2
=

(x− 1)(a− 1)

x(a+ 1)
,
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then we know that this clustering must split the element vertices perfectly to the x

clique clusters. As each element vertex is contained in exactly one cluster, this yields
a solution to the instance of 3-Partition. With this choice of K(A) the instance
(G(A), K(A)) of Modularity is satisfiable only if the instance A of 3-Partition
is satisfiable.

Otherwise, suppose the instance for 3-Partition is satisfiable. Then there is a
partition into x sets such that the sum over each set is a

x
. If we cluster the corre-

sponding graph by joining the element vertices of each set with a different clique,
we get a clustering of modularity K(A). This shows that the instance (G(A), K(A))
of Modularity is satisfiable if the instance A of 3-Partition is satisfiable. This
completes the reduction and proves the theorem. □

As noted before the hardness of finding the social optimum and the best NE in the
modularity game follows.

Corollary 9.2 Finding the social optimum and the best NE for a modularity game
is NP-hard.

9.3 Modularity Games with Two Strategies
This section treats the special case of the modularity game, in which the strategy
choice of each player is restricted to two strategies. We denote these games as 2-
modularity games and note that some results transfer directly from the previous
section.

Theorem 9.5 For the 2-modularity game we have the following:

• The price of stability is 1.

• The price of anarchy is at least n
2
− 1.

• Every best response iteration can take at most 6m2 steps before reaching a NE.

In particular, the lower bound for the price of anarchy can be obtained similarly
as in the general case of Theorem 9.1. We simply join the clusters in the NE s

described in the proof until two clusters of equal size are formed. It is straightforward
to verify that this state is also a NE and has the same social welfare as s.

Finding optimal NE and the social optimum s∗ is also NP-hard for 2-modularity
games, but for the proof a different reduction is needed. Our proof is given for the
problem of finding the clustering with maximum modularity that splits the graph
into at most two clusters. It also works for the problem, in which the graph is to be
split into exactly two clusters. The underlying decision problem is given as follows.
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Problem 9.6 (2-Modularity) Given a graph G and a number K, is there a clus-
tering C of G into at most two clusters, for which q(C) ≥ K?

The following reduction is similar to the one given recently for showing hard-
ness of the MinDisAgree problem of correlation clustering with exactly two clus-
ters [GG06]. The problem used for the reduction is Minimum Bisection in Cubic
Graphs (MB3).

Problem 9.7 (Minimum Bisection in Cubic Graphs) Given a 3-regular graph
G with n vertices and an integer Kcut, is there a clustering into two clusters of n/2
vertices each such that it cuts at most Kcut edges?

This problem is strongly NP-complete [BCLS87]. An instance (G̃(G), K(G)) of 2-
Modularity is constructed from an instance of MB3 by creating a graph G̃(G)
and a number K(G) as follows. First, set G̃(G) = G. Then for each vertex v ∈ V

add n−1 new vertices to the graph and construct a clique. We denote these cliques
as H(v) and refer to them as vertex clique for v ∈ V . Hence, in total n different new
cliques are constructed, and after this transformation each vertex from the original
graph has degree n + 2 in G̃(G). Note that a cubic graph with n vertices has
exactly 3n/2 edges. Hence, after the adjustment there are exactly ñ = n2 vertices
and m̃ = n

2
(n(n− 1) + 3) edges in G̃(G) (see Figure 9.3). In addition, we set

K(G) =
1

2
−

Kcut

m̃
.

In the following we show that the optimum clustering C∗ of G̃(G) has exactly
two clusters, and they induce a minimum bisection partition of G from the MB3
instance. In particular, K(G) is such that G has a bisection cut of size at most Kcut

if and only if G̃(G) has a 2-clustering of modularity at least K.
We begin by showing that there is always a clustering C with q(C) > 0, and so C∗

must have exactly two clusters. This serves to show that the hardness result holds
for two versions of 2-Modularity, in which at most or exactly two clusters must
be found.

Lemma 9.5 The maximum modularity 2-clustering of G̃(G) has two clusters.

Proof. It is straightforward to verify that a clustering with a single cluster yields
modularity of 0. Consider the following clustering C = {C1,C2}. We pick the vertices
of H(v) for some v ∈ V as C1 and the remaining graph as C2. Then

q({C1,C2}) = 1−
3

m̃
−

(n(n− 1) + 3)2 + ((n− 1)(n(n− 1) + 3))2

4m̃2

=
2n− 2

n2
−

3

m̃
> 0,
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Figure 9.3: A graph G̃(G) constructed from G = K3,3 of an instance of MB3.
Grey parts are added to the graph by the reduction. A minimum bisection and a
maximum modularity 2-clustering are indicated by upper and lower layers. Note
that a minimum bisection of K3,3 is not the inherent bipartition.

as n ≥ 4 for every cubic graph. As q(C∗) ≥ q(C) > 0 and the lemma follows. □

Next, we show that for the constructed graph the optimum clustering splits none of
the vertex cliques H(v).

Lemma 9.6 In a maximum modularity 2-clustering of G̃(G) each vertex clique is
contained completely in one of the clusters.

Proof. For contradiction we assume a vertex clique H(v) for some v ∈ V is split
between the two clusters. There are clusters C1 and C2, in which n1 and n − n1

vertices from the clique are located, for some 1 ≤ n1 ≤ n − 1. We denote the sum
of vertex degrees in both clusters excluding vertices from H(v) by d1 and d2:

di =
∑

u∈Ci,u ̸∈H(v)

deg(u).

Denote by m̃+ the number of edges covered by the clusters C1 and C2. W.l.o.g. we
assume that d1 ≥ d2.

In the following we consider two cases. In both cases we construct a new clus-
tering C ′ by adding all vertices from H(v) to C2.

Case 1: In this case v ∈ C2. Then

q(C) = m̃+

m̃
−

(d1 + n1(n− 1))2 + (d2 + (n− n1)(n− 1) + 3)2

4m̃2
,
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and for the adjusted clustering

q(C ′) =
m̃+ + n1(n− n1)

m̃
−

d2
1 + (d2 + n(n− 1) + 3)2

4m̃2
.

Considering the difference ∆ = 4m̃2(q(C ′) − q(C)) we find

∆ = 4m̃n1(n− n1) − d2
1 + (d2 + n(n− 1) + 3)2

+(d1 + n1(n− 1))2 + (d2 + (n− n1)(n− 1) + 3)2

= 4m̃n1(n− n1) + (2n2
1 − 2nn1)(n− 1)2 − 6n1(n− 1)

+2(d1 − d2)n1(n− 1)

≥ 4m̃n1(n− n1) − 2n1(n− n1)(n− 1)2 − 6n1(n− 1),

as we assume d1 ≥ d2. With n− 1 ≥ n1 ≥ 1 this yields

n1(n− n1)(4m̃− 2(n− 1)2) − 6n1(n− 1)

≥ n1(n− n1)(4m̃− 2(n− 1)2 − 6(n− 1)).

It remains to show

4m̃− 2(n− 1)2 − 6(n− 1) = 2(n3 − 2n2 + 2n+ 2) > 0.

This holds with n3 > 2n2 for all n ≥ 4. Therefore, the modularity value
strictly improves if we add all vertices from H(v) to C2. This proves the
lemma for Case 1.

Case 2: In this case v ∈ C1. Then

q(C) = m̃+

m̃
−

(d1 + n1(n− 1) + 3)2 + (d2 + (n− n1)(n− 1))2

4m̃2
,

and for the adjusted clustering

q(C ′) =
m̃+ + n1(n− n1)

m̃
−

d2
1 + (d2 + n(n− 1) + 3)2

4m̃2
.

Considering the difference ∆ = 4m̃2(q(C ′) − q(C)) we find

∆ = 4m̃n1(n− n1) − d2
1 + (d2 + n(n− 1) + 3)2

+(d1 + n1(n− 1) + 3)2 + (d2 + (n− n1)(n− 1))2

= 4m̃n1(n− n1) + (2n2
1 − 2nn1)(n− 1)2 − 6(n− n1)(n− 1)

+2(d1 − d2)(n1(n− 1) + 3)

≥ 4m̃n1(n− n1) − 2n1(n− n1)(n− 1)2 − 6(n− n1)(n− 1).
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Recall 1 ≤ n1 ≤ n− 1, and thus it suffices to show

4m̃n1 − 2n1(n− 1)2 − 6(n− 1)

= 2n(n(n− 1) + 3)n1 − 2n1(n− 1)2 − 6(n− 1)

= 2n1(n
2(n− 1) − (n− 1)2) + 6nn1 − 6(n− 1) > 0.

It holds for all n1 ≥ 1 and n ≥ 4. This proves the lemma for Case 2. □

The previous lemma implies that each cluster C ∈ C∗ consists of a number of com-
plete vertex cliques. The next lemma shows that in the optimum case each cluster
contains exactly n/2 of them.

Lemma 9.7 In a maximum modularity 2-clustering of G̃(G) each cluster contains
n/2 complete vertex cliques.

Proof. Suppose for contradiction that one cluster C1 has y1 < n/2 cliques. m̃+

denotes the number of edges covered by the clusters. For the modularity

q(C) = m̃+

m̃
−

y2
1(n(n− 1) + 3)2 + (n− y1)

2(n(n− 1) + 3)2

4m̃2
.

Now create C ′ by transferring a complete vertex clique from C2 to C1. Since G is 3-
regular and the clique is transfered completely, at most 3 edges are lost in coverage.
For the modularity

q(C ′) ≥ m̃+ − 3

m̃
−

(y1 + 1)2(n(n− 1) + 3)2 + (n− y1 − 1)2(n(n− 1) + 3)2

4m̃2
.

Considering the difference ∆ = 4m̃2(q(C ′) − q(C)) we find

∆ ≥ −12m̃+ (y2
1 + (n− y1)

2 − (y1 + 1)2 − (n− y1 − 1)2)(n(n− 1) + 3)2

= −12m̃+ (2n− 4y1 − 2)(n(n− 1) + 3)2

≥ −12m̃+
8(m̃)2

n2

= 4m̃2

(
2

n2
−

6

n3 − n2 + 3n

)
> 0

for all n ≥ 4. The analysis uses the fact that we can assume n to be an even number,
so y1 ≤ n

2
− 1 and 4y1 ≤ 2n− 4.

Thus, every clustering can be improved by balancing the number of complete
vertex cliques in the clusters - independent of the loss in edge coverage. This proves
the lemma. □

We are now ready to state the main result.
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Theorem 9.8 2-Modularity is strongly NP-complete.

Proof. Each cluster in C∗ contains exactly n/2 complete vertex cliques. Hence, the
sum of degrees in the clusters is exactly m̃. If the optimum clustering has modularity
at least

q(C∗) ≥ m̃− Kcut

m̃
−

2m̃2

4m̃2
=

1

2
−

Kcut

m̃
= K(G),

then the number of edges between the clusters in C∗ can be at most Kcut. As all
vertex cliques are contained completely in the clusters, the clustering directly yields
a bisection for G with cut size at most Kcut. Hence, if the modularity instance is
satisfiable with K(G), then the instance for MB3 is satisfiable with cut size Kcut. On
the other hand, if the instance of MB3 is satisfiable and the graph G has a bisection
with cut size less than Kcut, this directly yields a clustering of modularity at least
K(G). This proves the theorem. □

An interesting feature of the proof is that finding the social optimum is hard due to
the hardness of minimizing squared degree sums, but in the case of two strategies
due to the hardness of minimizing the edge cut. With the hardness of 2-Modula-
rity we have also established the hardness of finding the social optimum and the
best NE in 2-modularity games.

Corollary 9.3 Finding the social optimum and the best NE for a 2-modularity game
is NP-hard.

9.4 Open problems
In this chapter we have considered the popular clustering index modularity as a
game. The open question about the complexity status of modularity maximization
was settled by showing NP-hardness. In addition, the restricted version with a bound
of two on the number of strategies was shown to be NP-hard. An open problem is to
present a matching upper bound on the price of anarchy for a tight characterization
of the performance of NE in the game. Another interesting open problem is to obtain
approximation algorithms for modularity maximization with provable performance
ratios. Lemma 9.1 displays that modularity is a mixed sign measure and includes 0 as
possible outcome. In [BDG+07a] we used this property to argue with the instance
of Figure 9.2 that a frequently applied greedy agglomeration algorithm achieves
no finite performance ratio. A more promising approach is to adjust techniques
developed for correlation clustering. Also, a reformulation of the measure to take
only positive values could result in more meaningful relative performance ratios.



Chapter 10

Conclusion

In this thesis we have presented and analyzed two frameworks to study selfish be-
havior and incentives in combinatorial optimization problems. Investment games
serve to model a cost sharing scenario, in which players have strategies that specify
investments. The price of anarchy can be as large as k in all games we have consid-
ered. Furthermore, for all classes the price of stability is also close to k and some
games do not have NE. From the perspective of a mechanism, who is interested in
obtaining stability and can propose and/or influence player strategies, this suggests
that the design of the game as a means of cost sharing has quite undesirable proper-
ties. Players might not be able to agree upon a solution, and even if they agree, the
set of resources bought might be much more expensive than an optimal set. In some
special subclasses of games, e.g. for singleton and integral set cover games, singleton
UFL and integral complete CRFL games, path TCGs, and single-source backbone
games optimal NE always exist. Only for integral games, however, an efficient algo-
rithm for computing such a cheap NE has been obtained. In most other subclasses
the problem of computing exact NE remains unsolved. Hence, even if a mechanism
has some means to influence the strategy choices of the agents, it remains unknown
how to efficiently obtain a (good) NE. If we do not restrict to these subclasses of
games, a mechanism is not even able to decide efficiently whether a game has a NE,
because the problem is NP-hard in all the considered general classes of games.

On the other hand, to obtain best-response strategies players must - in most
cases - optimize NP-hard problems. For a realistic picture we cannot assume that
players will always find best responses. Instead, they must employ heuristics to find
a reasonably good strategy. This means that in many cases players might not even
be able to recognize that a better strategy exists. Thus, it is more reasonable to
consider approximate NE and stability ratios in combination with approximation
algorithms. A variety of games in this thesis allow cheap and stable approximate
NE. In particular, set cover games have (f , f )-approximate, vertex cover games (2, 1)-
approximate, UFL games (3, 3)-approximate, and TCGs (2, 1)-approximate NE. For
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set cover and UFL games it is possible to employ primal-dual approximation algo-
rithms to get stable approximate NE in polynomial time. For the singleton classes of
games it is possible to combine state-of-the-art approximation algorithms, a general
scaling technique, and a local search routine to efficiently derive approximate NE
that are almost stable. For TCGs the same idea can be employed to find approxi-
mate NE in polynomial time. Hence, if players have bounded computational powers,
or a bounded ability or willingness to discriminate, the proposed cost sharing en-
vironment has quite favorable properties. It allows a mechanism to simultaneously
and efficiently induce near-optimality and near-stability.

Clustering games serve to model affiliation and grouping decisions, in which
players can be modeled as vertices of a graph. They are special classes of polymatrix
games and allow to specify general payoffs for the players. Relative performance
measures, like the price of anarchy, are not necessarily meaningful in this context.
We have considered the price of anarchy only for sufficiently specialized subclasses of
clustering games like Max-l-Cut, MaxAgree, and modularity games. In these games
it can behave quite differently, i.e. 1 + 1

l−1
for Max-l-Cut games, Ω(min(l,

√
n))

in MaxAgree games, and Ω(n) in modularity games. Max-l-Cut and MaxAgree
games have somewhat similar payoffs. For the standard optimization problems,
however, there is a PTAS for MaxAgree [BBC04, GG06], and Max-l-Cut is
APX-complete [KKLP97]. In light of these properties, it might be a bit surprising
that the price of anarchy for MaxAgree games can be a factor of Ω(

√
n) larger than

for Max-l-Cut games.
All clustering games analyzed in this thesis are potential games, so NE are guar-

anteed to exist. Finding a NE is equivalent to finding a local optimum for the
potential function. In all games studied in detail here the number of possible val-
ues for the potential is bounded by a polynomial in the size of the representation.
Therefore, finding an arbitrary NE can be done with a local search algorithm using
a polynomial number of best response steps from any starting solution. For neigh-
borhood independent games even the NE of maximum and minimum welfare have a
simple characterization and can be obtained in polynomial time. In all other games,
i.e. Max-l-Cut, MaxAgree, and modularity games, it is NP-hard to obtain optimal
NE. In the case of modularity games this confirms a recent conjecture about the
complexity status of the underlying combinatorial optimization problem.

Table 10.1 presents an overview of the main results derived in this work. Column
“NE” indicates results on the decision problem of NE existence. The next column
“find NE/find best NE” shows whether the problem of finding a (best) NE is in P or is
NP-hard. Note that if deciding NE existence is NP-hard, then trivially finding a NE
can only be harder. The column “[PoA, PoS]” displays the range of the worst-case
cost of NE, i.e. it shows the worst-case bounds on the prices of anarchy and stability
we have found for the games. With a few exceptions (e.g. for the price of anarchy in
MaxAgree and the modularity games) all these bounds are tight. Finally, column
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“approximate NE” depicts the results on approximate NE that can be computed in
polynomial time.

There are still some empty cells in this table, and they pose immediate open
problems for further research. We have indicated throughout the chapters how some
of these problems pose technical challenges to the tools and methods used here. For
the investment game, characterizing the properties of the wholesale variant is an
interesting direction with a practical motivation. Studying the properties of mixed
NE seems a fundamental problem more of technical interest. In general, the complex
nature of the Internet requires to advance the study of theoretical models to include
crucial aspects of realistic scenarios. Hence, cost sharing in more complex network
design and resource installation games should be analyzed.

Clustering games are a simple and straightforward model that allow to consider
clustering indices relying on local accumulation of edge weights in the context of
competitive selfish agents. We have provided first results concerning some well-
known and recently popular measures. In general, however, the incentives of decision
making for actors embedded in a network are still poorly understood. Our work has
shed some light on the complexity of finding stable states in these games. As a
next step, it is important to characterize equilibria and, in particular, characterize
the influence of single players or player groups on equilibrium outcomes. These are
important aspects that allow to obtain a deeper understanding of the properties and
the dynamics of decision making by selfish agents in networked environments.
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[ADTW03] E. Anshelevich, A. Dasgupta, É. Tardos, and T. Wexler. Near-optimal
network design with selfish agents. In Proc 35th Symp Theory of
Computing (STOC’03), pages 511–520, 2003. 3, 5, 25, 49, 54, 56, 62,
65, 66, 68, 70, 72, 74, 75, 77, 82, 84, 92, 94, 144

[AEED+06] S. Albers, S. Eilts, E. Even-Dar, Y. Mansour, and L. Roditty. On
Nash equilibria for a network creation game. In Proc 17th Symp
Discrete Algorithms (SODA’06), pages 89–98, 2006. 69

[AH02] R. Aumann and S. Hart, editors. Handbook of Game Theory with
Economic Applications, volume 1–3. Elsevier/North-Holland Science
Publishers, 1992–2002. 7, 159

[AKP+02] A. Akella, R. Karp, C. Papadimitriou, S. Seshan, and S. Shenker. Self-
ish behavior and stability of the internet: A game-theoretic analysis of
the TCP. In Proc SIGCOMM 2002 Conf Applications, Technologies,
Architectures, and Protocols for Computer Communication, 2002. 3

145



[AKR95] A. Agrawal, P. Klein, and R. Ravi. When trees collide: An approx-
imation algorithm for the generalized Steiner problem on networks.
SIAM J Comp, 24(3):445–456, 1995. 63, 65

[AMS06] N. Alon, D. Moshkovitz, and D. Safra. Algorithmic construction of
sets with k-restrictions. ACM Transactions on Algorithms, 2(2):153–
177, 2006. 42

[And04] M. Andrews. Hardness of buy-at-bulk network design. In Proc 45th
Symp Foundations of Computer Science (FOCS’04), pages 115–124,
2004. 97
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[PT03] M. Pál and É. Tardos. Group strategyproof mechanisms via primal-
dual algorithms. In Proc 44th Symp Foundations of Computer Science
(FOCS’03), pages 584–593, 2003. 58, 59, 62

[Qui89] L. Quintas. A note on polymatrix games. Intl J Game Theory,
18(3):261–272, 1989. 106

[RB06] J. Reichardt and S. Bornholdt. Statistical Mechanics of Community
Detection. Physical Review E, 74(016110), 2006. 125
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[SV07] A. Skopalik and B. Vöcking. Inapproximability of congestion games.
Submitted, 2007. 50

[SvdN01] M. Slikker and A. van den Nouweland. Social and Economic Networks
in Cooperative Game Theory. Kluwer Academic Publishers, 2001. 4
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personal, 86

PLS-complete, 20, 20
PLS-hard, 20
polymatrix game, 106
potential, 11, 115

exact, 11, 107
function, 11, 115
game, 11, 19, 105, 107

PPAD-complete, 3
price of anarchy, 3, 15, 33, 55, 70, 99,

112, 113, 125
price of stability, 3, 16, 35, 46–53, 55–

57, 60–76, 79, 95, 100, 108
Prisoner’s Dilemma, 11
problem, 14, 18, 25, 27

solution, 14
profile, 8
PTAS, 45, 50, 114
PTCG, see connection game, path tree

reduction, 19, 36, 128, 136
representation, 3, 14, 17, 17, 19, 21
resource, 10, 26
resource allocation, 26

SBG, see backbone game, single source
service installation, 25
Set Cover, 39
set cover game, 39

integral, 46
singleton, 46, 48

Set Multi-Cover, 50
set multi-cover game, 50
Shapley value, 26
shortest path, 69
sink, 47

social
cost, 13, 27
network, 2, 4, 105
optimum, 13, 27, 105
welfare, 13, 107

solution, 14, 18
source, 47, 54, 95
SSG, see connection game, single source
stability ratio, see Nash equilibrium,

approximate
star, 33, 36
state, 8
Steiner Forest, 65
Steiner Tree, 65
stochastically stable, 110
strategy, 8, 26, 105

dominant, 9
mixed, 12
profile, 8
pure, 12

strategyproof, see truthful
subgraph, 22

induced, 22

TCG, see connection game, tree
terminal, 53, 65

group, 94
lonely, 67

topology, 1
tree, 22
tree connection requirements, 66
triangle inequality, 53, 70

UFL game, 54
integral, 57
metric, 54
representation of, 54
singleton, 56

Uncapacitated Facility Location,
53

unique games conjecture, 42
utility, 8, 27, 32
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vertex, 22
vertex clique, 136
Vertex Cover, 14
vertex cover game, 29, 47, 55

planar, 29, 34, 45
representation of, 30
unweighted, 29
weighted, 29
wholesale, 99

voluntary participation, 51, 96

welfare, see social, welfare
welfare optimizing, 108
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