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STOCHASTIC PROBING WITH INCREASING PRECISION

MARTIN HOEFER*, KEVIN SCHEWIORT, AND DANIEL SCHMAND?

Abstract. We consider a selection problem with stochastic probing. There is a set of items
whose values are drawn from independent distributions. The distributions are known in advance.
Each item can be tested repeatedly. Each test reduces the uncertainty about the realization of its
value. We study a testing model, where the first test reveals if the realized value is smaller or larger
than the c-quantile of the underlying distribution of some constant ¢ € (0,1). Subsequent tests allow
to further narrow down the interval in which the realization is located. There is a limited number
of possible tests, and our goal is to design near-optimal testing strategies that allow to maximize
the expected value of the chosen item. We study both identical and non-identical distributions and
develop polynomial-time algorithms with constant approximation factors in both scenarios.
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1. Introduction. In recent years, there has been a surge of interest in learning
problems with probing. There is a set of n items, and each item has an independent
distribution over its value. The goal of the learner is to select an item with a value
as large as possible. In the standard model, the learner can probe a bounded number
of k items. Upon probing an item, the learner sees its realized value.

A variety of applications are captured by this approach and its extensions. For
example, in a hiring process, an “item” is a candidate. The application material
implies a stochastic belief over the quality of each candidate. Probing corresponds
to an interview of a candidate, and the capacity of the interviewer is limited to k
interviews. The probing problem corresponds to the selection of candidates to be
interviewed to optimize the value of the candidate that is hired eventually. Additional
applications arise, for example, in online dating or kidney exchange. The problem
is to probe pairs of agents for compatibility and eventually match the population
to maximize some objective function, e.g., the number of compatible pairs or the
overall quality of matches. Probing has further applications in domains like influence
maximization or Bayesian mechanism design [4,19].

Computing an optimal probing decision is a non-trivial task as each of the subse-
quent probing decisions may depend on the outcomes of previous probes. A standard
technique to design optimal probing strategies is a dynamic-programming approach,
which often turns out to be intractable. Beyond this, one commonly resorts to finding
polynomial-time approximation algorithms (e.g., [6,8,10,12,27]).

In the vast majority of approaches studied in theoretical computer science and
applied mathematics, probing reveals the exact realization of the underlying random
variable; probing an item completely eradicates the uncertainty. In contrast, many
applications give rise to probing problems in which we only obtain some limited in-
formation about the item. Consider for example an interviewer in a hiring process.
Instead of interpreting an interview as a single probe that reveals all information, it
is usually the case that the interviewer can ask questions or request information that
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will partially reveal the qualifications of the respective candidate. More realistically, a
question or exercise in an interview can be seen as a probe, but only by asking multi-
ple questions of varying levels of difficulty the interviewer can eventually estimate the
exact qualification of each candidate. As another example, consider a Bayesian single-
item auction with posted prices. By setting a posted price, the auctioneer learns if
the bidders have a value above or below that price, but that does not directly reveal
the valuation of each bidder. Only repeated probing with different prices can reveal
the exact value of each bidder.

In this paper, we introduce selection problems with repeated testing. In the begin-
ning, nature makes a single independent draw for each item to determine the realized
value. We can test an item, but the exact realized value stays unknown and each
test only reveals limited information about the realized value. Subsequent testing can
be used to obtain more and more fine-grained information about the same realized
value. There are many ways to express this condition formally, i.e., how exactly the
result of a test changes the conditional distribution of the item. In our model, we
take a simple and intuitive approach: The first test reveals if the realized value of an
item is above or below the c-quantile of the distribution for some constant ¢ € (0, 1).
Each subsequent test reveals if the realized value of the item is in the c-quantile of
the conditional distribution, where the condition is the binary feedback of previous
tests.

EXAMPLE 1.1. Suppose we can perform k = 3 tests on n = 2 items and ¢ = 1/2.
Initially, the realized values of the items are drawn i.i.d. from the uniform distribution
over the set {10, 20, 30, 40}.

W.l.o.g. we first test item 1. The result of the test is either positive (realization
above the median) or negative (below the median). Suppose it is positive, then we
know that the realized value of item 1 is either 30 or 40, both with probability 1/2.
Next, we test item 2. If the result for item 2 is negative, then the realized value of item
2 must be either 10 or 20, both with probability 1/2. Hence, the optimum must be
item 1. Instead, assume the result of the test for item 2 is positive, then the realized
value of item 2 is either 30 or 40, both with probability 1/2. We apply the third test
again to item 1. If the result is positive, it is clear that the realization of item 1 is
40, and item 1 is an optimum. Otherwise, the realization is 30, and then item 2 is an
optimum.

Interestingly, by repeating the analysis for the case when the result of the first
test on item 1 is negative, we see that we can always identify the item with the best
realization. Note that we cannot achieve this with k < 2 tests. ||

Before we discuss our results, let us formally introduce the model.

1.1. Testing. We are given a set N = {1,...,n} of items and a test capacity
k € N. The value v; of each item 7 € N is non-negative, drawn independently from
a known distribution D; over R, and unknown upfront. A testing algorithm can
perform up to k tests. Each test is performed on one of the items. In contrast
to most of the related literature, we assume that a test does not reveal the exact
realization of the item’s value. Instead, each test results in an improved estimation
of the realization.

For simplicity, let us first assume a continuous distribution. Let D, (q) be the
smallest value such that Pr [vi < D;l(q)] = q. We call Di_l(q) the g-quantile of
D;. We assume that the first test shows whether the value is above or strictly below
the c-quantile of the distribution for some constant ¢ € (0,1). That test is called
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positive if v; > D;'(c), and negative otherwise. Given this result, the conditional
distribution of the item can then be tested for the new c-quantile in the same manner.
In terms of the original distribution, if the first test was positive, the next test reveals
if v; > D (c+ (1 —¢)) or v; € [Dy(e), D; (c+ ¢(1 — ¢))); if the first test was
negative, the next test reveals if v; € [D; ' (c?), D; *(c)) or v; < D;*(c?). For the sake
of exposition, we will usually first restrict attention to ¢ = 1/2 (i.e., median tests)
and then outline how to generalize our algorithms and analysis to general constants
ce (0,1).

In this way, repeated testing leads to an improved estimation of the realized value
— each subsequent test informs the algorithm whether the value is above (positive
test result) or strictly below (negative test result) the c-quantile of the conditional
distribution, where the condition is on the outcomes of all previous tests on that item.
The algorithm can perform k tests in total. It can choose the next item to be tested
adaptively. In the end, it selects one item. The goal is to maximize the value of the
selected item.

To aid the discussion of computational complexity, distributions are discrete and
given in explicit representation. For applying the tests for such distributions, we
assume that ties are broken consistently, e.g., by initially drawing a random number
x; € [0,1] for each item i, extending D; to a continuous distribution over tuples
(vi, x;), and using a lexicographic comparison for tuples (v;, z;).

We provide algorithms that are polynomial-time in the input, where the input is
given by the n discrete distributions in explicit representation and k. An algorithm
can perform k tests on the items. Each test is executed via an oracle call that takes
constant time.

1.2. Testing versus Probing. Our goal in this paper is to identify provably
good testing algorithms. More fundamentally, our main interest is to relate the testing
model to the standard probing model, where each of the k probes completely reveals
the realization. How much value is lost due to the restriction that we only have
access to repeated quantile-tests on the conditional distributions instead of immediate
revelation of values? What is the cost of testing instead of revealing? Arguably, it is
not obvious that this cost is small, for several reasons.

1. In standard probing, one can rather easily obtain a constant-factor approx-
imation using non-adaptive algorithms that do not adjust the probing de-
cisions to the revealed realizations, i.e., the adaptivity gap is constant. In
contrast, good testing algorithms must necessarily be adaptive — we show in
Section 2.1 that the adaptivity gap in testing is ©(log min(n, k)) even for i.i.d.
items.

2. In the testing model, we are not aware of any direct application of adaptive
submodularity [17], which guarantees that an adaptive version of the standard
greedy algorithm yields a constant-factor approximation. Indeed, there are
several natural algorithmic ideas (including the standard greedy algorithm)
that fail to provide a constant-factor approximation, both with respect to an
optimal strategy in standard probing as well as the optimal strategy in the
testing model.

For details on point (1), see Section 2.1 below. We elaborate on point (2) in the
following example.

EXAMPLE 1.2. Counsider the following instance with n items and again ¢ = 1/2.
For simplicity, we describe the example using discrete distributions, but it is easy
to adjust our observations to atomless distributions. For each of the safe items
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1 =1,...,n/2, the value is v; = 4 independently with probability 1/n and v; = 3
otherwise. The remaining items ¢ = n/2 + 1,...,n are the risky items — their value
is v; = n independently with probability 1/n and v; = 0 otherwise. The number of
tests or probes is k = n/2.

In standard probing, we can apply the k£ probes to the risky items to see their
value. Consequently, the expected value is at least

(1—(1—1/71)"/2)712 (1—\}6>n.

For the testing scenario, we can apply k tests. Clearly, one objective is to obtain
information about as many items as possible. Moreover, once we finished testing,
it is optimal to pick an item that has the highest conditional expectation. As such,
we want to test items repeatedly to increase the best conditional expectation. This
motivates natural algorithmic approaches:

(a) Choose k different items (possibly adaptively) and test each item exactly

once.

(b) For each test, pick an item with the currently highest conditional expectation,

for which the value has not been fully determined.

(c) For each test, pick an item to maximize the expected marginal increase in

the highest conditional expectation.
For algorithm (a), observe that both applying a single test to a risky or safe item rises
the conditional expectation to at most 4. As such, algorithm (a) does not obtain an
expected value above 4, independently of the choice of the items to test.

For algorithm (b), observe that initially the conditional expectation of every risky
item is 1 and the one of every safe item is at least 3. Hence, the conditional expectation
of every safe item is larger than the one of every risky item. It is easy to see that this
invariant remains true throughout the algorithm. Hence, algorithm (b) only tests safe
items. It eventually decides to pick a safe item, which has a value of at most 4.

For algorithm (c), if we test a risky item, then as observed above, the conditional
expectation of the tested item rises to 2 with probability 1/2, and it drops to 0 with
probability 1/2. As such, the first test on a risky item never increases the highest
conditional expectation. Instead, the algorithm will test only safe items. Initially, the
expected value of every safe item is 34 1/n for all ¢ > 1. The conditional expectation
of a safe item rises as long as the tests are positive. If the test is negative, the
expectation drops to 3. As such, the algorithm will exclusively test safe items. It
eventually decides to pick a safe item, which has value at most 4.

This shows that the value obtained by all these algorithms is only a O(1/n)-
fraction of the value that can be obtained with k£ probes in the standard probing
model. Our main result in this paper are testing algorithms that allow a constant-
factor approximation to the value obtained in the standard probing model. |

1.3. Contribution and Outline. In this paper, we provide two testing algo-
rithms, one for identically distributed items and one for non-identical distributions,
both running in polynomial time. We prove that they provide constant approzimation
ratios, which hold even with respect to the expected value of the best strategy in the
standard probing model. In contrast to the approaches in the example above, our
algorithms carefully choose the correct number of items to be tested. On the one
hand, we need a sufficiently large set of items to be tested while, on the other hand,
a sufficient (expected) number of tests must be available for each item to guarantee a
small approximation ratio. Maybe surprisingly, striking a good balance between these
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conflicting objectives is indeed possible.

Our algorithms are inherently adaptive. Indeed, we show that non-adaptive algo-
rithms can only obtain an approximation ratio of 2(log min(n, k)) w.r.t. the expected
value of the best testing strategy. As such, in contrast to probing, there is a non-
constant adaptivity gap. We adjust our algorithms and obtain non-adaptive variants
that yield asymptotically tight upper bounds on the adaptivity gap.

Our algorithms are conceptually different than the adaptive greedy procedures
considered in the example above. They can be interpreted to consider items sequen-
tially — we apply tests to the item under consideration until the item is accepted or
discarded, and then the next item is tested (if tests remain). Therefore, the algo-
rithms and analyses naturally extend to the sequential variant of the problem, where
all tests on a single item must be applied consecutively, and the order of items for
testing is externally given. For this variant, we also provide an efficient algorithm to
compute the optimal testing strategy based on a dynamic program.

A preliminary version of the present paper was published in the proceedings of
the 30th International Joint Conference on Artificial Intelligence (IJCAI) [23]. The
present version extends the extended abstract by tight results on adaptivity gaps and
general quantile tests.

Outline. After a discussion of related work in the subsequent Section 1.4, we
describe in Section 2 our algorithm and the analysis for the case of independent and
identically distributed (i.i.d.) items with D; = D; = D for all 4, j € N. In Section 2.1
we bound the adaptivity gap for i.i.d. distributions to ©(log min(n, k)).

Our algorithm for the general case is considered in Section 3. In Section 3.1 we
bound the adaptivity gap for the general case to ©(logmin(n,k)). In Section 4 we
consider the sequential testing problem, where items have to be tested sequentially in
a given order. We conclude in Section 5.

1.4. Related Work. Stochastic probing problems in which probing eradicates
all uncertainty about the tested item have been extensively studied. A prominent line
of work [1,5,19-21] is concerned with fairly general models in which an—according
to some given downward-closed set system—feasible set of (often Bernoulli) variables
can be adaptively probed. When probing is done, a set of items that is feasible accord-
ing to another given downward-closed set system can be selected, and the obtained
value is an (e.g., submodular) function of the selected items. The goal is typically
to develop algorithms that approximate the best strategy and whose guarantees are
parameterized by the respective instance, e.g., parameters of the set systems corre-
sponding to the constraints [6,8,10,12,27]. One approach to achieve constant-factor
approximations is bounding both the adaptivity gap and the approximation factor of
some non-adaptive algorithm by a constant; see, e.g, [20]. In this light, our approx-
imation results, which are based on algorithms that work in the sequential setting,
can be viewed as a bound on the “sequentiality gap” of our problem.

Instead of having to satisfy a hard constraint on the set of items that can be
probed, in the Pandora’s box problem one is charged for probing any of the items (for
which the inherent values are typically independently distributed) [29]. The goal is to
maximize the expected difference between the value of the chosen item and the probing
cost. While in the standard model the picked item must be a previously probed item,
in [7] any single item can be picked, but again probing eradicates all uncertainty. In
a Markovian model [18], each probe only advances a Markov chain associated with
the respective item by a single step. This is a model with limited information, but in
contrast to our model an item may only be picked once the Markov chain has reached
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a terminal state, i.e., once all uncertainty has been eradicated.

Some of these models have been generalized to variants, in which multiple items
can be chosen; see, e.g., [28]. In the standard model, an optimal algorithm is known;
more generally, one often resorts to approximation algorithms, sometimes even in the
form of a PTAS [14].

The prophet-inequality setting [25] is different in that the values of all items are
revealed eventually and there is no probing cost. In the classic version, items are
revealed in an adversarial order, and a single item can only be picked at the time
of its revelation. Then, the best strategy can be computed via a simple dynamic
program, but the challenge is typically to compare the performance with that of an
all-knowing prophet. When the order of revelation can be chosen, computing the best
strategy becomes less tractable [2]. We also refer to surveys on this topic [11, 26].

Let us emphasize that our problem is quite different from multi-armed bandit
models (e.g., [15]), in which typically actions have random payoffs from unknown
distributions, from which samples are repeatedly drawn and revealed. In contrast,
here each value for an item comes from a known distribution, is sampled only once
in the beginning and only revealed gradually (upon testing). This setting calls for
analyses different from the “regret”-style analysis typically applied for multi-armed
bandit models.

2. Identical Distributions. The main result in this section is our algorithm
ALGjiq, which has a constant approximation ratio for identical distributions. The
algorithm only depends on the test results and uses no additional information about
the distribution. It is simple and achieves a good constant approximation guarantee,
even with respect to the optimum in the standard probing model, where each test
reveals the realization. We first discuss it in the setting of median tests, i.e., ¢ = 1/2.

Algorithm ALGiiq. Let k' = 2Mogamin{nk+1}1 the gmallest power of 2 that is
larger or equal to min{n, k 4+ 1}. We use the short notation §, = D~*(g). Our algo-
rithm ALG;iq performs tests on the items sequentially. For each item 4, it repeatedly
tests the item until it is clear whether it’s value v; is larger or equal to d(x/_1)/p Or
not, i.e., until there are log, (k') positive tests in a row or until there is a single nega-
tive test. If v; > d(xs_1)/xs, We call this item a good item. In this case, the algorithm
selects i and terminates. Otherwise, it continues by testing item i41. If the algorithm
fails to find a good item or runs out of tests, it selects a random item.

We slightly abuse notation and use ALG;;q to denote our algorithm and E [ALG;;q]
for the expected value of the chosen item. Our guarantee will relate this to the
expected value of ProbeOPTy 1, the value obtained in the standard probing model
by seeing the exact realization of the first k£ 4+ 1 items and selecting the one with the
best realization. Instead of probing k items and then possibly taking an (unprobed)
item k41 (in case k < n and all observed realizations are below the expectation of D),
we allow ProbeOPTy11 to also reveal the realization of item k+ 1 and then select the
best realization from the k+1 probed items. Clearly, observing exact realizations and
the additional probe imply that E [ProbeOPT}y 1] upper bounds the value achievable
by any algorithm in the testing scenario with k tests. Our main result in this section
is the following.

THEOREM 2.1. ALGjq runs in polynomial time and obtains a value of
1
E [ALGiid} Z (1 — % — 0(1)) -E [ProbeOPTkH] N

where the asymptotics is in min(n, k).
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Proof. We first assume k& < n and discuss the case k > n below. In the subsequent
Lemma 2.2, we prove a lower bound on the probability that ALGjq finds a good item.

We start by observing that the expected value of any good item is at least
E [ProbeOPT1]: Clearly, in ProbeOPTy,; we have probability 1/(k + 1) to se-
lect each of the first £+ 1 items. Under the condition that the probability of selecting
an item is 1/(k 4 1), by stochastic dominance, the largest-possible expectation of the
item’s value is E [vi | v; > §k/(k+1)] Additionally, E [v; | v; > §,] is increasing in x
and k' > k+1. Hence, E [ProbeOPT; 1] < E [v; | v; > §(r—1y/1r ], the expected value
of a good item.

By Lemma 2.2 below, we can conclude that the algorithm finds and selects a good
item with probability at least

1— 55 1 1 1
=1— 2K — >1———o0(1
« T O S IR e o(d),

where the asymptotics is in k& = min(n, k). Since a good item has expected value of
at least E [ProbeOPT} 1] the approximation factor is at least a.

Finally, let us briefly discuss the case k > n — 1. We can restrict ALGjq ton —1
tests and apply the same analysis, where n — 1 replaces k. On the other hand, clearly,
E [ProbeOPT}11] = E [ProbeOPT,] for every k > n — 1, since k + 1 > n probes are
sufficient to reveal all values of all n items. d

LEMMA 2.2. The probability that ALGyq runs out of tests before finding a good
item can be upper bounded by

1- 55 Lo, 1
|- e o T ORI

The proof of Lemma, 2.2 is rather technical and deferred to the appendix. Instead,
we discuss a simple argument that the lower bound « on the competitive ratio in the
proof of Theorem 2.1 is a constant, i.e., with probability (1) the algorithm selects a
good item before running out of tests.

LEMMA 2.3. The probability that ALGiq finds a good item before runmning out of
tests can be lower bounded by a constant.

Proof. If n is constant, then so are k and k’. Then, there is a constant probability
that the first item is good and identified by the first log, k" tests. For the rest of the
proof, we therefore assume n > k > 6 and, hence, k¥’ > 8. Then the probability that
the first |k/4]| items contain at least one good one is

1—(1 =1/ > 11/ =1 (1 =1/ /3 >1— %8 .
€

For the rest of the proof, we condition on the fact that there is a good item among
the first |k/4] items, denoted by Fy |1/4). We now upper bound the probability that
we do not identify the first good item by 18/19. This happens when we have less
than log, k&’ remaining tests upon arriving at the first good item. Thus, we bound the
probability that we use more than k — log, k' tests before arriving at the first good

7
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item. We use F} to denote the event that item j is the first good item. Then,
Pr [less than log, k" tests remain for the first good item | F1..Lk/4j]

Lk/4]
= Z Pr [Fj A (less than log, k' tests remain for j)] F1~-U€/4J]
j=1
Lk/4]
= Z Pr [Fj A (more than k — log, k' tests used before j)] Fl,,Lk/zu]
j=1
Lk/4]
= Pr[F | Fi k]
j=1
Pr [more than k — log, k' tests used before j | F; N Fl..[k/4j]
Lk/4]
= Z Pr [Fj | F1_|x/4)] Pr[more than k — log, k' tests used before j | F}] .
j=1

Consider the event of using more than k—log, k' tests on the bad items {1,...,j—1}.
It has the same probability as the following event: In an infinite stream of bad items,
for k — log, k' tests we see less than j — 1 negative test results, or equivalently, more
than k — log, k' — j + 1 positive test results. We use the random variable X for the
number of positive test results and obtain

Lk/4)
Z Pr [F; | Fi_|x/4)] - Pr[more than k — log, k' tests used before j | F}]
j=1
Lk/4]
= > Pr[F;| Fy ] - Pr(X >k—logy k' — j+1]
j=1
Lk/4]
<Y Pr[F | Fipa] -Pr(X > k—log, k' — [k/4] + 1]
j=1

E[‘.(]
=Pr[X >k —log, k' /4] +1] < ’
I'[ g2 L/J ]_k 1 2]@' L;ZJ 1

where the last inequality is due to Markov’s inequality. Note that whenever we test
a bad item, the probability of a positive test is strictly less than 1/2. We obtain

E [X] 1 (k—logy k')
k—logo k' — [E]+1 " k—[E] —log, k' +1

1 (k—logy k')
3(k —logy k') — Llog, k' + 1

1 (k—logy k') 18

< I —
T 3(k—logy k') — 2(k —logy k') 19

<

where the last inequality follows because log, k' — 1 < §(k — log, (k') for k > 6.
Hence, conditioned on Fy |14, the probability that we fail to identify the first
good item is at most 18/19, so with probability at least 1/19, we have enough tests
to identify it. Overall, by multiplying with the probability of Fy |1 /4), we get that a
good item is found with probability at least (1 —e~'/8)/19 € Q(1). O

8
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Testing for a c-quantile. Our analysis can be extended rather generically to the
case when each test reveals if the realization is above or below a c-quantile of the
conditional distribution for an item, for any constant ¢ € (0,1). Then, using

)

1 [logy /(1 —c) min{n,k+1}]
K =
=

we define a good item as one where the first r = log; ;1 _) (k') = [logy /(1 _) (min{n, k+
1})] tests are all positive. The probability that we get such an item can be bounded
by generalizing Lemma 2.2 from ¢ = 1/2 to ¢ € (0,1). Then the probability to find a
good item is at least

1
aczl_m_0(1)7

which bounds the approximation ratio of the algorithm. For a more detailed discussion
see the appendix.

2.1. Adaptivity Gap. Note that ALGjyq is inherently adaptive in choosing the
next item to test. A popular approach in probing problems is to design simpler
non-adaptive probing strategies. Notably, in standard probing there is a constant
adaptivity gap — the expected values of optimal adaptive and non-adaptive algorithms
differ by at most a constant factor.

Here we show that testing is different in the sense that the adaptivity gap is
non-constant.

THEOREM 2.4. The adaptivity gap for testing with identical distributions is in
Q(logmin{k,n}).

Proof. Suppose there are k = 27 tests and n > k items with a gold-nugget distri-
bution, for an integer j > 1. In this distribution, we have v; = k with probability 1/k
and v; = 0 otherwise. It is easy to see that by probing k items, we obtain an expected
value of Q(k), which asymptotically is also obtained by (ALG;iq and, hence) the best
adaptive testing strategy.

Now consider any non-adaptive testing strategy. The strategy divides the k tests
onto the items before seeing any result. We number the items by the number of tests
in non-increasing order, i.e., item ¢ receives k; tests, where ky > ko > ... > k,, and
i1 ki =k

W.lo.g. we apply at most k; < j = log, k tests to any item ¢, since with this
number of tests we exactly learn the realization of that item. Consider the items in
order of the numbering. With probability 1/2%t all k; tests on item 1 are positive.
Then this item has conditional expectation 2%, which is highest possible among all
items and gets selected. If any of the k1 tests on item 1 is negative, the item has value
0, is discarded, and we consider the ks tests on item 2. With probability 1/2%2 all of
them are positive, and then item 2 has conditional expectation 2*2. This is highest
possible among all items, and item 2 gets selected. Otherwise, item 2 has value 0, is
not selected, and we consider the k3 tests on item 3, etc. Overall, the expected value
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of the policy is

n—1
1, 1 1, 1 1
=1
n—1 ¢ 1 n—1
—1e T (1= g ) =14 Xtk )
(=1 1i=1 (=1

=: g(k1,....ke)

To derive an upper bound, consider each g(ki,...,ks) separately. g¢(ki,..., k) is
non-decreasing and concave when viewed as a continuous function in any k;, and the
dependence on all k; is symmetric. We have a constraint >, k; < k. As such, g
attains a maximum when k1 = ... =ky = k/¢:

1 L
gk, k) < <1_W) -

It is easy to see that the right term strictly decreases for £ = 1,...,k from 1 — 1/2%

to (1/2)%. For ¢ < 2k/(logy k), we overestimate the value of (1 — zk—l/l)e < 1. For
2k/(logy(k)) < £ < k we see that

2Vk/(log, (k)

1 ¢ 1 2k/(logy (k)) 1 vk
()< () ) o

Finally for all £ > k, it must be that k, = 0, since k; are non-negative integers, so at
most k of them can be positive. Hence, Z?:—le g(k1,...,ke) =0.
Overall, we see that

n—1
2k k
1+ ——— . = .
1+;g(k1, k) < +10g2(k)+k o(1/k) o(log2k>

Hence, the adaptivity gap is Q(log k) = Q(log min{n, k}). d

For an upper bound on the adaptivity gap, consider a non-adaptive variant of
ALGiiq. We simply pick |[k'/(logy(K'))] items and apply log,(k') tests to each of
these items. The probability that we see a good item is at least

Frad Frad
1 logg k 1 logg k
(o gmr) T - (1-5)

IS ek (1Y’
L k'

=1

() (M) ()

“(i5w) - ()

Hence, the adaptivity gap is O(log k") = O(log min{n, k}). We will slightly generalize
this idea in Section 3.1 below. In Theorem 3.5 we obtain a similar upper bound even
for general distributions.

10
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3. General Distributions. Our main result in this section is an algorithm that
has a constant approximation ratio for non-identical, independent distributions D;.
As in the previous section, we first concentrate on the case ¢ = 1/2, and we first
assume k < n.

In the following, we first describe an (approximate) upper bound on the value
that the optimum obtains. From this upper bound, we can derive a value p; such
that is sufficient to select item i with constant probability when it realizes above its
(1 — Q(p;))-quantile. We then discuss how to design an algorithm that achieves that.
Eventually, we formally analyze the resulting algorithm.

We again relate the performance to E [ProbeOPT,], the expected value of the
optimal strategy in the standard probing model that can adaptively inspect £ < n
of the items, learns their exact realization and then picks the best realization it has
seen.

When adaptively inspecting the exact value of k items, we might eventually want
to resort to an uninspected item with the maximum expected value (if all realizations
are below that expectation). Instead, for ProbeOPT} ;1 we can also learn the realiza-
tion of this additional uninspected item and then pick the best one among the k 4 1
items seen. This is clearly stronger than what we can achieve in the testing model
with k tests. Our main result is to provide an algorithm with constant approximation
w.r.t. E[ProbeOPTy4].

Again, this also implies an Q(1)-approximation for k > n, since n — 1 probes to
suffice to achieve a §2(1)-approximation with respect to E [ProbeOPT, ], which always
learns and selects the best item—a trivial upper bound on what can be achieved with
any kind of testing. As such, we can run our strategy using only n — 1 tests (and
ignoring the rest). For the remainder of the section, we therefore concentrate on the
case k < n.

As a first step, we apply a reduction to concentrate on a smaller number of
relevant items. We do so using the following result from the literature, rephrased for
our needs.

THEOREM 3.1 (Theorem 2 in [4]). There exists an algorithm that, given k € N,
in polynomial time selects a subset Npi1 C N of the items with |[Ngy1| =k + 1 and

E [lmax vz} > (1 — 1) - E [ProbeOPT} 1] .
1€ENE 41 e

In contrast to [4] we have direct access to the distributions. By inspecting their
analysis, we see that this implies the stated approximation without reduction by an
e > 0.

Now given the subset Ny;1, we apply a further random sampling step—we pick
a uniformly random subset N’ C Ny of &k’ items. Clearly, we sample the item with
the best realization from Nji; with probability &'/(k + 1). Thus,

/
E [maxvi] > i -E [ max U¢:|
iEN' k+1 i€Njy1

We choose k' := | k/10] so that k' is smaller than k+1 by a large-enough constant
factor in order to be able to perform enough tests on the items of N’. Also, since
k' e Q(k), we get E[max;en v;] = Q(1) - E[ProbeOPTy41]. For convenience, we
renumber the items such that N/ = [£'] = {1,...,k'}.

Furthermore, we assume k > ko for a suitable constant (kg = 50 is sufficient),
since our analysis relies on concentration bounds and we need to ensure k¥’ € N.

11
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Otherwise, for constant k < ko, selecting an item with the best (a priori) expectation
ALGge, trivially guarantees a constant-factor approximation.

It remains to achieve a constant approximation to E [maxie[k/] Ui] under the as-
sumption k > kg. Let & be the event that ¢ has the largest value of all items in N'.
Here, we break ties in order of lower item numbers. We can write

k/
(3.1) E [m[%x] vz} = ZPr [E]-Ev; | &].
e i=1

In the following we will use p; as shorthand for Pr[&;] for all i € [k']. Given explicit
representations of the discrete distributions D; for items in [£'], the values p; can be
computed easily in polynomial time®.

We try to pick each item i € [k] that realizes to any fixed value above the (1 —
Q(p;))-quantile with constant probability. Then, with (3.1) and a similar argument as
for identical distributions, we indeed get an Q(1)-approximation. Our algorithm again
operates sequentially over the items. It considers items 1,...,%" in arbitrary order,
say, in ascending order of their indices. Upon considering item 4, it (approximately)
checks if v; realizes above the 1 — p; quantile of D;. If this check succeeds, it simply
selects item 7; otherwise it discards i and proceeds with the next item.

Assuming we could perform the check for the 1 — p; quantile not only approxi-
mately but exactly in our model (say, using ©(log(1/p;)) tests), this algorithm would
not obtain all realizations above the 1 — (p;) quantile with constant probability for
all 7; indeed, we need a specific approximate check. First, p; may be arbitrarily close
to 1. Then we are unable to guarantee to arrive at item 2 with a constant probability
and thereby fail to select v, with constant probability when v realizes to a value
above the 1 — Q(ps2) quantile of Dy. Second, p; may be so small that ©(—logp;)
exceeds k, the number of available tests. Then we never select v .

We address both issues by defining

max{p;, 1/k'}

q; = - s € Q(p;)

and using ¢; in place of p;. Lifting values smaller than 1/k’ to 1/k’ can be seen as
an idea borrowed from the setting of identical distributions. Dividing the resulting
probability by 8 makes sure that there is a constant lower bound on the probability
that for any given item ¢ the algorithm eventually considers ¢. A similar idea is used
in Bayesian mechanism design [3,9] and LP-based probing algorithms [6].

To (approximately) check more easily if v; realizes above D; 11 = ¢;), we round
g; to a power of 2 (with negative exponent). We define ¢; to be the largest power of
2 which is at most ¢;. Having arrived at item ¢, our algorithm tests item 4 at most
—log, G; € N times. As soon as one of the tests is negative, we stop testing item ¢ and
continue with the next item; if all tests are positive, we select item ¢. This concludes
the description of our algorithm, which we summarize as ALGgen. For a formal and
precise description, see Algorithm 3.1. Recall that the analysis for the case k >n —1
follows from restricting attention to min(k, n) tests.

The main result is the following theorem. By slight misuse of notation, we use
E [ALGge,] to denote the expected value of the item selected by our algorithm.

LFor each possible realization v; of item i, compute the probability that item ¢ has value v;, all
items j = 1,...,7 — 1 have a realization v; < v;, and all items j = ¢+ 1,...,k’ have a realization
vj < v;. The product of these numbers is the probability that v; constitutes the maximum of all
realizations. p; is the sum of probabilities computed for all realizations of item 3.

12
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Algorithm 3.1 ALGge, for General Distributions

Input : Distributions Dy, ..., D, over Ry, k € N.
Output: The index of the picked item.

if k < ko, return i € argmax;cp, E [v;].
Required tests: k < min(k,n — 1).
Select set Nj1 of items using Theorem 3.1.
k'« |k/10].
Select set N’ of k" items from Ny uniformly at random; w.l.o.g. N’ = [k].
for i in [K']:
& is the event that arg max; ¢, v; is item i (breaking ties arbitrarily).
q; < max{Pr[&],1/k'}/8.
s 2l loga ai]
for j in [—log, ¢;]:
if test is available:

test distribution D;.

if negative test result: break inner loop.

if j = —log, g;: return 3.

return any i € [£']

THEOREM 3.2. ALGgen runs in polynomial time and achieves an expected value
of
E [ALGgen] > (1) - E [ProbeOPTy 4]

To prove this theorem, we first show the following lemma.

LEMMA 3.3. Suppose k > ko. There is a constant r > 0 such that, for anyi € [K'],
the probability that ALGgen arrives at item i with at least logy k' + 4 unused tests is
at least r.

Proof. It suffices to consider the event that ALGge, arrives at the last item,
i.e., item k', with log, k' + 4 unused tests, called F in the following, and bound its
probability from below by a constant. By the union bound, we can write

(3.2) Pr[F] > 1-Pr|[FA] - Pr[F).

Here, F7 is the event that the algorithm picks any v; prior to even considering vg/. To
define F3, we view the tests as independent, unbiased coins and realize all of them,
even those that are potentially not used by the algorithm. Now F3 is the event that
among the first k— (log, k' +4) tests, fewer than k' —1 have result 0. Indeed, whenever
F does not occur, at least one of F; and Fo occurs.

We first consider F;. Note that Zie[k,] p; = 1. Since max{p;, 1/k'} < p;+1/k for
all 7 € [K], it follows that >,y max{p;, 1/k'} < 2,50 } ;37 ¢; < 1/4 by definition
of g;. Then, using ¢; < g; for all i € [k'], we have ;. ¢ < 1/4.

Since the probability that we pick item ¢ is at most ¢; (for that to happen, v; has
to realize above the 1 — ¢; quantile of D;), again by the union bound, the probability
that we pick any item at all is at most 1/4. Therefore

(3.3) Pr[F] <
13

=
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It remains to bound Pr [F;] from above and away from 3/4. Towards applying
Markov’s inequality define X to be the number of positive tests among the first |k/2]
tests. Then X has expectation at most k/4. We get

(3-4) Pr[F,] <Pr [X > j’g] <Pr [X > (1 + 2) .E[X]} < g

where the first inequality we use follows using £ > kg = 50: When F3 occurs, we
have less than &' < k/10 tests with result 0 among the first |k/2| < k — (logy k' + 4)
tests, so X > k/2 — k' > 4k/10 follows. The second inequality follows by plugging
in the upper bound on the expected value of X, and the last inequality follows from
Markov’s inequality (clearly, X > 0).

The claim follows from combining Inequalities (3.3) and (3.4) in (3.2). d

With this lemma at hand, we can prove the main theorem.

Proof of Theorem 8.2. First consider the case k < kg = 50. We denote the re-
turned index by i* € arg max;c[, E [v;]. Here we overestimate E [ProbeOPTy 1] by
selecting all k 4+ 1 observed realizations and obtaining the sum of the values. For this
objective, it is trivially optimal to select the set I, ; which we define to be the set
of k4 1 items with highest expectation. Since ALGgen selects the single item with
highest expectation, it recovers at least

1
BEloi] 2 .= Z E [vi] >
ely,

Pl E [ProbeOPTj41]

implying our claim.

Now consider the case k > kg = 50. By Lemma 3.3, there exists a constant r > 0
such that with probability at least r, for any given item i, the algorithm arrives at ¢
with at least —log, ¢; < log, k' 4+ 4 unused tests. Hence,

k/
E[ALGgen] =Y 7-Prv; > D7 (1—G)] - E [v; |v; > D' (1 - Gi)]

i=1

k/
=r-> Gi-Elv|v =DM (1-G)]
i=1

k:,
>r- &~E[vi|vi2D;1(lf&)}
i:116 16
al 1 T
(3.5) >r ;16 ri&]-Elv | & 16 Lrg[z}slc]v}

In the first step, we use the independence of arriving at item ¢ and its realization v;.
The second step uses the definition of D;. The third step follows by monotonicity of
z-E[v;|v; > D;'(1—1z)] as a function of z and §; > ¢;/2 > p;/16. In the fourth
step, we use that p; = Pr [&;] for the first part and stochastic dominance to compare
the two expected values. The last step uses the definition of &;.

Recalling the discussion of Theorem 3.1 and the random sampling step, we observe

1 K
. il >\ 1—=- : .
(3.6) E Lrg[elxzc] v } (1 e) T E [ProbeOPT} 4]
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The ratio follows by combining (3.5) and (3.6) with

k k 1 1
oS> — 1> —(13k—13) > —(k+2
¥ LOJ‘lO z g3k —18) 2 5 (k+2),

as k > 50. The running time of ALGgey is dominated by applying the algorithm of [4]
and computing the values p; = Pr[&;]. Both steps run in time polynomial in the
input size. ]

Testing for a c-quantile. When tests return whether the realization is above
or below the c-quantile for some constant ¢ € (0,1) (instead of 1/2-quantile) of the
conditional probability distribution, the same techniques can be used to obtain an
Q(1)-approximation. We provide a sketch of the adjusted algorithm ALG%en and how
the arguments can be adjusted. We choose k' := |c-k/5] and k¢ as a sufficiently large
constant (discussed below). With this adjusted definition of k¥’ and kg, we apply the
same steps as in ALGgen until line 5 of the algorithm. As in the ¢ = 1/2 case, for
every i € [k'] we can define a quantile

q; = max{p;, 1/k'} -

=10

Choosing ¢; to be the largest power of ¢ with ¢; < g;, we get
(i) ¢i > c-p;-c/4for all i € [K'],
(i) ¢; > ¢/k' -c/4=: L for all i € [K],
(i) > sepn @ < /2.
We then apply lines 6-15 of ALGgen, with this adjusted definition of ¢; and — log; /e i
instead of —log, ¢; in lines 10 and 14. Consider the following more general version of
Lemma 3.3.

LEMMA 3.4. Suppose k > ko. There is a constant v such that, for any i € [K'],
the probability that ALG’ge arrives at item i with at least |log, L] unused tests is at
least r.

118

For the proof, we can use (iii) to bound Pr [F;] from above by ¢/2, where F is again
the event that the algorithm picks any item before considering the final one. Similarly,
F» is again the event that the number of negative tests among the first k — |log, L|
tests is smaller than k' —1. To bound Pr [F2] we define X to be the number of positive
tests among the first |k/2] tests, so that X has expected value at most (1 — ¢) - k/2.
Similarly to the previous analysis, we can write

5—2c 5 —bc 1 ¢

-E[X]| < .
5 —dc X _5—2c< 2

(3.7) Pr[F] <Pr [X > 5’“1026’“]

SPr{Xz

Towards the choice of kg, we assume it is large enough to exclude all (constantly
many) small values of k for which |k/2| > k — |log, L]. As such, we can assume
|k/2] <k — |log.L]|, and the first inequality of (3.7) follows because then JF» only
occurs if X > k/2—FE > (5k —2ck)/10. As before, the next step follows by the upper
bound on E [X], the step after that using Markov’s inequality, and the final step by
simple calculus. The proof of the constant-factor approximation is then analoguous
to that of Theorem 3.2, using (i) and Lemma 3.4.

3.1. Adaptivity Gap. Turning to the adaptivity gap, we show that a non-
adaptive variant of ALGge, guarantees a logarithmic upper bound. The lower bound
has been established for identical distributions in Theorem 2.4 above.

15
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THEOREM 3.5. The adaptivity gap for testing with general distributions is in
O(logmin{k, n}).

Proof. For the upper bound consider a non-adaptive variant of ALGgen. In this
variant, we apply the same steps until line 5 of Algorithm 3.1. Then in line 6, instead
of sequentially searching through all items from [&], we pick a random subset N” of
|k'/log,(16k") ] items from [k']. Using the definitions of &;, ¢; and §¢; as given in lines
7-9 (using k" and [k']), we apply — log, g; tests to each item ¢ € N”. Whenever there
is at least one item i € N” for which all —log, §; test are positive, we return such an
item with smallest index.

First, let us argue that we have enough tests to execute this algorithm. By defi-
nition ¢; > ¢q; > 1/(16k’), so —log, ¢; < log,(16k"). Overall, the algorithm considers
|k'/log,(16k") ] items and applies at most log,(16k’) tests to each item. In total,
these sum to at most k' < k tests.

Now consider the approximation ratio. Consider an instance and a given random
draw of the values v;. Suppose we execute both ALGge, and the non-adaptive variant.
We couple the random choices in these executions in the sense that both algorithms
choose the same sets Njy1 and N’. Then, if ALGge, returns any item ¢, this must be
the item from [k'] with smallest index such that all —log, §; tests were positive. For
the non-adaptive variant, this item is selected into N” with probability

K’ 1

— = co(—-),

L&'/ logy(16k") ] log &/
and in that case also gets returned. Hence, for every item ¢ returned by ALGgen,
the non-adaptive variant returns the same item with probability Q(1/logk’). The ex-
pected value of the non-adaptive variant is therefore at least (1/logk’) - E [ALGgen].
Finally, note that ALGgen has a constant approximation ratio and k' = ©(min(k,n)).
The theorem follows. 0

4. Sequential Testing. We consider a sequential scenario of the testing prob-
lem, in which tests for the same item must be conducted consecutively, and items
must be tested in a given order. This restricts the algorithm and the optimal testing
strategy in two ways.

First, if a test series for an item j is stopped, j cannot be tested anymore. This
restriction is very natural in many practical applications such as the hiring process
discussed above. Typically, a candidate cannot be interviewed again after the job
interview is finished. Additional applications for this assumption include flat viewings,
inspection of second hand articles, or test series with time consuming test setups.

Second, we restrict all testing to adhere to a fixed ordering of the items, i.e., the
order of items, in which they can be tested, is given upfront. Note that this constraint
has no bite for the i.i.d. scenario.

Interestingly, all our results from the previous sections directly carry over to
the sequential testing problem. Both our algorithms test each item using a single
consecutive test series and can be applied when given any fixed order of items.

OBSERVATION 4.1. Algorithms ALGiiq and ALGgen Tun in polynomial time and
obtain constant approximation factors for the sequential testing problem.

4.1. A Dynamic Program for Sequential Testing. As the main result in
this section, we show how to compute the optimal testing strategy in polynomial time.

THEOREM 4.2. The optimal strategy in the sequential testing problem can be com-
puted in polynomial time.

16
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For the proof, we denote the test results of k; tests on some item i € [n] by a vector
R € {0,1}* where 0 and 1 correspond to negative and positive tests, respectively.
Moreover, we use D; g for the distribution of v; conditioned on the test results R. For
simplicity, we restrict to ¢ = 1/2 in this section; a generalization to any ¢ € (0,1) is
straightforward.
Observe that, in any given state of the system, optimal testing and selection
decisions can be made knowing the instance parameters as well as
(i) the first item 7,ex¢ that one has not stopped testing (w.1.0.g. inext < 1),
(ii) the conditional distribution D, r of the item tested last (if any; otherwise
D;, ....r :=0), where R are the results of the tests conducted on item inext,
(iii) the conditional distribution D;» g/ of a previously considered item (if any; other-
wise D;» g is the distribution @ that has mass 1 on value 0) ¢* that maximizes
E [v;« | R'], where again R’ are the results of the tests conducted on ¢*, and
(iv) the remaining number of tests.
Due to the fixed ordering of items, we do not need to keep track of the history of all
previously tested items, and (iii) suffices. More formally, we define

D;:={D;r| R {0,1}* k; € [K]},

and each entry of our DP corresponds to a quadruple in

2

(4.1) ] x [{0}u | J Di| x{0,....k},

i€[n]

corresponding to the four parameters described above.

One may be tempted to think that superpolynomial running time is required
in the dynamic program because (ii) and (iii) depend on the outcomes of possibly
w(logk) tests, leading to 2¢(°8%) = w(poly(k)) different results of these tests and a
seemingly superpolynomial cardinality of D;. The key observation, however, is that
there is only a polynomial number of possibilities for D; g, for any item ¢ after O(k)
tests with result R. This holds since distributions D; are discrete and come in explicit
representation. Recall that a distribution D is called degenerate if [supp(D)| = 1. For
simplicity, we use supp to denote the essential support of a distribution, which ignores
elements of measure 0.

LEMMA 4.3. Suppose item i € [n] has been tested k; < k times. Then the distri-
bution D; g is non-degenerate for at most |supp(D;)| — 1 many distinct R € {0, 1}%:.

Proof. Let again i € [n], k; < k, and R € {0,1}*. Note that D; r is uniquely
defined through the inverse of its cumulative density function, denoted by D;- é :
[0,1] — Ry. Furthermore note that

D;p(x) =D ((+x)-27%) Ve elo,1]

for £ € [2¥:], the number represented by R when interpreted as binary number. Hence,
when D; ! is constant on the interval I := [(-27% ({+41)-27%), then D;}b is constant
(up to possibly £-27%¢) on its entire domain, and therefore D; g is degenerate. To
see that this is the case for all but |supp(D;)| — 1 many values of R, note that any
two intervals Ig, and Ig» for R', R" € {0,1}* and R’ # R" are disjoint. Since D~!
is a step function with |supp(D;)| many steps, D; is indeed constant on I for all but
|[supp(D;)| — 1 values of R. d
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Hence, we can count the number of conditional distributions D; r after k; < k
tests with results R as follows: If D; p is degenerate, there are precisely |supp(D;)]
different possibilities for D; r. If D; r is not degenerate, there are precisely k + 1
possibilities for k;, and for each such possibility, there are at most |supp(D;)| — 1
possibilities for D; p by Lemma 4.3. Therefore |D;| € O(k - [supp(v;)|), which is
polynomial in the input length. Thus the cardinality of the set in Equation (4.1) and,
hence, the number of DP entries is bounded by a polynomial in the input length.

We now describe how to explicitly compute the DP entries, which are the ex-
pected values that can be achieved starting in the situation described by the respec-
tive quadruples. Towards this, consider a DP entry DP (inext, Di,oui,ry Dir . r7, k). We
start by discussing base cases. If ¥’ = 0, then no more tests can be conduted, so
the strategy just picks the box with largest expected value conditioned on all test
outcomes, i.e.,

DP(inexm Dincxt,R7Di*,R’7 0) =

max {E [Vien | R],E[vi= | R, max E [vl]} .
1€ {inext+1,...,n}
Furthermore, if 4,0 = m and k’ > 1, then further tests can only be conducted on
item n, and they do not harm, so

DP(TL, Dn,RyDi*,R’, k/) =

% -DP(n, Dy s (1), Dis s K — 1) + % -DP(n, Dy iy (0), Dis i, K — 1),
where for a tuple a = (aq,...,ax), we let a + (ax+1) denote the result of appending
ak+1 to a, i.e., (a1,...,axy1). This concludes our discussion of the base cases.

In general, when 7,0 # n and kK’ > 1, we have to decide whether to perform a
test on item ipext Or to move on to item inext + 1. The expected value of doing that
can be computed similarly to the latter case. Therefore

DP(incxta Dinext,RaDi*,R’, k/) =
1
max {2 ' DP(inexm Dinext,RJr(l)? Di*,R’7 k/ - 1)
1
+ 5 . DP(inexta Dincxt,RJr(O)v Di*,R'7 k/ - 1)7

DP(inext + ]-7 Dinext+1,()7 D*7 kl)}a

where () denotes the null tuple, and D* is the (in case of a tie, any) distribution
of D;,....r and D;x r/ that maximizes the expected value drawn from the respective
distribution. Note that D; . 119 = Dj, ... +1.

Then DP(1, Dy (), 0, k) contains the expected value extracted by the optimal test-
ing strategy. To obtain the optimal strategy, we perform the profit-maximizing action
at all times (as usual). As a conclusion, Theorem 4.2 follows.

5. Conclusion. A strong and, arguably, unrealistic assumption in existing sto-
chastic probing models is that every probe reveals full information about the probed
item. We initiate research that addresses this shortcoming and introduce a first natu-
ral model where repeated testing of a single item gradually reveals more information.
For this model, we provide polynomial-time algorithms with constant approximation
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factors for both i.i.d. and general independent, non-negative distributions. We also
tightly bound the adaptivity gap to a logarithmic factor.

An interesting direction for future work are hardness results for stochastic probing
problems. Only little is known about computational hardness in the standard model
of probing: Computing the best non-adaptive strategy for a closely related standard
probing model is known to be NP-hard [16]. For a large class of such stochastic opti-
mization problems hardness (sometimes even w.r.t. #P) is merely conjectured [14]. In
the context of our work, tight lower bounds for the ratio of optimal probing and test-
ing strategies, or the approximability of the optimal testing algorithm are fascinating
open problems.

Another direction for future work is to consider correlated random variables. For
related problems in online stopping, the versions with correlations are sometimes
hopeless [22], and only few positive results are known [24].

More generally, there is potential for extending the rich theory on standard prob-
ing models towards tests that yield only limited information, including cases in which
the learner can choose a set of items instead of a single one.
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Appendix A. Proof of Lemma 2.2. The sequence of tests can be seen as a
sequence of Benoulli trials. ALGjq can run k tests, and we are looking for a success
run of length r = log,(k’) in a sequence of k Benoulli trials. This implies that for
some item we have succeeded to verify that it is a good item. To avoid trivialities, we
assume r > 1. Each trial has a success probability of 1 — ¢ = 1/2. Feller [13, Volume
1, page 325] observes that the probability of no success run of length r is given by

q:A1+A2+AT

where

1-(1-c) 1 2(1 — ¢)k+2
. d Al < =———
(r+1—rz)-c abt! and [ Ai] < re(2—c) ’

1= foralli=2,...r.
Here, x is the root with smallest absolute value of f(y) =1 —y +c(1 —¢)" - y" L.
The unique positive root of f(y) that is different from 2 happens to be the one with
smallest absolute value. In Lemma A.1 below we show that with ¢ = 1/2, this root
satisfies 1 + <zr<l+ % This allows to conclude

Qk/
2
¢< At (r 1)2k+2.r.l.§
2 2
o 1—3z Lo r-1 1
S (r+1l—rz)s aktl ro 2613
1— 5 1 1
< 2. +
L—F (L4 55kt 2013
11— 1 L
- log, (k) / ko1 k—1
L— ) (14 AP ey 2T
1— 5 Lo, 1
RTINS T
1— 5 1 1

RPN IR Ty

for all k> 1. Here, we used (1 + 1/x)®" > e in the second to last inequality.

LEMMA A.l. Let r € N>o, and zo be the unique positive root of f(y) =1 —y+
(%)TJrl that is different from 2. Then, 1 + 2,% <zo <1+ 2%

Proof. Feller [13] observes that f(y) has a unique positive root that is different
from 2. Obviously, f is continuous. We show that f(1+ 1) >0, and f(1+ 57) <0
for all » € N>5. First, we note that

1 1 1 1\ 1 1
f<1+2r+1>1(1+2r+1>+2r+1 <1+2r+1> >727’+1+2r+1.1:0'
Second, for the case r > 3 we observe

1 1 1 1\
1 =1—-1(1 — 1+ =
f( +2r> < +2r>+27“+1 < +2r>
1 1 1\" 1
= 1+ — 1+ —
2T + 2T+1 ( + 2r> ( + 2r)
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We note that o is at most 3/8. Thus,

1 1 5 1 1 B
f 1+27 <2r+1 —2+68 1+2*3 <2r+1(_2+2)_0'
For r = 2, we can easily check that f (1 + %) = —3/512 < 0, which finishes the proof.0

Appendix B. Testing for a c-quantile. As mentioned above, the analysis can
be extended rather generically to the case when each test reveals if the realization
is above or below a c-quantile of the conditional distribution for an item, for any
constant ¢ € (0,1). Then, using

1 [logy /(1 —c) min{n,k+1}]
“= (=)

1-c ’
we define a good item as one where the first r = log; /(1 _) (k) = [log; /(1 _, (min{n, k+
1})] tests are all positive. The probability that we get such a item can be bounded by
generalizing Lemma 2.2 from ¢ = 1/2 to ¢ € (0, 1). In particular, a calculation similar
to the one in Lemma A.1 shows that the smallest root of f(y) =1—y+c(1—c)"-y"+!
is between 1+ (1 —¢)"c < xg < 1+ (1 —¢)” when r = w(1) is sufficiently large:

e Fory=14+(1-¢)"

fA+(1-0))=1-(1+1-0)")+e(l—¢)" (14 (1 —¢))*
=(1-0)"(c(1+1 =) =1)<0

holds if and only if ¢(1 + (1 — ¢)")"*! < 1, or
(B.1) (r+1)In(1+(1—-¢)") <Inl/e .

Since In(14 z) < z for all z > 0, a sufficient condition for (B.1) is (r+1)(1—
¢)” < Inl/e. This holds for r = w(1) since (r + 1)(1 — ¢)” is exponentially
decreasing in r, while In1/c is a constant.
e Fory=14+(1—-¢)"c
fA+A=0"e)=1-(1+10=¢c)"c)+c(l—c)"(14+ (1 —c)c)" !
=(1-0)"c(1+1=c)e)™=1)>0
holds since (1 —¢)"c¢ > 0 and (1+ (1 —¢)"c)" ™ > 1 whenever ¢ € (0, 1).
Using these bounds in Lemma 2.2, the probability ¢ to find no good item is again

dominated by the factor —& which is at most
x

1 B 1 - 1 1 o(l)
(1—|—c(1 _C)r)k+l - ekt = e(1—c) ) BT T ec(l—c) :
(1+k’) <1+ (k+1)>

As such, the probability to find a good item is at least

1
046:1—m—0(1)7

which bounds the approximation ratio of the algorithm.
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