
STOCHASTIC PROBING WITH INCREASING PRECISION1

MARTIN HOEFER∗, KEVIN SCHEWIOR† , AND DANIEL SCHMAND‡2

Abstract. We consider a selection problem with stochastic probing. There is a set of items3
whose values are drawn from independent distributions. The distributions are known in advance.4
Each item can be tested repeatedly. Each test reduces the uncertainty about the realization of its5
value. We study a testing model, where the first test reveals if the realized value is smaller or larger6
than the c-quantile of the underlying distribution of some constant c ∈ (0, 1). Subsequent tests allow7
to further narrow down the interval in which the realization is located. There is a limited number8
of possible tests, and our goal is to design near-optimal testing strategies that allow to maximize9
the expected value of the chosen item. We study both identical and non-identical distributions and10
develop polynomial-time algorithms with constant approximation factors in both scenarios.11

Key words. Stochastic Probing, Testing, Optimal Stopping12

MSC codes. 68W25, 68W40, 68T05, 62L1513

1. Introduction. In recent years, there has been a surge of interest in learning14

problems with probing. There is a set of n items, and each item has an independent15

distribution over its value. The goal of the learner is to select an item with a value16

as large as possible. In the standard model, the learner can probe a bounded number17

of k items. Upon probing an item, the learner sees its realized value.18

A variety of applications are captured by this approach and its extensions. For19

example, in a hiring process, an “item” is a candidate. The application material20

implies a stochastic belief over the quality of each candidate. Probing corresponds21

to an interview of a candidate, and the capacity of the interviewer is limited to k22

interviews. The probing problem corresponds to the selection of candidates to be23

interviewed to optimize the value of the candidate that is hired eventually. Additional24

applications arise, for example, in online dating or kidney exchange. The problem25

is to probe pairs of agents for compatibility and eventually match the population26

to maximize some objective function, e.g., the number of compatible pairs or the27

overall quality of matches. Probing has further applications in domains like influence28

maximization or Bayesian mechanism design [4, 19].29

Computing an optimal probing decision is a non-trivial task as each of the subse-30

quent probing decisions may depend on the outcomes of previous probes. A standard31

technique to design optimal probing strategies is a dynamic-programming approach,32

which often turns out to be intractable. Beyond this, one commonly resorts to finding33

polynomial-time approximation algorithms (e.g., [6, 8, 10,12,27]).34

In the vast majority of approaches studied in theoretical computer science and35

applied mathematics, probing reveals the exact realization of the underlying random36

variable; probing an item completely eradicates the uncertainty. In contrast, many37

applications give rise to probing problems in which we only obtain some limited in-38

formation about the item. Consider for example an interviewer in a hiring process.39

Instead of interpreting an interview as a single probe that reveals all information, it40

is usually the case that the interviewer can ask questions or request information that41

∗Institute for Computer Science, Goethe University Frankfurt, Robert-Mayer-Strasse 11-15, 60325
Frankfurt/Main, Germany. mhoefer@em.uni-frankfurt.de.
†Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej

55, 5230 Odense M, Denmark. kevs@sdu.dk.
‡Center for Industrial Mathematics, University of Bremen, Bibliothekstraße 5, 28359 Bremen,

Germany. schmand@uni-bremen.de.

1

This manuscript is for review purposes only.

will partially reveal the qualifications of the respective candidate. More realistically, a42

question or exercise in an interview can be seen as a probe, but only by asking multi-43

ple questions of varying levels of difficulty the interviewer can eventually estimate the44

exact qualification of each candidate. As another example, consider a Bayesian single-45

item auction with posted prices. By setting a posted price, the auctioneer learns if46

the bidders have a value above or below that price, but that does not directly reveal47

the valuation of each bidder. Only repeated probing with different prices can reveal48

the exact value of each bidder.49

In this paper, we introduce selection problems with repeated testing. In the begin-50

ning, nature makes a single independent draw for each item to determine the realized51

value. We can test an item, but the exact realized value stays unknown and each52

test only reveals limited information about the realized value. Subsequent testing can53

be used to obtain more and more fine-grained information about the same realized54

value. There are many ways to express this condition formally, i.e., how exactly the55

result of a test changes the conditional distribution of the item. In our model, we56

take a simple and intuitive approach: The first test reveals if the realized value of an57

item is above or below the c-quantile of the distribution for some constant c ∈ (0, 1).58

Each subsequent test reveals if the realized value of the item is in the c-quantile of59

the conditional distribution, where the condition is the binary feedback of previous60

tests.61

Example 1.1. Suppose we can perform k = 3 tests on n = 2 items and c = 1/2.62

Initially, the realized values of the items are drawn i.i.d. from the uniform distribution63

over the set {10, 20, 30, 40}.64

W.l.o.g. we first test item 1. The result of the test is either positive (realization65

above the median) or negative (below the median). Suppose it is positive, then we66

know that the realized value of item 1 is either 30 or 40, both with probability 1/2.67

Next, we test item 2. If the result for item 2 is negative, then the realized value of item68

2 must be either 10 or 20, both with probability 1/2. Hence, the optimum must be69

item 1. Instead, assume the result of the test for item 2 is positive, then the realized70

value of item 2 is either 30 or 40, both with probability 1/2. We apply the third test71

again to item 1. If the result is positive, it is clear that the realization of item 1 is72

40, and item 1 is an optimum. Otherwise, the realization is 30, and then item 2 is an73

optimum.74

Interestingly, by repeating the analysis for the case when the result of the first75

test on item 1 is negative, we see that we can always identify the item with the best76

realization. Note that we cannot achieve this with k ≤ 2 tests. �77

Before we discuss our results, let us formally introduce the model.78

1.1. Testing. We are given a set N = {1, . . . , n} of items and a test capacity79

k ∈ N. The value vi of each item i ∈ N is non-negative, drawn independently from80

a known distribution Di over R+, and unknown upfront. A testing algorithm can81

perform up to k tests. Each test is performed on one of the items. In contrast82

to most of the related literature, we assume that a test does not reveal the exact83

realization of the item’s value. Instead, each test results in an improved estimation84

of the realization.85

For simplicity, let us first assume a continuous distribution. Let D−1i (q) be the86

smallest value such that Pr
[
vi < D−1i (q)

]
= q. We call D−1i (q) the q-quantile of87

Di. We assume that the first test shows whether the value is above or strictly below88

the c-quantile of the distribution for some constant c ∈ (0, 1). That test is called89

2

This manuscript is for review purposes only.

positive if vi ≥ D−1i (c), and negative otherwise. Given this result, the conditional90

distribution of the item can then be tested for the new c-quantile in the same manner.91

In terms of the original distribution, if the first test was positive, the next test reveals92

if vi ≥ D−1i (c + c(1 − c)) or vi ∈ [D−1i (c), D−1i (c + c(1 − c))); if the first test was93

negative, the next test reveals if vi ∈ [D−1i (c2), D−1i (c)) or vi < D−1i (c2). For the sake94

of exposition, we will usually first restrict attention to c = 1/2 (i.e., median tests)95

and then outline how to generalize our algorithms and analysis to general constants96

c ∈ (0, 1).97

In this way, repeated testing leads to an improved estimation of the realized value98

– each subsequent test informs the algorithm whether the value is above (positive99

test result) or strictly below (negative test result) the c-quantile of the conditional100

distribution, where the condition is on the outcomes of all previous tests on that item.101

The algorithm can perform k tests in total. It can choose the next item to be tested102

adaptively. In the end, it selects one item. The goal is to maximize the value of the103

selected item.104

To aid the discussion of computational complexity, distributions are discrete and105

given in explicit representation. For applying the tests for such distributions, we106

assume that ties are broken consistently, e.g., by initially drawing a random number107

xi ∈ [0, 1] for each item i, extending Di to a continuous distribution over tuples108

(vi, xi), and using a lexicographic comparison for tuples (vi, xi).109

We provide algorithms that are polynomial-time in the input, where the input is110

given by the n discrete distributions in explicit representation and k. An algorithm111

can perform k tests on the items. Each test is executed via an oracle call that takes112

constant time.113

1.2. Testing versus Probing. Our goal in this paper is to identify provably114

good testing algorithms. More fundamentally, our main interest is to relate the testing115

model to the standard probing model, where each of the k probes completely reveals116

the realization. How much value is lost due to the restriction that we only have117

access to repeated quantile-tests on the conditional distributions instead of immediate118

revelation of values? What is the cost of testing instead of revealing? Arguably, it is119

not obvious that this cost is small, for several reasons.120

1. In standard probing, one can rather easily obtain a constant-factor approx-121

imation using non-adaptive algorithms that do not adjust the probing de-122

cisions to the revealed realizations, i.e., the adaptivity gap is constant. In123

contrast, good testing algorithms must necessarily be adaptive – we show in124

Section 2.1 that the adaptivity gap in testing is Θ(log min(n, k)) even for i.i.d.125

items.126

2. In the testing model, we are not aware of any direct application of adaptive127

submodularity [17], which guarantees that an adaptive version of the standard128

greedy algorithm yields a constant-factor approximation. Indeed, there are129

several natural algorithmic ideas (including the standard greedy algorithm)130

that fail to provide a constant-factor approximation, both with respect to an131

optimal strategy in standard probing as well as the optimal strategy in the132

testing model.133

For details on point (1), see Section 2.1 below. We elaborate on point (2) in the134

following example.135

Example 1.2. Consider the following instance with n items and again c = 1/2.136

For simplicity, we describe the example using discrete distributions, but it is easy137

to adjust our observations to atomless distributions. For each of the safe items138

3

This manuscript is for review purposes only.

i = 1, . . . , n/2, the value is vi = 4 independently with probability 1/n and vi = 3139

otherwise. The remaining items i = n/2 + 1, . . . , n are the risky items – their value140

is vi = n independently with probability 1/n and vi = 0 otherwise. The number of141

tests or probes is k = n/2.142

In standard probing, we can apply the k probes to the risky items to see their143

value. Consequently, the expected value is at least144 (
1− (1− 1/n)n/2

)
n ≥

(
1− 1√

e

)
n .145

For the testing scenario, we can apply k tests. Clearly, one objective is to obtain146

information about as many items as possible. Moreover, once we finished testing,147

it is optimal to pick an item that has the highest conditional expectation. As such,148

we want to test items repeatedly to increase the best conditional expectation. This149

motivates natural algorithmic approaches:150

(a) Choose k different items (possibly adaptively) and test each item exactly151

once.152

(b) For each test, pick an item with the currently highest conditional expectation,153

for which the value has not been fully determined.154

(c) For each test, pick an item to maximize the expected marginal increase in155

the highest conditional expectation.156

For algorithm (a), observe that both applying a single test to a risky or safe item rises157

the conditional expectation to at most 4. As such, algorithm (a) does not obtain an158

expected value above 4, independently of the choice of the items to test.159

For algorithm (b), observe that initially the conditional expectation of every risky160

item is 1 and the one of every safe item is at least 3. Hence, the conditional expectation161

of every safe item is larger than the one of every risky item. It is easy to see that this162

invariant remains true throughout the algorithm. Hence, algorithm (b) only tests safe163

items. It eventually decides to pick a safe item, which has a value of at most 4.164

For algorithm (c), if we test a risky item, then as observed above, the conditional165

expectation of the tested item rises to 2 with probability 1/2, and it drops to 0 with166

probability 1/2. As such, the first test on a risky item never increases the highest167

conditional expectation. Instead, the algorithm will test only safe items. Initially, the168

expected value of every safe item is 3 + 1/n for all i ≥ 1. The conditional expectation169

of a safe item rises as long as the tests are positive. If the test is negative, the170

expectation drops to 3. As such, the algorithm will exclusively test safe items. It171

eventually decides to pick a safe item, which has value at most 4.172

This shows that the value obtained by all these algorithms is only a O(1/n)-173

fraction of the value that can be obtained with k probes in the standard probing174

model. Our main result in this paper are testing algorithms that allow a constant-175

factor approximation to the value obtained in the standard probing model. �176

1.3. Contribution and Outline. In this paper, we provide two testing algo-177

rithms, one for identically distributed items and one for non-identical distributions,178

both running in polynomial time. We prove that they provide constant approximation179

ratios, which hold even with respect to the expected value of the best strategy in the180

standard probing model. In contrast to the approaches in the example above, our181

algorithms carefully choose the correct number of items to be tested. On the one182

hand, we need a sufficiently large set of items to be tested while, on the other hand,183

a sufficient (expected) number of tests must be available for each item to guarantee a184

small approximation ratio. Maybe surprisingly, striking a good balance between these185

4

This manuscript is for review purposes only.

conflicting objectives is indeed possible.186

Our algorithms are inherently adaptive. Indeed, we show that non-adaptive algo-187

rithms can only obtain an approximation ratio of Ω(log min(n, k)) w.r.t. the expected188

value of the best testing strategy. As such, in contrast to probing, there is a non-189

constant adaptivity gap. We adjust our algorithms and obtain non-adaptive variants190

that yield asymptotically tight upper bounds on the adaptivity gap.191

Our algorithms are conceptually different than the adaptive greedy procedures192

considered in the example above. They can be interpreted to consider items sequen-193

tially – we apply tests to the item under consideration until the item is accepted or194

discarded, and then the next item is tested (if tests remain). Therefore, the algo-195

rithms and analyses naturally extend to the sequential variant of the problem, where196

all tests on a single item must be applied consecutively, and the order of items for197

testing is externally given. For this variant, we also provide an efficient algorithm to198

compute the optimal testing strategy based on a dynamic program.199

A preliminary version of the present paper was published in the proceedings of200

the 30th International Joint Conference on Artificial Intelligence (IJCAI) [23]. The201

present version extends the extended abstract by tight results on adaptivity gaps and202

general quantile tests.203

Outline. After a discussion of related work in the subsequent Section 1.4, we204

describe in Section 2 our algorithm and the analysis for the case of independent and205

identically distributed (i.i.d.) items with Di = Dj = D for all i, j ∈ N . In Section 2.1206

we bound the adaptivity gap for i.i.d. distributions to Θ(log min(n, k)).207

Our algorithm for the general case is considered in Section 3. In Section 3.1 we208

bound the adaptivity gap for the general case to Θ(log min(n, k)). In Section 4 we209

consider the sequential testing problem, where items have to be tested sequentially in210

a given order. We conclude in Section 5.211

1.4. Related Work. Stochastic probing problems in which probing eradicates212

all uncertainty about the tested item have been extensively studied. A prominent line213

of work [1, 5, 19–21] is concerned with fairly general models in which an—according214

to some given downward-closed set system—feasible set of (often Bernoulli) variables215

can be adaptively probed. When probing is done, a set of items that is feasible accord-216

ing to another given downward-closed set system can be selected, and the obtained217

value is an (e.g., submodular) function of the selected items. The goal is typically218

to develop algorithms that approximate the best strategy and whose guarantees are219

parameterized by the respective instance, e.g., parameters of the set systems corre-220

sponding to the constraints [6, 8, 10, 12, 27]. One approach to achieve constant-factor221

approximations is bounding both the adaptivity gap and the approximation factor of222

some non-adaptive algorithm by a constant; see, e.g, [20]. In this light, our approx-223

imation results, which are based on algorithms that work in the sequential setting,224

can be viewed as a bound on the “sequentiality gap” of our problem.225

Instead of having to satisfy a hard constraint on the set of items that can be226

probed, in the Pandora’s box problem one is charged for probing any of the items (for227

which the inherent values are typically independently distributed) [29]. The goal is to228

maximize the expected difference between the value of the chosen item and the probing229

cost. While in the standard model the picked item must be a previously probed item,230

in [7] any single item can be picked, but again probing eradicates all uncertainty. In231

a Markovian model [18], each probe only advances a Markov chain associated with232

the respective item by a single step. This is a model with limited information, but in233

contrast to our model an item may only be picked once the Markov chain has reached234

5

This manuscript is for review purposes only.

a terminal state, i.e., once all uncertainty has been eradicated.235

Some of these models have been generalized to variants, in which multiple items236

can be chosen; see, e.g., [28]. In the standard model, an optimal algorithm is known;237

more generally, one often resorts to approximation algorithms, sometimes even in the238

form of a PTAS [14].239

The prophet-inequality setting [25] is different in that the values of all items are240

revealed eventually and there is no probing cost. In the classic version, items are241

revealed in an adversarial order, and a single item can only be picked at the time242

of its revelation. Then, the best strategy can be computed via a simple dynamic243

program, but the challenge is typically to compare the performance with that of an244

all-knowing prophet. When the order of revelation can be chosen, computing the best245

strategy becomes less tractable [2]. We also refer to surveys on this topic [11,26].246

Let us emphasize that our problem is quite different from multi-armed bandit247

models (e.g., [15]), in which typically actions have random payoffs from unknown248

distributions, from which samples are repeatedly drawn and revealed. In contrast,249

here each value for an item comes from a known distribution, is sampled only once250

in the beginning and only revealed gradually (upon testing). This setting calls for251

analyses different from the “regret”-style analysis typically applied for multi-armed252

bandit models.253

2. Identical Distributions. The main result in this section is our algorithm254

ALGiid, which has a constant approximation ratio for identical distributions. The255

algorithm only depends on the test results and uses no additional information about256

the distribution. It is simple and achieves a good constant approximation guarantee,257

even with respect to the optimum in the standard probing model, where each test258

reveals the realization. We first discuss it in the setting of median tests, i.e., c = 1/2.259

Algorithm ALGiid. Let k′ = 2dlog2 min{n,k+1}e the smallest power of 2 that is260

larger or equal to min{n, k + 1}. We use the short notation δq = D−1(q). Our algo-261

rithm ALGiid performs tests on the items sequentially. For each item i, it repeatedly262

tests the item until it is clear whether it’s value vi is larger or equal to δ(k′−1)/k′ or263

not, i.e., until there are log2(k′) positive tests in a row or until there is a single nega-264

tive test. If vi ≥ δ(k′−1)/k′ , we call this item a good item. In this case, the algorithm265

selects i and terminates. Otherwise, it continues by testing item i+1. If the algorithm266

fails to find a good item or runs out of tests, it selects a random item.267

We slightly abuse notation and use ALGiid to denote our algorithm and E [ALGiid]268

for the expected value of the chosen item. Our guarantee will relate this to the269

expected value of ProbeOPTk+1, the value obtained in the standard probing model270

by seeing the exact realization of the first k + 1 items and selecting the one with the271

best realization. Instead of probing k items and then possibly taking an (unprobed)272

item k+1 (in case k < n and all observed realizations are below the expectation of D),273

we allow ProbeOPTk+1 to also reveal the realization of item k+ 1 and then select the274

best realization from the k+1 probed items. Clearly, observing exact realizations and275

the additional probe imply that E [ProbeOPTk+1] upper bounds the value achievable276

by any algorithm in the testing scenario with k tests. Our main result in this section277

is the following.278

Theorem 2.1. ALGiid runs in polynomial time and obtains a value of279

E [ALGiid] ≥
(

1− 1
4
√

e
− o(1)

)
·E [ProbeOPTk+1] ,280

where the asymptotics is in min(n, k).281

6

This manuscript is for review purposes only.

Proof. We first assume k < n and discuss the case k ≥ n below. In the subsequent282

Lemma 2.2, we prove a lower bound on the probability that ALGiid finds a good item.283

We start by observing that the expected value of any good item is at least284

E [ProbeOPTk+1]: Clearly, in ProbeOPTk+1 we have probability 1/(k + 1) to se-285

lect each of the first k+ 1 items. Under the condition that the probability of selecting286

an item is 1/(k+ 1), by stochastic dominance, the largest-possible expectation of the287

item’s value is E
[
vi | vi ≥ δk/(k+1)

]
. Additionally, E [vi | vi ≥ δx] is increasing in x288

and k′ ≥ k+1. Hence, E [ProbeOPTk+1] ≤ E
[
vi | vi ≥ δ(k′−1)/k′

]
, the expected value289

of a good item.290

By Lemma 2.2 below, we can conclude that the algorithm finds and selects a good291

item with probability at least292

α = 1−
1− 1

2k′

1− log2(k
′)

k′

· 1
√

e
k+1
k′+1

− 1

2k−13
≥ 1− 1

4
√

e
− o(1),293

where the asymptotics is in k = min(n, k). Since a good item has expected value of294

at least E [ProbeOPTk+1] the approximation factor is at least α.295

Finally, let us briefly discuss the case k ≥ n− 1. We can restrict ALGiid to n− 1296

tests and apply the same analysis, where n−1 replaces k. On the other hand, clearly,297

E [ProbeOPTk+1] = E [ProbeOPTn] for every k ≥ n− 1, since k + 1 ≥ n probes are298

sufficient to reveal all values of all n items.299

Lemma 2.2. The probability that ALGiid runs out of tests before finding a good300

item can be upper bounded by301

1− 1
2k′

1− log2(k
′)

k′

· 1
√

e
k+1
k′+1

+
1

2k−13
.302

The proof of Lemma 2.2 is rather technical and deferred to the appendix. Instead,303

we discuss a simple argument that the lower bound α on the competitive ratio in the304

proof of Theorem 2.1 is a constant, i.e., with probability Ω(1) the algorithm selects a305

good item before running out of tests.306

Lemma 2.3. The probability that ALGiid finds a good item before running out of307

tests can be lower bounded by a constant.308

Proof. If n is constant, then so are k and k′. Then, there is a constant probability309

that the first item is good and identified by the first log2 k
′ tests. For the rest of the310

proof, we therefore assume n > k ≥ 6 and, hence, k′ ≥ 8. Then the probability that311

the first bk/4c items contain at least one good one is312

1− (1− 1/k′)bk/4c ≥ 1− (1− 1/k′)bk
′/8c = 1− (1− 1/k′)k

′/8 ≥ 1− 1

e1/8
.313

For the rest of the proof, we condition on the fact that there is a good item among314

the first bk/4c items, denoted by F1..bk/4c. We now upper bound the probability that315

we do not identify the first good item by 18/19. This happens when we have less316

than log2 k
′ remaining tests upon arriving at the first good item. Thus, we bound the317

probability that we use more than k − log2 k
′ tests before arriving at the first good318

7

This manuscript is for review purposes only.

item. We use Fj to denote the event that item j is the first good item. Then,319

Pr
[
less than log2 k

′ tests remain for the first good item | F1..bk/4c
]

=

bk/4c∑
j=1

Pr
[
Fj ∧ (less than log2 k

′ tests remain for j)| F1..bk/4c
]

=

bk/4c∑
j=1

Pr
[
Fj ∧ (more than k − log2 k

′ tests used before j)| F1..bk/4c
]

=

bk/4c∑
j=1

Pr
[
Fj | F1..bk/4c

]
·

Pr
[
more than k − log2 k

′ tests used before j | Fj ∩ F1..bk/4c
]

=

bk/4c∑
j=1

Pr
[
Fj | F1..bk/4c

]
Pr [more than k − log2 k

′ tests used before j | Fj] .

320

Consider the event of using more than k− log2 k
′ tests on the bad items {1, . . . , j−1}.321

It has the same probability as the following event: In an infinite stream of bad items,322

for k − log2 k
′ tests we see less than j − 1 negative test results, or equivalently, more323

than k − log2 k
′ − j + 1 positive test results. We use the random variable X for the324

number of positive test results and obtain325

bk/4c∑
j=1

Pr
[
Fj | F1..bk/4c

]
·Pr [more than k − log2 k

′ tests used before j | Fj]

=

bk/4c∑
j=1

Pr
[
Fj | F1..bk/4c

]
·Pr [X > k − log2 k

′ − j + 1]

≤
bk/4c∑
j=1

Pr
[
Fj | F1..bk/4c

]
·Pr [X > k − log2 k

′ − bk/4c+ 1]

= Pr [X > k − log2 k
′ − bk/4c+ 1] ≤ E [X]

k − log2 k
′ − bk4 c+ 1

,

326

where the last inequality is due to Markov’s inequality. Note that whenever we test327

a bad item, the probability of a positive test is strictly less than 1/2. We obtain328

E [X]

k − log2 k
′ − bk4 c+ 1

<
1
2 (k − log2 k

′)

k − bk4 c − log2 k
′ + 1

≤
1
2 (k − log2 k

′)
3
4 (k − log2 k

′)− 1
4 log2 k

′ + 1

≤
1
2 (k − log2 k

′)
3
4 (k − log2 k

′)− 2
9 (k − log2 k

′)
=

18

19
,

329

where the last inequality follows because log2 k
′ − 1 ≤ 8

9 (k − log2(k′)) for k ≥ 6.330

Hence, conditioned on F1..bk/4c, the probability that we fail to identify the first331

good item is at most 18/19, so with probability at least 1/19, we have enough tests332

to identify it. Overall, by multiplying with the probability of F1..bk/4c, we get that a333

good item is found with probability at least (1− e−1/8)/19 ∈ Ω(1).334

8

This manuscript is for review purposes only.

Testing for a c-quantile. Our analysis can be extended rather generically to the335

case when each test reveals if the realization is above or below a c-quantile of the336

conditional distribution for an item, for any constant c ∈ (0, 1). Then, using337

k′ =

(
1

1− c

)dlog1/(1−c) min{n,k+1}e

,338

we define a good item as one where the first r = log1/(1−c)(k
′) = dlog1/(1−c)(min{n, k+339

1})e tests are all positive. The probability that we get such an item can be bounded340

by generalizing Lemma 2.2 from c = 1/2 to c ∈ (0, 1). Then the probability to find a341

good item is at least342

αc = 1− 1

ec(1−c)
− o(1),343

which bounds the approximation ratio of the algorithm. For a more detailed discussion344

see the appendix.345

2.1. Adaptivity Gap. Note that ALGiid is inherently adaptive in choosing the346

next item to test. A popular approach in probing problems is to design simpler347

non-adaptive probing strategies. Notably, in standard probing there is a constant348

adaptivity gap – the expected values of optimal adaptive and non-adaptive algorithms349

differ by at most a constant factor.350

Here we show that testing is different in the sense that the adaptivity gap is351

non-constant.352

Theorem 2.4. The adaptivity gap for testing with identical distributions is in353

Ω(log min{k, n}).354

Proof. Suppose there are k = 2j tests and n ≥ k items with a gold-nugget distri-355

bution, for an integer j > 1. In this distribution, we have vi = k with probability 1/k356

and vi = 0 otherwise. It is easy to see that by probing k items, we obtain an expected357

value of Ω(k), which asymptotically is also obtained by (ALGiid and, hence) the best358

adaptive testing strategy.359

Now consider any non-adaptive testing strategy. The strategy divides the k tests360

onto the items before seeing any result. We number the items by the number of tests361

in non-increasing order, i.e., item i receives ki tests, where k1 ≥ k2 ≥ . . . ≥ kn and362 ∑n
i=1 ki = k.363

W.l.o.g. we apply at most ki ≤ j = log2 k tests to any item i, since with this364

number of tests we exactly learn the realization of that item. Consider the items in365

order of the numbering. With probability 1/2k1 all k1 tests on item 1 are positive.366

Then this item has conditional expectation 2k1 , which is highest possible among all367

items and gets selected. If any of the k1 tests on item 1 is negative, the item has value368

0, is discarded, and we consider the k2 tests on item 2. With probability 1/2k2 all of369

them are positive, and then item 2 has conditional expectation 2k2 . This is highest370

possible among all items, and item 2 gets selected. Otherwise, item 2 has value 0, is371

not selected, and we consider the k3 tests on item 3, etc. Overall, the expected value372

9

This manuscript is for review purposes only.

of the policy is373

1

2k1
· 2k1 +

(
1− 1

2k1

)
· 1

2k2
· 2k2 + . . .+

n−1∏
i=1

(
1− 1

2ki

)
· 1

2kn
· 2kn

= 1 +

n−1∑
`=1

∏̀
i=1

(
1− 1

2ki

)
︸ ︷︷ ︸
=: g(k1,...,k`)

= 1 +

n−1∑
`=1

g(k1, . . . , k`).
374

To derive an upper bound, consider each g(k1, . . . , k`) separately. g(k1, . . . , k`) is375

non-decreasing and concave when viewed as a continuous function in any ki, and the376

dependence on all ki is symmetric. We have a constraint
∑n

i=1 ki ≤ k. As such, g377

attains a maximum when k1 = . . . = k` = k/`:378

g(k1, . . . , k`) ≤
(

1− 1

2k/`

)`

.379

It is easy to see that the right term strictly decreases for ` = 1, . . . , k from 1 − 1/2k380

to (1/2)k. For ` ≤ 2k/(log2 k), we overestimate the value of
(
1− 1

2k/`

)` ≤ 1. For381

2k/(log2(k)) < ` ≤ k we see that382

(
1− 1

2k/`

)`

<

(
1− 1

2log2(k)/2

)2k/(log2(k))

=

((
1− 1√

k

)√k
)2
√
k/(log2(k))

= o(1/k).383

Finally for all ` > k, it must be that k` = 0, since ki are non-negative integers, so at384

most k of them can be positive. Hence,
∑n−1

`=k+1 g(k1, . . . , k`) = 0.385

Overall, we see that386

1 +

n−1∑
`=1

g(k1, . . . , k`) < 1 +
2k

log2(k)
+ k · o(1/k) = O

(
k

log2 k

)
.387

Hence, the adaptivity gap is Ω(log k) = Ω(log min{n, k}).388

For an upper bound on the adaptivity gap, consider a non-adaptive variant of389

ALGiid. We simply pick bk′/(log2(k′))c items and apply log2(k′) tests to each of390

these items. The probability that we see a good item is at least391

1−
(

1− 1

2log2 k′

)b k′
log2 k′ c

= 1−
(

1− 1

k′

)b k′
log2 k′ c

= −
bk′/ log2 k′c∑

`=1

(
bk′/ log2 k

′c
`

)(
− 1

k′

)`

=

(
bk′/ log2 k

′c
1

)
· 1

k′
−
(
bk′/ log2 k

′c
2

)
·
(

1

k′

)2

± . . .

= Ω

(
1

log k′

)
−O

(
1

(log k′)2

)
392

Hence, the adaptivity gap is O(log k′) = O(log min{n, k}). We will slightly generalize393

this idea in Section 3.1 below. In Theorem 3.5 we obtain a similar upper bound even394

for general distributions.395

10

This manuscript is for review purposes only.

3. General Distributions. Our main result in this section is an algorithm that396

has a constant approximation ratio for non-identical, independent distributions Di.397

As in the previous section, we first concentrate on the case c = 1/2, and we first398

assume k < n.399

In the following, we first describe an (approximate) upper bound on the value400

that the optimum obtains. From this upper bound, we can derive a value pi such401

that is sufficient to select item i with constant probability when it realizes above its402

(1−Ω(pi))-quantile. We then discuss how to design an algorithm that achieves that.403

Eventually, we formally analyze the resulting algorithm.404

We again relate the performance to E [ProbeOPT`], the expected value of the405

optimal strategy in the standard probing model that can adaptively inspect ` ≤ n406

of the items, learns their exact realization and then picks the best realization it has407

seen.408

When adaptively inspecting the exact value of k items, we might eventually want409

to resort to an uninspected item with the maximum expected value (if all realizations410

are below that expectation). Instead, for ProbeOPTk+1 we can also learn the realiza-411

tion of this additional uninspected item and then pick the best one among the k + 1412

items seen. This is clearly stronger than what we can achieve in the testing model413

with k tests. Our main result is to provide an algorithm with constant approximation414

w.r.t. E [ProbeOPTk+1].415

Again, this also implies an Ω(1)-approximation for k ≥ n, since n − 1 probes to416

suffice to achieve a Ω(1)-approximation with respect to E [ProbeOPTn], which always417

learns and selects the best item—a trivial upper bound on what can be achieved with418

any kind of testing. As such, we can run our strategy using only n − 1 tests (and419

ignoring the rest). For the remainder of the section, we therefore concentrate on the420

case k < n.421

As a first step, we apply a reduction to concentrate on a smaller number of422

relevant items. We do so using the following result from the literature, rephrased for423

our needs.424

Theorem 3.1 (Theorem 2 in [4]). There exists an algorithm that, given k ∈ N,
in polynomial time selects a subset Nk+1 ⊆ N of the items with |Nk+1| = k + 1 and

E

[
max

i∈Nk+1

vi

]
≥
(

1− 1

e

)
·E [ProbeOPTk+1] .

In contrast to [4] we have direct access to the distributions. By inspecting their425

analysis, we see that this implies the stated approximation without reduction by an426

ε > 0.427

Now given the subset Nk+1, we apply a further random sampling step—we pick
a uniformly random subset N ′ ⊂ Nk+1 of k′ items. Clearly, we sample the item with
the best realization from Nk+1 with probability k′/(k + 1). Thus,

E

[
max
i∈N ′

vi

]
≥ k′

k + 1
·E
[

max
i∈Nk+1

vi

]
.

We choose k′ := bk/10c so that k′ is smaller than k+1 by a large-enough constant428

factor in order to be able to perform enough tests on the items of N ′. Also, since429

k′ ∈ Ω(k), we get E [maxi∈N ′ vi] = Ω(1) · E [ProbeOPTk+1]. For convenience, we430

renumber the items such that N ′ = [k′] = {1, . . . , k′}.431

Furthermore, we assume k > k0 for a suitable constant (k0 = 50 is sufficient),432

since our analysis relies on concentration bounds and we need to ensure k′ ∈ N.433

11

This manuscript is for review purposes only.

Otherwise, for constant k ≤ k0, selecting an item with the best (a priori) expectation434

ALGgen trivially guarantees a constant-factor approximation.435

It remains to achieve a constant approximation to E
[
maxi∈[k′] vi

]
under the as-436

sumption k > k0. Let Ei be the event that i has the largest value of all items in N ′.437

Here, we break ties in order of lower item numbers. We can write438

(3.1) E

[
max
i∈[k′]

vi

]
=

k′∑
i=1

Pr [Ei] ·E [vi | Ei] .439

In the following we will use pi as shorthand for Pr [Ei] for all i ∈ [k′]. Given explicit440

representations of the discrete distributions Di for items in [k′], the values pi can be441

computed easily in polynomial time1.442

We try to pick each item i ∈ [k′] that realizes to any fixed value above the (1 −443

Ω(pi))-quantile with constant probability. Then, with (3.1) and a similar argument as444

for identical distributions, we indeed get an Ω(1)-approximation. Our algorithm again445

operates sequentially over the items. It considers items 1, . . . , k′ in arbitrary order,446

say, in ascending order of their indices. Upon considering item i, it (approximately)447

checks if vi realizes above the 1− pi quantile of Di. If this check succeeds, it simply448

selects item i; otherwise it discards i and proceeds with the next item.449

Assuming we could perform the check for the 1 − pi quantile not only approxi-450

mately but exactly in our model (say, using Θ(log(1/pi)) tests), this algorithm would451

not obtain all realizations above the 1− Ω(pi) quantile with constant probability for452

all i; indeed, we need a specific approximate check. First, p1 may be arbitrarily close453

to 1. Then we are unable to guarantee to arrive at item 2 with a constant probability454

and thereby fail to select v2 with constant probability when v2 realizes to a value455

above the 1 − Ω(p2) quantile of D2. Second, p1 may be so small that Θ(− log p1)456

exceeds k, the number of available tests. Then we never select v1.457

We address both issues by defining458

qi =
max{pi, 1/k′}

8
∈ Ω(pi)459

and using qi in place of pi. Lifting values smaller than 1/k′ to 1/k′ can be seen as460

an idea borrowed from the setting of identical distributions. Dividing the resulting461

probability by 8 makes sure that there is a constant lower bound on the probability462

that for any given item i the algorithm eventually considers i. A similar idea is used463

in Bayesian mechanism design [3, 9] and LP-based probing algorithms [6].464

To (approximately) check more easily if vi realizes above D−1i (1− qi), we round465

qi to a power of 2 (with negative exponent). We define q̃i to be the largest power of466

2 which is at most qi. Having arrived at item i, our algorithm tests item i at most467

− log2 q̃i ∈ N times. As soon as one of the tests is negative, we stop testing item i and468

continue with the next item; if all tests are positive, we select item i. This concludes469

the description of our algorithm, which we summarize as ALGgen. For a formal and470

precise description, see Algorithm 3.1. Recall that the analysis for the case k > n− 1471

follows from restricting attention to min(k, n) tests.472

The main result is the following theorem. By slight misuse of notation, we use473

E [ALGgen] to denote the expected value of the item selected by our algorithm.474

1For each possible realization vi of item i, compute the probability that item i has value vi, all
items j = 1, . . . , i − 1 have a realization vj < vi, and all items j = i + 1, . . . , k′ have a realization
vj ≤ vi. The product of these numbers is the probability that vi constitutes the maximum of all
realizations. pi is the sum of probabilities computed for all realizations of item i.

12

This manuscript is for review purposes only.

Algorithm 3.1 ALGgen for General Distributions

Input : Distributions D1, . . . , Dn over R+, k ∈ N.
Output: The index of the picked item.

1 if k ≤ k0, return i ∈ arg maxi∈[n] E [vi].
2 Required tests: k ← min(k, n− 1).
3 Select set Nk+1 of items using Theorem 3.1.
4 k′ ← bk/10c.
5 Select set N ′ of k′ items from Nk+1 uniformly at random; w.l.o.g. N ′ = [k′].
6 for i in [k′]:
7 Ei is the event that arg maxi∈[k′] vi is item i (breaking ties arbitrarily).

8 qi ← max{Pr [Ei] , 1/k′}/8.

9 q̃i ← 2b− log2 qic.
10 for j in [− log2 q̃i]:
11 if test is available:
12 test distribution Di.
13 if negative test result: break inner loop.
14 if j = − log2 q̃i: return i.

15 return any i ∈ [k′]

Theorem 3.2. ALGgen runs in polynomial time and achieves an expected value475

of476

E [ALGgen] ≥ Ω(1) ·E [ProbeOPTk+1] .477

To prove this theorem, we first show the following lemma.478

Lemma 3.3. Suppose k > k0. There is a constant r > 0 such that, for any i ∈ [k′],479

the probability that ALGgen arrives at item i with at least log2 k
′ + 4 unused tests is480

at least r.481

Proof. It suffices to consider the event that ALGgen arrives at the last item,482

i.e., item k′, with log2 k
′ + 4 unused tests, called F in the following, and bound its483

probability from below by a constant. By the union bound, we can write484

(3.2) Pr [F] ≥ 1−Pr [F1]−Pr [F2] .485

Here, F1 is the event that the algorithm picks any vi prior to even considering vk′ . To486

define F2, we view the tests as independent, unbiased coins and realize all of them,487

even those that are potentially not used by the algorithm. Now F2 is the event that488

among the first k−(log2 k
′+4) tests, fewer than k′−1 have result 0. Indeed, whenever489

F does not occur, at least one of F1 and F2 occurs.490

We first consider F1. Note that
∑

i∈[k′] pi = 1. Since max{pi, 1/k′} ≤ pi+1/k′ for491

all i ∈ [k′], it follows that
∑

i∈[k′] max{pi, 1/k′} ≤ 2, so
∑

i∈[k′] qi ≤ 1/4 by definition492

of qi. Then, using q̃i ≤ qi for all i ∈ [k′], we have
∑

i∈[k′] q̃i ≤ 1/4.493

Since the probability that we pick item i is at most q̃i (for that to happen, vi has494

to realize above the 1− q̃i quantile of Di), again by the union bound, the probability495

that we pick any item at all is at most 1/4. Therefore496

(3.3) Pr [F1] ≤ 1

4
.497

13

This manuscript is for review purposes only.

It remains to bound Pr [F2] from above and away from 3/4. Towards applying498

Markov’s inequality define X to be the number of positive tests among the first bk/2c499

tests. Then X has expectation at most k/4. We get500

Pr [F2] ≤ Pr

[
X ≥ 4k

10

]
≤ Pr

[
X ≥

(
1 +

3

5

)
·E [X]

]
≤ 5

8
,(3.4)501

502

where the first inequality we use follows using k > k0 = 50: When F2 occurs, we503

have less than k′ ≤ k/10 tests with result 0 among the first bk/2c < k − (log2 k
′ + 4)504

tests, so X ≥ k/2 − k′ ≥ 4k/10 follows. The second inequality follows by plugging505

in the upper bound on the expected value of X, and the last inequality follows from506

Markov’s inequality (clearly, X ≥ 0).507

The claim follows from combining Inequalities (3.3) and (3.4) in (3.2).508

With this lemma at hand, we can prove the main theorem.509

Proof of Theorem 3.2. First consider the case k ≤ k0 = 50. We denote the re-510

turned index by i? ∈ arg maxi∈[n] E [vi]. Here we overestimate E [ProbeOPTk+1] by511

selecting all k+ 1 observed realizations and obtaining the sum of the values. For this512

objective, it is trivially optimal to select the set I?k+1 which we define to be the set513

of k + 1 items with highest expectation. Since ALGgen selects the single item with514

highest expectation, it recovers at least515

E [vi?] ≥ 1

k + 1
·
∑

i∈I?
k+1

E [vi] ≥
1

k0 + 1
·E [ProbeOPTk+1] ,516

implying our claim.517

Now consider the case k > k0 = 50. By Lemma 3.3, there exists a constant r > 0518

such that with probability at least r, for any given item i, the algorithm arrives at i519

with at least − log2 q̃i ≤ log2 k
′ + 4 unused tests. Hence,520

E [ALGgen] ≥
k′∑
i=1

r ·Pr
[
vi ≥ D−1i (1− q̃i)

]
·E
[
vi | vi ≥ D−1i (1− q̃i)

]
521

= r ·
k′∑
i=1

q̃i ·E
[
vi | vi ≥ D−1i (1− q̃i)

]
522

≥ r ·
k′∑
i=1

pi
16
·E
[
vi | vi ≥ D−1i

(
1− pi

16

)]
523

≥ r ·
k′∑
i=1

1

16
·Pr [Ei] ·E [vi | Ei] =

r

16
·E
[

max
i∈[k′]

vi

]
.(3.5)524

525

In the first step, we use the independence of arriving at item i and its realization vi.526

The second step uses the definition of Di. The third step follows by monotonicity of527

x · E
[
vi | vi ≥ D−1i (1− x)

]
as a function of x and q̃i ≥ qi/2 ≥ pi/16. In the fourth528

step, we use that pi = Pr [Ei] for the first part and stochastic dominance to compare529

the two expected values. The last step uses the definition of Ei.530

Recalling the discussion of Theorem 3.1 and the random sampling step, we observe531

(3.6) E

[
max
i∈[k′]

vi

]
≥
(

1− 1

e

)
· k′

k + 1
·E [ProbeOPTk+1] .532

14

This manuscript is for review purposes only.

The ratio follows by combining (3.5) and (3.6) with533

k′ =

⌊
k

10

⌋
≥ k

10
− 1 ≥ 1

13
(1.3k − 13) ≥ 1

13
(k + 2) ,534

as k ≥ 50. The running time of ALGgen is dominated by applying the algorithm of [4]535

and computing the values pi = Pr [Ei]. Both steps run in time polynomial in the536

input size.537

Testing for a c-quantile. When tests return whether the realization is above
or below the c-quantile for some constant c ∈ (0, 1) (instead of 1/2-quantile) of the
conditional probability distribution, the same techniques can be used to obtain an
Ω(1)-approximation. We provide a sketch of the adjusted algorithm ALG′gen and how
the arguments can be adjusted. We choose k′ := bc ·k/5c and k0 as a sufficiently large
constant (discussed below). With this adjusted definition of k′ and k0, we apply the
same steps as in ALGgen until line 5 of the algorithm. As in the c = 1/2 case, for
every i ∈ [k′] we can define a quantile

qi := max{pi, 1/k′} ·
c

4
.

Choosing q̃i to be the largest power of c with q̃i ≤ qi, we get538

(i) q̃i ≥ c · pi · c/4 for all i ∈ [k′],539

(ii) q̃i ≥ c/k′ · c/4 =: L for all i ∈ [k′],540

(iii)
∑

i∈[k′] q̃i ≤ c/2.541

We then apply lines 6–15 of ALGgen with this adjusted definition of q̃i and − log1/c q̃i542

instead of − log2 q̃i in lines 10 and 14. Consider the following more general version of543

Lemma 3.3.544

Lemma 3.4. Suppose k > k0. There is a constant r such that, for any i ∈ [k′],545

the probability that ALG′gen arrives at item i with at least blogc Lc unused tests is at546

least r.547

For the proof, we can use (iii) to bound Pr [F1] from above by c/2, where F1 is again548

the event that the algorithm picks any item before considering the final one. Similarly,549

F2 is again the event that the number of negative tests among the first k − blogc Lc550

tests is smaller than k′−1. To bound Pr [F2] we define X to be the number of positive551

tests among the first bk/2c tests, so that X has expected value at most (1− c) · k/2.552

Similarly to the previous analysis, we can write553

(3.7) Pr [F2] ≤ Pr

[
X ≥ 5k − 2ck

10

]
≤ Pr

[
X ≥ 5− 2c

5− 5c
·E [X]

]
≤ 5− 5c

5− 2c
< 1− c

2
.554

Towards the choice of k0, we assume it is large enough to exclude all (constantly555

many) small values of k for which bk/2c > k − blogc Lc. As such, we can assume556

bk/2c ≤ k − blogc Lc, and the first inequality of (3.7) follows because then F2 only557

occurs if X ≥ k/2−k′ ≥ (5k−2ck)/10. As before, the next step follows by the upper558

bound on E [X], the step after that using Markov’s inequality, and the final step by559

simple calculus. The proof of the constant-factor approximation is then analoguous560

to that of Theorem 3.2, using (i) and Lemma 3.4.561

3.1. Adaptivity Gap. Turning to the adaptivity gap, we show that a non-562

adaptive variant of ALGgen guarantees a logarithmic upper bound. The lower bound563

has been established for identical distributions in Theorem 2.4 above.564

15

This manuscript is for review purposes only.

Theorem 3.5. The adaptivity gap for testing with general distributions is in565

Θ(log min{k, n}).566

Proof. For the upper bound consider a non-adaptive variant of ALGgen. In this567

variant, we apply the same steps until line 5 of Algorithm 3.1. Then in line 6, instead568

of sequentially searching through all items from [k′], we pick a random subset N ′′ of569

bk′/ log2(16k′)c items from [k′]. Using the definitions of Ei, qi and q̃i as given in lines570

7–9 (using k′ and [k′]), we apply − log2 q̃i tests to each item i ∈ N ′′. Whenever there571

is at least one item i ∈ N ′′ for which all − log2 q̃i test are positive, we return such an572

item with smallest index.573

First, let us argue that we have enough tests to execute this algorithm. By defi-574

nition q̃i ≥ qi ≥ 1/(16k′), so − log2 q̃i ≤ log2(16k′). Overall, the algorithm considers575

bk′/ log2(16k′)c items and applies at most log2(16k′) tests to each item. In total,576

these sum to at most k′ ≤ k tests.577

Now consider the approximation ratio. Consider an instance and a given random578

draw of the values vi. Suppose we execute both ALGgen and the non-adaptive variant.579

We couple the random choices in these executions in the sense that both algorithms580

choose the same sets Nk+1 and N ′. Then, if ALGgen returns any item i, this must be581

the item from [k′] with smallest index such that all − log2 q̃i tests were positive. For582

the non-adaptive variant, this item is selected into N ′′ with probability583

k′

bk′/ log2(16k′)c
∈ Ω

(
1

log k′

)
,584

and in that case also gets returned. Hence, for every item i returned by ALGgen,585

the non-adaptive variant returns the same item with probability Ω(1/ log k′). The ex-586

pected value of the non-adaptive variant is therefore at least Ω(1/ log k′) ·E [ALGgen].587

Finally, note that ALGgen has a constant approximation ratio and k′ = Θ(min(k, n)).588

The theorem follows.589

4. Sequential Testing. We consider a sequential scenario of the testing prob-590

lem, in which tests for the same item must be conducted consecutively, and items591

must be tested in a given order. This restricts the algorithm and the optimal testing592

strategy in two ways.593

First, if a test series for an item j is stopped, j cannot be tested anymore. This594

restriction is very natural in many practical applications such as the hiring process595

discussed above. Typically, a candidate cannot be interviewed again after the job596

interview is finished. Additional applications for this assumption include flat viewings,597

inspection of second hand articles, or test series with time consuming test setups.598

Second, we restrict all testing to adhere to a fixed ordering of the items, i.e., the599

order of items, in which they can be tested, is given upfront. Note that this constraint600

has no bite for the i.i.d. scenario.601

Interestingly, all our results from the previous sections directly carry over to602

the sequential testing problem. Both our algorithms test each item using a single603

consecutive test series and can be applied when given any fixed order of items.604

Observation 4.1. Algorithms ALGiid and ALGgen run in polynomial time and605

obtain constant approximation factors for the sequential testing problem.606

4.1. A Dynamic Program for Sequential Testing. As the main result in607

this section, we show how to compute the optimal testing strategy in polynomial time.608

Theorem 4.2. The optimal strategy in the sequential testing problem can be com-609

puted in polynomial time.610

16

This manuscript is for review purposes only.

For the proof, we denote the test results of ki tests on some item i ∈ [n] by a vector611

R ∈ {0, 1}ki where 0 and 1 correspond to negative and positive tests, respectively.612

Moreover, we use Di,R for the distribution of vi conditioned on the test results R. For613

simplicity, we restrict to c = 1/2 in this section; a generalization to any c ∈ (0, 1) is614

straightforward.615

Observe that, in any given state of the system, optimal testing and selection616

decisions can be made knowing the instance parameters as well as617

(i) the first item inext that one has not stopped testing (w.l.o.g. inext ≤ n),618

(ii) the conditional distribution Dinext,R of the item tested last (if any; otherwise619

Dinext,R := ∅), where R are the results of the tests conducted on item inext,620

(iii) the conditional distribution Di?,R′ of a previously considered item (if any; other-621

wise Di?,R′ is the distribution ∅ that has mass 1 on value 0) i? that maximizes622

E [vi? | R′], where again R′ are the results of the tests conducted on i?, and623

(iv) the remaining number of tests.624

Due to the fixed ordering of items, we do not need to keep track of the history of all625

previously tested items, and (iii) suffices. More formally, we define626

Di := {Di,R | R ∈ {0, 1}ki , ki ∈ [k]},627

and each entry of our DP corresponds to a quadruple in628

(4.1) [n]×

{∅} ∪ ⋃
i∈[n]

Di

2

× {0, . . . , k},629

corresponding to the four parameters described above.630

One may be tempted to think that superpolynomial running time is required631

in the dynamic program because (ii) and (iii) depend on the outcomes of possibly632

ω(log k) tests, leading to 2ω(log k) = ω(poly(k)) different results of these tests and a633

seemingly superpolynomial cardinality of Di. The key observation, however, is that634

there is only a polynomial number of possibilities for Di,R, for any item i after O(k)635

tests with result R. This holds since distributions Di are discrete and come in explicit636

representation. Recall that a distribution D is called degenerate if |supp(D)| = 1. For637

simplicity, we use supp to denote the essential support of a distribution, which ignores638

elements of measure 0.639

Lemma 4.3. Suppose item i ∈ [n] has been tested ki ≤ k times. Then the distri-640

bution Di,R is non-degenerate for at most |supp(Di)| − 1 many distinct R ∈ {0, 1}ki .641

Proof. Let again i ∈ [n], ki ≤ k, and R ∈ {0, 1}ki . Note that Di,R is uniquely
defined through the inverse of its cumulative density function, denoted by D−1i,R :
[0, 1]→ R+. Furthermore note that

D−1i,R(x) = D−1i ((`+ x) · 2−ki) ∀x ∈ [0, 1]

for ` ∈ [2ki], the number represented by R when interpreted as binary number. Hence,642

when D−1i is constant on the interval IR := [`·2−ki , (`+1)·2−ki), then D−1i,R is constant643

(up to possibly ` · 2−ki) on its entire domain, and therefore Di,R is degenerate. To644

see that this is the case for all but |supp(Di)| − 1 many values of R, note that any645

two intervals IR′ and IR′′ for R′, R′′ ∈ {0, 1}ki and R′ 6= R′′ are disjoint. Since D−1646

is a step function with |supp(Di)| many steps, Di is indeed constant on IR for all but647

|supp(Di)| − 1 values of R.648

17

This manuscript is for review purposes only.

Hence, we can count the number of conditional distributions Di,R after ki ≤ k649

tests with results R as follows: If Di,R is degenerate, there are precisely |supp(Di)|650

different possibilities for Di,R. If Di,R is not degenerate, there are precisely k + 1651

possibilities for ki, and for each such possibility, there are at most |supp(Di)| − 1652

possibilities for Di,R by Lemma 4.3. Therefore |Di| ∈ O(k · |supp(vi)|), which is653

polynomial in the input length. Thus the cardinality of the set in Equation (4.1) and,654

hence, the number of DP entries is bounded by a polynomial in the input length.655

We now describe how to explicitly compute the DP entries, which are the ex-656

pected values that can be achieved starting in the situation described by the respec-657

tive quadruples. Towards this, consider a DP entry DP(inext, Dinext,R, Di?,R′ , k
′). We658

start by discussing base cases. If k′ = 0, then no more tests can be conduted, so659

the strategy just picks the box with largest expected value conditioned on all test660

outcomes, i.e.,661

DP(inext, Dinext,R,Di?,R′ , 0) :=

max

{
E [vinext | R] ,E [vi? | R′] , max

i∈{inext+1,...,n}
E [vi]

}
.

662

Furthermore, if inext = n and k′ ≥ 1, then further tests can only be conducted on663

item n, and they do not harm, so664

DP(n,Dn,R,Di?,R′ , k
′) :=

1

2
·DP(n,Dn,R+(1), Di?,R′ , k

′ − 1) +
1

2
·DP(n,Dn,R+(0), Di?,R′ , k

′ − 1),
665

where for a tuple a = (a1, . . . , ak), we let a + (ak+1) denote the result of appending666

ak+1 to a, i.e., (a1, . . . , ak+1). This concludes our discussion of the base cases.667

In general, when inext 6= n and k′ ≥ 1, we have to decide whether to perform a668

test on item inext or to move on to item inext + 1. The expected value of doing that669

can be computed similarly to the latter case. Therefore670

DP(inext, Dinext,R,Di?,R′ , k
′) :=

max

{
1

2
·DP(inext, Dinext,R+(1), Di?,R′ , k

′ − 1)

+
1

2
·DP(inext, Dinext,R+(0), Di?,R′ , k

′ − 1),

DP(inext + 1, Dinext+1,(), D
?, k′)

}
,

671

where () denotes the null tuple, and D? is the (in case of a tie, any) distribution672

of Dinext,R and Di?,R′ that maximizes the expected value drawn from the respective673

distribution. Note that Dinext+1,∅ = Dinext+1.674

Then DP(1, D1,(), ∅, k) contains the expected value extracted by the optimal test-675

ing strategy. To obtain the optimal strategy, we perform the profit-maximizing action676

at all times (as usual). As a conclusion, Theorem 4.2 follows.677

5. Conclusion. A strong and, arguably, unrealistic assumption in existing sto-678

chastic probing models is that every probe reveals full information about the probed679

item. We initiate research that addresses this shortcoming and introduce a first natu-680

ral model where repeated testing of a single item gradually reveals more information.681

For this model, we provide polynomial-time algorithms with constant approximation682

18

This manuscript is for review purposes only.

factors for both i.i.d. and general independent, non-negative distributions. We also683

tightly bound the adaptivity gap to a logarithmic factor.684

An interesting direction for future work are hardness results for stochastic probing685

problems. Only little is known about computational hardness in the standard model686

of probing: Computing the best non-adaptive strategy for a closely related standard687

probing model is known to be NP-hard [16]. For a large class of such stochastic opti-688

mization problems hardness (sometimes even w.r.t. #P) is merely conjectured [14]. In689

the context of our work, tight lower bounds for the ratio of optimal probing and test-690

ing strategies, or the approximability of the optimal testing algorithm are fascinating691

open problems.692

Another direction for future work is to consider correlated random variables. For693

related problems in online stopping, the versions with correlations are sometimes694

hopeless [22], and only few positive results are known [24].695

More generally, there is potential for extending the rich theory on standard prob-696

ing models towards tests that yield only limited information, including cases in which697

the learner can choose a set of items instead of a single one.698

Acknowledgements. Martin Hoefer was supported by DFG grants Ho 3831/5-699

1, 6-1 and 7-1. Kevin Schewior was supported in part by the Independent Research700

Fund Denmark, Natural Sciences, grant DFF-0135-00018B.701

REFERENCES702

[1] M. Adamczyk, M. Sviridenko, and J. Ward, Submodular stochastic probing on matroids, in703
Symp. Theoretical Aspects of Computer Science (STACS), 2014, pp. 29–40.704

[2] S. Agrawal, J. Sethuraman, and X. Zhang, On optimal ordering in the optimal stopping705
problem, in ACM Conf. Economics and Computation (EC), 2020, pp. 187–188.706

[3] S. Alaei, Bayesian combinatorial auctions: Expanding single buyer mechanisms to many buy-707
ers, SIAM J. Comput., 43 (2014), pp. 930–972.708

[4] A. Asadpour and H. Nazerzadeh, Maximizing stochastic monotone submodular functions,709
Manag. Sci., 62 (2016), pp. 2374–2391.710

[5] A. Asadpour, H. Nazerzadeh, and A. Saberi, Stochastic submodular maximization, in Work-711
shop on Internet and Network Economics (WINE), 2008, pp. 477–489.712

[6] N. Bansal, A. Gupta, J. Li, J. Mestre, V. Nagarajan, and A. Rudra, When LP is the713
cure for your matching woes: Improved bounds for stochastic matchings, Algorithmica, 63714
(2012), pp. 733–762.715

[7] H. Beyhaghi and R. Kleinberg, Pandora’s problem with nonobligatory inspection, in ACM716
Conf. Economics and Computation (EC), 2019, pp. 131–132.717

[8] A. Bhalgat, A. Goel, and S. Khanna, Improved approximation results for stochastic knap-718
sack problems, in ACM-SIAM Symp. Discrete Algorithms (SODA), 2011, pp. 1647–1665.719

[9] S. Chawla, J. Hartline, D. Malec, and B. Sivan, Multi-parameter mechanism design and720
sequential posted pricing, in ACM Symp. Theory of Computing (STOC), 2010, pp. 311–320.721

[10] N. Chen, N. Immorlica, A. R. Karlin, M. Mahdian, and A. Rudra, Approximating matches722
made in heaven, in Int. Colloq. Automata, Languages and Programming (ICALP), 2009,723
pp. 266–278.724

[11] J. R. Correa, P. Foncea, R. Hoeksma, T. Oosterwijk, and T. Vredeveld, Recent devel-725
opments in prophet inequalities, SIGecom Exch., 17 (2018), pp. 61–70.726

[12] B. C. Dean, M. X. Goemans, and J. Vondrák, Approximating the stochastic knapsack prob-727
lem: The benefit of adaptivity, Math. Oper. Res., 33 (2008), pp. 945–964.728

[13] W. Feller, An introduction to probability theory and its applications, John Wiley & Sons,729
Inc., 1957.730

[14] H. Fu, J. Li, and P. Xu, A PTAS for a class of stochastic dynamic programs, in Int. Colloq.731
Automata, Languages, and Programming (ICALP), vol. 107, 2018, pp. 56:1–56:14.732

[15] J. C. Gittins, Bandit processes and dynamic allocation indices, J. Royal Stat. Soc. Ser. B,733
(1979), pp. 148–177.734

[16] A. Goel, S. Guha, and K. Munagala, How to probe for an extreme value, ACM Trans.735
Algorithms, 7 (2010), pp. 12:1–12:20.736

19

This manuscript is for review purposes only.

[17] D. Golovin and A. Krause, Adaptive submodularity: Theory and applications in active learn-737
ing and stochastic optimization, J. Artif. Intell. Res., 42 (2011), pp. 427–486.738

[18] A. Gupta, H. Jiang, Z. Scully, and S. Singla, The markovian price of information, in739
Integer Programming and Combinatorial Optimization (IPCO), 2019, pp. 233–246.740

[19] A. Gupta and V. Nagarajan, A stochastic probing problem with applications, in Integer741
Programming and Combinatorial Optimization (IPCO), 2013, pp. 205–216.742

[20] A. Gupta, V. Nagarajan, and S. Singla, Algorithms and adaptivity gaps for stochastic743
probing, in ACM-SIAM Symp. Discrete Algorithms (SODA), 2016, pp. 1731–1747.744

[21] A. Gupta, V. Nagarajan, and S. Singla, Adaptivity gaps for stochastic probing: Submodular745
and XOS functions, in ACM-SIAM Symp. Discrete Algorithms (SODA), 2017, pp. 1688–746
1702.747

[22] T. P. Hill and R. P. Kertz, A survey of prophet inequalities in optimal stopping theory,748
Contemp. Math., 125 (1992), pp. 191–207.749

[23] M. Hoefer, K. Schewior, and D. Schmand, Stochastic probing with increasing precision, in750
Int. Joint Conf. Artif. Intell. (IJCAI), 2021, pp. 4069–4075.751

[24] N. Immorlica, S. Singla, and B. Waggoner, Prophet inequalities with linear correlations and752
augmentations, in ACM Conf. on Economics and Computation (EC), 2020, pp. 159–185.753

[25] U. Krengel and L. Sucheston, Semiamarts and finite values, Bull. Amer. Math. Soc., 83754
(1977), pp. 745–747.755

[26] B. Lucier, An economic view of prophet inequalities, SIGecom Exch., 16 (2017), pp. 24–47.756
[27] W. Ma, Improvements and generalizations of stochastic knapsack and markovian bandits ap-757

proximation algorithms, Math. Oper. Res., 43 (2018), pp. 789–812.758
[28] S. Singla, The price of information in combinatorial optimization, in ACM-SIAM Symp.759

Discrete Algorithms (SODA), 2018, pp. 2523–2532.760
[29] M. L. Weitzman, Optimal search for the best alternative, Econometrica, 47 (1979), pp. 641–761

654.762

20

This manuscript is for review purposes only.

Appendix A. Proof of Lemma 2.2. The sequence of tests can be seen as a763

sequence of Benoulli trials. ALGiid can run k tests, and we are looking for a success764

run of length r = log2(k′) in a sequence of k Benoulli trials. This implies that for765

some item we have succeeded to verify that it is a good item. To avoid trivialities, we766

assume r > 1. Each trial has a success probability of 1− c = 1/2. Feller [13, Volume767

1, page 325] observes that the probability of no success run of length r is given by768

q = A1 +A2 + . . . Ar ,769

where770

A1 =
1− (1− c)x

(r + 1− rx) · c
· 1

xk+1
and |Ai| ≤

2(1− c)k+2

rc(2− c)
, for all i = 2, . . . r.771

Here, x is the root with smallest absolute value of f(y) = 1 − y + c(1 − c)r · yr+1.772

The unique positive root of f(y) that is different from 2 happens to be the one with773

smallest absolute value. In Lemma A.1 below we show that with c = 1/2, this root774

satisfies 1 + 1
2k′ ≤ x ≤ 1 + 1

k′ . This allows to conclude775

q ≤ A1 + (r − 1)
2

2k+2 · r · 12 ·
3
2

=
1− 1

2x

(r + 1− rx) 1
2

· 1

xk+1
+
r − 1

r
· 1

2k−13

≤
1− 1

2k′

1− r
k′
· 1

(1 + 1
2k′)

k+1
+

1

2k−13

=
1− 1

2k′

1− log2(k
′)

k′

· 1

(1 + 1
2k′)

(2k′+1) k+1
2k′+1

+
1

2k−13

≤
1− 1

2k′

1− log2(k
′)

k′

· 1

e
k+1

2k′+1

+
1

2k−13

≤
1− 1

2k′

1− log2(k
′)

k′

· 1
√

e
k+1
k′+1

+
1

2k−13
,

776

for all k > 1. Here, we used (1 + 1/x)x+1 > e in the second to last inequality.777

Lemma A.1. Let r ∈ N≥2, and x0 be the unique positive root of f(y) = 1 − y +778 (
y
2

)r+1
that is different from 2. Then, 1 + 1

2r+1 ≤ x0 ≤ 1 + 1
2r .779

Proof. Feller [13] observes that f(y) has a unique positive root that is different780

from 2. Obviously, f is continuous. We show that f(1 + 1
2r+1) > 0, and f(1 + 1

2r) < 0781

for all r ∈ N≥2. First, we note that782

f

(
1 +

1

2r+1

)
= 1−

(
1 +

1

2r+1

)
+

1

2r+1

(
1 +

1

2r+1

)r+1

> − 1

2r+1
+

1

2r+1
· 1 = 0 .783

Second, for the case r ≥ 3 we observe784

f

(
1 +

1

2r

)
= 1−

(
1 +

1

2r

)
+

1

2r+1

(
1 +

1

2r

)r+1

785

= − 1

2r
+

1

2r+1

(
1 +

1

2r

)r (
1 +

1

2r

)
786

21

This manuscript is for review purposes only.

=
1

2r+1

(
−2 +

(
1 +

1

2r

)r (
1 +

1

2r

))
787

<
1

2r+1

(
−2 + e

r
2r

(
1 +

1

2r

))
.788

789

We note that r
2r is at most 3/8. Thus,790

f

(
1 +

1

2r

)
<

1

2r+1

(
−2 + e

3
8

(
1 +

1

23

))
<

1

2r+1
(−2 + 2) = 0 .791

792

For r = 2, we can easily check that f
(
1 + 1

4

)
= −3/512 < 0, which finishes the proof.793

Appendix B. Testing for a c-quantile. As mentioned above, the analysis can794

be extended rather generically to the case when each test reveals if the realization795

is above or below a c-quantile of the conditional distribution for an item, for any796

constant c ∈ (0, 1). Then, using797

k′ =

(
1

1− c

)dlog1/(1−c) min{n,k+1}e

,798

we define a good item as one where the first r = log1/(1−c)(k
′) = dlog1/(1−c)(min{n, k+799

1})e tests are all positive. The probability that we get such a item can be bounded by800

generalizing Lemma 2.2 from c = 1/2 to c ∈ (0, 1). In particular, a calculation similar801

to the one in Lemma A.1 shows that the smallest root of f(y) = 1−y+c(1−c)r ·yr+1802

is between 1 + (1− c)rc ≤ x0 ≤ 1 + (1− c)r when r = ω(1) is sufficiently large:803

• For y = 1 + (1− c)r804

f(1 + (1− c)r) = 1− (1 + (1− c)r) + c(1− c)r(1 + (1− c)r)r+1

= (1− c)r(c(1 + (1− c)r)r+1 − 1) < 0
805

holds if and only if c(1 + (1− c)r)r+1 < 1, or806

(B.1) (r + 1) ln(1 + (1− c)r) < ln 1/c .807

Since ln(1 +x) ≤ x for all x ≥ 0, a sufficient condition for (B.1) is (r+ 1)(1−808

c)r < ln 1/c. This holds for r = ω(1) since (r + 1)(1 − c)r is exponentially809

decreasing in r, while ln 1/c is a constant.810

• For y = 1 + (1− c)rc811

f(1 + (1− c)rc) = 1− (1 + (1− c)rc) + c(1− c)r(1 + (1− c)rc)r+1

= (1− c)rc((1 + (1− c)rc)r+1 − 1) > 0
812

holds since (1− c)rc > 0 and (1 + (1− c)rc)r+1 > 1 whenever c ∈ (0, 1).813

Using these bounds in Lemma 2.2, the probability q to find no good item is again814

dominated by the factor 1
xk+1 which is at most815

1

(1 + c(1− c)r)k+1
=

1(
1 + c

k′

)k+1
≤ 1(

1 + c(1−c)
k+1

)k+1
=

1

ec(1−c)
+ o(1).816

As such, the probability to find a good item is at least817

αc = 1− 1

ec(1−c)
− o(1),818

which bounds the approximation ratio of the algorithm.819

22

This manuscript is for review purposes only.

	Introduction
	Testing
	Testing versus Probing
	Contribution and Outline
	Related Work

	Identical Distributions
	Adaptivity Gap

	General Distributions
	Adaptivity Gap

	Sequential Testing
	A Dynamic Program for Sequential Testing

	Conclusion
	References
	Appendix A. Proof of Lemma 2.2
	Appendix B. Testing for a c-quantile

