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Abstract
We consider a selection problem with stochastic
probing. There is a set of items whose values are
drawn from independent distributions. The distri-
butions are known in advance. Each item can be
tested repeatedly. Each test reduces the uncertainty
about the realization of its value. We study a test-
ing model, where the first test reveals if the real-
ized value is smaller or larger than the median of
the underlying distribution. Subsequent tests allow
to further narrow down the interval in which the
realization is located. There is a limited number
of possible tests, and our goal is to design near-
optimal testing strategies that allow to maximize
the expected value of the chosen item. We study
both identical and non-identical distributions and
develop polynomial-time algorithms with constant
approximation factors in both scenarios.

1 Introduction
In recent years, there has been a surge of interest in learning
problems with probing. There is a set of n items, and each
item has an independent distribution over its value. The goal
of the learner is to select an item with a value as large as pos-
sible. In the standard model, the learner can probe a bounded
number of k items. Upon probing an item, the learner sees its
realized value.

A variety of applications are captured by this approach and
its extensions. For example, in a hiring process, an “item”
is a candidate. The application material implies a stochas-
tic belief over the quality of each candidate. Probing corre-
sponds to an interview of a candidate, and the capacity of the
interviewer is limited to k interviews. The probing problem
corresponds to the selection of candidates to be interviewed
to optimize the value of the candidate that is hired eventually.
Additional applications arise, for example, in online dating or
kidney exchange. The problem is to probe pairs of agents for
compatibility and eventually match the population to maxi-
mize some objective function, e.g., the number of compat-
ible pairs or the overall quality of matches. Probing has
further applications in domains like influence maximization
or Bayesian mechanism design [Gupta and Nagarajan, 2013;
Asadpour and Nazerzadeh, 2016].

Computing an optimal probing decision is a non-trivial
task as each of the subsequent probing decisions may depend
on the outcomes of previous probes. A standard technique
for doing so is an often intractable dynamic-programming
approach. Beyond this, one commonly resorts to finding
polynomial-time approximation algorithms (e.g., [Chen et al.,
2009; Bansal et al., 2012; Dean et al., 2008; Bhalgat et al.,
2011; Ma, 2018]).

In the vast majority of approaches studied in computer sci-
ence, probing reveals the exact realization of the underlying
random variable; probing an item completely eradicates the
uncertainty. In contrast, many applications give rise to prob-
ing problems in which we only obtain some limited informa-
tion about the item. Consider for example an interviewer in a
hiring process. Instead of interpreting an interview as a sin-
gle probe that reveals all information, it is usually the case
that the interviewer can ask questions or request information
that will partially reveal the qualifications of the respective
candidate. More realistically, a question or exercise in an in-
terview can be seen as a probe, but only by asking multiple
questions of varying levels of difficulty the interviewer can
eventually estimate the exact qualification of each candidate.
As another example, consider a Bayesian single-item auction
with posted prices. By setting a posted price, the auctioneer
learns if the bidders have a value above or below that price,
but that does not directly reveal the valuation of each bidder.
Only repeated probing with different prices can reveal the ex-
act value of each bidder.

In this paper, we introduce selection problems with re-
peated probing. In the beginning, nature makes a single inde-
pendent draw for each item to determine the realized value.
We can test an item, but the exact realized value stays un-
known and each test only reveals limited information about
the realized value. Subsequent testing can be used to obtain
more and more fine-grained information about the same re-
alized value. There are many ways to express this condition
formally, i.e., how exactly the result of a test changes the con-
ditional distribution of the item. In our model, we take a sim-
ple and intuitive approach: The first test reveals if the realized
value of an item is above or below the median of the distribu-
tion. Each subsequent test reveals if the realized value of the
item is above or below the median of the conditional distribu-
tion, where the condition is the binary feedback of previous
tests.



Example 1. Suppose we can perform k = 3 tests on n = 2
items. Initially, the realized values of the items are drawn
i.i.d. from the uniform distribution over the set {1, 2/3, 1/3, 0}.

W.l.o.g. we first test item 1. The result of the test is either
A (realization above the median) or B (below the median).
Suppose it is A, then we know that the realized value of item 1
is either 1 or 2/3, both with probability 1/2. Next, we test item
2. If the result for item 2 is B, then the realized value of item
2 must be either 1/3 or 0, both with probability 1/2. Hence, the
optimum must be item 1. Instead, assume the result of the test
for item 2 is A, then the realized value of item 2 is either 1 or
2/3, both with probability 1/2. We apply the third test again to
item 1. If the result is A, it is clear that the realization of item
1 is 1, and so item 1 is an optimum. Otherwise, the realization
is 2/3, and then item 2 is an optimum.

Interestingly, by repeating the analysis for the case when
the result of the first item is B, we see that we can always
identify the item with the best realization. Note that we can-
not achieve this with k ≤ 2 tests. In this paper, we present
provably good probing algorithms, even in this case, when
the maximum realization cannot be fully identified. �

Our main results are two probing algorithms, one for iden-
tically distributed items and one for non-identical distribu-
tions. We show that both run in polynomial time and ob-
tain a constant-factor approximation of the optimal probing
strategy that maximizes the expected value of the selected
item. In fact, the constant approximation factors hold even
with respect to an upper bound on the optimum given by the
expected value of the best strategy in the standard probing
model, where each of the k tests completely reveals the real-
ization. Moreover, our algorithms and analysis also apply to
a sequential variant of the problem, where all tests on a single
item must be applied consecutively, and the order of items for
probing is externally given. For this problem, we provide an
efficient algorithm to compute the optimal testing strategy.

1.1 Related Work
Stochastic probing problems in which probing eradicates all
uncertainty about the tested item have been extensively stud-
ied. A prominent line of work [Asadpour et al., 2008;
Gupta and Nagarajan, 2013; Adamczyk et al., 2014; Gupta et
al., 2016; Gupta et al., 2017] is concerned with fairly general
models in which an—according to some given downward-
closed set system—feasible set of (often Bernoulli) vari-
ables can be adaptively probed. When probing is done,
a set of items that is feasible according to another given
downward-closed set system can be selected, and the ob-
tained value is an (e.g., submodular) function of the selected
items. The goal is typically to develop algorithms that ap-
proximate the best strategy and whose guarantees are param-
eterized by the respective instance, e.g., parameters of the set
systems corresponding to the constraints [Chen et al., 2009;
Bansal et al., 2012; Dean et al., 2008; Bhalgat et al., 2011;
Ma, 2018]. One approach to achieve constant-factor approx-
imations is bounding both the adaptivity gap and the approx-
imation factor of some non-adaptive algorithm by a constant;
see, e.g, [Gupta et al., 2016]. In this light, our approxima-
tion results, which are based on algorithms that work in the

sequential setting, can be viewed as a bound on the “sequen-
tiality gap” of our problem.

Instead of having to obey a hard constraint on the set of
items that can be probed, one is charged for probing a (typ-
ically arbitrarily but independently distributed) item in the
Pandora’s box problem [Weitzman, 1979]. The goal is to
maximize the expected difference between the value of the
(originally single) picked item and the probing cost. While
in the standard model the picked item must be a previously
probed item, in [Beyhaghi and Kleinberg, 2019] any single
item can be picked, but again probing eradicates all uncer-
tainty. In a Markovian model [Gupta et al., 2019], each probe
only advances a Markov chain associated with the respective
item by a single step. This is a model with limited informa-
tion, but in contrast to our model an item may only be picked
once the Markov chain has reached a terminal state, i.e., once
all uncertainty has been eradicated. Some of these mod-
els have been generalized to multi-item variants; see, e.g.,
[Singla, 2018]. In the standard model, an optimal algorithm
is known; more generally, one often resorts to approximating,
sometimes to an arbitrary precision [Fu et al., 2018].

The prophet-inequality setting [Krengel and Sucheston,
1977] is different in that the values of all items are revealed
eventually and there is no probing cost. In the classic version,
items are revealed in an adversarial order, and a single item
can only be picked at the time of its revelation. Then, the best
strategy can be computed via a simple dynamic program, but
the challenge is typically to compare the performance with
that of an all-knowing prophet. When the order of revela-
tion can be chosen, computing the best strategy becomes less
tractable [Agrawal et al., 2020]. We also refer to surveys on
this topic [Lucier, 2017; Correa et al., 2018].

Let us emphasize that our problem is quite different from
multi-armed bandit models (e.g., [Gittins, 1979]), in which
typically actions have random payoffs from unknown distri-
butions, from which samples are repeatedly drawn and re-
vealed. In contrast, here each value for an item comes from a
known distribution, is sampled only once in the beginning and
only revealed gradually (upon testing). This setting calls for
analyses different from the “regret”-style analysis typically
applied for multi-armed bandit models.

1.2 Probing Model
We are given a set N = {1, . . . , n} of items and a test capac-
ity k ∈ N. The value vi of each item i ∈ N is non-negative,
drawn independently from a known distribution Di over R+,
and unknown upfront. A probing algorithm can perform up to
k tests. Each test is performed on one of the items. In contrast
to most of the related literature, we assume that a test does not
reveal the exact realization of the item’s value. Instead, each
test results in an improved estimation of the realization.

We assume that the first test shows whether the value is
above or strictly below the median of the distribution. For
simplicity, let us first assume a continuous distribution. Let
D−1i (q) be the smallest value such that Pr

[
vi < D−1i (q)

]
=

q. We callD−1i (q) the q-quantile ofDi. The first test is called
positive if vi ≥ D−1i (1/2), and negative otherwise. Given
this result, the conditional distribution of the item can then be
tested for the new median in the same manner. In terms of the



original distribution, if the first test was positive, the next test
reveals if vi ≥ D−1i (3/4) or vi ∈ [D−1i (1/2), D−1i (3/4));
if the first test was negative, the next test reveals if vi ∈
[D−1i (1/4), D−1i (1/2)) or vi < D−1i (1/4).

In this way, repeated testing leads to an improved esti-
mation of the realized value – each subsequent test informs
the algorithm whether the value is above (positive) or strictly
below (negative) the median of the conditional distribution,
where the condition is on the outcomes of all previous tests
on that item. The algorithm can perform k tests in total. It
can choose the next item to be tested adaptively. In the end,
it selects one item. The goal is to maximize the value of the
selected item.

To aid the discussion of computational complexity, distri-
butions are discrete and given in explicit representation. For
applying the tests for such distributions, we assume that ties
are broken consistently, e.g., by initially drawing a random
number xi ∈ [0, 1] for each item i, extendingDi to a continu-
ous distribution over tuples (vi, xi), and using a lexicographic
comparison for tuples (vi, xi).

Our algorithms are polynomial-time in the input given by
the n discrete distributions in explicit representation and k.
An algorithm can perform k tests on the items. Each test is
executed via an oracle call that takes constant time.

We analyze approximation ratios of our algorithms, i.e.,
the worst-case ratio of the expected value of the algorithm
over the expected value of an optimal (finite-time) probing
algorithm. In fact, the bounds for our algorithms hold even in
comparison to the expected value of the best algorithm in the
standard probing model, where each test completely reveals
the realization.

Outline. In Section 2 we describe our algorithm and the
analysis for the case of independent and identically dis-
tributed (i.i.d.) items with Di = Dj = D for all i, j ∈ N .
For i.i.d. we use the short notation δq = D−1(q). Our al-
gorithm for the general case is considered in Section 3. In
Section 4 we consider the sequential probing problem, where
items have to be probed sequentially in a given order. We
conclude in Section 5.

2 Identical Distributions
As the main result in this section we present algorithm
ALGiid that has a constant approximation ratio for identical
distributions. The algorithm only depends on the test results
and uses no additional information about the distribution. In
contrast, an optimal algorithm seems to be complicated and
must have a further dependence on the distribution, as we
show in the full version.

Even though our algorithm is quite simple, it still achieves
a small constant approximation guarantee – even with respect
to the optimum in the standard probing model, where each
test reveals the realization.

Algorithm ALGiid. Let k′ = 2dlog2 min{n,k+1}e the small-
est power of 2 that is larger or equal to min{n, k + 1}. Our
algorithm ALGiid performs tests on the items sequentially.
For each item i, it repeatedly tests the item until it is clear
whether it’s value vi is larger or equal to δ(k′−1)/k′ or not,

i.e., until there are log2(k′) positive tests in a row or until
there is a single negative test. If vi ≥ δ(k′−1)/k′ , we call this
item a good item. In this case, the algorithm selects i and
terminates. Otherwise, it continues by testing item i + 1. If
the algorithm fails to find a good item or runs out of tests, it
selects a random item.

We slightly abuse notation and use ALGiid to denote our
algorithm and E [ALGiid] for the expected value of the cho-
sen item. Similarly, we use OPT to denote the optimal prob-
ing strategy and E [OPT] for it’s expected value. Our guaran-
tee will be in terms of E [UBk+1], which is the expected value
obtained by seeing the exact realization of the first k+1 items
and selecting the one with the best realization. For UB we use
tests from the standard probing model where they reveal the
exact realization. Also, instead of testing k items and then
possibly taking an (untested) item k + 1 (in case k < n and
all observed realizations are below the expectation of D), we
allow UBk+1 to also reveal the realization of item k + 1 and
then select the best realization from the k + 1 tested items.
Clearly, observing exact realizations and the additional test
imply E [UBk+1] ≥ E [OPT]. Our main result in this sec-
tion is the following.
Theorem 2. ALGiid runs in polynomial time and achieves
an expected value of

E [ALGiid] ≥
(

1− 1
4
√

e
− o(1)

)
·E [UBk+1] ,

where the asymptotics is in min(n, k).

Proof. We first assume k < n and discuss the case k ≥ n
below. In the subsequent Lemma 3, we prove a lower bound
on the probability that ALGiid finds a good item.

It is easy to see that the expected value of a good item is at
least E [UBk+1]: Clearly, UBk+1 has probability 1/(k + 1)
to select each of the first k+1 items. Under the condition that
the probability of selecting an item is 1/(k + 1), by stochas-
tic dominance, the largest-possible expectation of the item’s
value is E

[
vi | vi ≥ δk/(k+1)

]
. Additionally, E [vi | vi ≥ δx]

is increasing in x and k′ ≥ k + 1. Hence, E [UBk+1] ≤
E
[
vi | vi ≥ δ(k′−1)/k′

]
, the expected value of a good item.

By Lemma 3, we can conclude that the algorithm finds and
selects a good item with probability at least

α = 1−
1− 1

2k′

1− log(k′)
k′

· 1
√

e
k+1
k′+1

− 1

2k−13
.

Since a good item has expected value at least E [UBk+1] the
approximation factor is at least α. Note that α = 1 − 1

4
√
e
−

o(1), where the asymptotics is in k = min(n, k).
Finally, let us briefly discuss the case k ≥ n. We can re-

strict ALGiid to n tests and apply the same analysis, where
n replaces k. Since E [UBn+1] = E [UBn] ≥ E [OPT],
the approximation guarantee follows, with asymptotics in
n = min(n, k).

Lemma 3. The probability that ALGiid runs out of tests be-
fore finding a good item can be upper bounded by

1− 1
2k′

1− log(k′)
k′

· 1
√

e
k+1
k′+1

+
1

2k−13
.



Proof. The sequence of tests can be seen as a sequence of
Benoulli trials. ALGiid can run k tests, and we are looking
for a success run of length r = log2(k′) in a sequence of
k Benoulli trials. This implies that for some item we have
succeeded to verify that it is a good item. To avoid trivialities,
we assume r > 1. Each trial has a success probability of
1/2. [Feller, 1957, Volume 1, page 325] observes that the
probability of no success run of length r is given by

q = A1 +A2 + . . . Ar ,

where

A1 =
1− 1

2x

(r + 1− rx) · 12
· 1

xk+1
and |Ai| ≤

4

2k+13r
,

for all i = 2, . . . r. Here, x is the root with smallest absolute
value of f(y) = 1−y+ 1

2r+1 ·yr+1. The unique positive root
of f(y) that is different from 2 happens to be the one with
smallest absolute value. In the full version we show that for
this root 1 + 1

2k′ ≤ x ≤ 1 + 1
k′ . This allows to conclude

q = A1 + (r − 1)
4

2k+13r

=
1− 1

2x

(r + 1− rx) 1
2

· 1

xk+1
+

r − 1

2k−13r

≤
1− 1

2k′

1− r
k′
· 1

(1 + 1
2k′ )

k+1
+

1

2k−13

≤
1− 1

2k′

1− log(k′)
k′

· 1

(1 + 1
2k′ )

(2k′+1) k+1
2k′+1)

+
1

2k−13

≤
1− 1

2k′

1− log(k′)
k′

· 1

e
k+1

2k′+1

+
1

2k−13

≤
1− 1

2k′

1− log(k′)
k′

· 1
√

e
k+1
k′+1

+
1

2k−13
,

for all k > 1. Here, we used (1 + 1/x)x+1 > e in the second
to last inequality.

3 General Distributions
Our main result in this section is an algorithm that has a con-
stant approximation ratio for non-identical, independent dis-
tributionsDi. We again use OPT to denote the optimal prob-
ing strategy and E [OPT] for the expected value of the chosen
item. As in the previous section, we first concentrate on the
case k < n. We again overestimate E [OPT] by an upper
bound resulting from a probing strategy in the standard prob-
ing model where tests reveal exact realizations. In particular,
E [UB`] is the expected value from the optimal strategy that
can adaptively inspect ` ≤ n of the items, learns their exact
realization and then picks the best realization it has seen.

Again, E [UBk+1] ≥ E [OPT] by similar arguments as
above. As UBk+1 can adaptively learn the exact realizations,
its decisions are clearly much more informed than those of
OPT. Moreover, when adaptively inspecting the exact value
of k items, we might eventually want to resort to an unin-
spected item with the maximum expected value (if all real-
izations are below that expectation). Instead, for UBk+1 we

can also learn the realization of the last uninspected item and
then pick the best one among the k + 1 items seen. This is
clearly stronger than E [OPT]. Our main result is to provide
an algorithm with constant approximation w.r.t. E [UBk+1].

Note that this also implies an Ω(1)-approximation for k >
n−1. With n−1 tests we achieve a Ω(1)-approximation with
respect to E [UBn], which always learns and selects the best
item – a trivial upper bound on what can be achieved with
any kind of testing. As such, we can simply run our strategy
using n−1 tests and ignore the additional k−n+1 tests. For
the rest of the section, we therefore concentrate on the case
k ≤ n− 1.

As a first step, we apply a reduction to concentrate on a
smaller number relevant items. We do so using the following
result from the literature, rephrased for our needs.
Theorem 4 (Theorem 2 in [Asadpour and Nazerzadeh,
2016]). There exists an algorithm that, given k ∈ N, in poly-
nomial time selects a subset Nk+1 ⊆ N of the items with
|Nk+1| = k + 1 and

E

[
max

i∈Nk+1

vi

]
≥
(

1− 1

e

)
·E [UBk+1] .

In contrast to Asadpour and Nazerzadeh we have direct ac-
cess to the distributions. By inspecting their analysis, we see
that this implies the stated approximation without reduction
by an ε > 0.

Now given the subset Nk+1, we apply a further random
sampling step – we pick a uniform random subset N ′ ⊂
Nk+1 of k′ items. Clearly, we sample the item with the best
realization from Nk+1 with probability k′/(k + 1). Thus,

E

[
max
i∈N ′

vi

]
≥ k′

k + 1
·E
[

max
i∈Nk+1

vi

]
.

We choose k′ to be smaller than k + 1 by a large-enough
constant factor; choosing k′ to be the largest power of 2 that
is at most k/10 will suffice. For now, assume that k is rela-
tively large so that k′ ∈ N. Then, since k′ ∈ Ω(k), we get
E [maxi∈N ′ vi] = Ω(1) ·E [UBk+1]. At the same time, since
k ≥ 10 · k′, we have many more tests available than there
are relevant items in N ′. For convenience, we renumber the
items such that N ′ = [k′] = {1, . . . , k′}.

It remains to achieve a constant approximation to
E
[
maxi∈[k′] vi

]
. Let Ei be the event that i has the largest

value of all items in N ′. Here, we break ties in order of lower
item numbers. We can write

E

[
max
i∈[k′]

vi

]
=

k′∑
i=1

Pr [Ei] ·E [vi | Ei] . (1)

In the following we will use pi as shorthand for Pr [Ei] for all
i ∈ [k′]. Given explicit representations of the discrete distri-
butions Di for items in [k′], the values pi can be computed
easily in polynomial time1.

1For each possible realization vi of item i, compute the proba-
bility that item i has value vi, all items j = 1, . . . , i − 1 have a
realization vj < vi, and all items j = i + 1, . . . , k′ have a real-
ization vj ≤ vi. The product of these numbers is the probability
that vi constitutes the maximum of all realizations. pi is the sum of
probabilities computed for all realizations of item i.



We try to pick each item i ∈ [k′] that realizes to any fixed
value above the 1 − Ω(pi)-quantile with constant probabil-
ity. Then, with (1) and a similar argument as for identical
distributions, we indeed get an Ω(1)-approximation. Our al-
gorithm again operates sequentially over the items. It consid-
ers items 1, . . . , k′ in arbitrary order, say, in ascending order
of their indices. Upon considering item i, it (approximately)
checks if vi realizes above the 1 − pi quantile of Di. If this
check succeeds, it simply selects item i; otherwise it discards
i and proceeds with the next item.

Assuming we could perform the check for the 1− pi quan-
tile not only approximately but exactly in our model (say, us-
ing Θ(log(1/pi)) tests), this algorithm would not obtain all
realizations above the 1−Ω(pi) quantile with constant prob-
ability for all i; indeed, we need a specific approximate check.
First, p1 may be arbitrarily close to 1. Then we are unable to
guarantee to arrive at item 2 with a constant probability and
thereby fail to select v2 with constant probability when v2 re-
alizes to a value above the 1−Ω(p2) quantile of D2. Second,
p1 may be so small that Θ(− log p1) exceeds k, the number
of available tests. Then we never select v1.

We address both issues by defining

qi =
max{pi, 1/k′}

4
∈ Ω(pi)

and using qi in place of pi. Lifting values smaller than 1/k′

to 1/k′ can be seen as an idea borrowed from the setting
of identical distributions. Dividing the resulting probability
by 4 makes sure that there is a constant lower bound on the
probability that for any given item i the algorithm eventually
considers i. A similar idea is used in Bayesian mechanism
design [Chawla et al., 2010; Alaei, 2014].

To (approximately) check more easily if vi realizes above
D−1i (1− qi), we round qi to a power of 2 (with negative ex-
ponent). Note that the lowest possible value, that is, 1/(4k′),
is already a power of 2. In general, we define q̃i to be the
largest power of 2 which is at most qi. Having arrived at item
i, our algorithm tests item i at most − log q̃i ∈ N times. As
soon as one of the tests is negative, we stop testing item i and
continue with the next item; if all tests are positive, we se-
lect item i. This concludes the description of our algorithm,
which we summarize as ALGgen. For a formal and precise
description, see Algorithm 1. Recall that the analysis for the
case k > n−1 follows from restricting attention to min(k, n)
tests.

The main result is the following theorem. For most of the
proof we assume k > k0 for a suitable constant (k0 = 50 is
sufficient), since our analysis relies on concentration bounds
and we need to ensure k′ ∈ N. Otherwise, for constant
k ≤ k0, selecting an item with the best (a priori) expectation
ALGgen trivially guarantees a constant-factor approximation.
By slight misuse of notation, we use E [ALGgen] to denote
the expected value of the item selected by our algorithm.

Theorem 5. ALGgen runs in polynomial time and achieves
an expected value of

E [ALGgen] ≥ Ω(1) ·E [UBk+1] .

To prove this theorem, we first show the following lemma.

Algorithm 1: ALGgen for General Distributions
Input : Distributions D1, . . . , Dn over R+, k ∈ N.
Output: The index of the picked item.

1 if k ≤ k0, return i ∈ arg maxi∈[n] E [vi].
2 Required tests: k ← min(k, n− 1).
3 Select set Nk+1 of items using Theorem 4.
4 k′ ← 2blog(k/10)c.
5 Select set N ′ of k′ items from Nk+1 uniformly at

random; w.l.o.g. N ′ = [k′].
6 for i in [k′]:
7 Ei is the event that arg maxi∈[k′] vi is item i

(breaking ties arbitrarily).
8 qi ← max{Pr [Ei] , 1/k′}/4.
9 q̃i ← 2b− log qic.

10 for j in [− log q̃i]:
11 if test is available:
12 test distribution Di.
13 if negative test result: break inner loop.
14 if j = − log q̃i: return i.

Lemma 6. Suppose k > k0 and k′ = 2blog2 k/10c. There is a
constant r > 0 such that, for any i ∈ [k′], the probability that
ALGgen arrives at item i with at least log k′+ 2 unused tests
is at least r.

Proof. It suffices to consider the event that ALGgen arrives at
the last item, i.e., item k′, with log k′ + 2 unused tests, called
F in the following, and bound its probability from below by
a constant. By the union bound, we can write

Pr [F ] ≥ 1− Pr [F1]− Pr [F2] . (2)
Here, F1 is the event that the algorithm picks any vi prior to
even considering vk′ . To define F2, we view the tests as in-
dependent, unbiased coins and realize all of them, even those
that are potentially not used by the algorithm. Now F2 is the
event that among the first k − log k′ tests, fewer than k′ − 1
have result 0. Indeed, whenever F does not occur, at least
one of F1 and F2 occurs.

We first consider F1. Note that
∑

i∈[k′] pi = 1. Since
max{pi, 1/k′} ≤ pi + 1/k′ for all i ∈ [k′], it follows that∑

i∈[k′] max{pi, 1/k′} ≤ 2, so
∑

i∈[k′] qi ≤ 1/2 by defi-
nition of qi. Then, using q̃i ≤ qi for all i ∈ [k′], we have∑

i∈[k′] q̃i ≤
1
2 .

Since the probability that we pick item i is at most q̃i (for
that to happen, vi has to realize above the 1 − q̃i quantile of
Di), again by the union bound, the probability that we pick
any item at all is at most 1/2. Therefore

Pr [F1] ≤ 1/2. (3)
It remains to bound Pr [F2] from above and away from

1/2. Towards applying a Chernoff bound, for i ∈ [k] we de-
fine Xi to be the Bernoulli variable whose value is precisely
the result of the i-th test. Then X1, . . . , Xk are independent,
and X :=

∑4k/5
i=1 Xi has expectation 2k/5. We get

Pr [F2] < Pr
[
X ≥ 7k

10

]
= Pr

[
X ≥

(
1 +

3

4

)
·E [X]

]



≤ exp

(
−
(
3
4

)2 · 2k5
3

)
<

1

4
, (4)

where the first inequality follows from the fact that, when F2

occurs, we must not have more than k′ ≤ k/10 tests with
result 0 among the first 4k/5 < k − (log k + 2), so X ≥
7k/10 follows. The second inequality follows by plugging in
the expected value of X , and the third one by applying the
corresponding one-sided Chernoff bound. The last inequality
follows because k > k0 = 50.

The claim follows by using Inequalities (3) and (4) in (2).

With this lemma at hand, we can prove the main theorem.

Proof of Theorem 5. First consider the case k ≤ k0 = 50.
Let i? ∈ arg maxi∈[n] E [vi] be the returned index. Here we
overestimate E [UBk+1] by selecting all k + 1 observed re-
alizations and obtaining the sum of the values. For this ob-
jective, it is trivially optimal to select the set I∗k+1 which we
define to be the set of k + 1 items with highest expectation.
Since ALGgen selects the single item with highest expecta-
tion, it recovers at least

E [vi? ] ≥ 1

k + 1
·
∑

i∈I∗k+1

E [vi] ≥
1

k0 + 1
·E [UBk+1] ,

implying our claim.
Now consider the case k > k0 = 50. By Lemma 6, there

exists a constant r > 0 such that with probability at least r,
for any given item i, the algorithm arrives at i with at least
− log q̃i ≤ log k′ + 2 unused tests. Hence,

E [ALGgen] ≥
k′∑
i=1

r · Pr
[
vi ≥ D−1i (1− q̃i)

]
·E
[
vi | vi ≥ D−1i (1− q̃i)

]
= r ·

k′∑
i=1

q̃i ·E
[
vi | vi ≥ D−1i (1− q̃i)

]
≥ r ·

k′∑
i=1

pi
8
·E
[
vi | vi ≥ D−1i

(
1− pi

8

)]

≥ r ·
k′∑
i=1

1

8
· Pr [Ei] ·E [vi | Ei] =

r

8
·E
[

max
i∈[k′]

vi

]
. (5)

In the first step, we use the independence of arriving at
item i and its realization vi. The second step uses the def-
inition of Di. The third step follows by monotonicity of
x · E

[
vi | vi ≥ D−1i (1− x)

]
as a function of x and q̃i ≥

qi/2 ≥ pi/8. In the fourth step, we use that pi = Pr [Ei] /8
for the first part and stochastic dominance to compare the two
expected values. The fifth step uses the definition of Ei.

Recalling the discussion of Theorem 4 and the random
sampling step, we note

E

[
max
i∈[k′]

vi

]
≥
(

1− 1

e

)
· k′

k + 1
·E [UBk+1] . (6)

The ratio follows by combining (5) and (6) with k′ ≥ k/20.
The running time of ALGgen is dominated by applying the

algorithm by [Asadpour and Nazerzadeh, 2016] and comput-
ing the values pi = Pr [Ei]. Both steps run in time polynomial
in the input size.

4 Sequential Probing
We consider a sequential scenario of the probing problem,
in which tests for the same item must be conducted consecu-
tively, and items must be tested in a given order. This restricts
the algorithm and the optimal probing strategy in two ways.

First, if a test series for an item j is stopped, j cannot be
tested anymore. This restriction is very natural in many prac-
tical applications such as the hiring process discussed above.
Typically, a candidate cannot be interviewed again after the
job interview is finished. Additional applications for this as-
sumption include flat viewings, inspection of second hand ar-
ticles, or test series with time consuming test setups.

Second, we restrict all testing to adhere to a fixed ordering
of the items, i.e., the order of items, in which they can be
tested, is given upfront. Note that this constraint has no bite
for the i.i.d. scenario.

Interestingly, all our results from the previous sections di-
rectly carry over to the sequential probing problem. Both our
algorithms test each item using a single consecutive test series
and can be applied when given any fixed order of items.
Observation 7. Algorithms ALGiid and ALGgen are
polynomial-time algorithms with constant approximation fac-
tor for the sequential probing problem.

As the main result in this section, we show how to compute
the optimal probing strategy in polynomial time. For a proof,
we refer to the full version.
Theorem 8. The optimal strategy in the sequential probing
problem can be computed in polynomial time.

5 Conclusion
An arguably unrealistic assumption in existing stochastic
probing models is that any test reveals full information about
the probed item. We initiate research that addresses this short-
coming and introduce a first natural coarse-to-fine-grained
model. For this model, we provide polynomial-time algo-
rithms with constant approximation factors for both i.i.d. val-
ues and general independent values.

It is straightforward to see that our results extend (with dif-
ferent constants in the approximation guarantees) to the case
when a test separates realizations in the top-c-quantile and the
bottom (1− c)-quantile, for constant c ∈ (0, 1). It is an open
problem to analyze algorithms when c is not constant.

Another interesting direction is to consider correlated ran-
dom variables. For related problems in online stopping, cor-
relations have only recently started to be considered and tend
to be technically very challenging.

More generally, there is potential for extending the rich the-
ory on standard probing models towards tests that yield only
limited information, including cases in which the learner can
choose a set of items instead of a single one.

Another research direction are hardness results for stochas-
tic probing problems with and without increasing precision.
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