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Abstract

Matching and coalition formation are fundamental aspects in the organization of many multi-
agent systems. In large populations, the emergence of coalitions is often restricted by structural
constraints under which agents can reorganize, e.g., local visibility or externality constraints among
the agents. We study this aspect using a novel framework for dynamics with constraints within
the popular domain of hedonic coalition formation games. We analyze the effects of structural
constraints on the convergence of matching and coalition formation processes to stable states.
Our main result are tight characterizations for the constraint structures based on which dynamic
coalition formation can stabilize quickly. We show a variety of convergence results for matching
and coalition formation games with different forms of locality and externality constraints. In
particular, we propose and analyze a new model of graph-based visibility for coalition formation
games and tightly characterize the graph structures that allow polynomial-time convergence – it
can be achieved if and only if coalition formation is based on complete or star graphs.
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1 Introduction

Stable Matching and Hedonic Games Matching and coalition formation problems form the
basis for a variety of assignment and allocation tasks encountered in computer science, operations
research, and economics. In multi-agent systems, the formation of coalitions is a natural process to
exploit synergies. In this domain, the model of hedonic games [7, 18, 25, 26, 59] represents a natural
and versatile approach to analyze aspects of coalition formation processes in multi-agent systems.

Perhaps the most prominent domain of hedonic games are classes of stable matching. In the
classic stable marriage problem, there is a set of men and a set of women. Each agent strives to
find a partner from the other gender, and it has a preference list over possible partners. Given a
matching (i.e., a set of mutually disjoint man-woman pairs), a blocking pair is a man-woman pair
such that both partners strictly improve over their current match if the pair is formed. A matching
without blocking pair is called a stable matching. Since its introduction by Gale and Shapley in
1962 [27], stable matching has been successfully applied to capture assignment problems in multi-
agent systems in a large variety of applications, e.g., assignment of jobs to workers [5, 41], organs to
patients [55], and many others. In addition, stable marriage problems have been successfully used
to study distributed resource allocation problems in networks [3, 28, 46]. As such, stable marriage
occupies a central position in the analysis of decentralized coalition formation.

There are several natural generalizations of stable marriage that have been intensively studied.
Stable roommates instances drop the assumption of two sides – there is simply a single set of n agents,
and each agent can match to some (possibly arbitrary) subset of other agents [40]. More generally,
hedonic games allow the formation of coalitions of three or more agents. Their main characteristics
are that (1) each agent can be part of at most one coalition, and (2) the preference or payoff an agent
receives for being in a coalition depends only on the agents in that coalition, but not on how the
remaining agents are partitioned. A variety of stability concepts in hedonic games and their aspects
have been studied in recent years (see for example [8,9,11,18]). We here concentrate on the natural
approach of core-stability, where agents have cardinal preferences for the coalitions they are part of.
A state is a set of non-overlapping coalitions, and a blocking coalition is a group of agents that could
(all individually) improve by abandoning their current coalitions and forming a new one together. A
state is core-stable if there is no blocking coalition.

Structural Constraints and Improvement Dynamics In the standard model of hedonic games,
improvement in terms of preferences is the only criterion for deviation to other coalitions. In contrast,
there can be a variety of additional constraints that govern the coalition formation process. Our main
contribution in this paper is the formulation of a general framework for hedonic coalition formation
with additional constraints. We study the consequences of these constraints on the existence of stable
states and their reachability by myopic improvement dynamics.

Within our general framework, we put a focus on constraints derived from two natural proper-
ties of multi-agent systems – local visibility and (positive) externalities. As a concrete application,
consider the prominent special case of stable matching. In large matching markets, it is unrealistic
to assume that agents have full information about all other agents and possible partners. Instead,
agents are often only aware about a subset of the population. For example, consider agents looking
for a partner to do a joint activity (such as, e.g., playing squash or chess). We would not expect to
form all possible and profitable matching pairs instantaneously. Instead, a pair of actors first have
to get to know (about) each other before they can start a joint project. For the task of finding a
partner, one often relies on existing relationships from family or co-workers. As a stylized model, we
can capture this idea by extending the standard model of stable matching using a network – possible
matching pairs have to be connected in an underlying social network to be available for formation.
More interestingly, by engaging in an activity with a new partner, we get to know their friends and
partners and possibly discover new and better matches. When we incorporate this aspect, we arrive
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at what has been termed locally stable matching [5,19,23,31,37]. Here the agents of a (local) blocking
pair must have a hop-distance of at most 2 in the underlying network of social contacts and existing
matched pairs. A variation of this model can be used to study job markets, where we strive to match
jobs to workers. It is known that a large portion of jobs are assigned based on social contacts to
co-workers in the same firm. Here the social network is present only among workers, but firms can
match to multiple workers [5].

More generally, instead of visibility it is also natural to imagine that social contacts have a
positive externality (or “altruistic”) effect on actors. Beyond anecdotal evidence, there are studies
in experimental game theory that support this assumption [43, 44]. In addition to social ties and
friendship, such an altruistic or considerate behavior can also arise, e.g., due to the existence of
formal contracts or business relations among agents. Recently, such effects have received increased
interest in a variety of game-theoretic models, including potential games [21,33,34], matching [4], and
hedonic coalition formation [49]. In this case, agents are assumed to consider the (negative) effects
on others when forming a new match and thereby, e.g., “stealing” the current partner of one of their
friends or family members. A frequently explored model in games with cardinal utility is to express
the trade-off between individual improvement and externality using a numerical value cu,v ≥ 0 for
each pair u, v of agents. The perceived utility of an agent u then is a weighted sum of his individual
utility and the utilities of all other agents v (weighted with cu,v). Here the agents of a (friendship)
blocking pair must have improved perceived utilities.

In this paper, our goal is to shed light on the properties of a variety of extensions of stable match-
ing and hedonic coalition formation games, in which coalition formation is restricted by additional
constraints. Such constraints can arise due to many aspects, for example, spatial closeness, previous
collaborations, or social ties based on family, friendship, or co-worker relations. The general model
we study here includes a variety of special cases that have found recent interest in the literature,
such as socially and locally stable matchings [5, 6, 19, 23, 31, 37] or friendship stable matching [4]. In
addition, we also outline a natural model of considerate stable matching.

Our interest is in the properties of these games when the system is governed by dynamic and
myopic coalitional deviations. Intuitively, such systems will eventually converge to a stable matching
or core-stable state (if it exists). We study improvement dynamics, that is, the type of dynamics
arising when we allow the iterative resolution of blocking coalitions until a stable state is reached. A
blocking coalition is resolved by deleting all overlapping coalitions from the state and then adding
the blocking coalition – possibly leaving some agents single. Thus, some agents improve in terms
of their preference while others deteriorate. In consequence, such a sequence of improvement steps
can take very long until it reaches a stable state, or it might even run into cycles. Of course, such
behavior is undesirable, and our main interest is to identify and characterize conditions under which
stable states can be reached (quickly).

A common aspect in all the example domains discussed above is that a blocking pair – in addition
to being an improvement in terms of their preference for both incident agents – also has to fulfill
additional graph-theoretic properties. A stable matching in these variants is a matching that has no
blocking pair that satisfies such additional properties. Consequently, each stable matching remains
stable, even when we require additional constraints for deviation. However, a state that is stable
under a set of additional constraints might not be a (globally) stable matching. We analyze the effects
of such constraints on the reachability of stable states using sequential improvement dynamics.

Since every stable matching remains stable under additional structural constraints, one might
be tempted to think that stable matchings with constraints become easier to find and/or reach
using distributed dynamics. In contrast, we show that stable matchings with constraints have a rich
structure and can behave quite differently than stable matchings in unconstrained settings. More
generally, our main results characterize sequences of improvement steps for a broad class of hedonic
games with general conditions on the structural constraints.
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1.1 Contribution and Outline

We study a broad domain of different matching and coalition formation game settings with structural
constraints. In addition, we concentrate on the four matching variants (locally, socially, considerate
and friendship stable matching) sketched above with their diverse facets. Our main focus lies on
improvement dynamics and on (fast) reachability of stable states in the presence of structural con-
straints. A central question we study in this paper is the existence of a path to stability : Given an
initial state, is there a path to stability, i.e., a sequence of resolutions of blocking coalitions that leads
into a stable state? The existence of finite paths to stability guarantees that random improvement
dynamics, in which blocking coalitions are chosen uniformly at random for resolution, converge to a
stable state with probability 1 in the limit. Moreover, we are interested in the length of the paths to
stability, and whether we can compute them in polynomial time.

We concentrate on matching and coalition formation games with correlated preferences, in which
each coalition is characterized by a single benefit or quality value, and agents prefer coalitions with
higher value. This domain has a natural appeal, e.g., it generalizes weighted matching problems that
are ubiquitous in many applications. Furthermore, it guarantees existence of and convergence to
core-stable states due to the existence of a lexicographical potential function [1, 46, 59]. In contrast,
the case of general preferences over coalitions is much harder to tackle, since already deciding the
existence of core-stable states is an extremely hard problem in seemingly special cases [51–53,58,59].
Characterizing convergence properties in this general domain represents an interesting direction for
future work.

In Section 2 we first review a number of stable matching variants that formulate constraints on
the matching process and have found recent interest in the literature. These games are special cases
of our novel class of games termed coalition formation games with constraints, which we introduce in
Section 3. For these games, we represent the improvement dynamics and consistent constraints using
two sets of rules that depend on the current state. There is a set of self-generating coalitions Cg that
can always be considered for deviation. In addition, generation rules specify a subset of coalitions
that can be considered for deviation, which is based on the current state. Domination rules specify a
subset of coalitions that are unavailable for deviation, which is based on the current state. Blocking
coalitions for a state are undominated coalitions that can be generated. In principle, the rules can
create arbitrary dependencies of blocking coalitions on the entire state.

We put special emphasis on games with consistency conditions given as follows. Consistent
generation rules are of the form (C ′, C), when availability of coalition C depends only on existence of a
single overlapping coalition C ′ with C ′∩C 6= ∅. For consistent domination rules ({C1, C2, . . . , Ck}, C)
– which implies C is dominated when all coalitions C1, . . . , Ck exist – we assume that there is at least
one overlapping Ci with Ci ∩ C 6= ∅. With consistent constraints the set of blocking coalitions can
depend on the current state in a non-trivial way. However, the non-trivial blocking coalitions are in
some sense local – a coalition can be generated only when some other overlapping coalition exists in
the current state. Moreover, a coalition being dominated can be traced back to existence of some
overlapping coalition in the current state.

We show that consistent constraints guarantee the existence of paths to stability with polynomial
length. To highlight the broad applicability of these results, we show that all the matching variants
discussed in the introduction yield consistent generation and domination rules. A detailed reduction
is given in Appendix A. Furthermore, we show that our characterization is tight. The tightness
result does not only apply when dropping consistency for generation and/or domination rules, but
also with respect to relaxation of their intrinsic conditions described above. If generation rules are
consistent and there are two coalitions allowed in the precondition of a generation rule, exponential
paths to stability can become necessary. The same holds for consistent generation rules and when the
single coalition in the domination rule is allowed to be non-overlapping with the target coalition. As
long as domination rules are consistent, however, we can always guarantee that all paths to stability
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are finite. In contrast, for consistent domination rules and generation rules that are allowed to be
non-overlapping with the target coalition, there are instances where no (finite) path to stability exists.

Consistent constraints guarantee paths of polynomial length to some stable state. Moreover, we
show that they imply that there is a path of polynomial length to any reachable state. However,
if we ask if there is a path to stability to a given stable state, this question becomes NP-hard to
decide in many cases. In fact, we prove a general reduction that shows the hardness result for locally,
socially, considerate and friendship stable matching with correlated preferences. Moreover, it shows
the hardness result also for classic two-sided stable marriage with strict preferences (and without any
additional constraints). To our knowledge, this result was not known before – in contrast, it has been
known for more than two decades that polynomial paths to some stable marriage always exist [57].

As an additional domain, in Section 4 we consider a class of hedonic games with correlated
preferences and visibility based on formation graphs. This represents a generalization of locally
stable matching. In these games, we show another tight characterization of paths to stability with
polynomial length. They are guaranteed to exist if and only if the formation graphs are either only
complete graphs or only star graphs. While games based on star graphs turn out to yield consistent
constraints, for complete graphs we show the result using a different set of arguments.

Our results are strongest when agents strive to form coalitions of small size. Let n be the number
of agents and m be the number of possible coalitions that can form. In the prominent domain of
matching, coalitions have size at most 2 and thus m ≤

(
n
2

)
. Our upper bounds on the length of paths

to stability are polynomial in n and m. In contrast, the lower bound gadgets yield lengths exponential
in n and only use coalitions of constant size. While the results apply in general, they are strongest
when m ∈ poly(n) (e.g., for matching or when all coalitions that can form have constant size),
since in this case we obtain a clear dichotomy of polynomial in n vs. exponential in n. Moreover,
if m ∈ poly(n), then many involved problems in constructing improvement steps (finding a local
blocking coalition, or the one with maximum benefit) can be solved trivially in time poly(n).

This work has partly appeared as extended abstracts in the proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI 2015) [35] and the 10th International Conference on Web
and Internet Economics (WINE 2014) [36].

1.2 Related Work

Coalition formation and matching games are fundamental in the area of cooperative game theory,
as they allow to model a variety of assignment, allocation, and formation problems. Applications
can be found, for example, in computer science, operations research, and economics (for an overview
see [10, 30]). Hedonic games are a central concept for modeling coalition formation in multi-agent
systems, game theory, and algorithms. In these games the payoff for an agent is determined solely
by the coalition it is part of. Since the initial work of Dreze and Greenberg [25], stability concepts in
hedonic coalition formation games, their efficiency, and their computation have received significant
attention in game theory [11, 18, 26, 58] and computer science [7, 20, 59]. In general, computing
core-stable partitions is a very hard problem, lying at the second level of the polynomial hierarchy.
For a recent overview on this problem we refer to Woeginger [59]. More recent developments on
characterizing tractable cases can be found in [51–54].

Besides interest in graph theory, matching problems have received great attention in computer
science, economics, and psychology due to many applications in assignment and allocation problems.
For the two-sided stable marriage problem, where agents are divided into two sets and the potential
matching edges form a bipartite graph, there has been a large amount of work on various aspects, for
example, ties, incomplete lists, and many-to-many matchings. For an introduction to stable marriage
and many of its variants see, e.g. [29, 45,56].

There is a significant literature on matching dynamics, especially in economics, which is too
broad to survey here. These works usually do not address issues like computational complexity or
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worst-case bounds. Here we focus on a subset of prominent analytical works related to our scenario.
In the stable marriage problem, a stable matching can always be reached in a polynomial number

of improvement steps [57]. On the other hand, if in each step the blocking pair is chosen uniformly
at random, convergence time can become exponential [2]. Furthermore, there exist instances and
sequences of improvement steps such that the dynamics cycle [42]. However, if preferences are
randomized, short convergence time can be observed experimentally [15]. For weighted or correlated
matching, random dynamics can be shown to converge in expected polynomial time [2, 47]. More
recently, convergence time of random dynamics using combinatorial properties of preferences have
been studied [38].

In the stable roommates problem, where every pair of agents can be matched, stable matchings
might not exist. However, deciding existence and computing a stable matching, if they exist, can
be done in polynomial time [24, 40]. Several works have studied the computation of (variants of)
stable matchings using iterative entry dynamics [14, 16, 17, 22], or matching problems in scenarios
with payments or profit sharing [4, 13].

For socially stable matchings, the problem of computing a maximum-cardinality stable matching
has found interest. There is a 1.5-approximation algorithm and approximation hardness within 1.5−ε
under the unique games conjecture [6].

Locally stable matching games were first studied for the special case of two-sided job-markets,
where social links only exist among one partition [5]. Using a potential function argument, existence
and reachability of stable states is always guaranteed for correlated preferences, even for networks
with arbitrary links in the roommates problem. There always exist paths to stability of polynomial
length, but random dynamics might need an exponential number of steps to converge [31]. For
maximum locally stable matchings, the problem cannot be approximated within (21/19 − ε) unless
P=NP [23] and within 3/2 under the unique games conjecture [37]. Local algorithms perform arbi-
trarily badly [19]. Similar ideas of limited and dynamic visibility have recently been studied in the
context of network creation games [12].

Our approach to locality is related to existing graph-based models for limited interaction. Most
prominently, there is a large body of works treating the Myerson value in graph-based cooperative
games [48, 50]. While the underlying network does not restrict the allowed deviations, the Myerson
value only assigns positive payoff to those coalitions which form a connected component regarding
the network. In a similar direction, recent work showed strong hardness results for computing stable
states in hedonic games with coalitions that are connected components in a static network [39].

The concept of considerate stable matching is related to ideas of ordinal externalities that have
been studied in the context of resource selection games [32]. Friendship and other-regarding prefer-
ences in stable matching games have been studied in [4]. They analyze the existence of friendship
stable matchings and bound prices of anarchy and stability with equal and unequal sharing of match-
ing benefits. A different approach to friendship-based preferences grounded in ordinal and axiomatic
properties is analyzed in [49].

2 Preliminaries

2.1 Matching and Coalition Formation Games

In a coalition formation game there is a set of rational agents that strive to group into coalitions.
Depending on the group(s) an agent is part of, this generates a benefit for the agent. For most of
the paper we assume that each agent can be part of at most one coalition. Given a set of coalitions,
to establish a new coalition (and thereby potentially destroy existing ones), all agents of the new
coalition have to agree to deviate. An agent is willing to deviate from (and thus destroy) an existing
coalition only if the new coalition yields strictly larger benefit.
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Definition (Coalition Formation Game) A (hedonic) coalition formation game G = (V,C, b)
(with correlated preferences) consists of

• a set V of agents or players,

• a set of possible coalitions or hyperedges C ⊆ 2V \ {∅},

• a benefit-function b : V × C→ R>0.

Let n = |V |, m = |C|, and ∆ = max{|C| | C ∈ C} be the number of agents, the number of coalitions,
and the size of the largest coalition in C, respectively.

In this paper, we focus on the case of correlated preferences where b(v, C) = b(C) for all v ∈ C.
Generalizing our results to more general domains seems an interesting and very challenging open
problem.

A set S ⊆ C with |{C | C ∈ S, v ∈ C}| ≤ 1 for every v ∈ V is called a state or a coalition
structure. Given a coalition structure S, the benefit of agent v ∈ V is given by b(v,S) = b(C) if there
is C ∈ S with v ∈ C, and b(v,S) = 0 otherwise.

We consider improvement dynamics that replace coalitions by more worthy ones. These are
termed blocking coalitions.

Definition (Blocking Coalition, Stability) For a coalition structure S, agent v is saturated if
there is Cv ∈ S with v ∈ Cv. A coalition C ∈ C\S is a blocking coalition if for every saturated agent
v ∈ C it holds b(C) > b(Cv). If S has no blocking coalition, it is called (core)-stable1.

Intuitively, a blocking coalition C is a coalition such that every involved saturated agent would
prefer to be in this coalition over being in the coalition it is part of in S. By assumption, if an agent
is not saturated in S, then it prefers to be part of a coalition.

An improvement step is the resolution of some blocking coalition C: We drop all existing coalitions
from the state that overlap with C. Then we add C to the state. Note that the payoff for all agents
in the blocking coalition C strictly increases upon resolution.

Due to its many applications, we put a special focus on matching games.

Definition (Matching Game) A matching game is a coalition formation game with |C| = 2 for
all C ∈ C. We refer to a coalition as a pair, and two agents involved in a pair are matching partners.
A coalition structure is termed a matching and denoted by M .

We call a blocking coalition in a matching game a blocking pair. A matching without blocking
pairs is called a stable matching.

A prominent class are two-sided or bipartite matching games, where V is composed of two disjoint
sets U and W , and C ⊆ U ×W . This scenario is also referred to as the stable marriage problem.

Due to consistency with the literature, we express a matching game by a simple, undirected graph
G = (V,E) (with E = C). Every possible coalition is an edge e ∈ E with edge benefit b(e).

2.2 Constraints

Important aspects of coalition formation such as locality or externalities are not captured by the
standard model of hedonic coalition formation. We model these aspects by the addition of structural
constraints. We here recapitulate several models that have been proposed in the literature for local
visibility and externality constraints in matching markets, and we propose direct extensions to more
general coalition formation scenarios. In addition, we present a novel model of considerate stability
to study coalition formation with positive externalities.

1Our definition of stability represents the classic notion of core-stability if every C ∈ 2V is available to the agents.
We can easily extend our setting to fulfill this property by assuming b(C) = 0 for all C ∈ 2V \ C.
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2.2.1 Social Stability

In large markets, agents have no chance to gather information about all other agents due to its size
or diversity. Hence, it is reasonable to assume that agents know only about a certain subset of other
agents and can only deviate to coalitions formed with those agents. To model matching markets
where agents can only deviate to known partners, we consider socially stable matchings. The agents
are embedded into a network N = (V,L), where L is a set of links. A link {u, v} ∈ L indicates that
u and v know about each other. Initially, an agent u can be matched to any other agent w with
{u,w} ∈ E. Subsequently, however, it can only deviate to match to an agent v with {u, v} ∈ E ∩ L.

More formally, the only change concerns the definition of blocking pair. A pair e = {u, v} is called
a social blocking pair if e is a blocking pair and e ∈ L. Consequently, a social improvement step is
the resolution of a social blocking pair, and a state M is a socially stable matching if it has no social
blocking pair. Socially stable matchings were introduced by Askalidis et al [6]. For an example, see
Fig. 1.

We can restrict attention to instances with L ⊆ E, since links ` 6∈ E have no effect on social
blocking pairs. Note that edges e ∈ E \ L can be present in the initial state. However, none of
these edges is available for subsequent deviation. Hence, as soon as an agent deviates, any incident
matching edge will be from L.

The edges e ∈ E\L can make a significant difference in terms of size and computational complexity
of socially stable matchings (see [6]). A central match-making platform might be able to bring
together pairs that the agents themselves would not be able to come up with (and not be willing to
deviate from) in the subset of their locally known agents. In this way, edges e ∈ E \ L might enable
the platform to create much larger (socially) stable matchings than when creation and deviation are
based on the same set of edges. For dynamics, the impact of edges e ∈ E \L is arguably more limited.

We here extend the model to coalitions with more than two agents. By doing so, there is some
freedom to define the relationship between social links among agents and the resulting coalitions
that can form. Since the formation of a coalition often requires a significant amount of coordination
and cooperation among its members, we find it natural to assume that agents of a blocking coalition
know each other, i.e., a blocking coalition must form a clique in N . More generally, it might also be
sufficient that the coalition has a small diameter (or is just connected in N) to enable communication
and cooperation in order to deviate.

We capture the network requirements for coalition formation using a set of formation graphs H.
Each of the graphs H ∈ H represents a minimal connectivity structure that should be present for
a coalition to achieve visibility and organization of a deviation. A coalition can form if its inherent
network structure contains at least one formation graph H ∈ H as a subgraph. The formation graphs
represent a minimum requirement in the sense that additional links cause no harm to the organization
of the coalition as a deviation. Examples for formation graphs are, e.g., cliques, stars (a center agent
that knows all other agents of the coalition organizes its creation), or graphs with small diameter.

More formally, in a social coalition formation game there is a set H of graphs. A coalition C is
a social blocking coalition if it is a blocking coalition and there is a graph H = (VH , EH) ∈ H and
some bijective map ϕ : VH → C such that {u, v} ∈ VH ⇒ {ϕ(u), ϕ(v)} ∈ L. By abuse of notation
we will denote the latter condition by H(C) ∈ L. The graphs in H are termed formation graphs. A
state S is a socially stable state if it has no social blocking coalition.

2.2.2 Local Stability

The concept of socially stable states is static since there is no aspect of market exploration. In
contrast, locally stable matching captures the idea that the set of agents that know about each other
and the coalitions available for deviation changes depending on the current state. By matching
to some agent v, an agent u might get to see additional agents from the population and thereby
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Figure 1: A sequence of social improvement steps. Vertices are agents, thick edges indicate current
matching edges, dotted lines symbolize links. The dashed edges show additional pairs in E which
can be present in the initial matching, but cannot be created by deviations since they are not part
of L. Benefits are indicated by numbers alongside the edges. From left to right: Initial matching
{{1, 2}, {3, 5}}, edge {1, 2} exists but not part of L; resolution of social blocking pair {1, 3} removes
{1, 2} and {3, 5}, where the latter is later re-established and the former is lost; resolution of social
blocking pair {1, 4}; resolution of social blocking pair {3, 5}, a socially stable matching is reached.
Note that the attractive pair {4, 5} is not accessible throughout.

obtain additional and possibly more preferred partners to match and deviate. Similarly, if a match
is abandoned, an agent might lose information about the population and get more restricted in the
way it can match.

There is again a network N = (V,L), in which L is a set of links. Links are static and represent
connections independent of the coalition formation problem, e.g., based on family bonds or work
relations. In contrast to socially stable matching, these links do not only provide alternative partners
but also allow to explore and discover other matching partners. Agents see their 2-hop neighborhood
in the graph (V,M ∪ L), i.e., the set of possible matching partners depends on L and the current
matching M . Thus, the improvement dynamics become a joint matching and exploration process.
While the links in L are permanent, note that matching edges cease to exist once they are dropped
from M . This can also reduce the set of matching partners that are known to each other.

More formally, we say that a pair {u, v} is accessible in state M if u and v have hop-distance at
most 2 in the graph (V,L∪M). Put differently, dist(u, v, (V,L∪M)) ≤ 2 where dist gives the length
of a shortest path from u to v (which is ∞ if u and v lie in different connected components). A pair
e = {u, v} is called a local blocking pair if e is a blocking pair and e is accessible. A local improvement
step is the resolution of a local blocking pair, and a state M is a locally stable matching if it has no
social blocking pair. Locally stable matchings were introduced by Arcaute and Vassilvitskii [5] and
further studied in [23,31,37].

For local blocking pairs, a shortest path that makes them accessible can consist of one link, two
links, or of exactly one link and one matching edge. In the latter case, let w.l.o.g. {u,w} be a
matching edge. As u has at most one incident edge in M , the local improvement step will delete
{u,w} to create {u, v}. For simplicity, we will refer to this fact as an “edge moving from {u,w} to
{u, v}” or “u’s edge moving from w to v”. For an example, see Fig. 2.

To extend these ideas to games with larger coalitions, there are again several options to define a
notion of accessible coalition. Similar to our approach for social coalition formation games above, we
consider a set H of formation graphs that determines the minimum graph structures that are required
among a coalition to be a candidate for deviation. Intuitively, closely connected graph structures of
small diameter are natural choices for formation graphs. In this case, we also consider a notion of
visibility of edges – a coalition C is accessible if there is a graph H = (VH , EH) ∈ H with |VH | = |C|
and a bijective map ϕ : VH → C such that each edge {u, v} ∈ VH is visible in the current coalition
structure. Note that in the case of matching, there is no need to define a separate visibility notion
for edges, since all coalitions are single edges.

To define visibility for an edge, we construct a visibility graph for a state by adding L and a clique
of temporary links for every existing coalition. Formally, the visibility graph for coalition structure
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Figure 2: A sequence of local improvement steps. Vertices are agents, thick edges indicate current
matching edges, dotted lines symbolize links. The dashed edges show additional pairs in E, where
black edges are accessible and gray edges are not accessible in the current state. Benefits are indicated
by numbers alongside the edges. From left to right: Initial matching {{1, 2}}, although link {1, 3}
is not a matching edge, it serves to make the unique local blocking pair {2, 3} accessible; resolution
of local blocking pair {2, 3} removes {1, 2}, reduces the distance between 2 and 5 to 2, and makes
{2, 5} accessible; resolution of local blocking pair {2, 5}, a locally stable matching is reached. Note
that the attractive pair {2, 4} is not accessible throughout.

S is G(S) = (V,L ∪ {{w,w′} | w,w′ ∈ S and S ∈ S}). The direct extension of local stability for
matchings would be to define an edge as visible when the nodes are within a hop-distance of 2 in
the visibility graph – formally {u, v} ∈ VH ⇒ dist(ϕ(u), ϕ(v), G(S)) ≤ 2. However, this condition
is arguably quite a stretch for larger coalitions, since here each connection for organizing the new
coalition might only be a 2-hop path in terms of current visibility structure. As such, it might be the
case that for each edge of H, the coalition C must rely on paths in G(S) involving outside agents.
We briefly consider this model in Section 4.2 and prove an exponential lower bound for very simple
games of this kind.

For this reason, our main interest is in a more direct approach. In a local coalition formation
game, an edge is termed visible if it exists in G(S). Consequently, a coalition C is accessible in
state S if there is some H = (VH , EH) ∈ H and some bijective map ϕ : VH → C such that
{u, v} ∈ VH ⇒ {ϕ(u), ϕ(v)} ∈ G(S). Again by abuse of notation we will denote this situation by
H(C) ∈ L ∪ S. A coalition C is a local blocking coalition if it is a blocking coalition and accessible,
and a locally stable state is a state S without a locally blocking coalition.

Observe that if H does not solely consist of cliques, this definition implies an exploration aspect
of the resulting dynamics, similar to locally stable matching. However, with this direct approach
to visibility the exploration aspect relies on the presence of larger coalitions. When we consider
the special case of matching, the scenario becomes socially stable matching (and not locally stable
matching).

2.2.3 Considerate Stability

In considerate stable matching we model the influence of friendship relations or contract partnerships
on matching dynamics. The relations are again captured via an undirected network N = (V,L) with
link set L. In this case, however, the links express friendships and positive externalities. Every edge
e ∈ E is available for formation throughout. However, agents deviate and form a new match only if
none of their friends (neighbors) in the network N suffers from this.

A blocking pair e = {u, v} ∈ E is not accessible if at least one agent in e has a neighbor in N , for
whom benefit decreases when {u, v} is resolved. Such pairs are not available for resolution, even if
they constitute blocking pairs. Formally, a pair {u, v} ∈ E is not accessible in state M if there is an
agent v′ such that {u, v′} ∈ M , and (a) {u, v′} ∈ L or (b) {v, v′} ∈ L. Otherwise, the pair is called
accessible in M . A pair {u, v} is a considerate blocking pair if it is a blocking pair and accessible.
A considerate improvement step is the resolution of such a considerate blocking pair, and a state M
without considerate blocking pair is a considerate stable matching (see Fig. 3 for an example).
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Figure 3: A sequence of considerate improvement steps. Vertices are agents, thick edges indicate
current matching edges, dotted lines symbolize links. The dashed edges show additional pairs in
E, where black edges are accessible and gray edges are not accessible in the current state. Benefits
are indicated by numbers alongside the edges. From left to right: Initial matching {{1, 2}}, where
the pair {1, 3} is a blocking pair but not a considerate blocking pair because of the link {2, 3};
resolution of considerate blocking pair {1, 4} removes {1, 2} and makes {1, 3} accessible; resolution
of considerate blocking pair {1, 3}, a considerate stable matching is reached.

For larger coalitions we generalize this definition in the following way. In considerate coalition
formation there is a limit l for each agent on the number of neighbors it is willing to hurt when
being part of a resolved blocking coalition. For considerate matching this number is set to l = 0.
For matching games at most two drop their partners if a blocking pair is resolved. Thus, a limit
of l = 1 would only have influence on constellations where one agent is friends with both his own
matching partner and the current partner of the desired new matching partner. In contrast, for larger
coalitions the number of agents influenced by an improvement step can grow quadratically. If we
consider coalitions of size ∆, the formation of one new coalition can result in up to ∆(∆− 1) agents
being dropped from the coalition structure. In these settings, it is reasonable to consider l > 0, that
is, agents might be willing to hurt some small number of their friends by deviating to a new coalition.

Formally, for a coalition C in state S, consider for v ∈ C the penalty pen(v, C) = |{v′ : v′ ∈ C ′ ∈
S, v′ /∈ C,C ∩C ′ 6= ∅, {v, v′} ∈ L}|, i.e., the number of neighbors in N that are part of some coalition
in S and become single when C is added to and all overlapping coalitions are removed from the state.
Then C is accessible in S if

max
v∈C

pen(v, C) ≤ l.

A coalition C is a considerate blocking coalition if it is a blocking coalition and accessible, and a state
S without considerate blocking coalitions is a considerate stable state.

2.2.4 Friendship Stability

In considerate stable matching we formulated a binary condition on externalities among friends.
Friendship stable matching represents an aggregative setting where every agent u ∈ V expresses for
every agent v ∈ V a numerical value cu,v to which extent it cares about the benefit of agent v ∈ V .
We normalize the values by assuming cu,u = 1. Agent u now strives to optimize the perceived benefit

bp(u,S) =
∑
v∈V

cu,vb(v,S) = b(u,S) +
∑

v∈V \{u}

cu,vb(v,S)

in state S. In contrast to all other scenarios treated above, this definition inherently relies on cardinal
benefit values for coalitions and cannot be applied directly to ordinal preferences.

We directly introduce the general approach for coalitions or arbitrary size. In a friendship coalition
formation game, a state S has a perceived blocking coalition C ∈ C if for every v ∈ C we have

bp(v,S) < bp(v, (S \ {C ′ | C ∩ C ′ 6= ∅}) ∪ {C}),

that is, the perceived benefit needs to increase for every agent involved in C. A perceived blocking
coalition is a set of agents that have an incentive to deviate and form C, since the trade-off (expressed
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Figure 4: A sequence of perceived improvement steps. Vertices are agents, thick edges indicate
current matching edges. The dashed edges show additional pairs in E, where black edges are per-
ceived blocking pairs. Benefits are indicated by numbers alongside the edges. The values of cu,v are
illustrated by arrows, where we omit an arrow for c = 0. The value of an arrow pointing from u
to v gives the value of cu,v. Here c1,2 = c3,4 = 0.5 while all other values are 0. From left to right:
Initial matching {{1, 3}, {4, 5}}, where the pair {3, 5} is not a perceived blocking pair since agent 3
gains less than it would lose by 5 leaving 4; resolution of considerate blocking pair {1, 2} of benefit
4 removes {1, 3} of benefit 5, represents an improvement in terms of perceived benefits for both 1
and 2, and results in {3, 5} becoming a perceived blocking pair; resolution of perceived blocking pair
{3, 5}, a friendship stable matching is reached.

in perceived benefit) between the improvement of their individual benefit and the deterioration of
individual benefit of their friends is strictly positive for each of them. A perceived improvement step is
the resolution of such a perceived blocking coalition. A state S without perceived blocking coalition
is a perceived or friendship stable state (for an example see Fig. 4). Friendship stable matching was
proposed and studied by Anshelevich et al [4].

Based on the values cu,v, it is possible to capture a variety of phenomena – from altruism when
cu,v ≥ 1 for all v to pure egoism for cu,v = 0 for all v, or spiteful behavior with cu,v < 0. Moreover, in
general we could imagine asymmetric relations among agents when using cu,v 6= cv,u. In this paper,
however, we restrict our analysis to symmetric and non-negative values, i.e., cu,v ≥ 0 and cu,v = cv,u
for all u, v ∈ V . If values are negative or asymmetric, we show in Appendix A.4 that there are
instances in which friendship stable matchings do not exist.

3 Coalition Formation Games with Constraints

In this section we introduce a general model of coalition formation games with constraints, where the
structural constraints are captured by two simple sets of rules: one determines which coalitions can
be generated as a deviation in the current state, the other determines which coalitions are dominated
and therefore not possible as deviation in the current state. For a given state, a given coalition is a
blocking coalition if and only if it can be generated and is not dominated.

Our main results show that when generation and domination rules satisfy a small number of
consistency properties, then for every initial state there is a path to stability of polynomial length.
Moreover, for every initial state, if a state is reachable by a sequence of improvement steps, then
there is also one such sequence with a polynomial number of steps. The set of axioms to define
consistency is a minimal set – removing any one of the axioms allows for instances with initial states
such that there is no path to stability (of polynomial length).

In Appendix A we show that the coalition formation games defined above give rise to consistent
generation and domination rules. This includes all matching variants, as well as, social, considerate
and friendship coalition formation games, which allow coalitions of larger size.

The case is different for local coalition formation games, which in general do not fall within the
framework of consistent generation and domination rules. They will be the subject of Section 4,
where we characterize the existence of polynomial paths to stability based on the set of formation
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graphs.

3.1 Coalition Formation Games with Consistent Constraints

In coalition formation games with constraints we supplement a hedonic coalition formation game with
sets T,D ⊆ {(R, C) | R ⊂ C, C ∈ C}, where we term T the transition or generation rules and D the
domination rules. Here R is a set of coalitions that serves as prerequisite (termed the precondition)
and C is a coalition that (due to presence of R) is generated or dominated, respectively.

More formally, given a state S, if there is a rule (R, C) ∈ T such that R ⊆ S and C 6∈ S, then C
is called a candidate coalition. For convenience, we exclude generation rules of the form (∅, C) from
T and capture these rules in a set Cg ⊆ C of self-generating coalitions. As no precondition has to be
fulfilled to form it, a coalition C ∈ Cg is a candidate coalition for every state S with C 6∈ S.

Similarly, given a state S, if there is a rule (R, C) ∈ D such that R ⊆ S, then C is dominated. To
express the underlying (correlated) preferences of the agents, we assume that D always includes at
least the set Db = {({C1}, C2) | b(C1) ≥ b(C2), C1 ∩C2 6= ∅, C1 6= C2} of all benefit domination rules.
Benefit domination rules simply capture the usual conditions of stability and myopic improvement,
where coalition C2 is dominated by another coalition C1 if they overlap and the benefit of C1 is at
least that of C2. Thus, existence of C1 prohibits emergence of C2.

A feasible state does not contain any dominated coalitions. If S is such that there is a rule
(R, C) ∈ D with R ⊂ S and C ∈ S, then the state S is infeasible. We assume that infeasible
states are excluded from the game. Note that benefit domination rules never make a state infeasible,
because states cannot contain overlapping coalitions.

For a feasible state S, a blocking coalition C is an undominated candidate coalition. Db ensures
that C can only become a blocking coalition if every agent v ∈ C prefers resolution of C in terms of its
benefit. In an improvement step, a blocking coalition is inserted and an auxiliary state S ′ = S ∪{C}
is created. Then, every dominated coalition in S ′ is removed. Note that Db ensures that we remove
at least every coalition that overlaps with C and has strictly smaller benefit. In particular, the new
set of coalitions constitutes a feasible state.

We now define consistent generation and domination rules.

Definition (Consistent Generation Rules) The generation rules of a coalition formation game
with constraints are called consistent if T ⊆ {({C ′}, C) | C,C ′ ∈ C, C ∩ C ′ 6= ∅}. Every generation
rule involves only a single coalition in the precondition, and it shares at least one agent with the
candidate coalition.

Definition (Consistent Domination Rules) The domination rules of a coalition formation game
with constraints are called consistent if D ⊆ {(R, C) | R ⊂ C, C ∈ C, C /∈ R,∃ C ′ ∈ R : C ∩C ′ 6= ∅}.
At least one coalition in R intersects with the dominated coalition.

Observe, in particular, that benefit domination rules Db are consistent. Note further that the
definition of consistent generation rules is only meaningful since we exclude generation rules for self-
generating coalitions. We note some direct consequences of consistency in the following observations.

Observation 1: For generation rules the definition requires that there is only a single coalition
in the precondition and that this coalition overlaps with the candidate coalition. By the benefit
domination rules, such a coalition is undominated only if the precondition coalition is of strictly
smaller benefit than the candidate coalition. In the subsequent improvement step, we replace the
precondition coalition with the candidate coalition. Therefore, the only meaningful generation rules
are those where the precondition coalition is of strictly smaller benefit than the candidate coalition.

Observation 2: For domination rules we allow an arbitrary number of coalitions in the precondition,
but at least one of them has to overlap with the dominated coalition. In consequence, when adding
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a blocking coalition C into S ′, several coalitions might become dominated. However, since S was
a feasible state, there exist no overlaps between coalitions in S. Hence, all dominated coalitions in
S ′ must intersect C. Moreover, since C is a blocking coalition, it is undominated in S ′. Hence, all
dominated coalitions in S ′ must intersect C and be of smaller benefit. Thus, we may restrict our
attention to Db to identify the dominated coalitions in S ′.

These observations show that for the implementation of the improvement step, we can concentrate
on generation and domination rules that execute the standard benefit improvement of agents in
overlapping coalitions. While we only need Db for this, the rules in D\Db can still make a significant
difference in the definition of blocking coalition.

For example, in considerate stable matching, the intuition is that all matching edges can form,
but agents only deviate if this improves their benefit and does not hurt their friends. Hence, we do
not need generation rules (i.e., T = ∅) and have Cg = E. A domination rule (e′, e) ∈ D \Db expresses
that a matching edge e = {u, v} is dominated if e′ = {v, w} ∈ M , since in such a deviation u would
“steal” the partner v from his friend w. Note that in this case, the agent that gets stolen yields an
overlap v = e′ ∩ e, which makes the domination rules consistent.

As another example, in locally stable matching, the main idea is that generation of matching
edges depends on the current state. Here the domination rules are simply the benefit domination
rules Db. A generation rule (e′, e) ∈ T expresses that a matching edge e = {u, v} can be generated
when e′ = {v, w} ∈ E and there is some {w, u} ∈ L. Such a deviation would imply agent v
switches from partner u to u’s friend w, which yields an overlap v = e′ ∩ e. Since {u,w} ∈ L is a
static condition, only existence of the single coalition {v, w} ∈M is needed to generate {u, v}. Hence,
these generation rules are consistent. Note that in a variant where w can have two matching partners,
e′ = {v, w} ∈ M and e′′ = {u,w} ∈ M together can lead to {u, v} becoming a local blocking pair.
As such, the generation rule ({e′, e′′}, e) is not consistent, and there exist exponential lower bounds
on the path to stability for this variant [31]

More broadly, in the above examples, socially and locally stable matching rely only on benefit
domination D = Db. For socially stable matching we simply have Cg = E and T = ∅. For locally
stable matching we use consistent generation rules as specified above. In considerate and friendship
stable matching, we do not make use of generation rules (i.e., T = ∅). Every every coalition can
always be generated Cg = E. Here the domination rules are consistent and express the externality
constraints, thereby making certain deviations unavailable. For considerate stable matching, we saw
above that the domination rules are of the form (e′, e) with a single coalition in the precondition.
In contrast, friendship stable matching has an aggregative nature of externality. As such, there are
cases in which agents u and v have no incentive to deviate to {u, v} 6∈M only if two edges e′ = {v, w}
and e′′ = {u, z} are both present in M . Hence, we obtain consistent domination rules ({e′, e′′}, e)
with more than one coalition in the precondition.

Note that the framework of consistent rules is much more powerful. For example, it allows
to study instances, in which we can combine the effects outlined above into one instance of, say,
“considerate locally” stable matching. There is a single agent set and two sets of links, where one
set is used to express considerate stable matching and the other one locally stable matching. The
rule sets T and D for this game are unions of the corresponding rules for the instances of considerate
and locally stable matching. Obviously, T and D for the combined instance are again consistent.

3.1.1 Short Paths to Stability

Our existence proof for a short path to stability generalizes a previous construction for locally stable
matchings [31]. To explain the construction of a short sequence, we will find it convenient to think
of the dynamics in the form of moving set of tokens over a graph. More formally, we equivalently
represent a coalition formation game with consistent constraints as a directed coalition movement
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hypergraph Gmov = (Vmov ∪ Vmov,g, Tmov ∪Dmov). The vertices are the possible coalitions: Vmov,g =
{vC | C ∈ Cg} contains a vertex for every self-generating coalition, and Vmov = {vC | C ∈ C \ Cg} a
vertex for every other possible coalition.

We represent a coalition structure S as a set of tokens being placed on the vertices. We put
a single token on every vertex vC with C ∈ S. Resolution steps are simulated by the creation
of new tokens or the (re-)movement of existing ones. To correctly express the consequences of an
improvement step in the game, we use two edges sets corresponding to generation and domination
rules. The directed transition edges

Tmov = {(vC′ , vC) | ({C ′}, C) ∈ T, b(C ′) < b(C)} .

capture generation rules. By Observation 1, note that Tmov can be restricted to transition edges
resulting from generation rules ({C ′}, C) with b(C ′) < b(C). The transition edges induce a directed
acyclic graph (DAG).

In addition, the directed domination hyperedges

Dmov = {({vC′ | C ′ ∈ R}, vC) | (R, C) ∈ D} .

capture the domination rules. They express on which vertices we cannot simultaneously put tokens.
In particular,

Dmov,b = {({C ′}, C) | C 6= C ′ ∈ C, C ∩ C 6= ∅, b(C ′) ≥ b(C)} ⊆ Dmov

is the set of all domination edges given by benefit domination rules. We call a vertex v in Gmov

undominated if for every hyperedge (U, v) ∈ Dmov at least one vertex in U has no token. For the
initial state S0 we put a token on every vertex in Vmov,0 = {vC | C ∈ S0}. Since S0 is a feasible state,
all vertices with tokens are undominated.

Now consider an improvement step that resolves a blocking coalition C. We express the improve-
ment step by the following token adjustment. Since C is added to the state, we need to put a token
on vC . Note that a blocking coalition is not part of the current state and undominated, i.e., vC must
have no token and be undominated in Gmov. If C ∈ Cg, then we can simply create the coalition and
thus create a new token at vC ∈ Vmov,g. Otherwise, C is generated as a result of some generation
rule (C ′, C) ∈ T , where C ′ ∈ S has a token. Due to Observation 1 the precondition coalition C ′ will
be removed. As such, we move the token from vC′ along the corresponding transition edge to vC . Fi-
nally, we delete all dominated coalitions from the state. Note that any dominated coalition C ′ results
from a domination rule (R, C ′). Since all the coalitions in R exist, all vertices in U = {vS | S ∈ R}
have tokens. Hence, vC′ is dominated due to the corresponding edge (U, vC′) ∈ Dmov. We delete
every token at dominated vertices. As a result, if we execute this token adjustment, the location of
tokens correspond exactly to the existing coalitions after the resolution of blocking coalition C.

Observation 3: The token adjustment in the coalition movement hypergraph correctly captures the
creation and deletion of coalitions in every improvement step of the coalition formation game with
constraints.

To prove the existence of a short sequence of improvement steps to a stable state, we show that
only a polynomial number of token adjustments is necessary to reach a stable state. To compute the
sequence consider Algorithm 1.

Phase 1 is a greedy procedure. Phases 2 and 3 generate a new token at a vertex of v ∈ Vmov,g

and move it to a vertex u such that by reaching u, an existing token gets removed. Vertex u is
undominated reachable from v if there is a directed path (v = v1, e1, v2, . . . , e`−1, v` = u) in Tmov such
that vi+1 is undominated if vi has a token (along with all other vertices currently having tokens), for
every i = 1, . . . , `− 1. Note that for any vertex v ∈ Vmov,g the set of vertices that are undominated
reachable from v can be computed efficiently by BFS.
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Algorithm 1: Short Path to Stability

Input: Hypergraph Gmov based on a coalition formation game with consistent rules,
initial tokens on Vmov,0

Output: Polynomial sequence of token adjustments ending in a stable state

Phase 1: In a round of phase 1, check whether there is a transition edge from a vertex with
a token to an undominated one. If this is the case, we move the token along the transition
edge, remove tokens at dominated vertices, and start the next round of Phase 1. Phase 1
ends when there is no such transition edge. Then proceed to Phase 2

Phase 2: In a round of phase 2, consider the set Vcand,g ⊆ Vmov,g of undominated vertices
without tokens. For each vertex v ∈ Vcand,g, check via BFS if there is a vertex u that is
undominated reachable from v, and when a token is created at v that leads to removal of an
existing token. If for all v ∈ Vcand,g no such vertex u exists, proceed to Phase 3. Otherwise,
create a token at v and move it along the undominated path to u. Then restart Phase 1.

Phase 3: In a round of phase 3, again consider the set Vcand,g. For each v ∈ Vcand,g,
compute the set Vreach(v) of vertices that are undominated reachable from v. Pick a vertex
uC ∈ Vreach =

⋃
v∈Vcand,g

Vreach(v) with maximum benefit b(C). Create a token at the
corresponding v ∈ Vcand,g and move it along the undominated path to uC . Then, start a new
round of Phase 3. Phase 3 ends when Vreach is empty.

Lemma 1 If the tokens are located at vertices that represent a feasible initial state, Algorithm 1
constructs O(nm2) token manipulations such that tokens are placed at vertices that represent a stable
state. The algorithm runs in polynomial time.

Proof. We consider each phase separately. In each round of Phase 1, we move an existing token
to a vertex of higher value by using a transition edge. Hence, the total number of tokens does not
increase. There are at most n tokens, Tmov represents a DAG, and each token can move to at most
m vertices. Hence, Phase 1 finishes after at most n · (m− 1) rounds, where each round corresponds
to a single improvement step.

Phase 2 can be seen as an extension of Phase 1. In a round of Phase 2, we create a new token
and move it to a vertex u where it leads to removal of an existing token at some vertex, say, u′. Due
to Observation 2, u must correspond to a coalition with higher benefit than u′. Thus, at the end of
the round, the number of tokens is not increased, and one token has moved from u′ to u with higher
coalition benefit. Note that a round of Phase 2 corresponds to at most m improvement steps, which
are required to move the token to u. Consequently, the overall number of rounds in Phase 1 and 2
is at most n · (m− 1), where each round corresponds to at most m improvement steps.

When Phase 2 terminates, consider the set V2,end of vertices that have tokens. The tokens at V2,end
cannot simply be moved to vertices with higher benefit by transition edges. Moreover, by introducing
new tokens at Vmov,g and moving them via undominated reachable vertices, we will never reach a
vertex such that some v ∈ V2,end becomes dominated (otherwise Phase 2 would not have ended). We
say that the tokens in V2,end correspond to stable coalitions: No sequence of token adjustments in the
graph (improvement step in the game) can lead to any of these tokens (coalitions) being removed.
While the coalitions corresponding to V2,end are stable, they do not represent a stable state. There
might be additional tokens that can be created. In particular, in Phases 1 and 2 overall the number
of tokens is non-increasing.

Now in Phase 3, we create and move additional tokens in Gmov. In a round of Phase 3, we generate
a token at some vertex in Vmov,g and move it such that it reaches the undominated reachable vertex
of highest benefit. For that reason, and since the set of undominated reachable vertices only shrinks
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in the presence of additional tokens, the created token cannot be (re)moved in subsequent rounds.
Hence, each round of Phase 3 expands the set of tokens that correspond to stable coalitions by one.
Consequently, in Phase 3 there are at most n rounds, where each round corresponds to at most m
improvement steps. The phase finishes with a set of tokens corresponding to a stable state.

For efficient computation of the sequence, the relevant tasks are constructing the graph Gmov,
checking edges in Tmov for possible improvement of tokens, and computing the reachable subgraphs
of Vmov,g. All these tasks can be executed in time polynomial in n, m, |T | and |D| using standard
algorithmic techniques.

Combining Observation 3 with Lemma 1 we obtain the desired result for consistent generation
and domination rules:

Theorem 1 In every correlated coalition formation game with constraints and consistent generation
and domination rules, for every initial structure S there is a sequence of O(nm2) improvement steps
which results in a stable coalition structure. The sequence can be computed in polynomial time.

3.1.2 Short Paths to Every Reachable Coalition Structure

The previous theorem shows the existence and, in particular, an algorithm for efficient computation of
a short path to some stable state. In this section, our first result shows that consistent rules always
imply short sequences of improvement steps. More formally, we show that assuming a coalition
structure is reachable from a given initial state, then it can be reached in a polynomial number of
improvement steps. However, our second result shows that deciding reachability of a given stable
matching from a given initial state is NP-hard. In fact, the decision problem is also in NP (and,
hence, NP-complete) – if the matching is reachable, our first result implies there is a polynomial path
to stability, which is a polynomial-time checkable proof. This hardness result holds in all examples
of two-sided matching games with constraints discussed above. Moreover, it extends to standard
domains like two-sided matching with correlated preferences and ties, or two-sided matching with
strict preferences.

To prove short sequences to all reachable states, we observe in the subsequent Theorem 2 that if
there is a longer sequence of improvement steps, it contains steps which are not relevant for reaching
the final state and can be omitted.

Note that Theorem 2 is somewhat more general and implies parts of Theorem 1. However, the
latter presents a polynomial-time algorithm, and thus we decided to present it first. More precisely,
in games with consistent domination rules, every sequence of improvement steps is finite due to
a lexicographic improvement property (see, in particular, Proposition 3 below). Hence, an initial
(possibly exponentially long) sequence to some stable state can always be constructed by arbitrarily
executing improvement steps as long as possible. Then Theorem 2 can be applied to yield a short
path to stability and implies the existence conditions of Theorem 1. However, this is not an efficient
algorithm since the initial sequence might be too long. Instead, Theorem 1 shows how to derive a
short path to stability in time polynomial in the size of the description of the game.

Theorem 2 In a correlated coalition formation game with constraints and consistent generation and
domination rules, for every coalition structure S that is reachable from some initial state S0 through
some sequence of improvement steps, there is also a sequence of polynomially many improvement
steps from S0 to S.

Proof. Consider a sequence I of improvement steps that transforms S0 into S. The proof uses the
interpretation of tokens in the coalition formation graph introduced in the last section. At any point
in time, the coalition structure is represented via tokens being placed on every vertex corresponding
to a coalition in the structure.
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Consider a single improvement step. In the first part, either a new token τ is introduced (when
generating a coalition in Cg) or an existing token τ is moved (when applying a generation rule) from
the vertex of the precondition coalition to the vertex of the target coalition. In the second part,
the application of domination rules removes tokens from the graph (corresponding to dominated
coalitions that are removed from the coalition structure). We say token τ collects all tokens that are
removed in the second part. Note that all tokens collected by τ are located at vertices with strictly
smaller benefit.

Now consider the sequence I of improvement steps. We classify the tokens that appear during
the sequence. Each token that is initially placed for some coalition in S0 is called initial. Each token
that represents a coalition of S in the end is final. Note that there can be tokens that are both initial
and final. For a token that is neither initial nor final, we say it is justified if during the time of its
existence it collects at least one other token. Finally, all remaining tokens are superfluous.

Consider a superfluous token. It corresponds to a subsequence of (not necessarily consecutive)
improvement steps, which create some coalition, apply a number of improvement steps, and then
delete the resulting coalition due to creation of a dominating one (which was generated from a
different precondition coalition). None of these steps is necessary to reach S from S0 – the coalitions
that are created during these steps do not alter or remove any other coalitions, and they do not lead
to a coalition that survives in the end. If we just omit all improvement steps that correspond to
creation and movement of a superfluous token, we obtain a shorter feasible improvement sequence I ′

that starts in S0 and ends in S.
Suppose we remove all superfluous tokens. If a justified token τ in I was collecting only superfluous

tokens, it becomes superfluous. Hence, we keep iterating the removal of superfluous tokens until only
initial, final, and justified tokens remain. In the resulting compact sequence, a token that is initial
but not final must be collected by a justified token. When it is collected, the justified token must be
located at a vertex with higher benefit. If the collecting token is not final, it must be collected by
another justified or final token, again at a vertex with higher benefit, and so on, until the collecting
token is final. In addition, there might be final tokens that do not collect any initial or justified
tokens.

There are |S| final tokens, and each one takes at most m improvement steps to reach the final
location in the graph. Initial or justified tokens take at most m steps each until they are collected.
If a token is collected, the collecting token is located at a vertex with higher benefit. Hence, if we
track the collection events from an initial token to the collecting justified token, to the collecting
justified token, etc, to the collecting final token, then there are at most m such collection events for
each initial token. Hence, for each initial token, the sequence has at most m2 improvement steps. In
conclusion, this proves that any compact sequence consists of at most |S0| ·m2 + |S| ·m ≤ nm2 +nm
steps.

While every reachable state can be reached fast, it is not easy to decide whether a state is
reachable at all. This even holds if we only consider reachability of stable states. Our next theorem
presents a generic reduction which can be adjusted to prove the NP-completeness of this problem
for socially, locally, considerate, and friendship matching, even in the two-sided case. It also applies
to ordinary two-sided stable matching games that have either correlated preferences with ties, or
non-correlated strict preferences. Note that the problem is trivially solvable for stable matching with
strict correlated preferences (without ties), as there is a unique stable matching that can always be
reached using a simple greedy sequence [1, 2]. Moreover, it trivially implies hardness also for all
variants with more than two agents per coalition. It even applies to local coalition formation games
studied in the subsequent Section 4, since this model includes social stable matching as a special case
(as discussed in Section 2.2.2).

Theorem 3 It is NP-complete to decide if for a given matching game, initial matching M0 and
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stable matching M , there is a sequence of improvement steps leading from M0 to M . This holds even
for two-sided games with strict correlated preferences and

1. socially stable matching,

2. locally stable matching,

3. considerate matching, and

4. friendship matching for symmetric c-values in [0, 1].

In addition, it holds for ordinary two-sided stable matching and

5. correlated preferences with ties,

6. strict preferences.

Proof. The proof is via reduction from 3Sat. We rely on a central construction for all cases. We
then adapt the structure of the clause gadgets to the specific settings. Each clause gadget will have
the property that one particular agent vC has to be matched to an agent of the central construction
at some (arbitrary) point during the sequence and subsequently must be left single again. Otherwise,
the clause gadget cannot be transformed into the state of the desired final matching.

We first outline the universal proof construction including only the one particular agent vC per
clause C. We show that it is NP-hard to decide whether there is a sequence of improvement steps
such that each of the clause vertices gets matched and afterwards unmatched at least once. Our
proof is then completed by providing for every setting the exact clause gadget and explain why it is
necessary to match vC to some agent outside the clause gadget to reach the final state.

Given a 3Sat formula with k variables x1, . . . , xk and l clauses C1, . . . , Cl, where clause Cj

contains the literals l1,j , l2,j and l3,j , for the central construction we have

U = {uxi | i = 1 . . . k} ∪ {uxi | i = 1 . . . k} ∪ {vCj | j = 1 . . . l},
W = {wxi | i = 1 . . . k} ∪ {wxi | i = 1 . . . k}.

Further E = E1 ∪ E2 ∪ E3 with

E1 = {{uxi , wxi}, {uxi , wxi} | i = 1 . . . k},
E2 = {{uxi , wxi}, {uxi , wxi} | i = 1 . . . k}, and

E3 = {{vCj , wli,j} | j = 1 . . . l, i = 1 . . . 3},

and benefits as given in Table 1.

Table 1: Edge benefits in the central construction of Theorem 3
U W b({u,w})
vCj wli,j i · l + j j = 1 . . . l, i = 1 . . . 3

uxi wxi 4l + i i = 1 . . . k

uxi wxi 4l + k + i i = 1 . . . k

uxi wxi 4l + 2k + i i = 1 . . . k

uxi wxi 4l + 3k + i i = 1 . . . k.
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For a schematic example, see Figure 5. In the case of locally and socially stable matching, we will
have social links between all vertices of U and W to make sure that all edges of E are available for
matching at all times. In the case of friendship matching we set all c to 0 to ensure that benefit is
also perceived benefit.

We start from M0 = E2 and need to decide whether we can reach M = E1. Note that this is the
only stable state of this graph. For any i, we can either first match wxi to uxi , and then match uxi

to wxi , or the other way around. In any case, after the first step, either wxi or wxi will be available
to match to some vCj . Suppose wxi first matches to uxi , then wxi is single and can become matched
to vCj . Now, however, wxi obtains more benefit when he matches to uxi . In this way, vCj becomes
unmatched again. Similarly, when wxi first matches to uxi , then vCj can become matched to wxi and
unmatched later on when wxi matches to uxi . In this way, we fulfill the condition that the agent vCj

becomes matched and unmatched again.
The hardness emerges from the decision whether we can construct a sequence which involves

matching and unmatching all the vCj and reaches the desired final matching. Note that we have to
create some edge {vCj , wli,j} of E3 for every clause Cj . In the beginning, all those edges are blocked
through E2. During the sequence, per variable we can switch one edge of E2 to E1, freeing the
other w-agent. Then, this agent can be used to sequentially match to vCj for all adjacent clauses in
increasing order before creating the second edge of E1. But the w-agent that switched first remains
blocked and thus cannot be used for matching to any of the vCj . Hence, the choice whether to first
create {uxi , wxi} or {uxi , wxi} can be interpreted as the choice whether to set xi true or false (by
creating the “opposite” edge first). This implies the equivalence to solving the 3Sat formula.

Let us now formally prove correctness of the reduction.
Assume that the 3Sat formula is satisfiable. Then pick a satisfying assignment, and for each

variable generate the edges of E1 which symbolize the inverses of the variable assignment. Now,
for every variable the w-agent corresponding to the assigned value is unmatched. We sequentially
generate the incident edges leading to the clause variables in increasing order starting from the
smallest unblocked edge. For every clause, at least one literal is satisfied, and the edges are created
in increasing order. Thereby, at the end of this sequence all vertices vCj were matched at least once.
It remains to generate the second edge for every variable gadget. This yields a sequence to M of the
desired form.

Assume that we can reach M from M0 with a sequence, in which we match and unmatch each
vCj at least once. For each clause Cj , pick an agent wli,j which was matched to vCj . We claim that
for no variable xi both vertices wxi and wxi are picked: In the beginning, both vertices are matched
through an edge that is more preferred than any edge to a clause agent. Thus, to match one of these
vertices to some vCj , it first has to become single, that is, its matching partner uxi respectively uxi

has to deviate to a better partner. But the only better partner for uxi is wxi and the only better
partner for uxi is wxi . Furthermore, both edges then represent stable choices, since they are the
top choice of both partners. Hence, to make wxi available, we have to block wxi for the rest of the
sequence, and to make wxi available we have to block wxi for the rest of the sequence. Since at most
one w-agent of each variable is chosen, we assign each of these variables a value according to the
chosen agent. To each remaining variable, we assign an arbitrary value. This implies that for each
clause at least one literal is evaluates to true, i.e., the formula is satisfied.

Finally, we design appropriate clause gadgets for each case:

1. For socially stable matching we add an agent yCj to W and an edge {vCj , yCj} of benefit j to
E for every clause Cj . Further we also add all the edges {vCj , yCj} to the initial state M0 but
keep M . Note that we did not add any social links for yCj . Thus, M is stable and can be
reached if and only if we rematch every yCj at least once (and hence delete {vCj , yCj}).

2. For locally stable matching we add the same vertices and edges as for socially stable matching.
We add yCj to W and {vCj , yCj} of benefit j to E for every clause Cj . Then we add all the
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Figure 5: Central gadget with variables x, y, z and clause Cj = x ∨ y ∨ z. Dashed edges represent
possible matches, edge labels indicate match benefits.

edges {vCj , yCj} to the initial state M0. M stays the same. Again, M is stable and can be
reached if and only if we rematch every yCj at least once (and hence delete {vCj , yCj}).

3. For considerate matching we add two vertices yCj and y′Cj
to W and edges {vCj , yCj} of benefit

j − 1
2 and {vCj , y

′
Cj
} of benefit j to E for every clause Cj . Further, we also add all the edges

{vCj , yCj} to the initial state M0 and all the edges {vCj , y
′
Cj
} to M . Finally we introduce a

social link between yCj and y′Cj
. Now vCj cannot switch from yCj to y′Cj

, as y′Cj
is friends with

yCj and would thus reject vCj . But if vCj is single, y′Cj
does not reject vCj . Hence, again for

every clause Cj , vCj must be matched to some agent outside the clause gadget and then become
unmatched to reach M .

4. For friendship matching we add two vertices yCj and y′Cj
to W and edges {vCj , yCj} of benefit

j − 1
2 and {vCj , y

′
Cj
} of benefit j to E for every clause Cj . The only friendship value 6= 0

is cvCj
,yCj

= 1
2j−1 . We add all the edges {vCj , yCj} to the initial state M0 and all the edges

{vCj , y
′
Cj
} toM . Note that by the choice of cvCj

,yCj
, the perceived benefit for vCj from {vCj , yCj}

now is (1 + cvCj
,yCj

)(j − 1
2) = j − 1

2 + (j − 1
2) 1

2j−1 = j = b({vCj , y
′
Cj
}), that is, there is a tie in

vCj ’s preference list regarding yCj and y′Cj
. Hence, M is stable but vCj will not switch directly

from yCj to y′Cj
. However, once vCj becomes single, we can match it to y′Cj

as desired.

5. For correlated matching with ties we add two vertices yCj and y′Cj
to W and edges {vCj , yCj}

and {vCj , y
′
Cj
} – both of benefit j – to E for every clause Cj . Further, we also add all the edges

{vCj , yCj} to the initial state M0 and all the edges {vCj , y
′
Cj
} to M . Then vCj does not switch

from yCj to y′Cj
as it yields no improvement. However, if vCj is single, we can match it to y′Cj

.

6. For matching with strict preferences, we note that all edge values in the central gadget are
distinct. Hence, we can derive a strict preference order over all possible matching partners for
each agent. Now, for each clause Cj , we add one agent v′Cj

to U and two vertices yCj and

y′Cj
to W and edges {vCj , yCj}, {vCj , y

′
Cj
}, {v′Cj

, yCj} and {v′Cj
, y′Cj
} to E. For vCj we add

yCj >vCj
y′Cj

to the bottom of the preference list, that is, all vertices of the central gadget are

preferred. For the other preferences we have

y′Cj
>v′Cj

yCj , v
′
Cj
>yCj

vCj and vCj >y′Cj
v′Cj

.

To M0 we add {vCj , yCj} and {v′Cj
, y′Cj
} and to M we add {vCj , y

′
Cj
} and {v′Cj

, yCj}. The clause

gadget has two stable states: {{vCj , yCj}, {v′Cj
, y′Cj
}} and {{vCj , y

′
Cj
}, {v′Cj

, yCj}}. To switch,
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again we first have to destabilize the initial state by matching vCj to some agent of the central
gadget and then leave vCj single. Then y′Cj

can switch to its preferred choice vCj which frees

v′Cj
for yCj , resulting in the desired final state.

For locally stable matching, the problem of reaching a given stable matching is known to be
NP-hard, even from the empty initial matching M0 = ∅ [37]. In contrast, our reduction here applies
a unified framework to many different variants of the problem. In this level of generality, we need
M0 6= ∅, since, e.g., for ordinary two-sided stable matching reaching a given stable matching from
M0 = ∅ is trivial.

3.1.3 Inconsistent Generation and Domination Rules

In the presence of the positive results for consistent generation and domination rules, it is a natural
question if the consistency conditions are also necessary. In this section, we analyze each axiom
individually and prove that every relaxation admits instances where stable states cannot be reached
within a polynomial number of steps. For relaxed domination rules we even give an example without
a stable state where improvement dynamics cycle.

Proposition 1 Suppose the generation rules are allowed to contain more than one coalition in the
precondition and the domination rules are consistent. Then there are instances and initial states such
that every sequence to a stable state requires an exponential number of improvement steps.

Proof. Given an instance of locally stable matching with graph G = (V,E), (social) links L, correlated
preferences b(e) based on edge benefits, we define the parameters of the framework as follows. The set
of agents is V , the set of possible coalitions is C = E. The coalitions which can always be generated
are the ones connected by at most 2 links, i.e., Cg = E ∩ {{u, v} | distL(u, v) ≤ 2}. The benefits
remain the same. For the generation rules, we have T = T1 ∪ T2, where

T1 = {({{u, v}}, {u, v′}) | {u, v}, {u, v′} ∈ E, {v, v′} ∈ L}
T2 = {({{u, v}, {v, v′}}, {u, v′}) | {u, v}, {u, v′}, {v, v′} ∈ E}

Here T1 captures accessible pairs with 2 hops composed of one matching edge and one link and T2
captures accessible pairs where both hops are composed of matching edges. The latter generation
rules are obviously using two coalitions as precondition. For the domination rules we have D = Db,
i.e., only the necessary preference-based domination.

Proposition 2 Suppose the generation rules are allowed to have non-overlapping precondition- and
target-coalitions and the domination rules are consistent. Then there are instances and initial states
such that every sequence to a stable state requires an exponential number of improvement steps.

Proof. We will build an instance with an initial state that requires a unique exponential improvement
sequence to a stable state. The instance consists of k gadgets of 9 agents each and a suitable initial
state. The main property in each gadget i is that to create coalition C6,i, we need to generate C1,i

twice. Further, the gadget will not reach a stable state unless C6,i exists.
For gadget i, we define the set of agents Ni = {0i, . . . , 8i}, and the set of possible coalitions

Ci = {C1,i, . . . , C6,i} with C1,i = {0i, 1i, 2i}, C2,i = {1i, 3i}, C3,i = {3i, 4i, 5i}, C4,i = {4i, 6i}, C5,i =
{2i, 6i, 7i}, C6,i = {5i, 7i, 8i}. The benefits are b(C1,i) = xi + 1, b(C2,i) = xi + 2, b(C3,i) = xi + 4,
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b(C4,i) = xi + 3, b(C5,i) = xi + 2 and b(C6,i) = xi + 5 with xi = 5(i− 1). The generation rules are

Ti = {{{C1,i}, C2,i}, {{C1,i}, C5,i}, {{C2,i}, C3,i}, {{C3,i}, C1,i}, {{C4,i}, C1,i}, {{C5,i}, C6,i}},
if i = 1

Ti = {{{C1,i}, C2,i}, {{C1,i}, C5,i}, {{C2,i}, C3,i}, {{C3,i}, C4,i−1}, {{C4,i}, C4,i−1},
{{C5,i}, C6,i}}, if i > 1.

For the domination rules we have D = Db, i.e., only the necessary preference-based domination.
We introduce k such gadgets. For every i = 1, . . . , k − 1, we merge agent 8i with 0i+1 to become

the same agent. Also, we add a generation rule {{C1,i+1}, C6,i}. Consider the coalition movement
graph. Figure 6 shows the graph for the first two gadgets to visualize the dynamics inside the gadgets
and their interaction.

As initial coalition structure we have {C4,k}. The proof follows from the property that creation
of C6,k (without which the state is not stable), C1,1 has to be created at least 2k times.

Initially, every C4,i for i > 1 can only be used to generate C4,i−1. Note that in this step C4,i is not
deleted. Thus, in the beginning, the unique start of the sequence is to create C4,k−1, C4,k−2, . . . , C4,1,
and none of these coalitions is deleted. When C4,1 exists, the unique next step is creation of C1,1.
Next, as C5,1 is dominated by C4,1, the only option is to generate C2,1 and thus remove C1,1. Then
we can only generate C3,1 while deleting C2,1 and C4,1. With the remaining coalition C3,1 we create
C1,1 a second time, which now can be used to create C5,1 and delete C1,1 again. Next, we can only
create C6,1, which causes the deletion of C3,1 and C5,1.

Hence, we need the existence of C4,1 to create C1,1, which is needed to create C5,1 and C6,1. To
create C5,1 and C6,1, however, we also need the absence of C4,1. Hence, we first have to create C2,1

and C3,1 that lead to removal of C4,1. Then, via a second creation of C1,1 we can create C6,1. This
idea is now applied subsequently in the next gadgets.

C6,1 can now be used to create C1,2 which leaves gadget 1 empty, i.e., no coalition C·,1 exists. To
create C6,2, we have to first remove C4,2 by creating C2,2 and C3,2. By a second creation of C1,2 (and
due to the absence of C4,2) we can then create C5,2 and C6,2. Note, however, that the second creation
of C1,2 again needs the existence of C6,1. However, when we created C1,2 for the first time, gadget 1
was empty. Thus, to create C1,2 a second time, we have to also create C6,1 a second time. Hence, we
must create C4,1 a second time (before removing C4,2) and run through the all of the dynamics for
gadget 1 described above. Only then we can finally create C5,2 and C6,2. Hence, to create C6,2 we
have to create C1,1 a total of four times.

Now C6,2 can be used to create C1,3. At this point, both gadgets 1 and 2 are empty. To create
C6,3 we need to remove C4,3 and, thus, create C1,3 twice. Since, both gadgets 1 and 2 are empty, we
first need to recreate C6,2 for the second creation of C1,3. The second creation of C6,2 requires another
four creations of C1,1 as described above. Hence, to create C6,3 we need to create C1,1 a total of eight
times. This reasoning can be applied to the remaining gadgets and shows the proposition.

The previous two results show that convergence can take exponential time if domination rules are
not consistent. For convergence in finite time, however, we only need consistent domination rules.
The following proposition shows that we encounter the standard lexicographic potential function:
The vector of coalition benefits (ordered non-decreasingly) increases lexicographically in every im-
provement step. This is property has received interest in correlated matching and coalition formation
games without structural constraints [2, 46].

Proposition 3 If the domination rules are consistent, then there is a lexicographic potential function,
and every sequence of improvement steps is finite.

Proof. Suppose the domination rules are consistent and consider an improvement step. If coalition
C gets added, then C can cause one or more coalitions C ′i, i = 1, 2, . . . to become removed. By
Observation 2, however, we have b(C) > b(C ′i) and C ∩ C ′i 6= ∅ for all i.

23



C1,1

C2,1 C3,1

C4,1

C5,1 C6,1 C1,2

C2,2 C3,2

C4,2

C5,2 C6,2 ...

...

...

Figure 6: Coalition movement graph of gadgets 1 and 2 in Proposition 2. The thick edges symbolize
domination rules, the dashed edges symbolize generation rules

Hence, any novel coalition that gets added to the state causes only (overlapping) coalitions with
strictly smaller benefit to be removed. Therefore, we have the lexicographic potential function. Hence,
convergence in finite time can always be guaranteed whenever domination rules are consistent.

In the following proposition, we show that the argument from the previous proof breaks when
domination rules are allowed to contain non-overlapping coalitions. Then a coalition with smaller
benefit can dominate a non-overlapping coalition with larger benefit. Note that benefit domination
rules Db apply only for overlapping coalitions. In the following instance, however, benefit domination
rules are ineffective, since we create three coalitions that are mutually non-overlapping.

Proposition 4 If the domination rules include target coalitions that do not overlap with any coalition
in the precondition, there are instances and starting states such that every sequence of improvement
steps cycles.

Proof. Consider the following example with N = {1, . . . , 6}, C = {{1, 2}, {3, 4}, {5, 6}}, Cg = C,
and benefits b(C) = 1 for all C ∈ C. There are no generation rules T = ∅ (but Cg = C). For the
domination rules, we consider non-overlapping coalitions in precondition and target:

D = {({{1, 2}}, {3, 4}), ({{3, 4}}, {5, 6}), ({{5, 6}}, {1, 2})} .

The initial state is C0 = {{1, 2}}.
Since {1, 2} exists, {3, 4} is dominated and cannot be formed. The other candidate coalition

{5, 6} is undominated and represents the unique improvement step. As {5, 6} dominates {1, 2} (but
not vice versa), {1, 2} gets removed when {5, 6} is formed. Now {4, 3} is the unique undominated
candidate coalition and is formed. Thereby, {5, 6} is removed and {1, 2} becomes undominated. Next
{1, 2} is formed, {3, 4} is deleted and the cycle is complete.

We conclude that relaxing the consistency conditions will encompass settings where (fast) con-
vergence cannot be guaranteed. Thus, in this sense the choice of axioms is minimal.

However, let us point out that consistency is not a complete characterization of the set of games
that have short improvement sequences for every pair of reachable states (in the sense of if-and-
only-if). There also exist non-consistent games that have this property (a trivial example are games
with a constant number of agents). As such, there could be orthogonal characterizations of coalition
formation games with constraints. We derive such an example below for local coalition formation
games.
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4 Local Coalition Formation Games

Unlike local matching games, local coalition formation games are not fully described by consistent
generation and domination rules. In these games, a coalition might be accessible only if several other
coalitions are present, which implies inconsistent generation rules. Nevertheless, polynomial-time
convergence still might be possible.

In Section 4.1 we analyze local coalition formation games depending on the choice of the set H
of formation graphs. If H only consists of cliques, we encounter the problem that a coalition might
be accessible only if several coalitions exist. However, since we require a clique structure to form
a coalition, improvement sequences do not conduct exploration. More formally, the edge set of the
visibility graph G(S) is shrinking monotonically. This allows to show convergence in polynomial
time. If H only consists of stars, we can define consistent generation and domination rules. Thereby,
all results of the previous section apply. For all other choices of H, we provide an instance and a
starting state, from which there is a unique sequence to a stable state, which takes an exponential
number of improvement steps.

Subsequently, in Section 4.2 we provide a lower bound for the model using longer paths in the
visibility graph. In this approach (recall the discussion in Section 2.2.2), a coalition is accessible if
it can be mapped to a formation graph, such that each edge of the formation graph is represented
by a path with hop-distance at most 2 in the visibility graph. In such games, there are instances
with maximal coalition size 3 and starting states, from which the unique sequence to a stable state
requires an exponential number of improvement steps, even if the set of formation graphs consists
only of cliques or stars.

4.1 Characterizing Formation Graphs

In this section, we consider local coalition formation games, where we parametrize the games with
the set H of formation graphs. In this way, we analyze how different choices of formation graphs
influence the convergence properties, i.e., the existence of short paths to stability. We start with
instances where H consists solely of cliques:

Theorem 4 Let H ⊆ {Ki | i = 1 . . . n} where Ki is a clique of i vertices. In every local coalition
formation game using H, for every initial state S there is a sequence of n local improvement steps
which results in a locally stable coalition structure. If local improvement steps are chosen at random
in every step, the dynamics converges in expected time O(mn).

Proof. We observe that the set of edges in the visibility graph is monotonically shrinking. A coalition
C is only accessible if all pairs of agents in C are connected by permanent (through L) or temporary
links (currently in the same coalition). Thus, if C is a local blocking coalition and gets added, this
does not introduce any new temporary links. On the other hand, some temporary links might get
deleted if coalitions overlapping with C are deleted.

Now assume C is a local blocking coalition of maximal benefit among all local blocking coalitions
in S. Then, once C is formed, it will not be deleted by any other coalition created through blocking
dynamics as no new coalitions of higher value can become accessible. Thus, the natural greedy
approach of resolving the local blocking coalition that adds the most valuable coalition to the state
results in a stable state after at most n steps.

If, instead of picking the most valuable one, we pick a local blocking coalition at random, with
probability at least 1

m we pick one of the most valuable local blocking coalitions. Hence, every m
steps in expectation we pick a most valuable local blocking coalition. Due to the monotonic shrinking
visibility graph, the set of available coalitions is also monotonically decreasing. Hence, whenever we
pick a most valuable blocking coalition, this coalition will not get removed subsequently. Thus, after
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at most m steps in expectation we enlarge the set of stable coalitions by at least one. Overall, after
at most mn steps in expectation, we reach a stable state.

Let us now turn to star formation graphs. Here use the fact that in a star all edges share the
same (center) vertex. As a consequence, when embedding the star into the visibility graph, it uses
temporary links introduced by at most one coalition of S – otherwise the coalitions would have to
share the center vertex. Thus, for H ⊆ {Hi | i = 1 . . . n}, where by Hi we denote a star consisting of
a center and i− 1 leaves, all results from the previous section apply.

Theorem 5 Let H ⊆ {Hi | i = 1 . . . n} where Hi is a star with a center and i− 1 leaves. Every local
coalition formation game using H is equivalent to a coalition formation game with constraints and
consistent generation and domination rules.

Proof. We keep the set of possible coalitions as well as their benefits the same. The main insight of
the proof is to express the locality constraints using generation and domination rules. The domination
rules is easy to define – the only reason an accessible coalition should not be formed is because one
of the involved agents is already part of a better or equally preferred coalition. Thus, we define

D = Db = {({C ′}, C) | C,C ′ ∈ C, C ∩ C ′ 6= ∅, b(C ′) ≥ b(C)}.

For the generation rules, observe that coalitions cannot overlap and in a star all edges share the
center vertex. Hence, no accessible coalition can rely on temporary links of more than one existing
coalition when embedding a star formation graph. Hence, for the generation rules we set

T = {(∅, C) | C ∈ C, H|C| ⊆ (V,L)}
∪ {({C ′}, C) | C,C ′ ∈ C, C ∩ C ′ 6= ∅, H|C| ⊆ (V,L ∪ {C ′})} .

Note that these generation and domination rules are consistent. We now verify that using these
rules, the resulting coalition formation game correctly expresses the original local coalition formation
game.

First, assume that C is a local blocking coalition for S. Then C is accessible, that is, H|C|
appears in the visibility graph. As discussed above, temporary links of at most one coalition are
used in embedding H|C|. Thus, either C is always accessible via L (i.e., C ∈ Cg), or it relies on
temporary links of some C ′ ∈ S. Then ({C ′}, C) ∈ T which makes C a candidate coalition in S.
Further, if C is a local blocking coalition, there is no coalition C ′′ ∈ S such that C ∩ C ′′ 6= ∅ and
b(C ′′) ≥ b(C). Consequently, the candidate coalition C is undominated in S. Hence, if C is a local
blocking coalition in the original game, it is also a blocking coalition in S for the coalition formation
game with constraints.

Conversely, let C be a blocking coalition in S for the coalition formation game with constraints.
Then C is undominated, that is, C is a blocking coalition. Further, C is a candidate coalition. Thus,
C is accessible in S. In consequence, if C is a blocking coalition for the coalition formation game
with constraints, it is a local blocking coalition in the original game.

Now, resolving the local blocking coalition C results in deleting all overlapping coalitions. By
definition of blocking coalitions, all existing overlapping coalitions are of smaller value than C. Sim-
ilarly, resolving the undominated candidate coalition C results in deleting all coalitions dominated
by C. By definition, these are exactly the coalitions overlapping with C of less or equal value than
C. As C was undominated, all these coalitions have to be of smaller value than C. Thus, the set of
deleted coalitions coincides in both games.

As the main result, by applying Theorem 1 we obtain short paths to stability to locally stable
states.
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Corollary 1 Let H ⊆ {Hi | i = 1 . . . n}. In every local coalition formation game using H, for every
initial state S there is a sequence of O(nm2) local improvement steps which results in a locally stable
coalition structure.

Finally, we analyze the case where the formation graph is any connected graph. It turns out that
for every such graph that is neither a star nor a clique, there is an instance and a starting state with
only exponentially sequences to a locally stable state. To prove this property, we first extract a single
subgraph structure which is present in every connected graph except for stars and cliques. We will
then construct an instance without short paths to stability using only this subgraph structure. To
adjust the instance to an arbitrary graph, one can simply add the “missing” vertices and edges using
separate auxiliary agents and links for every coalition.

We start by observing that if some graph H is neither a star nor a clique, then there is some path
of length 3 in H such that the first and the third vertex are not directly connected by some edge.

Lemma 2 Let H = (VH , EH) be any simple, undirected, connected graph. If for every path v1v2v3v4
with {v1, v2}, {v2, v3}, {v3, v4} ∈ EH there also exists an edge {v1, v3} ∈ EH , then H is either a
clique or a star.

Proof. If H does not have any paths of length ≥ 3, then H is a star. Further, if H is connected and
has less than 4 vertices, H is either a star or a clique.

Now assume that H holds some path v1v2v3v4 with {v1, v2}, {v2, v3}, {v3, v4} ∈ EH . Then,
considering this path forward and backward, we know that {v1, v3} and {v2, v4} are in EH as well.
Thus, we also have the path v1v2v4v3 and conclude {v1, v4} ∈ EH , that is, v1, v2, v3, and v4 form a
clique C1 in H. Now, as H is connected, if H 6= C1, there exists some edge e connecting C1 to the
rest of H. Let v5 be the vertex in e ∩ (VH \ {v1, v2, v3, v4}). W.l.o.g. let v5 be connected to v1, that
is, e = {v1, v5}. Using the edges in C1, we have the paths v5v1v2v3, v5v1v3v2, and v5v1v4v2 and thus
also edges from v5 to all other vertices in C1. Hence, v1, v2, v3, v4 and v5 form a clique C2 in H. Now
we can apply the same arguments to the bigger clique repeatedly until each vertex of V is included.
Thus, H has to be a clique.

Hence, there is a path of length 3 with a missing edge between the first and the third vertex in
all formation graphs H we want to analyze. We use the substructure to establish the desired lower
bound by concentrating on this structure. The rest of H can then be added separately for every
potential coalition using auxiliary agents and links. We also ensure that additional edges between
the vertices of the path, that is, edges between the first and the fourth vertex, and edges between
the second and the fourth vertex, have no influence on the dynamics.

Theorem 6 Let H = (VH , EH) be any simple, undirected, connected graph which is neither a clique
nor a star. Then there are instances and initial states of local coalition formation games using
H = {H} such that every sequence to a stable state requires an exponential number of improvement
steps.

Proof. By Lemma 2, we know that there are vertices v1, v2, v3, v4 ∈ VH such that {v1, v2}, {v2, v3},
{v3, v4} ∈ EH but {v1, v3} /∈ EH . Let Hrest = (VH,rest = VH \{v1, v2, v3, v4}, EH,rest = EH \{{v1, v2},
{v2, v3}, {v3, v4}}.

We show how to construct a network of links involving only the vertices v1, v2, v3, and v4 as well
as {v1, v2}, {v2, v3}, and {v3, v4} for each coalition. For each coalition C, all other vertices VH,rest are
unique (denoted by VH,C,rest) and are connected by links according to EH,rest (denoted by EH,C,rest)
with each other as well as with v1, v2, v3 and v4. The network is composed of a concatenation of
identical gadgets, each of which have a starting link {u1,i, u2,i} and two final links {u3,i, u5,i} and
{u9,i, u11,i}. These three links are temporary and not in L, that is, they are only available when
their incident vertices are currently in the same coalition. The dynamics are designed such that the
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starting link must be created and deleted once to create the first final link and a second time to
create the second final link. The coalition providing the starting link of gadget i + 1 can only be
created when both final links of gadget i are available. Thus, to create the coalition which provides
the final link of gadget k, the starting link of gadget 1 must be formed and removed 2k times, that
is, coalition C0 has to be formed 2k times.

For gadget Gi we have 7 coalitions C1,i, . . . , C7,i. The agent set of Gi consists of

{u1,i, . . . , u14,i} ∪
7⋃

j=1

VH,Cj,i,rest

and the link set of

{{u1,i, u5,i}, {u1,i, u9,i}, {u2,i, u3,i}, {u2,i, u11,i}, {u3,i, u4,i}, {u3,i, u11,i}, {u5,i, u6,i}, {u5,i, u7,i},

{u7,i, u8,i}, {u9,i, u10,i}, {u11,i, u12,i}, {u11,i, u13,i}, {u13,i, u14,i}} ∪
7⋃

j=1

EH,Cj,i,rest .

Gadget 1 additionally has agents w1 and w2 with links {w1, u1,1}, {w1, u2,1}, and {w2, u2,1} and a
coalition C0 = {w1, w2, u1,1, u2,1}∪VH,C0,rest of value 1

2 . The transition from gadget i to gadget i+ 1
is realized by associating u5,i with u1,i+1 and u9,i with u2,i+1.

The possible coalitions in gadget i are the following ones.

C1,i = {u1,i, u2,i, u3,i, u4,i} ∪ VH,C1,i,rest with benefit 4i+ 1
C2,i = {u1,i, u3,i, u5,i, u6,i} ∪ VH,C2,i,rest 4i+ 2
C3,i = {u3,i, u5,i, u7,i, u8,i} ∪ VH,C3,i,rest 4i+ 3
C4,i = {u1,i, u2,i, u9,i, u10,i} ∪ VH,C4,i,rest 4i+ 1
C5,i = {u2,i, u9,i, u11,i, u12,i} ∪ VH,C5,i,rest 4i+ 2
C6,i = {u9,i, u11,i, u13,i, u14,i} ∪ VH,C6,i,rest 4i+ 3
C7,i = {u3,i, u5,i, u9,i, u11,i} ∪ VH,C7,i,rest 4i+ 4.

The initial state is S0 = ∅.
We will describe the dynamics of gadget 1 as well as the transition to the next gadget. The other

gadgets work similarly. If no agent of gadget 1 is involved in any coalition, the only accessible coalition
is C0. Once C0 is formed, C1,1 and C4,1 become accessible because the starting link {u1,1, u2,1} is in
the visibility graph. As both coalitions are of higher benefit than C0, they represent local blocking
coalitions. W.l.o.g. assume that C1,1 is formed first. Now C4,1 is not a blocking coalition anymore.
The temporary link {u1,1, u3,1} is present, which makes C2,1 a local blocking coalition. Forming C2,1

results in u2,1 being single again. Additionally, the first final temporary link {u3,1, u5,1} exists, and
C3,1 becomes a local blocking coalition. Now, forming C3,1, agent u1,1 becomes single again. Thereby
C0 (which is always accessible) becomes a blocking coalition again. Further, the link {u3,1, u5,1} is
still present. At this point, the only local blocking coalition again is C0. This time, after C0 is
formed, C1,1 is not a blocking coalition because u3,1 is involved in a better coalition. Thus, the
unique improvement step is to create C4,1. As above, after forming C4,1, C5,1 becomes accessible. By
adding C5,1, the second final link {u9,1, u11,1} is created. Now we can either directly form C7,1, or
we can first add C6,1 and then C7,1 (and thereby remove C6,1 again). Note that C6,1 is necessary to
make C0 available again for the case we would have chosen C4,1 instead of C1,1 first. The existence
of C7,1 creates the temporal link {u5,1, u9,1} = {u1,2, u2,2} for the fist time. This initiates the same
dynamics in the second gadget.

Observe that the dynamics cannot terminate early by resolving local blocking coalitions in a
different order. Thus in the end C7,k is necessary for the coalition structure to be stable. Due to the
structure, 2k creations of C0 are necessary to form C7,k.
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Note that we heavily rely on the temporary links in the dynamics being temporary and not part
of EH,C,rest. As H holds a path of 3 edges with no connection between the first and the third vertex,
we can actually arrange EH,C,rest such that the “suitable” links are missing when forming a coalition
and only being established when adding this same coalition. However, the structure of H might
require an edge between the first and the fourth and/or the second and the fourth vertex of the path.
These are two vertices which are part of the shared gadget and not the part which is unique for each
coalition anyway. Luckily, these edges – namely

{u1,i, u4,i}, {u2,i, u4,i} for C1,i

{u1,i, u6,i}, {u3,i, u6,i} C2,i

{u3,i, u7,i}, {u3,i, u8,i} C3,i

{u1,i, u10,i}, {u2,i, u10,i} C4,i

{u2,i, u12,i}, {u9,i, u12,i} C5,i

{u9,i, u13,i}, {u9,i, u14,i} C6,i

{u3,i, u11,i}, {u5,i, u11,i} C7,i

all connect vertices which only share this one coalition. Hence the (permanent) existence of such
links does not make any other coalitions accessible.

As discussed above, our dichotomy results are strongest if m ∈ poly(n). Note that this follows
directly if the formation graphs are of constant size, since only coalitions of constant size can form.
Under this assumption, our results above show there are paths of length poly(n) for cliques and stars.
In contrast, our exponential lower bound already holds when, e.g., the formation graph is a path
with 4 nodes.

4.2 Visibility via Longer Paths

In this section, we consider the case, where for an accessible coalition in state S, a formation graph H
can be embedded into the visibility graph G(S) such that each edge of H is represented by a path of
hop-distance of 2 in G(S). Our results here are negative, even if the formation graphs are restricted
to cliques or stars.

Theorem 7 For local coalition formation games with visibility over paths of distance 2 or more,
there are instances and initial states such that every sequence to a stable state requires an exponential
number of improvement steps. This is true even when (1) all coalitions have size at most 3 and (2)
H consists of all cliques, or H consists of all stars.

Proof. We compose the instances by attaching a number of identical gadgets. In our construction,
every coalition has size at most 3. Each gadget has a distinct start coalition and two distinct final
coalitions. To create one of the final coalitions, the start coalition has to be formed and then be
deleted. It is not possible to form both final coalitions using only one creation of the start coalition.
Thus, for both final coalitions to exist, the start coalition must have been formed and deleted twice.

The gadgets are composed such that the start coalition of gadget i can only be formed if both
final coalitions of gadget i− 1 exist. Hence, to form both final coalitions of the kth gadget, the start
coalition of gadget 1 has to be created 2k times.

Note that since all coalitions have size at most 3, we can restrict to formation graphs of at most
3 vertices. Our construction is slightly different depending on whether we consider

H1 = {({u, v}, {{u, v}}), ({u, v, w}, {{u, v}, {v, w}})}

the set of all stars of size at most 3, or

H2 = {({u, v}, {{u, v}}), ({u, v, w}, {{u, v}, {v, w}, {u,w}})}
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the set of all cliques of size at most 3.
Gadget i consists of agents Vi = {v1,i, . . . , v7,i}. The link set Li includes the set

{{v1,i, v4,i}, {v2,i, v5,i}, {v2,i, v7,i}, {v3,i, v6,i}, {v5,i, v7,i}} .

If H = H2, Li contains in addition {v1,i, v6,i}. The potential coalitions and their benefits are

C1,i = {v1,i, v2,i, v3,i} with benefit 3i+ 1
C2,i = {v2,i, v4,i} 3i+ 2
C3,i = {v4,i, v5,i} 3i+ 3
C4,i = {v2,i, v6,i} 3i+ 2
C5,i = {v6,i, v7,i} 3i+ 3

C1,i is the start coalition, C3,i and C5,i are the final coalitions of gadget i. To connect gadget i with
gadget i + 1, we identify agent v1,i+1 with v4,i, agent v2,i+1 with v7,i, and agent v3,i+1 with v6,i.
Further, since C1,1 must be always accessible, we add an agent a and links {a, v1,1}, {a, v2,1}, and
{a, v3,1}. The initial state is the empty coalition structure.

Let us analyze the dynamics in gadget 1. Initially, gadget 1 is empty, and the only accessible
coalition is C1,1. Once C1,1 is formed, both C2,1 and C4,1 become accessible. As both coalitions are
more valuable than C1,1, exactly one of them is formed in the next step. Let us assume that C2,1

is formed. The case in which C4,1 is formed first is similar. The formation of C2,1 removes C1,1 but
makes C3,1 accessible and thus a blocking coalition. When C3,1 is formed (and C2,1 removed), C1,1

becomes a blocking coalition again, since all its agents are free. The formation of C1,1 then makes
C4,1 accessible again. At this point, C4,1 is the only blocking coalition, because C2,1 is dominated
by C3,1. With C4,1 formed, C5,1 becomes a blocking coalition. In the next step C5,1 is formed, that
is, both final coalitions exist. Now C2,1 becomes a blocking coalition and the dynamics proceed in
gadget 2.

For all subsequent gadgets i ≥ 2, we encounter the same dynamics except that their start coalition
is only accessible when both final coalitions of gadget i− 1 exist. Only then v1,i sees v2,i via C3,i−1
and link {v5,i−1, v7,i−1} = {v5,i−1, v2,i} and v2,i sees v3,i via C5,i−1. Thus, in case of H = H1, the star
required to make C1,i accessible exists in the visibility graph. In case of H = H2, v1,i and v3,i also
see each other (permanently) via v1,i−1, which completes the clique in the visibility graph required
to make C1,i accessible.

Note that we can alter the gadgets such that all coalitions have size 3 by adding an auxiliary
agent to each coalition of size 2 and connecting it with one (for stars) or both (for cliques) vertices
via a path of length 2 (using auxiliary vertices). Similar adjustments allow to extend the gadget to
coalitions of arbitrary sizes.

5 Discussion and Conclusion

In this paper, we have studied convergence properties in stable matching and hedonic games with
structural constraints, which generalize a variety of recently proposed models for visibility and agent
externality. Our results are a tight axiomatic characterization for the existence of a path to stability of
polynomial length in games with correlated preferences. The set of consistency axioms are minimal
in the sense that if an axiom is dropped or relaxed, a (polynomial) path to stability cannot be
guaranteed. Moreover, we have studied a model of local visibility in hedonic games based on the
notion of formation graphs, and we provided a tight characterization of the existence of polynomial
paths to stability based on the formation graphs.

Our upper bounds on the convergence time are polynomial in the number of agents n and the
number of coalitions m. Our lower bound gadgets involve coalitions of constant size and show bounds
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that are exponential in n. As such, the dichotomy in our results is strongest if m ∈ poly(n) as is the
case, e.g., in the prominent case of matching.

There are a variety of interesting problems that arise from our work. A natural question is
whether additional constraints that arise in matching or coalition formation problems can be formu-
lated within our framework of consistent generation and domination rules. For example, there are
interesting additional variants of local coalition formation games, e.g., when each existing coalition
forms an organization graph in the network (instead of a clique as in Section 4). Finally, beyond
correlated preferences, efficient algorithms for the computation of stability concepts have recently
been derived for several other classes of hedonic games [51–54]. It would be interesting to see under
which conditions one can also guarantee (polynomial) paths to stability (with and without additional
structural constraints).
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A Games with Consistent Local Constraints

In this section we will show that a variety of matching and coalition formation games can be cap-
tured by our framework of coalition formation game with constraints and consistent generation and
domination rules. For each setting, we will either define an equivalent coalition formation game with
constraints, or show that consistent generation rules are impossible via examples that lack short
paths to stability. The arguments are very similar in most cases and solely consist of rather straight-
forward verification that dynamics are captured correctly. As such, we will only flesh out one formal
correctness proof in the last domain we consider – friendship stable matching in Section A.4. This
is arguably the most complicated setting, since we must construct a coalition formation game in
which Db expresses domination according to perceived benefits. As such, we need to define different
match benefits than in the original game. Moreover, to keep the domination rules in accordance with
our definition of consistency, all coalition formation games with constraints will allow an agent to
participate in at most one coalition at a time.

A.1 Socially Stable States

Given an instance of socially stable matching consisting of a graph GM = (VM , EM ) of potential
matching edges, social link set L ⊆ EM , and edge benefits b, we construct an equivalent coalition
formation game with consistent constraints as follows. We keep the agent set, the coalition set, and
the benefits. The set of self-generating coalitions Cg is set to L, and T = ∅. Further, the only
constraints for generation of an available coalition are based on the agents’ desire to improve their
benefits, that is, D = Db. These generation and domination rules are obviously consistent.

For social coalition formation games, instead of using L directly we have to check whether we can
find suiting organization structures in L. Thus, to construct a game with consistent rules, we keep
V , C, and the benefits. We choose T = ∅ and D = Db as before. For the self-generating coalitions
we have

Cg = {C | C ∈ C,∃H ∈ H, ϕ bijective : V [H]→ C such that {u, v} ∈ E [H]

⇒ {ϕ(u), ϕ(v)} ∈ L} .

Proposition 5 Social coalition formation games give rise to consistent generation and domination
rules.

A.2 Locally Stable States

Given an instance of locally stable matching consisting of a graph GM = (VM , EM ) of potential
matching edges, social link set L, and edge benefits b, we construct an equivalent coalition formation
game with consistent constraints as follows. We again keep the agent set, the coalition set, and the
benefits. The set of self-generating coalitions and the generation rules become

Cg = {{u, v} | {u, v} ∈ EM , dist(u, v, (V,L)) ≤ 2}

and
T = {({e′}, e) | e = {u, v}, e′ = {u, v′} ∈ E, dist(u, v, (V,L ∪ {e′})) ≤ 2}.

The domination rules are D = Db.
Using this embedding, the coalition movement graph becomes the edge movement graph defined

in [31] to prove the existence of short paths to stability for locally stable matching.
If we extend the hop-distance used for visibility to be larger than 2, then there can be edges

that are accessible only if 2 or more matching edges exist. This condition cannot be captured by a
consistent generation rule, since we would need 2 or more edges in the precondition. In fact, it is
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known [31, Theorem 3] that in this case there are instances and initial states such that every sequence
of local improvement steps to a locally stable matching is exponentially long. For coalitions of larger
size, the case depends on the formation graphs, see our discussion in Section 4.

Proposition 6 Locally stable matching gives rise to consistent generation and domination rules if
visibility is limited to a hop-distance of 2 in (V,M ∪ L). Otherwise, there are instances that imply
non-consistent generation rules.

A.3 Considerate Stable States

Given an instance of considerate stable matching consisting of a graph GM = (VM , EM ) of potential
matching edges, social link set L, and edge benefits b, we construct an equivalent coalition formation
game with consistent constraints as follows. We again keep the agent set, the coalition set, and the
benefits. Since there are no visibility constraints, we set Cg = E, T = ∅. The main restriction is
externality, which we capture using the domination rules D = Db ∪D1 with

D1 = {({{u, v}}, {u, v′}) | {u, v}, {u, v′} ∈ E, v 6= v′, {u, v} ∈ L or {v, v′} ∈ L} .

Note that the precondition and the target coalitions of every rule in D1 overlap, which implies they
are consistent.

The generalization for larger coalitions is straightforward. Let V be the agent set, C the set of
potential coalitions, L the social links, b the benefits, and l be the limit of friends an agent is willing
to hurt. To improve readability, we set f(v, C) = |{v′ | v′ ∈ C, {v, v′} ∈ L}| to be the number of
friends v has in coalition C. We define Cg = C and T = ∅. For the domination rules we need to
consider all combinations of coalitions which overlap with the target coalition and exceed the limit
of friends for some participating agent. Formally, D = Db ∪D1 with

D1 = {(S, C) | S ⊂ C coalition structure, C ∈ C \ S,∃v ∈ C :
∑

C′∈S:C∩C′ 6=∅

f(v, C ′ \ C) > l}.

Proposition 7 Considerate coalition formation gives rise to consistent generation and domination
rules.

A.4 Friendship Stable States

When representing friendship coalition formation by a coalition formation game with consistent con-
straints, we must pay special attention to the benefit structure. Based on the perceived benefits,
agents are willing to switch to coalitions of lower (direct, non-perceived) benefit. Thus, the domi-
nation rules must capture the perceived value of each coalition. Additionally, we have to take into
account all perceived gains and losses caused by the formation of a new coalition.

Our proofs above rely on correlated preferences, that is, all participating agents obtain the same
benefit from forming a coalition. In friendship coalition formation, it is not enough to require
correlated preferences to obtain this property for perceived benefits. We also need to assume that
the function c of friendship values is non-negative and symmetric among coalitions. For matching,
this simply implies that (1) agents feel positive about the benefit of others, and (2) for each pair
both incident agents feel equally strongly about their relation.

The following two examples show that without conditions (1) and (2), there are instances in which
convergence does not occur. More fundamentally, under these conditions no stable state exists.

Example: The game is depicted in Figure 7. There are 3 agents. Each pair of agents generates a
direct benefit of 1 for both incident agents. Based on the friendship values, agent 1 values coalition
{1, 2} more than coalition {1, 3}, agent 2 values coalition {2, 3} more than coalition {1, 2}, and agent
3 values coalition {1, 3} more than coalition {2, 3}. This implies a preference cycle and no stable
state exists. �
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Figure 7: A friendship matching game with correlated preferences and asymmetric non-negative
friendship values that does not have a friendship stable matching
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Figure 8: A friendship matching game with correlated preferences and symmetric non-positive friend-
ship values that does not have a friendship stable matching

Example: The game is depicted in Figure 8. There are four agents. Friendship values are symmetric
and agent 1 and agent 4 feel negatively towards each other. Both agents can potentially match with
agent 2 or agent 3 and are indifferent between these options. Agent 2 and 3 prefer 4 over 1. Now,
4 cannot match both 2 and 3 at the same time. If 1 is single, there is a perceived blocking pair.
W.l.o.g. let us assume 2 is not matched. Once {1, 2} is formed, agent 4 is negatively effected, as
he receives −1 of perceived benefit from agent 1. Thus, even if he is currently matched to 3, it is
profitable for 4 to switch to 2, because this way 1 is free again and the negative perceived benefit
vanishes. Now 1 is free and the same sequence repeats with the roles of 2 and 3 exchanged. �

In the remainder, we assume friendship values are nonnegative and symmetric regarding all
potential coalitions. Given an instance of friendship stable matching consisting of a graph G =
(VM , EM ), edge benefits b and symmetric friendship values c, we construct an equivalent coalition
formation game with consistent constraints as follows. We keep the agent set and the coalition set.
Since the constraints are in terms of externalities, we set Cg = EM and T = ∅. To express the
perceived benefits, we alter the benefits to

b′({u, v}) = b({u, v}) + cu,vb({u, v}) = b({u, v}) + cv,ub({u, v}) .

For the domination rules, we have D = D1 ∪D2 ∪Db, where

D1 = {({{u, v}}, {u, v′}) | {u, v}, {u, v′} ∈ EM , (cv′,v + cv′,u)b({u, v}) ≥ (1 + cv′,u)b({u, v′})},
D2 = {({{u, v}, {u′, v′}}, {u, v′}) | {u, v}, {u, v′}, {u′, v′} ∈ EM

(1 + cv′,u′)b({u′, v′}) + (cv′,v + cv′,u)b({u, v}) ≥ (1 + cv′,u)b({u, v′})} .

Every rule in D1 captures a situation, where some agent v′ gains so much perceived benefit through a
coalition {u, v} he is not involved in that it is not profitable for him to break this coalition and form
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{u, v′}. In D2 we additionally express all situations where two edges would have to be destroyed to
form {u, v′}, but their combination more profitable. Observe that every rule of D1 also appears in
D2 in combination with any other coalition. However, when a state consists of only one coalition,
we could not apply those rules of D2. Thus, we cannot forgo D1. The situation that an agent does
not want to switch from a coalition to a more worthy one because of perceived benefit is captured
neither in D1 nor in D2 – this is already expressed by the altered benefits.

For this construction we give a formal correctness proof. All other constructions above can be
proven similarly.

Proposition 8 The described coalition formation game with consistent generation and domination
rules is equivalent to friendship matching.

Proof. We have to show both directions: Every resolution of a perceived blocking pair in the original
game is correctly mirrored by a resolution of an equivalent blocking coalition in the associated
coalition formation game with constraints G = (V,C, w,Cg, T,D). Conversely, every resolution of a
blocking coalition in the coalition formation game is captured by a resolution of the corresponding
perceived blocking pair in the original game. We start with the first direction.

Let M be a matching in G. Assume there is a perceived blocking pair e′ = {u, v′} for M , which
we intend to resolve. Note that domination can only occur through edges involving u or v′.

Firstly, if u and v′ are both unmatched, then {u, v′} is undominated, as no overlapping coalitions
are present in the current state. Then, because we can generate all matching edges as candidate
coalitions via Cg = C, {u, v′} is a blocking coalition. After adding e′, no edge is removed. In the
same manner generating {u, v′} does not result in the deletion of any existing coalitions. Hence, the
set of coalitions resulting from the rules above exactly represents the matching after resolving the
perceived blocking pair e′.

Secondly, assume that agent u is matched. He wants to replace the incident edge e = {u, v} with
e′ while v′ is unmatched. Then {u, v} is part of the current state, and v′ is not part of any existing
coalition. As e′ is a perceived blocking pair, we know that u improves by switching from v to v′, that
is,

b(e) + αu,vb(e) +
∑
u′∈V

αu,u′b(M \ {e}, u′)

< b(e′) + αu,v′b(e
′) +

∑
u′∈V

αu,u′b(M \ {e}, u′),

which cancels out to b(e) + αu,vb(e) < b(e′) + αu,v′b(e
′). Thus, {u, v′} is not dominated by {u, v}

through Db. Now, {u, v} might still dominate {u, v′} through D1. But then αv,v′b(e) + αu,v′b(e) ≥
b(e′) + αu,v′b(e

′), that is, the gain v′ receives through its friendships with v and u from e is at least
as large as the gain it would receive by matching with u (directly and through friendship). This
contradicts the assumption that e′ is a perceived blocking pair. Other coalitions involving u, v′ are
not present. Hence, {u, v′} is an undominated candidate coalition. After adding {u, v′}, {u, v} is
dominated through benefit and hence gets dropped. Again, the set of coalitions resulting from our
rules exactly corresponds to the matching after resolving the perceived blocking pair e′.

Thirdly, assume both u and v′ are already matched. Agent u wants to drop e = {u, v} and v wants
to drop e′′ = {u′, v′} to form the new edge e′. Then {u, v} and {u′, v′} are part of the current state.
The previous arguments for edges that dominate {u, v′} through D1 or Db can again be applied. It
remains to check whether domination via D2 is possible. But the domination rules in D2 imply that
the loss caused by giving up e and e′′ for v′ is at least as large as the gain generated from e′. Thus,
as e′ is a perceived blocking pair, there is no rule in D2 relating {{u, v}, {u′, v′}} to {u, v′}. Again, no
other coalitions involving u, v′ are present, and we can generate {u, v′}. Now {u, v} and {u′, v′} are
dominated via Db and thus dropped. The same happens with M which becomes M \ {e, e′′} ∪ {e′}.
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Again, the set of coalitions resulting from our rules exactly correspond to the matching after resolving
the perceived blocking pair {u, v′}. This proves the first direction.

Conversely, let S be a feasible coalition structure in our coalition formation game with constraints.
Observe that feasibility regarding the rules defined above implies that S must correspond to a feasible
matching M . Further, let {u, v′} 6∈ S be an undominated coalition. Assume for contradiction that
e′ = {u, v′} is not a perceived blocking pair.

Firstly, let v′ and u both be unmatched. Then the edge can be formed without removing any
edges. As the benefit caused by e′ is strictly positive, e′ hence is a perceived blocking pair.

Secondly, let v′ be unmatched but u be matched. Then there is some edge e = {u, v} ∈ S.
Obviously, {u, v} dominates {u, v′} neither through Db nor through D1. Thus, b(e) + αu,vb(e) <
b(e′)+αu,v′b(e

′) and αv,v′b(e)+αu,v′b(e) < b(e′)+αu,v′b(e
′). But then e′ is a perceived blocking pair.

Thirdly, assume that both v′ and u are both matched in M . Then there are edges e = {u, v}
and e′′ = {u′, v′} in S. As {u, v} is a blocking coalition, neither one nor both of those two coalitions
combined form the precondition of a domination rule with target coalition {u, v}. As a consequence,
(1 + cv′,u′b({u′, v′})) + (cv′,v + cv′,u)b({u, v}) < (1 + cv′,u)b({u, v′}) and (1 + cu,vb({u, v})) + (cu,v′ +
cu,u′)b({u′, v′}) < (1 + cu,v′)b({u, v′}), that is, it is profitable for both u and v′ to drop v and u′ and
form e′. Again, e′ is a perceived blocking pair in M .

When we consider larger coalitions, the symmetry condition for every coalition C implies cu,v =
cv,u = cu,w for all u, v, w ∈ C. In consequence, there must be one value cC that defines the mutual
perceived value of all pairs in C. Moreover, cC = cC′ whenever |C ∩ C ′| ≥ 2. Arguably, this seems
quite a strong condition to assume. Nevertheless, for the sake of completeness, we briefly show that
this general domain also implies consistent rules.

As for considerate coalition formation, we now have to consider for every coalition all collections of
overlapping coalitions that form a coalition structure. For the same reasons as in the matching case it
is not sufficient to consider inclusion maximal sets of coalitions. We keep the set of agents and the set
of potential coalitions, and define Cg = G and T = ∅. Further, we set b′(C) = b(C)+(|C|−1)cu,vb(C)
for some u, v ∈ C. Note that this definition is only consistent since we assume equal c-values for all
pairs of agents within a coalition. We define a function p(v, C) =

∑
v′∈C cv,v′b(C) for all C ∈ C to

capture the amount of perceived benefit agent v receives from some coalition C. Note that if v ∈ C,
we have p(v, C) = b(C) + (|C| − 1)cu,vb(C) = b′(C). Then

D = {(S, C) | S ⊂ C coalition structure, C ∈ C \ S,∃v ∈ C :
∑

C′∈S:C∩C′ 6=∅

p(v, C) ≥ b′(C)}.

This set encompasses Db by including all rules where S = {C ′} with C ∩ C ′ 6= ∅ and b′(C ′) ≥ b′(C).

Proposition 9 Friendship coalition formation gives rise to consistent generation and domination
rules for non-negative, symmetric friendship values.
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