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Abstract. Proportional allocation is an intuitive and widely applied
mechanism to allocate divisible resources. We study proportional allo-
cation for profit sharing in coalition formation games. Here each agent
has an impact or reputation value, and each coalition represents a joint
project that generates a total profit. This profit is divided among the
agents involved in the project based on their reputation. We study exis-
tence, computational complexity, and social welfare of core-stable states
with proportional sharing.

Core-stable states always exist and can be computed in time O(mlogm),
where m is the total number of projects. Moreover, when profits have
a natural monotonicity property, there exists a reputation scheme such
that the price of anarchy is 1, i.e., every core-stable state is a social opti-
mum. However, these schemes exhibit a strong inequality in reputation
of agents and thus imply a lacking fairness condition. Our main results
show a tradeoff between reputation imbalance and the price of anarchy.
Moreover, we show lower bounds and computational hardness results on
the reputation imbalance when prices of anarchy and stability are small.

1 Introduction

Profit sharing is a central domain in game theory and has attracted a large
amount of interest, mostly as cooperative tranferable-utility (TU) games. Usu-
ally, there are n agents, and a characteristic function specifies the profit for each
subset of agents. The goal is to divide the profit of the grand coalition in a fair
and stable way. There has been particular interest in TU games resulting from
combinatorial optimization problems. For example, in the matching game [20]
each agent is a node in an edge-weighted graph, and the profit of a subset of
agents is the max-weight matching in the induced subgraph. For these games,
there is a large variety of stability and fairness concepts, most prominently vari-
ants of the core. In fact, the core of a matching game might be empty, and the
(approximate) core enjoys a close connection to the natural integer program of
max-weight matching [9]

An underlying assumption is that (deviating) subsets of agents can freely
negotiate shares and distribute profit. In many application contexts, however,
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profit shares are less directly negotiable, e.g., when allocating credit for joint
work. For example, in scientific publishing, credit is assigned based on a variety
of aspects and rules, such as reputation, visibility, previous achievements, etc.
Moreover, collaborative online platforms (recommendation systems, Wikis, etc.)
can design and implement centralized rules for credit allocation among the users.

In this paper, we study natural and simple proportional allocation rules to dis-
tribute profit or credit among agents that engage in joint projects. Proportional
allocation is a central approach in a variety of contexts and has been studied,
e.g., for allocating divisible goods in mechanism design [6,8,15]. It can be used
to express consequences of rich-get-richer-phenomena (also termed Matthew ef-
fect), was studied to distribute profits in stable matching [1], or appeared in
probabilistic models for allocating scientific credit [16]. Moreover, proportional
response dynamics are a successful method to compute market equilibria [4,22].

We study the properties of the proportional allocation mechanism in match-
ing and coalition formation games. In this scenario, coalitions represent joint
projects that agents can engage in. Each project yields a profit value, which is
shared among the involved agents in proportion to an agent-specific parameter
ry. Intuitively, this parameter specifies the influence of the agent. Depending on
the application context, it captures its, e.g., importance, visibility, or reputation.
It might result from previous achievements (e.g., by reputation in societies) or
be subject to design (e.g., by assignment in collaborative online systems).

Given such a profit sharing scheme, agents strategically choose the projects
to engage in. More formally, a given set projects, profit values, and agent reputa-
tions constitutes a hedonic coalition formation game [10], where the proportional
allocation mechanism yields the agent utilities. Our goal is to shed light on the
equilibria of such games, i.e., existence, structure and social welfare of core-stable
states. More precisely, we are interested in the structure of reputation values and
the resulting prices of anarchy and stability.

Contribution and Overview In Section 2, we observe that in our games,
a core-stable state always exists. This is mostly a consequence of earlier work
on stable matching [1]. Let k and ki, be the size of the largest and smallest
project with non-zero profit in the game, respectively. For equal sharing (all
influences the same), prices of anarchy and stability are @ (k). In fact, if profits
and influences are misaligned in a worst-case fashion, it is known that prices of
anarchy and stability can be unbounded, even for the special case of matching [1].

In Section 3, we consider games with a natural monotonicity condition (termed
inclusion-monotone), where we find an interesting trade-off between the required
difference in influence and price of anarchy. When the ratio of maximum and
minimum influence is bounded by «, there are reputations such that the price of
anarchy is bounded by max{1, k?/(k— 1+ aF=n/")} where Ky, is the size of the
smallest project with non-zero profit in the game. When o = (k? — k + 1)"/ Fmin
the price of anarchy drops to — with a suitable assignment of influence, we can
eliminate any inefficiency in the game. For environments, in which assigning in-
fluence values is possible, we also provide an efficient algorithm that, given an



optimum state S*, computes influence values that achieve this bound on the price
of anarchy. While finding an optimum solution can be NP-hard, our algorithm
can also work with an arbitrary p-approximative state S, and the price of anar-
chy bound increases by a factor p. Note that the natural representation of our
games is linear in the number of agents n and the number of projects/coalitions
m, since we must specify a possibly arbitrary positive profit value for each pos-
sible project. Our algorithm runs in time polynomial in n and m. Consequently,
it is strongest if m = poly(n) (which is often the case, e.g, for matching games).

On the downside, when approaching a price of anarchy of 1, the society
becomes extremely hierarchical — the maximum difference in influences grow
exponentially large. In Section 4 we show that for inclusion-monotone games a
factor difference of n—1 in influences can be required to obtain a price of stability
of 1. If the profits of projects in a core-stable optimum should be shared equally,
we strengthen this to an exponential lower bound of (k + 1)*/#mi»—1_ Moreover,
for games that are not inclusion-monotone, inefficiency of all core-stable states
can be unavoidable.

Finally, in Section 5 we discuss computational hardness results. For a given
optimal state S* and a given upper bound « on the ratio of influences, it is
NP-hard to decide whether we can make S* stable, even if every project has
size k = 2. Note that this hardness does not stem from computing S*, since S*
is a max-weight matching when k = 2, which can be computed in polynomial
time. We also show lower bounds and hardness results for the case with influence
values in {1,z} with > 1, where agents have either “low” or “high” influence.

Due to space constraints, further proofs can be found in the appendix of the
full version of this paper.

Further Related Work  Computing stability concepts in hedonic coalition
formation games is a recent line of research [7,12,17-19]. Many stability concepts
are NP- or PLS-hard to compute. This holds even in the case of additive-separable
coalition profits, which can be interpreted by an underlying graph structure with
weighted edges, and the profit of a coalition is measured by the total edge weights
covered by the coalition [3,11,21]. The price of anarchy was studied, e.g., in [5].

Our work is inspired by proportional allocation mechanisms. The model we
study was proposed for stable matching in [1] under the name Matthew-effect
sharing. We study general hedonic coalition formation games. While the results
in [1] bound prices of anarchy and stability for worst-case profit and influence
values, our approach here is to study the necessary inherent trade-offs in social
welfare in equilibrium and inequality of influence in the population. In this sense,
our paper is closely related to [14], who study the trade-offs between social
welfare and difference in profit shares. A drawback of [14] is that it allows to
design arbitrary profit shares for every coalition and every agent. Thus, it allows a
designer an unnatural amount of freedom when assigning credit to stabilize good
states. In contrast, our approach with proportional sharing based on influence
and reputation represents a more restricted, structured and arguably realistic
way of how credit from joint projects might be allocated to agents.



2 Model and Preliminaries

A proportional coalition formation game is a hedonic coalition formation game
based on a weighted hypergraph G = (V,C,w). There is a set V' of agents (or
vertices) and a set of weighted coalitions (or hyperedges) C C 2", where |c| > 2
for every ¢ € C. Let w : C — R7T represent the positive weight or total profit
of each coalition ¢ € C. Unless stated otherwise, we use n = |V|, m = |C|,
k = max.cc |¢| (the maximum size of any coalition in C), and kyin = min.cc ||
(the minimum size of any coalition in C).

Each agent v € V has a reputation r, > 0, which we scale throughout to
satisfy min,ey 7, = 1. When a coalition ¢ € C is formed, the profit w(c) is
shared among the v € ¢ proportionally to r,. We define a reputation scheme as
a vector of reputations for the agents R = (1, )yev -

A coalition structure or state S C C'is a collection of pairwise disjoint coali-
tions ¢ from C, i.e., for each v € V we have |{c | ¢ € S,v € ¢}| < 1. For each
coalition ¢ € S, the profit of agent u € ¢ is a proportional share of weight w(c):

Ty

Pu(S) = pulc) = m “w(c) (1)

Note that p,(c) > 0 for all ¢ € C' and u € ¢ by definition. For every agent u € V
such that S contains no coalition that includes u, we assume p,(S) = 0.

For a coalition structure S, a blocking coalition ¢ € C'\ S is a coalition
such that, for each v € ¢, p,(c) > p,(S). Every agent in ¢ gains strictly more
profit than he currently obtains in S if they deviate to ¢ instead. In the case
of matching and k = 2, we speak of a blocking pair. A coalition structure S is
termed core-stable if there is no blocking coalition in3 C'\ S.

To assess the quality of reputation schemes, we quantify the social welfare
of the resulting core-stable coalition structures. The social welfare of a coalition
structure S is w(S) == > cgw(c). We call the coalition structure S* with the
highest social welfare the optimal coalition structure. We measure the quality of
reputation schemes using the prices of anarchy (PoA) and stability (PoS) of core-
stable coalition structures. While the core-stable coalition structures depend on
reputations, the optimal coalition structures (and hence, optimal social welfare)
do not. Consequently, our goal is to measure the quality of reputation schemes
based on PoA and PoS. In particular, we strive to design reputations to maximize
social welfare of the resulting core-stable coalition structures.

It turns out that we can obtain very small PoA and PoS using a hierarchy
of reputations with extremely large differences, which is often undesirable due
to reasons of fairness and equality. As a consequence, we try to limit unequal
reputations and, in particular, strive to quantify the tension between efficiency
and equality. We measure the degree of equality using a parameter as follows. A
reputation scheme R is a-bounded if o > Z2X2€V ™0 — max v r,. Intuitively, a

L . . minyey o .
smaller « indicates that reputaiton is more uniform reputation.

3 Core-stability usually means that no subset of agents wants to deviate. We recover
this interpretation when we assume all coalitions ¢ € 2V \ C have profit w(c) = —1.



A simple solution to achieve perfect equality is when every agent has the
same reputation. This results in equal sharing, and it results in PoA (and PoS)
of at most k, where k is the size of the largest coalition. The following result is
shown, e.g., in [2, Theorem 2.9, Corollary 8.2]. In the full version of this paper,
we include a proof for completeness and discuss an example game.

Proposition 1. The PoA and the PoS in hedonic coalition formation games
with equal sharing is exactly k.

Some of our results apply to instances with an additional property. A game
G = (V,C,w) is inclusion monotone if for any c¢,¢’ € C with ¢ C ¢, we have
w(e) o wlc)

[c] [e/]
inclusion monotone.

. Note that, trivially, every instance of matching with k¥ = 2 is

3 Existence and Computation

Let us first discuss our existence and computational results. We define an im-
provement step for a coalition structure S by adding a blocking coalition to S
while removing all coalitions that intersect with it from S. It can be seen rather
directly that every game has a (strong) lexicographical potential function. As a
consequence, a core-stable coalition structure exists in every game and for every
reputation scheme, and every sequence of improvement steps always converges.

By considering coalitions in non-increasing order of Zw(c)

- 1t is possible to
arrive at a core-stable structure from any initial structure in at most n steps.
The proof is a rather direct extension of [1, Theorem 8], and we include it in the
full version of this paper for completeness.

Proposition 2. For any game G = (V,C,w) and proportional sharing based on
reputation scheme R, there always exists a core-stable coalition structure. Given
any initial coalition structure, we need at most O(n) improvement steps to reach
a core-stable coalition structure.

Hence, for any game and any reputation scheme we have both existence and
convergence, but it might be the case that every core-stable coalition structure
has small social welfare or reputations are extremely different. The subsequent
algorithm shows how reputation schemes can provide a trade-off between a-
boundedness and the PoA. For a given inclusion-monotone instance and a pa-
rameter a > 1, the algorithm provides a reputation scheme that is a-bounded
and guarantees a PoA of strictly better than k.

When « = 1, we have equal sharing, the price of anarchy is at most k (due
to Proposition 1) and a greedy procedure computes the O(n) improvement steps
to reach a core-stable state (due to Proposition 2). Algorithm 1 generalizes this
approach to obtain improved bounds for o > 1. It uses a similar structure as a
corresponding algorithm in [14]. In each iteration, we choose one coalition to be
a part of our solution and assign the reputation to each agent in this coalition,

then remove the agents from consideration. Let ¢ be a coalition with the largest
w(c)

= where z = aFmin/? There are three cases in the i iteration:

ratio of



Algorithm 1: Computing a reputation scheme for given «

Input: Inclusion monotone G = (V, C, w), optimal structure S*, bound «
Output: a-bounded reputation scheme R, core-stable coalition structure S

1 Initialize i ¢ 0,Co + C, S + 0, z + oFn/™ and r, « 0 forallv € V
2 while C; # 0 do
3 c 4+ argmaxcgci(%)
4 if c€ S* then s} < ¢
5 else if ¢ ¢ S* and ‘Cri(lcj_w < w‘S;) for some ¢’ € S* that ¢’ Nc# () then
6 c argmaxcregx(%)
7 sf+c
8 else sj + ¢
9 for u € s} do 7y, « 2
10 S« SUsj
11 Cit1 < C;
12 for c € C; with cNsj # 0 do Ci+1 + Cita \ {C}
13 | 14 i+1
14 for v € V with r, =0do r, + *

1. If ¢ is a part of the optimal coalition structure S*, we call it s}.
2. If ¢ is not in S* and is overlapping with some coalitions in S*, then we con-

sider ¢’ in S* such that ¢’ has the highest ratio of wif')

coalitions. If ¢’ is large enough to stabilize, we will choose ¢’ instead of ¢ in
order to make our solution closest to S* as much as possible. So we call ¢/

as s;.
3. If cis not in $*, but c¢ has a high ratio of \(\ui% so that we should stabilize
c instead of stabilizing a coalition from the optimal coalition structure, then

we choose ¢ to be s;.

among all overlapping

Then, we stabilize s} by assigning the same reputation to each included agent.
This reputation increases by the factor of z in the next iteration. Then we
remove all the agents in s} and their incident coalitions from consideration. The
algorithm terminates when there is no coalition left to consider.

Theorem 1. For a given inclusion-monotone instance, and given o > 1 and
any optimal coalition structure S™, Algorithm 1 computes in polynomial time an
a-bounded reputation scheme R with PoA at most max{1,k?/(k — 14 aFm=in/?)}
and a core-stable coalition structure S that achieves both bounds.

Proof. We first consider the running time. The algorithm sorts all coalitions by
w(c)
le]—14z>
only consider one coalition and its overlapping coalitions, which can be done
in O(m) time. In total, the running time is bounded by O(m?). Recall from
the discussion in the introduction that the input size is £2(n + m), hence the

algorithm runs in polynomial time.

the ratio of which takes O(mlogm) time. Then, in each iteration we



We now show core-stability of S. As the invariant of the algorithm we main-
tain that coalitions dropped from consideration will never form any blocking
coalition. This holds since we assign reputations that increase by a factor of x
in every iteration. Consider three cases as in the algorithm,

1. In the first case, since c is the coalition that has the maximum ratio of
w(c)
le]—14z>

gets a profit of

we assign the same reputation to each agent in ¢, and each agent
w(c

lc]
There are two subcases: (1) ¢ is a proper subset of c. Since the instance is
inclusion monotone and we share profit equally in the coalition, we have

). Consider an overlapping coalition ¢’, and let u € ¢/ Nc.

w(¢) _ w(c)

= pu(c)-

|| el

(2) There is an agent v € ¢’ \ ¢ who has a reputation r, > zr,. Then the
profit u € ¢N ¢’ gains from ¢’ is

/ w(c') w(c) w(c)
pu(c’) < || =14z ~ |e|—1+= < ||

= pu(c).

This shows that every u € ¢ N ¢’ gains more profit by staying with c.

2. In the second case, we choose ¢’ that is in S* instead of ¢, each agent in ¢’
gains a profit of wlg—f;) Consider an overlapping coalition ¢, and let v € ¢’N¢’.
There are two subcases: (1) ¢ is a proper subset of ¢/. We apply the same
argument as in the first subcase of the first case. (2) There is an agent in
v € "\ ¢ who has a reputation r, > zr,. Then, the profit u € ¢ N¢” gains
from ¢ is

w(c”) w(c) w(c)
') < < = py(c).
Pl) S T STt e P
This shows that every u € ¢/ N ¢’ gains more profit by staying with c.

3. In the third case, we can use the same analysis as in the first case because

w(c)

we choose the coalition that has the maximum ratio of EESE=E

This concludes that the resulting state S is core-stable.

Now consider any arbitrary core-stable state S’ and coalition ¢ added to S
in the first round of the algorithm. Then agents u with r, = 1 are exactly the
ones in ¢, so every overlapping ¢’ € S’ is either a subset of ¢ or has at least one
v € ¢\ ¢ with r, > zr, and no agent with reputation less than 1. Hence, the
strict inequalities above apply to all agents in ¢ and imply that c is blocking.

Now suppose all coalitions added to .S by our algorithm up to round ¢ are in
S’, but ¢ added in round i+ 1 is not. Then the agents with smaller reputation are
exactly the ones in the coalitions added in the first ¢ rounds. As such, they are
part of S and do not overlap with ¢. Hence, every overlapping coalition ¢ € S’
is either a subset of ¢ or has only agents with same or higher reputation and at
least one agent with r, > xr,. Therefore, the strict inequalities above apply to



all agents in ¢ and imply that ¢ is blocking. By induction, every core-stable state
must contain all coalitions of .S, and S is the unique core-stable state.

For a-boundedness, observe that the minimum reputation in R is always 1.
In each iteration, we add one coalition to S with size at least kuyin, so there are
at most n/kmin iterations. As a consequence, the maximum reputation is at most
"/ kmin = o ie., R is a-bounded.

Finally, for the PoA, we see that the solution S of Algorithm 1 deviates from

S* only in iterations that apply the third case, when ¢ ¢ S* and wfﬁ% > wlﬁ—fll)

for all ¢/ € S*. ¢ can intersect at most |c| other coalitions ¢ € S*, hence

. / . / A 2
pop < W) lelwl@) el K
wle) T (jef—1+a)- G el —14a T k—1+akme/n
This proves the theorem. a

The algorithm reveals a trade-off between o and PoA. By increasing «, the
guaranteed PoA decreases and vice-versa. While the algorithm itself runs in
polynomial time, it uses S* as input, which is NP-hard to compute (finding
S* trivially generalizes, e.g., the standard SET-PACKING problem). Hence, the
above trade-off mostly applies in terms of existence.

Interestingly, the algorithm also yields a trade-off in terms of (overall) efficient
computation. Our analysis of the social weflare of the output structure applies
w.r.t. to the social welfare of the input structure. Consequently, if Algorithm 1
is given any input structure S’, it will output a core-stable coalition structure S
with social welfare at least w(S) > w(S’) - (k — 1 + afmin/™) /K2,

Corollary 1. If Algorithm 1 is applied using any coalition structure S’ that
represents a p-approzimation to the optimal social welfare, it computes an o-
bounded reputation scheme with PoA at most p- max{1,k?/(k — 1 4 afmin/7)},

4 Lower Bounds

In this subsection, we will show a number of lower bounds. Algorithm 1 applies
to games that are inclusion monotone, and it shows that we can always reduce
PoA to 1 if « is chosen large enough. Next, we will show that there are instances
that are not inclusion monotone, where for arbitrarily large o we cannot stabilize
an optimal coalition structure.

Proposition 3. There are classes of non-inclusion monotone instances such
that (1) every reputation scheme yields a PoS of at least 2 — ni”; (2) every
a-bounded reputation scheme yields a PoS of at least (n — 1+ «)/(1 + «).

The previous proposition shows that the trade-off shown in Theorem 1 does not
apply in instances that are not inclusion monotone. The next result complements
the bound on « in Theorem 1 when PoS is 1.

Proposition 4. There is a class of inclusion-monotone instances where every
reputation scheme with PoS of 1 has o > n — 1.



Fig. 1. An instance that requires @ > n — 1 whenever PoS is 1 (in this case, n = 12)

Proof. Consider an instance of the type depicted in Fig. 1. The instance G =
(V,C,w) consists of a clique of size § (denoted by K, 5). Every coalition/edge ¢
in K, /5 has w(c) = 1. For each agent, we create an additional agent (called “leaf
agent”) and include a coalition with a clique agent of weight % + €. The optimal
social welfare is % (3 +¢€), and S* is composed of exactly the n/2 coalitions with
leaf agents. For PoS 1, we need to maximize the profit of clique agents in S*,
since they are the only ones with deviations. Hence, we can w.l.o.g. assign the
minimum reputation of r, = 1 to all leaf agents.

Let 71,72,...,7,/2 be the reputations of clique agents. Consider 7; and ry;
in order to avoid a blocking coalition with agents ¢ and j, at least one of them
must gain at least as much profit as in S*. Assume ¢ is such an agent, then
(% +e)- r:j_l >1- r,,::rj' For € — 0, this implies r; > r; + 2. Since an inequality
of this form must hold for every pair {i,;} of clique agents, we have

max {r; —r;} >2(n/2—-1)=n—2.
65€(3]

Since r; > 1 for all i = 1,...,n, this implies « = max; r; > n — 1. a

This lower bound for « is linear in n, but if we apply Algorithm 1 with k = ki, =
2 and postulate a PoA of 1, then we can only guarantee o < 3"/2. Hence, in
general, our results leave significant room for improvement. Note that the output
of Algorithm 1 has the property that in some (in fact, the unique) core-stable
coalition structure the profits in each coalition are shared equally. For schemes
with this property we can show a drastically improved lower bound, which is
asymptotically tight for constant k. Hence, to show existence and computation
of schemes with smaller inequality, we need substantially different techniques.
A scheme R has equal sharing in stability if there is a core-stable coalition
structure S such that for every c € S we have r; = r;, for every 4,7 € c.



Proposition 5. There is a class of inclusion-monotone instances where every

n____

scheme R with equal sharing in stability and PoS of 1 requires o > (k+1)Fmin

5 Hardness Results

In this section, we consider computational hardness results that complement our
upper bounds in Section 3. Even in games with & = 2, in which an optimum
coalition structure S* is a maximum-weight matching that can be computed in
polynomial time, there is no efficient algorithm for computing R that makes S*
core-stable and minimizes the inequality .

Theorem 2. Given an optimal coalition structure S* and given o > 1, it is
NP-hard to decide whether there is an a-bounded reputation scheme such that
S* is core-stable. It remains NP-hard even if every coalition has size exactly k,
for any k > 2.

Proof. We will show a reduction from the GRAPH COLORING problem. First
consider the case when k = 2. For an instance of GRAPH COLORING given by an
unweighted graph G = (V, E) with V = {vy,...,v,}, we construct a game G’ =
(V' E',w) as follows. Let V' = V3 UV, with V3 =V and Vo = {vp41,..., 020},
and E' = E1 U EQ with El = F and E2 = {{Uiavn—i-i} | 1= 1,...,”}. We set
w(e) =1ife € Ey and w(e) = 1 + ¢ if e € Ey, for an arbitrarily small constant
€ > 0. Hence, G’ is similar in spirit to Fig. 1 except we replace the clique by the
coloring instance G. The optimal coalition structure S* = FEs.

First assume G is ¢-colorable. We show that there is an (2¢ — 1)-bounded
reputation scheme that can stabilize S* in G’. By Proposition 4, any two adjacent
vertices in V7 must have a difference in reputations of at least 2, otherwise the
edge will be a blocking pair. So, if a vertex has i color class in G, then assign
the corresponding agent a reputation of 2¢ — 1 in G’. Finally, assign reputation 1
to all agents in V5. This reputation scheme makes S* core-stable, and the proof
is identical to the one in Proposition 4.

Now assume there is a a*-bounded reputation scheme R that makes S* core-
stable. We show that G is %—colorable. First, we convert R as follows:

1. Normalize all the reputations to satisfy min; r; = 1.

2. Change the reputations of all the leaf nodes to be 1.

3. For every normalized reputation value, if it is not an odd integer, decrease
it down to next lower odd integer.

It is obvious that after these three conversions, the scheme is still a*-bounded.
Let us argue that the conversion also keeps S* core-stable. Step 1 does not change
anything because scaling all reputations does not change any profit shares. After
step 2, agents in V] receive more profit in S*, so S* remains core-stable. In step
3, any two agents that have a difference in their reputations of at least two, the
difference still remains at least two. Thus, S* remains core-stable.

After the conversion, every agent in V; has an odd integer as reputation.
Now, we just identify each odd integer with a color class. Since S* is core-stable,



adjacent vertices in G must differ in reputation by at least 2, i.e., belong to
different color classes. Hence, G is “*; L_colorable. The result follows for k = 2.

To show that it remains NP-hard even if every coalition in the instance has
size exactly k, we reduce the coloring problem on graph G to hypergraph G’ as in
the previous reduction. Here, however, for each coalition in G’ we add k —2 more
agents that only belong to that coalition. Every coalition has the same weight
as in previous case. To stabilize S*, we need (% +e)- n__:]i_l >1- ”Mﬁk_Q for
every v;,v; € Vi. This leads to r; > r; + k for any j > 4. So, any two adjacent
vertices in V must have the difference in reputations of at least k (instead of 2
as above). Applying the reduction as above, we can stabilize S* in G’ with an

o*-bounded reputation scheme if and only if G is (O‘*+kk_1 )-colorable. ad

It shows that even approximating a* is extremely hard, since the reduction
preserves the well-known approximation hardness of GRAPH COLORING [13].

Corollary 2. For any constant € > 0, a* cannot be efficiently approrimated
within n'~¢ unless NP=ZPP.

Let us also examine an interesting special case reputation scheme where we
are allowed only to assign “high” and “low” reputations. More formally, let
R € {1,2}" for some z > 1, where we call such schemes “restricted reputations”.
Unfortunately, the next theorem shows that finding a scheme with optimal «
remains NP-hard when we are given a bound W on social welfare of a core-stable
coalition structure (but not the exact optimum S*). This is a weaker assumption
than providing an optimal coalition structure directly as in the previous theorem.
However, the result applies even for matching with k = 2, where existence of a
solution with welfare at least W can be decided in polynomial time. Hence, the
difficulty does not lie in finding a good coalition structure but it is again inherent
to the correct assignment of reputations.

Theorem 3. Given a positive rational number x > 1 and a bound on social
welfare W > 0, it is NP-hard to decide whether there exist restricted reputations
that results in a core-stable coalition structure S with w(S) > W. This holds
even for instances with k = 2.

Corollary 3. For both restricted and general reputations, the following problems
are NP-hard: (1) Given W > 0, find the a-bounded core-stable coalition structure
S with minimum « such that w(S) > W; and (2) given o > 0, find the a-bounded
core-stable coalition structure with mazimum social welfare.

For restricted reputations, we might not be able to stabilize the optimal coalition
structure. The final result lower bounds the PoS in terms of parameter x.

Proposition 6. For x > 1, there are classes of instances such that for every
restricted reputation scheme R € {1,z}" (1) the PoS is at least —=; and (2)

4 x+17
the PoS is at least 2 — 43"
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A Example

Fig. 2. A path of length 3

Consider the example in Figure 2. This is an instance with 4 vertices; w, x, v,
and z. Let 3,4, 2 be the weights for each coalition of size 2 as shown in the picture.
The optimal coalition structure S* for this instance has a weight of 5 by forming
coalitions of weights 3 and 2. Let R be the reputation scheme that assigns all
vertices a reputation of 1 (equal sharing). So, p,(4) = r!ﬁry -4 = ﬁ 4 =2,
which is more than the current p,(3) = 1.5. And also, p,(4) = 2, which is more
than the current p,(2) = 1. In this case, the coalition of weight 4 is a blocking
pair for this reputation scheme. So, $* cannot be stabilized by equal sharing.

To find the reputation scheme R* which stabilizes S*, assume that we assign
the same reputation of 1 for w, y, z and we want to find the reputation of agent =z,
ry > 1. We do not want the middle coalition to be the blocking pair, therefore, at
least one agent in {x,y} must not want to deviate. Notice that when we change
only the reputation of x, agent x will not change his mind from the coalition he
chose in the previous case because he gains more profit from both sides by the
same factor. Consider agent y, since the reputation of x is higher, y gains less
profit from the middle coalition. To stabilize S*, he needs to get the profit from
the coalition of weight 2 at least as much as what he gets from the coalition
of weight 4. So, we have the inequality ?11 -2 > ﬁ -4 and get r, > 3. So,
by setting the reputations of w,x,y,z to be 1,3, 1,1 respectively will make S*
core-stable. In this reputation scheme, we have o = 3.

It would be even better if we can stabilize the optimal coalition structure
while trying to maintain the fairness of reputation. That leads to the next issue:
“is 3 the lowest o we can get in this instance?”. Actually, we can have the lower
o by assuming the reputations of w,z,y, z to be 1,1,7,,1 and solve for r,. We

will have 1—41_1 -3 > ﬁ -4 and get ry > % Hence, 1,1, g, 1 can also stabilize the
5

optimal coalition structure in this instance, which results in a = 3.

Observe that, the reason that the last case gives us lower « is because, in the
last case, we let agent = to be the one who decide whether he wants to move to
the middle coalition. Agent = has a better external option (coalition of weight 3),
compared to agent y (coalition of weight 2), so we do not need high reputation
of y to make x change his mind. This leads to the lower a.. Also, notice that, % is
the best (lowest) o we can get to stabilize the optimal coalition structure in this
instance. Since we want z to stay with {w, 2}, we need to maximize what = gain
from {w,x}. So, we must minimize profit of w by setting r,, to be the lowest
reputations among w, x,y (reputation of 1). To prevent a blocking pair, we want
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to have T 3> ot 4, which means r, > 3 + 37;. Since the minimum

reputation is 1, o is minimized when r, = 1. So we have ry, = %

B Proof of Proposition 1

This result has been shown before and follows, e.g., from [2, Theorem 2.9, Corol-
lary 8.2]. We outline the proof for completeness.

To show the upper bound, we prove that every core-stable structure S has
w(S) > w(S*)/k, where S* is an optimal coalition structure. Consider any ¢ €
S*. Since S is core-stable, there must be at least one agent u. € ¢ such that
Du, (S) > pu,(c). We call such u. a “witness” of c. Note that every agent u € V
can be a witness of at most one coalition ¢ € S*. Hence,

wS) = Y pu(S)= D pule)=w(S)/k.

U, witness U, witness

The last inequality follows from equal sharing and from the size of any coalition
being at most k. This shows that the PoA and the PoS are at most k.

For a tightness example consider a game with k + 1 coalitions with k agents
each. The center coalition ¢ = {uy, ..., ux} has weight w(c) = 1+¢, for arbitrary
€ > 0. Each of the k other coalitions c1, ..., ¢; contain exactly one different agent
from c. Formally, ¢; = {u;,vi1,...,vik-1} and w(¢;) =1, for i =1,..., k. With
equal sharing, the unique core-stable coalition structure is S = {c}, whereas the
unique optimal structure is S* = {¢;,...,cr}. Hence, the PoS (and PoA) is at

least k/(1 + €) 20k O

C Proof of Proposition 2

For any reputation scheme R, we will show how to reach a core-stable coalition
structure from a given initial coalition structure in O(n) improvement steps.
Consider an agent v € V and a coalition ¢ € C' that contains v. The profit that

v gets from c is p,(S) = s -w(c) when ¢ € S. Since r,, is a common factor
ug€e 'Y

in p, (') for all ¢ € C with v € ¢/, agent v’s preference is according to the values
w(c’)

Duce! Tu

on agent v and is the same for all u € ¢’. Hence, when a coalition represents

a blocking coalition for S, it represents a strict improvement for all incident
agents. Consequently, adding such a coalition can only replace coalitions in S
with strictly smaller ratio. Thus, the vector of ratios represents a lexicographical

(strong) potential function for the game. In particular, consider the coalitions
w(c)
ucc W

pass over the coalitions in this order, once a coalition is newly added, it will not
be removed. Moreover, we will resolve all blocking coalitions and reach a core-
stable coalition structure. Since there are at most n coalitions in any structure,
we execute at most n improvement steps in the course of this process. O

for all its incident coalitions ¢’. Note that this ratio does not depend

in non-increasing order of the ratio as deviations. By making a single



Fig. 3. An example instance (with n = 6) where every a-bounded reputation scheme

gives PoS at least ”Iij;“, for every a <mn — 1.

D Proof of Proposition 3

The instance that yields result (1) is taken from [14]. We consider G = (V, C, w)
with V = {1,2,...,n} and C = {V}U{c C V| |¢] = []}. Let w(V) = n
and w(c) = [2EL] + € for every ¢ € C, ¢ # V. This instance is non-inclusion
monotone. Every coalition structure has at most one coalition. The optimum
state is S* = {V'}.

We will show that, for any reputation scheme, at least one ¢ # V will be a
blocking coalition for S*. Consider a coalition ¢ of [241] agents with the smallest
reputations. This coalition will be a blocking coalition because, for every j € ¢

[ + € [2Hl] 4 e n+en/|c| n
pjlc)/r; = 22 -2 o = - > - =p;(V)/r;.
viec i Tzvie\/ T Z'UZEV i ZvieV T

Hence, S* is never core-stable. The PoS is at least

hence, at least 2 — n42

The instance for result (2) (see Fig. 3 for an example) yields a lower bound on
the PoS of %, which represents a better bound for schemes with stronger
equality properties (i.e., when o < m — 1). Consider G = (V,C) with V =
{1,2,...,n} and C = {V} U {{1,i}}, Vi € {2,3,...,n}. Let w({1,i}) = 1,
Vie{2,3,...,n}and w(V) = ”;}rza —e¢, for any sufficiently small € > 0. Similar
to the instance above, this instance is non-inclusion monotone, every coalition
structure has at most one coalition, and the optimum state is S* = {V'}.

We show that ¢ = {1, 4} is a blocking coalition for S*, where i = argmin;~ r;
is an “leaf”-agent with smallest reputation. We know r; < ar; and r; > r; for
all j #4,j > 1. Hence,

1 1 erj
1= )
7”1+TZ' erj ?"1-’-’1"1'
1 r1+(n—1)r¢> 1 (a+n—1)r;
DTy T i (a+ Dy

, for every € > 0, and,

_n_
Fn;rlprﬁ

pi(c)/ri =

Y

>pi(V)/ri .



Fig. 4. An instance of ¢;, ¢; (opaque circles) and ¢; ;, ¢;; (dashed circles) for Proposi-
tion 5 (in this case, k = 4)

The exact same calculation shows p; (¢)/r1 > p1(V)/r1. The PoS for this instance
is at least % — ¢, for any € > 0, and, hence, at least % a

E Proof of Proposition 5

Consider an instance G = (V,C,w) where every coalition has size exactly k =
kmin. The agent set V = ViwVow... W V% is partitioned into 7 parts, each
V; contains vertices v;1,v;2,...,v; k. As in Fig. 4, C = C; W Cy such that
C, = {Vh‘/g,...,V%} and Cy = {Ci’j | 1,] € {172,...7%}} when Cij =
{vi1,i2,- - Vik-1,vj1} In other words, we remove the k" vertex of coalition
i and put the 15t vertex of coalition j instead. For all ¢ € C; , let w(c) = % +e€
and, for all ¢ € Cy, let w(c) = 1 . Notice that the unique optimal coalition
structure in this instance is §* = C1, because any ¢; ; € Cy will intersect with
the coalitions ¢;,¢; € C1, however, w(c; ;) < w(c;) +w(e;) and ¢;; N¢j; # 0;
they cannot be picked at the same time.

Since PoS must be 1 and R has equal sharing in stability, in S* each agent
received a profit of %;6. Assume that every agent in Vj for j # 4 has a reputation
of x > 1 times of the reputation of every agent in V;. To keep S* core-stable,
we need to determine x in a way such that neither ¢;; nor c;; are blocking
coalitions. Consequently, at least one agent in ¢; ; and at least one agent in c;;
obtain a profit of at most %lje. Observe that we can assume this agent is in the
coalition of S* with the lower reputation, which we w.l.o.g. assume is V;. Hence,
ci,; results in a stronger bound for = than c;; because there are more agents with

high reputation in ¢;;. So, to prevent c¢; ; from becoming a blocking coalition,

1
we need 2;6 > m, which is > k+1 when ¢ — 0. Hence, for any V;, Vj, the
reputations must differ by at least a factor of k+ 1. Thus, a = (k+ 1)ﬁ_1. O

F Proof of Theorem 3

We show a reduction from 3-SAT (c.f. Fig. 5). Given a 3-SAT formula with n vari-
ables z1,...,z,, and m clauses C1, .., Cy, with C; containing literals {1;,12;,13;,



Fig. 5. Clause gadget for (ZV y V z) when Z is true

consider a game G = (V, E,w) where each coalition has size 2. We here de-
note the set of coalitions by E to avoid confusion with clauses. The instance is
constructed as follows:

V=Aa a5, 27 |i=1,...,n}U{C},C? C3,CHC?,C8|i=1,...,m}
E=FE, UE,UEsUE, with
By = {{at, a3}, g, &), {&, 25} |i=1,...,n}
w{z!, z;}) =10, w({z;,5}) =19, w({T,2l}) =10
By = {{C}, CHy, {C?,CPY, {C3,C8) |i=1,...,m}, w(e) =20 for all e € Ey
By = {{C},C3y, {CE,C3Y, {C3,01) |i=1,...,m}, w(e) =100 for all e € E5
By = {{C}H11,},{C2,12;},{C3,13;} | i = 1,...,m}, w(e) = 21 for all e € Ey.

We consider x = 3 and a target welfare of W = 20n + 120m. We call F;
and its incident vertices variable gadgets, and Fs, F5 and their incident vertices
clause gadgets. F4 links between variable gadgets and clause gadgets.

First assume that the 3-SAT instance is satisfiable. We show that restricted
reputations yield a core-stable coalition structure S with w(S) > W = 20n +
120m. For each variable gadget, we assign a reputation of 3 to the agent which
represents the value of the variable in satisfying assignment and assign a repu-
tation of 1 otherwise. For example, when z; is true, the agents x!, z;, #;, 27 will
have reputations of 1,3,1,1, resp.; or 1,1,3,1 when z; is false, resp. We assign a
reputation of 1 to every agent in a clause gadget. Assume clause j with variables
x,y, z is satisfied by literal of x, then

{{xévxi}v {fia Z‘:}, {yéayi}v {gia y;’}7 {va Zi}’ {f“xg}’ {Czlv Czl}’ {0127 013}} cs



is core-stable (c.f. the bold edges in Fig. 5). Edges of E; with profit 19 cannot
be blocking pairs because the agent with reputation of 1 would earn a profit of
1_%3 -19 < 5. Edges in Ey cannot be the blocking pairs because C? and C3 have
a optimal profit of 50 each. Edges in E3 cannot be the blocking pairs because C?
or C3 already earn an optimal profit of 50. Edges in E,; cannot be the blocking
pairs because C} would earn a profit of ﬁ - 21 < 10. We have a total profit
of 20 for each variable gadget and a profit of 120 for each clause gadget, so
w(S) = 20n + 120m.

Conversely, assume restricted reputations result in a core-stable coalition
structure S with w(S) > W = 20n + 120m. We show that the 3-SAT formula
can be is satisfied. In order to achieve w(S) > 20n + 120m, we need to have a
weight of 20 from each variable gadget and 120 from each clause gadget, which
is due to one edge of F5 and one edge of F3. Notice that we cannot have any
edge of F4 in S, because each edge in E, has a weight of 21, but it rules out
one edge in E; and one edge in Fs which have a total weight of 20+10=30.
Consider each variable gadget. Observe that every restricted reputation schemes
that prevents the edge of weight 19 from being a blocking pair, needs to have
different reputations for the two middle vertices. This way, we will set x; to be
true if it has a reputation of 3 (which means &, has a reputation of 1) and false
if it has a reputation of 1 (which means #; has a reputation of 3). Now consider
each clause gadget. Since we know that the weight of 120 can be stabilized, it
implies that at least one of the three variables that the clause connects to must
have a reputation of 3. Suppose not, then an edge in F4 will be a blocking pair
for an agent who is not incident to the existing edge of weight 100. To see this,
first notice that an agent in the variable gadget is willing to deviate to the edge
in Fy4, because he currently gets a profit of 5, but he will get a profit of % - 21
if his partner has reputation of 1, or he will get a profit of i - 21 if his partner
has reputation of 3, which are both larger than 5. Now, for the agent who does
not participate in the edge of weight 100, his own reputation is not related to
his decision because it is the same factor for both options. Even though he gains
the most profit by setting the reputation of his partner of the edge in E5 to be
1, he still gains less than what he gains from the edge F4. So, we conclude that
if S is a core-stable coalition structure with w(S) > 20n + 120m, then for each
clause gadget at least one of the three adjacent vertices in the variable gadgets
need to have a reputation of 3. This implies that the formula is satisfiable. O

G Proof of Proposition 6

For the first bound, consider a simple path of length three. We denote the agents
by v1, v2, v3, vy, respectively. Let e; be the coalition/edge {v;, v;4+1}, fori =1,2,3.
Let w(er) = w(e3) = 1 and w(ez) = ZH + ¢, for an arbitrarily small € > 0.

If x < 3, the optimal structure S* = {e1, e3} with w(S*) = 2, but e is always
a blocking pair. The best reputation scheme for making v3 choose to stay with
V4 18 (T Tugs Togs Twg ) = (Twy, &, 1, 1). But even in this case, e is a blocking pair
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Fig. 6. When n is large, this instance has PoS of at least 2 — -2

x+3

a1
when w(ey) > ‘"”TH, because 12+:€ > % For € — 0, we get
2 4
PoS = — = .
Hlie x+1

For the second bound consider a game G = (V, E,w) constructed by creating
two cliques, K(!) and K, of size n/2. Then, connect each agent of the first
clique to an agent of the other clique a one-to-one fashion (c.f. Fig. 6). Let
w(e) = 12 + € for each e in K, w(e) = 1+ ¢ for each edge e in K, and
w(e) = 1 otherwise. The optimal coalition structure S* includes all edges that
connect between two cliques, and w(S*) = n/2.

Now, consider the restricted reputations that yield a core-stable coalition
structure with the highest social welfare. Intuitively, we need to assign the rep-
utations such that they stabilize as many edges between the cliques as possible.
First, consider the reputation of each vertex in K. If we assign reputation
1 to any two vertices in K(?) | the edge between them will become a blocking
pair (no matter the reputations of adjacent vertices in K1), because they will
get a profit of more than 0.5 each. Now, consider two vertices u and v in K1),
assuming their adjacent vertices in K both have reputations of x. Consider
the following 2 subcases:

1. If r, = r, = x, then the edge between u’s neighbor in K and v’s neighbor
in K will be the blocking pair because neighbors of u and v get 0.5 from
u and v, but they get more than 0.5 together.
2. If r, = r, = 1, then the edge between u and v will be the blocking pair
because they gain more than H%I each by matching together.
Hence, if any two vertices in K (!) have the same reputation and their neighbors
in K have reputation x, then a blocking pair will evolve. Consequently, there

can be at most two edges between cliques in any core-stable solution. Hence, the



social welfare of the core-stable coalition structure is (1 + 1—%@ +e)- "T"l + 24 2,
which is (1+H%)-%+1f0r6—>0.
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PoS > .
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