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We study combinatorial auctions for secondary spectrum markets, where short-term communication licenses

are sold to wireless nodes. Channels can be assigned to multiple bidders according to interference constraints
captured by a conflict graph. We suggest a novel approach to such combinatorial auctions using a graph

parameter called inductive independence number. We achieve good approximation results by showing that

interference constraints for wireless networks imply a bounded inductive independence number. For example,
in the physical model the factor becomes O(

√
k log2 n) for n bidders and k channels. Our algorithms can

be turned into incentive compatible mechanisms for bidders with arbitrary valuations.
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1. INTRODUCTION

A major challenge of today’s wireless networks and mobile communication is spectrum man-
agement, as devices use common frequency bands that are subject to interference between
multiple transmitters in the same area. In fact, spectrum allocation has become one of the
key problems that currently limits the growth and evolution of wireless networks. The rea-
son is that, traditionally, frequencies were given away to large service providers in a static
way by regulators for entire countries. Examples include FCC auctions in the US or the
auctions for UMTS and LTE that took place in Europe. However, demands for services vary
at different times and in different areas. Depending on time and place this causes frequency
bands licensed for one application to become overloaded. On the other hand, different bands
are idle at the same time. A promising solution to this problem is to use market approaches
that result in a flexible and thus more efficient redistribution of access rights – thereby
overcoming the artificial shortage of available spectrum. In this case, parts of the spectrum
that are currently unused by so-called primary users for the originally intended purpose
(such as TV or telecommunication) can be offered to so-called secondary users. Licenses for
such secondary usage are valid only for a local area.

A sustainable approach (concisely termed “eBay in the Sky” in [Zhou et al. 2008]) to au-
tomatically run such a secondary spectrum market is to auction licenses for secondary users
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on a regular basis. In this paper, we propose a general framework and efficient algorithms
to implement such a secondary spectrum auction. In our model, there are n secondary users
who can bid for bundles of the k wireless channels. Depending on the scenario a user can
correspond to a base station that strives to cover a specific area or a pair of devices that
want to exchange data (e.g., a base station and a mobile device). In order to account for
channel aggregation capabilities of modern devices, users should be able to acquire multiple
channels. We allow each user v to have an arbitrary valuation bv,T for each subset T of
channels. This level of generality is necessary because of different needs, applications, and
hardware abilities of the users, but also because of different locations, spectrum availability,
and interference conditions. For instance, the presence of a primary user might allow access
to a channel only for a subset of mobile devices located in selected areas. We assume no
restrictions on the valuation functions, not even monotonicity.

In this paper, we devise approximation algorithms for spectrum allocation on the sec-
ondary market with the objective of maximizing social welfare. We focus on the underly-
ing combinatorial problems and describe interference conflicts by an edge-weighted conflict
graph. In unweighted graphs, the vertices represent the bidders and the edges represent
conflicts such that the feasible allocations for a channel correspond to the independent sets
in the conflict graph. For edge-weighted graphs, we extend the definition of independent set
to weighted edges by requiring the sum of all incoming weights to be less than 1. Our for-
mulation covers a large number of binary interference models (such as the protocol model).
As we will see, edge weights allow to express more realistic models like the physical model.
Here, we can even take the effects of power control into account. Before we state our results,
we proceed with a formal description of our model.

1.1. A Combinatorial Framework for Spectrum Assignment

There is a set V of n users and a set [k] of k channels for wireless transmission. Depending
on the application scenario, a user can be interpreted as a transmitter that strives to reach
mobile devices in a specific geometric area, or a communication request consisting of a
sender-receiver pair located in a metric space. We take a more fundamental approach that
captures a large variety of these interpretations. We address the nature of interference by
assuming that V is the vertex set of a conflict graph G = (V,E). A directed edge e ∈ E
represents a possible conflict, i.e., edge (u, v) indicates that channel access of user u creates a
conflict at user v when both try to access the channel simultaneously. To measure the severity
of the interference caused by a conflict, we later consider edge weights w(e) ≥ 0. A conflict
graph is termed unweighted if w(e) ∈ {0, 1} for all e ∈ E and edge-weighted otherwise. For
unweighted conflict graphs, we drop the weights and assume that e ∈ E ⇔ w(e) = 1. For
simplicity of presentation, we first stick to unweighted conflict graphs. In Section 3 below,
we present a straightfoward extension to the edge-weighted case.

A user v ⊆ V is successful on channel j if the interference from other users that try to
access the channel is not too large. In unweighted conflict graphs, if a set M ⊆ V accesses
the channel, user v ∈ M is successful if there is no user u ∈ M with (u, v) ∈ E. Hence, a
subset of users M ⊆ V can implement simultaneous successful channel access if and only if
M is an independent set in G.

Users are assumed to have valuations for successful channel access. For user v, we denote
by bv,T ≥ 0 the valuation when he has successful access to channel set T ⊆ [k]. The main
goal of this paper is to find allocations of users to channels that maximize the valuation of
successful transmissions. More formally, we try to solve the following combinatorial auction
problem with conflict graph.

Problem 1 (Combinatorial Auction with Conflict Graph). Given a graph
G = (V,E), a natural number k, and a valuation function b : V × 2[k] → N, find a fea-
sible allocation S : V → 2[k] that maximizes the social welfare b(S) :=

∑
v∈V bv,S(v).
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An allocation S is called feasible if for all channels j ∈ [k], the set of vertices that are
assigned to this channel, i. e. {v ∈ V | j ∈ S(v)}, is an independent set.

Observe that this problem generalizes combinatorial auctions, in which we have to allocate
a set of items to a set of users to maximize total valuation of the allocation. In our case,
a channel can be thought of as an item that can be given to multiple bidders representing
an independent set in the conflict graphs. To embed ordinary combinatorial auctions in
our framework, we can assume the conflict graph to be an unweighted clique. Then each
independent set consists only of at most one bidder, which implies that each channel/item
can be given to at most one bidder. Instead, for general unweighted conflict graphs and
k = 1, we obtain the standard maximum weight independent set problem.

By relying on the abstraction to conflict graphs, we can model channel assignment in a
large variety of interference models, including, e.g., disk graphs or protocol models. Using an
appropriate extension of independent set to edge-weighted conflict graphs, we can even treat
variants of the physical model of interference. We elaborate on this issue in Sections 3 and 4
below. However, in general graphs the maximum independent set problem is extremely hard
to approximate. Fortunately, conflict graphs resulting from prominent interference models
have more structure, which we capture using the following graph parameter. For simplicity,
we again define the parameter only for unweighted conflict graphs. For the extension to
weighted conflict graphs see Section 3 below.

Definition 1.1 (inductive independence number ρ). For a graph G = (V,E), the in-
ductive independence number ρ is the smallest number such that there is an ordering
π of the vertices satisfying: For all v ∈ V and all independent sets M ⊆ V , we have
|M ∩ {u ∈ V | {u, v} ∈ E, π(u) < π(v)}| ≤ ρ.

In words, for every vertex v ∈ V , the size of an independent set in the backward neighborhood
of v, i.e., the set of neighbors u of v with π(u) < π(v), is at most ρ. As we discuss in
Section 4, conflict graphs derived from various simple models of wireless communication
with binary conflicts like, e.g., the protocol model, distance-2 matchings, or disk graphs,
have ρ = O(1). The corresponding ordering π is efficiently computable in these cases. We
exploit this property in our algorithms. Note that a bounded inductive independence number
is significantly less stringent than bounded independence, which postulates a bound for the
complete neighborhood and can increase up to n− 1 even in disk graphs.

1.2. Our contribution

We devise the first approximation algorithms for the combinatorial auction problem with
conflict graph. Our approach is based on a novel LP formulation for the independent set
problem. Our main results concern the so-called physical model [Gupta and Kumar 2000]
which is common in the engineering community and has also become subject to theoretical
work. In binary models of wireless communication usually studied in theoretical computer
science, we make the oversimplifying assumption that interference caused by a signal stops
at some boundary around the sender, and receivers beyond this boundary are not disturbed
by this signal. In contrast, the physical model takes into account realistic propagation ef-
fects and additivity of signals. Feasibility of simultaneous transmissions is modeled in terms
of signal to interference plus noise ratio (SINR) constraints. We study two variants of this
model, one in which signals are sent at given powers (e.g., uniform) and one where the pow-
ers are subject to optimization themselves. We show how to represent SINR constraints for
both of these variants in terms of an edge-weighted conflict graph and introduce appropri-
ate notions of “independent set” and “inductive independence number” for edge-weighted
graphs.

At first, we observe that the inductive independence number ρ for edge-weighted graphs
obtained from the physical model (in both variants) is bounded by O(log n) and the cor-
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responding ordering is efficiently computable. This enables us to bypass the well-known
lower bound of Ω(n1−ε) [H̊astad 1999] on the approximability of independent set in general
graphs. In particular, we present an LP relaxation capturing both interference constraints
and valuations of users for subsets of channels. Similar to ordinary combinatorial auctions,
the LP might require an exponential number of valuations bv,T to be written down explicitly.
However, we show how to solve the LP using only oracle access to bidder valuations. Our LP
based framework is able to handle edge-weighted conflict graphs resulting from the physical
model. By rounding the LP optimum, our algorithm achieves an O(ρ ·

√
k log n) approxima-

tion guarantee. Combining this with the bound on ρ gives an O(
√
k log2 n)-approximation

of the social welfare for spectrum auctions in the physical model (in both variants).
For more simple binary models of wireless communication such as the protocol model, our

approach yields an O(ρ ·
√
k)-approximation. Using the bounds on ρ mentioned above, this

yields anO(
√
k) approximation guarantee. In this case, we also provide some complementing

hardness results. In general, it is hard to approximate the combinatorial auction problem
with conflict graphs to a factor of O(ρ1−ε) and to a factor of O(k

1
2−ε) for any constant ε > 0.

While for some specific models better approximations exist, in general the bounds provided
by our algorithms for binary models cannot be improved in terms of a single parameter ρ
or k. In addition, we provide stronger lower bounds for the case of asymmetric channels,
in which the conflict graph can be different for each channel. In this case, our algorithm
guarantees a factor of O(ρ · k), which is best possible in general.

Our approach can be used to derive incentive compatible mechanisms using the LP-based
randomized meta-rounding framework of Lavi and Swamy [2011] for general bidders with
demand oracles. In fact, we slightly extend this framework by starting with an infeasible
rather than feasible ILP formulation. The approximation algorithm computes a linear com-
bination of feasible solutions approximating the optimal solution of the corresponding LP
and then chooses one of these solutions at random. The obtained mechanism is truthful
in expectation, i.e., in expectation over the internal randomization of the mechanism each
bidder obtains maximum expected utility by reporting the true valuation, no matter what
the reported valuations of other bidders are.

Outline. For technical reasons, we present our results in a different order than stated
above. We first introduce the basic approach in the context of unweighted conflict graphs in
Section 2. The extensions to edge-weighted graphs including a formal definition of inductive
independence number are given in Section 3. The aforementioned wireless models (especially
the variants of the physical model) are formally introduced in Section 4, where we also show
the bounds on the inductive independence number. The results on asymmetric channels are
presented in Section 5. Finally, we conclude with recent progress and open problems in
Section 6. The application of the randomized meta-rounding technique to obtain truthful
mechanisms is discussed in Appendix A.

1.3. Related Work

The idea of establishing secondary spectrum markets has attracted much attention among
researchers in applied networking and engineering communities [Zhou et al. 2008; Gandhi
et al. 2008; Buddhikot et al. 2005; Ileri et al. 2005]. There are many different fundamental
regulatory questions that need to be addressed when implementing such a market. For
example it has to be clarified who runs the market and who is allowed to sell and buy
spectrum there. Possible actors could be network providers, brokers, regulators and end-
users. In addition, it has to be guaranteed that existing services are not harmed. In most of
the literature on spectrum markets the technological aspects dominate. Many results in this
area are only of qualitative nature, only a few examples (such as [Zhou et al. 2008; Zhou
and Zheng 2009; Kash et al. 2011]) do explicitly consider truthfulness. In terms of non-
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trivial worst-case guarantees on the efficiency of the allocation there is some recent work
on single-parameter auctions with unweighted conflict graphs [Gopinathan et al. 2011; Zhu
et al. 2012].

Using our combinatorial models based on (edge-weighted) conflict graphs taking into
account the bounded inductive independence number, we put aside technological aspects
and focus on the underlying combinatorial and algorithmic questions. To the best of our
knowledge there is no previous work on auctions using the general framework of edge-
weighted conflict graphs and non-trivial provable worst-case guarantees on the efficiency
of the allocation in the multi-parameter case. Subsequent to publication of an extended
abstract of this paper in [Hoefer et al. 2011], several special cases and refinements of the
framework presented here have been treated. We address this recent progress in Section 6.

In contrast, combinatorial auctions have been a prominent research area in algorithmic
game theory over the last decade. A variety of works treats auctions with special valuation
functions, such as submodular valuations or ones expressible by specific bidding languages.
For an introduction see, e.g., [Nisan et al. 2007, Chapters 11 and 12] or [Cramton et al. 2006].
In addition, designing (non-truthful) approximation algorithms for the allocation problems
has found interest, most notably for submodular valuations (e.g., [Vondrák 2008; Feige and
Vondrák 2006]). More relevant to our work, however, are results that deal with truthful
mechanisms for general valuations. Most notably, Lavi and Swamy [2011] and Dobzinski

et al. [2012] derive mechanisms using only demand oracles that achieve an
√
k-approximation

with truthfulness in expectation and universal truthfulness, respectively. A deterministic
truthful (k/

√
log k)-approximation is obtained by Holzman et al. [2004].

Over the last decades, there has been much research on finding maximum independent sets
in the context of interference models for wireless networks. One of the simplest models in this
area are disk graphs, which are mostly analyzed using geometric arguments. See [Fishkin
2003; Gräf et al. 1998] for a summary on the results and typical techniques. Christodoulou
et al. [2010] study combinatorial auctions for geometric objects. Similar to our approach,
they present an LP formulation based on a property in terms of an ordering, the fatness of
geometric objects.

The inductive independence number has been used before in [Akcoglu et al. 2002; Ye
and Borodin 2012] to approximate independent sets within a factor of ρ with a motivation
stemming from chordal graphs. However, these works do not consider multiple channels or
wireless communication. As their algorithm is not monotone, it is also not directly applicable
to truthful auctions.

Algorithmic aspects of the physical model have become popular in theoretical research
recently, particularly the problem of scheduling, i.e., partitioning a given set of requests in
a small number of classes such that all requests are successful. New challenges arise since
graph-theoretic coloring methods cannot be directly applied. For example, there have been
a number of results on how to choose powers for short schedule lengths [Fanghänel et al.
2009; Fanghänel et al. 2011; Halldórsson et al. 2013]. A popular method is fixing powers
according to some distance-based scheme. For uniform power assignments, a constant-factor
approximation algorithm for the problem of finding a maximum independent set (i.e., a
maximum set that may share a single channel) is presented in [Goussevskaia et al. 2009].
Near-optimal bounds for all sublinear schemes have been presented in [Halldórsson and
Mitra 2011]. An online version of the problem has been studied in [Fanghänel et al. 2013]
presenting tight bounds depending on the difference in lengths of the requests. For arbitrary
power schemes, a constant-factor approximation algorithm has been obtained in [Kesselheim
2011] and extended to more general scenarios in [Kesselheim 2012].
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2. UNWEIGHTED CONFLICT GRAPHS

2.1. Our LP relaxation

One can get a very intuitive LP formulation for the Weighted Independent Set problem by
leaving out the integer constraints from the integer linear program formulation.

Max.
∑
v∈V

bvxv

s. t. xu + xv ≤ 1 for all {u, v} ∈ E
0 ≤ xv ≤ 1 for all v ∈ V

This LP can be used to approximate Independent Set within a factor of (d̄+1)/2 [Hochbaum
1983; Kako et al. 2009] where d̄ is the average vertex degree. However, even for the case of
a clique the integrality gap is n/2.

In contrast to this edge-based LP formulation, we here present a different LP based
on the inductive independence number ρ (recall Definition 1.1). As we will see later, in
typical conflict graphs the inductive independence number is constant and the corresponding
ordering π can be efficiently calculated. Here we use Γπ(v) = {u ∈ V | {u, v} ∈ E, π(u) <
π(v)} to denote the backward neighborhood of v. This allows to use the following LP
relaxation that has one constraint for each combination of a vertex and a channel and
another one for each vertex.

Max.
∑
v∈V

∑
T⊆[k]

bv,Txv,T (1a)

s. t.
∑

u∈Γπ(v)

∑
T⊆[k]
j∈T

xu,T ≤ ρ for all v ∈ V , j ∈ [k] (1b)

∑
T⊆[k]

xv,T ≤ 1 for all v ∈ V (1c)

xv,T ≥ 0 for all v ∈ V , T ⊆ [k] (1d)

This LP works as follows. For each vertex v and each possible set T ⊆ [k] of channels assigned
to this vertex, there is one variable xv,T . Due to the bounded inductive independence number
all feasible allocations correspond to solutions of the LP. However, not all integer solutions
of the LP necessarily correspond to feasible channel allocations. Nevertheless, we will show
how to compute a feasible allocation from each solution in Theorem 2.3 below.

Lemma 2.1. Let S be a feasible allocation and x be defined by xv,T = 1 if S(v) = T and
0 otherwise, then x is a feasible LP solution.

Proof. Conditions (1c) and (1d) are obviously satisfied. Let us now consider Condi-
tion (1b) for some fixed v ∈ V , j ∈ [k]. Set M := {u ∈ V | π(u) < π(v), j ∈ S(u)}. Since
M is an independent set, by definition of the inductive independence number, we have
|M ∩ Γπ(v)| ≤ ρ.

On the other hand, we have
∑
u∈Γπ(v)

∑
T⊆[k],j∈T xu,T = |M ∩ Γπ(v)| ≤ ρ. So x is a

feasible LP solution.

As all coefficients are non-negative, this LP has a packing structure. In particular, we can
observe the following decomposition property.

Observation 2.2. Let x be a feasible solution to the LP, and x(1) be a vector such that

0 ≤ x
(1)
v,T ≤ xv,T for all v ∈ V , T ⊆ [k]. Then x(1) and x(2) := x − x(1) are feasible LP

solutions as well.
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If there are only polynomially many valuations bv,T non-zero, this LP is solvable in
polynomial time. In general, due to the number of subsets, the elementary representation
of the bv,T values is exponential in k. We can still solve the LP optimally if bidders can be
represented by demand oracles.

2.2. Demand Oracles

If there is an arbitrary number of channels, we must define an appropriate way to query
the valuation functions of the requests, as an elementary description becomes prohibitively
large. A standard way to deal with this issue in the auction literature is the representation
by so-called demand oracles. To query the demand oracle of bidder v, we assign each channel
i a price pi. Then the oracle delivers his “demand” S = arg maxT⊆[k]

(
bv,T −

∑
i∈T pi

)
, i. e.,

a bundle that maximizes the utility of v given that he pays the sum of prices of channels in
the bundle. In ordinary combinatorial auctions such demand oracles can be used to separate
the dual of the underlying LP. We here show that such demand oracles can also be used for
the solution of our LP (1). Consider the dual given by

Min.
∑
v∈V

∑
j∈[k]

ρyv,j +
∑
v∈V

zv (2a)

s. t.
∑
u∈V

v∈Γπ(u)

∑
j∈T

yu,j + zv ≥ bv,T for all v ∈ V , T ⊆ [k] (2b)

yv,j ≥ 0 for all v ∈ V , j ∈ T (2c)

In contrast to ordinary combinatorial auctions, we cannot use the solution (y, z) di-
rectly as the channel prices. Instead, we choose bidder-specific channel prices by pv,j =∑
u∈V,v∈Γπ(u) yu,j . Using this idea we see that the constraints of the dual are indeed equiv-

alent to upper bounds on the utility with bidder-specific channel prices. By obtaining the
demand bundle with highest utility for each player, we find a violated constraint or verify
that none exists. This allows to separate the dual LP and to solve it efficiently using the
ellipsoid method. This way, we get an equivalent primal LP with only polynomially many
constraints. The corresponding primal solution has only polynomially many variables with
x∗v,T > 0.

2.3. Rounding LP Solutions

Having described the LP relaxation, we now analyze Algorithm 1 computing feasible al-
locations from LP solutions as follows. First, it decomposes the given LP solution to two
solutions x(1) and x(2) (line 1). In x(1) all fractional variables xv,T for sets T with |T | ≥

√
k

are set to zero. To get x(2) the exact opposite is performed. From each one, a feasible alloca-
tion is computed and the better one is selected at the end. This means, the algorithm either
allocates only sets of size at most

√
k or only of size at least

√
k. The actual computation of

the allocation works the same way for both LP solutions. It consists of two major parts: a
rounding stage and a conflict-resolution stage. In the rounding stage (lines 3–4), a tentative
allocation is generated as follows. For each vertex v the set of allocated channels S(l)(v) is

determined independently at random. Each set T 6= ∅ is taken with probability x
(l)
v,T /2

√
kρ

and with the remaining probability the empty set is allocated.
Conflicts can occur when two adjacent vertices share the same channel. In this case, the

conflict is resolved (lines 5–8) by allocating the channel to the vertex with smaller index in
the π ordering. The other vertex is removed from the solution by being allocated the empty
set.
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Algorithm 1: LP rounding algorithm for the combinatorial auction problem with un-
weighted conflict graphs

1 decompose x into two solutions x(1) and x(2) by x
(1)
v,T = xv,T if |T | ≤

√
k and x

(1)
v,T = 0

otherwise. x(2) = x− x(1)

2 for l ∈ {1, 2} do
3 for v ∈ V do /* Rounding Stage */

4 with probability
x
(l)
v,T

2
√
kρ

set S(l)(v) := T

5 for v ∈ V do /* Conflict-Resolution Stage */
6 for u ∈ V with π(u) < π(v) and {u, v} ∈ E do
7 if S(l)(u) ∩ S(l)(v) 6= ∅ then
8 S(l)(v) := ∅

9 return the better one of the solutions S(1) and S(2)

Theorem 2.3. For any feasible LP solution x∗ with value b∗, Algorithm 1 calculates a
feasible allocation S of value at least b

∗
/8
√
kρ in expectation.

Proof. The allocations S(1) and S(2) are obviously feasible allocations because if
{u, v} ∈ E, then S(1)(u) ∩ S(1)(v) = ∅ and S(2)(u) ∩ S(2)(v) = ∅. Therefore, the output is
also a feasible allocation.

Let us now bound the expected values of solutions S(1) and S(2). Let l ∈ {1, 2} be fixed.
Let Xv,T be a 0/1 random variable indicating if S(l)(v) is set to T after the rounding stage.
Clearly, we have

E [Xv,T ] =
x

(l)
v,T

2
√
kρ

. (3)

Let X ′v,T be a 0/1 random variable indicating if S(l)(v) is set to T after the conflict-

resolution stage. We consider the event that X ′v,T = 0, given that Xv,T = 1, i. e. that v is
removed in the conflict-resolution stage after having survived the rounding stage.

Lemma 2.4. The probability of being removed in the conflict-resolution stage after hav-
ing survived the rounding stage is at most 1/2, i.e., Pr

[
X ′v,T = 0 | Xv,T = 1

]
≤ 1/2.

Proof. The event can only occur if Xu,T ′ = 1 for some u ∈ V with π(u) < π(v),
{u, v} ∈ E, and T ∩ T ′ 6= ∅. In terms of the random variables Xu,T this is∑

u∈Γπ(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

Xu,T ′ ≥ 1 .

Using this notation we can bound the probability of the event by using Markov’s inequality

Pr
[
X ′v,T = 0 | Xv,T = 1

]
≤ Pr

 ∑
u∈Γπ(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

Xu,T ′ ≥ 1

 ≤ E

 ∑
u∈Γπ(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

Xu,T ′

 .

We will now show separately that this expectation is at most 1/2 for each of the two
possible values of l (l = 1 or l = 2).
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Case 1 (l = 1). We have:

E

 ∑
u∈Γπ(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

Xu,T ′

 ≤ E

∑
j∈T

∑
u∈Γπ(v)

∑
T ′⊆[k]
j∈T ′

Xu,T ′

 .

Due to linearity of expectation this is equal to∑
j∈T

∑
u∈Γπ(v)

∑
T ′⊆[k]
j∈T ′

E [Xu,T ′ ] .

Using Equation (3) and the fact that x(1) is an LP solution, this is

∑
j∈T

∑
u∈Γπ(v)

∑
T ′⊆[k]
j∈T ′

x
(1)
u,T ′

2
√
kρ

≤
∑
j∈T

1

2
√
k
.

Recall that we only have to deal with sets T for which |T | ≤
√
k in this case. Hence, the

expectation is at most 1/2, and so is the probability that v is removed in the conflict-
resolution stage.
Case 2 (l = 2). In this case, we have Xu,T ′ > 0 only for sets T ′ with |T ′| ≥

√
k. This

yields for all u ∈ V∑
T ′⊆[k]
T∩T ′ 6=∅

Xu,T ′ ≤
∑
T ′⊆[k]
T ′ 6=∅

Xu,T ′ =
∑
T ′⊆[k]
T ′ 6=∅

∑
j∈T ′

Xu,T ′

|T ′|
=
∑
j∈[k]

∑
T ′⊆[k]
j∈T ′

Xu,T ′

|T ′|
≤ 1√

k

∑
j∈[k]

∑
T ′⊆[k]
j∈T ′

Xu,T ′ .

So, we get

E

 ∑
u∈Γπ(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

Xu,T ′

 ≤ E

 1√
k

∑
j∈[k]

∑
u∈Γπ(v)

∑
T ′⊆[k]
j∈T ′

Xu,T ′

 .

Again, we use linearity of expectation, Equation (3) and the fact that x(2) is an LP
solution. This gives us

1√
k

∑
j∈[k]

∑
u∈Γπ(v)

∑
T ′⊆[k]
j∈T ′

x
(2)
u,T ′

2
√
kρ

≤ 1√
k

∑
j∈[k]

1

2
√
k
≤ 1

2
.

This bounds the probability for the second case.

In both cases we have Pr
[
X ′v,T = 0 | Xv,T = 1

]
≤ 1/2.

Using Lemma 2.4 and Equation (3) we get for all v ∈ V and T ⊆ [k] that E
[
X ′v,T

]
≥ x

(l)
v,T

4
√
kρ

.

This yields that both calculated solutions S(l) for l ∈ {1, 2} have expected value

E
[
b(S(l))

]
= E

∑
v∈V

∑
T⊆[k]

bv,T ·X ′v,T

 =
∑
v∈V

∑
T⊆[k]

bv,T ·E
[
X ′v,T

]
≥ 1

4
√
kρ

∑
v∈V

∑
T⊆[k]

bv,Tx
(l)
v,T .
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The better one of the two solutions has expected value

E
[
max{b(S(1)), b(S(2))}

]
≥ 1

2

(
E
[
b(S(1))

]
+ E

[
b(S(2))

])
≥ 1

8
√
kρ

∑
v∈V

∑
S⊆[k]

bv,S

(
x

(1)
v,S + x

(2)
v,S

)
=

1

8
√
kρ

∑
v∈V

∑
S⊆[k]

bv,Sxv,S =
b∗

8
√
kρ

.

2.4. Hardness Results

In this section we provide lower bounds for the approximation ratios of our algorithms. This
shows that in general the above results cannot be significantly improved without further
restricting the model. Our results are based on the hardness of approximating independent
set in bounded-degree graphs [Trevisan 2001] or general graphs [H̊astad 1999]. A first result
is that the O(ρ) algorithm for the case k = 1 is almost optimal.

Theorem 2.5. For k = 1 and for each ρ = O(log n) there is no ρ/2O(
√

log ρ) approximation
algorithm unless P= NP.

Proof. Such an algorithm could be used to approximate Independent Set in bounded-
degree graphs. Given a graph with maximum degree d its inductive independence number ρ
is also at most d. Trevisan Trevisan [2001] shows that there is no d/2O(

√
log d)-approximation

algorithm for all d = O(log n) unless P= NP. This directly yields the claim.

As a second result we can also prove the impact of the number of channels k has to be
as large as

√
k.

Theorem 2.6. Even for ρ = 1 there is no k
1
2−ε-approximation algorithm unless ZPP=

NP.

Our framework extends general combinatorial auctions with k items, and this is a standard
result in the area [Nisan et al. 2007, Chapter 9] derived from the hardness of independent
set in general graphs.

In conclusion, our algorithmic results are supported by almost matching lower bounds
in each parameter. Without further restricting the graph properties (which means to use
additional properties of an interference model) no significantly better approximation guar-

antees can be achieved in terms of ρ resp. k. However, this does not prove no O(ρ +
√
k)

approximation can exist.

3. EDGE-WEIGHTED CONFLICT GRAPHS

In this section we extend conflicts over binary relations (conflict/no-conflict). In wireless
communication, we encounter situations that a radio transmission is exposed to interference
by a number of devices relatively far away. If there were only a single one of them, inter-
ference would be acceptable but their overall interference is too high. For such aggregation
aspects we introduce edge-weighted conflict graphs, in which there is a non-negative weight
w(u, v) between any pair of vertices u, v ∈ V .

If a subset I ⊆ V of users access a channel j, then user v ∈ I is successful on j if∑
u∈I w(u, v) < 1. Put differently, a subset I ⊆ V of users can implement successful si-

multaneous access to a channel if they form an independent set in G, where the following
definition captures our condition of success and extends the standard definition of indepen-
dent set to edge-weighted conflict graphs.

Definition 3.1. For a set of users V with weight function w : V × V → [0,∞), an inde-
pendent set M ⊆ V is such that

∑
u∈M w(u, v) < 1 for all v ∈M .

Note that edge weights need not be symmetric. To generalize the definition of the in-
ductive independence number, it is therefore convenient to use the following symmetric
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edge weights w̄(u, v) = w(u, v) + w(v, u). It allows us to argue over the sum of degrees in
Lemma 3.4 below. The approximation guarantee is only increased by a factor of 2 through
this step. In practice, it might be more convenient to use a maximum instead of the sum
for w̄.

Definition 3.2. The inductive independence number of an edge-weighted graph G is the
minimum number ρ such that there is a total ordering π : V → [n] (bijective function) which
fulfills for all vertices v and all independent sets M ⊆ {u ∈ V | π(u) < π(v)} the following
condition:

∑
u∈M w̄(u, v) ≤ ρ.

Note that in this definition the sets M are only required to be independent sets with
respect to the original edge-weights w, not necessarily w̄. Therefore, any feasible allocation
corresponds to a solution of the following LP relaxation.

Max.
∑
v∈V

∑
T⊆[k]

bv,Txv,T (4a)

s. t.
∑
u∈V

π(u)<π(v)

∑
T⊆[k]
j∈T

w̄(u, v) · xu,T ≤ ρ for all v ∈ V , j ∈ [k] (4b)

∑
T⊆[k]

xv,T ≤ 1 for all v ∈ V (4c)

xv,T ≥ 0 for all v ∈ V , T ⊆ [k] (4d)

For the case that valuations are only given by demand oracles, this LP can be solved in
polynomial time in a similar way as described in Section 2.2.

In case of unweighted conflict graphs, we could ensure feasibility by guaranteeing that no
node has neighbors with a smaller index in the π-ordering. For weighted graphs resolving
conflicts in only one direction only with respect to the π-ordering is not enough: In par-
ticular, even if the edge weights to neighboring vertices on the same channel with smaller
indices are at most 1, the edge weights to all neighboring vertices on the same channel can
be more than 1. While a feasible independent set requires to fulfill the latter condition, a
feasible integer solution to the LP might only satisfy the former condition, as the conflicts
w.r.t. backwards neighbors are the ones represented in the constraints.

To cope with this issue, we increase the scaling by another factor of 2. We use rounding
and conflict resolution as previously to ensure that for each vertex v the sum of edge weights
to neighboring vertices that have smaller indices and share a channel with v is at most 1/2.
Formally, a partly-feasible allocation is an allocation S : V → 2[k] such that∑

u∈V
π(u)<π(v)
S(v)∩S(u)6=∅

w̄(u, v) <
1

2
for all v ∈ V . (5)

Rounding LP solutions to such partly-feasible allocations can be carried out in a similar
way as Algorithm 1. Algorithm 2 decomposes the given LP solution the same way as Algo-
rithm 1. Afterwards, it also performs two stages. In the rounding stage (lines 2–4), again a
tentative allocation is determined randomly by considering the LP solution as a probability
distribution.

Afterwards, only a partial conflict resolution (lines 5–8) is performed: If for some vertex v
the sum of edge weights to neighbors that have lower π values and share a channel exceeds
1/2, it is removed from the solution (i. e. it is allocated the empty set). Such a partly-feasible
solution satisfies Equation (5).
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Algorithm 2: LP rounding algorithm for the combinatorial auction problem with
weighted conflict graphs

1 decompose x into two solutions x(1) and x(2) by x
(1)
v,T = xv,T if |T | ≤

√
k and x

(1)
v,S = 0

otherwise. x(2) = x− x(1)

2 for l ∈ {1, 2} do
3 for v ∈ V do /* Rounding Stage */

4 with probability
xv,T

4
√
kρ

set S(l)(v) := T

5 for v ∈ V do /* Partial Conflict-Resolution Stage */

6 set U(v) := {u ∈ V | π(u) < π(v), S(l)(v) ∩ S(l)(u) 6= ∅}
7 if

∑
u∈U(v) w̄(u, v) ≥ 1

2 then

8 S(l)(v) := ∅

9 return the better one of the allocations S(1) and S(2)

Lemma 3.3. For any feasible LP solution x∗ with value b∗, Algorithm 2 calculates a
partly-feasible allocation S of value at least b

∗
/16
√
kρ in expectation.

Proof. The allocation is partly feasible since both allocations S(1) and S(2) satisfy
Condition (5).

For the value of the solution let us again bound the value of the partly-feasible allocations
S(1) and S(2). Again, let us fix l ∈ {1, 2}. Let Xv,T be a 0/1 random variable indicating if

S(l)(v) is set to T after the rounding stage. This time, we have

E [Xv,T ] =
x

(l)
v,T

4
√
kρ

. (6)

Let X ′v,T be a 0/1 random variable indicating if S(l)(v) is set to T after the partial

conflict-resolution stage. Again, we consider the event that X ′v,T = 0, given that X ′v,T = 1,
i. e., that v is removed in the conflict-resolution stage after having survived the rounding
stage.

To bound the probability that a vertex is removed in the partial conflict resolution, we
observe

Pr
[
X ′v,T = 0 | Xv,T = 1

]
≤ Pr

 ∑
u∈V

π(u)<π(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

w̄(u, v) ·Xu,T ′ ≥
1

2



≤ 2E

 ∑
u∈V

π(u)<π(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

w̄(u, v) ·Xu,T ′

 = E

 ∑
u∈V

π(u)<π(v)

∑
T ′⊆[k]
T∩T ′ 6=∅

w̄(u, v) · 2Xu,T ′


due to Markov’s inequality and linearity of expectation. Like in the proof of Lemma 2.4,
E [Xu,T ] is again defined in terms of x(l) and x(l) is a feasible LP solution. Therefore, we
can apply the arguments used in the proof of Lemma 2.4 in an analogous way and obtain
that Pr

[
X ′v,T = 0 | Xv,T = 1

]
≤ 1/2 for both cases l ∈ {1, 2}.
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Algorithm 3: Making a partly-feasible allocation fully feasible

1 i := 1
2 V ′ := V
3 while V ′ 6= ∅ do
4 initialize Si by Si(v) := S(v) for v ∈ V ′ and Si(v) := ∅ otherwise
5 for v ∈ V ′ in order of decreasing π values do
6 if

∑
u∈V ′, Si(v)∩Si(u)6=∅ w̄(u, v) < 1 then

7 delete v from V ′ /* v stays in Si */

8 else
9 Si(v) := ∅ /* v is removed from Si */

10 i := i+ 1

11 return the best one of the allocations S1, S2, . . .

Using Equation (6), we get for all v ∈ V , T ⊆ [k] that Pr
[
X ′v,T = 1

]
≥ x

(l)
v,T

8
√
kρ

. Thus, we

can conclude that for l ∈ {1, 2}, we have E
[
b(S(l))

]
≥ 1

8
√
kρ

∑
v∈V

∑
T⊆[k] bv,Tx

(l)
v,T .

The expected value of the output is at least

E
[
max{b(S(1)), b(S(2))}

]
≥ 1

16
√
kρ

∑
v∈V

∑
T⊆[k]

bv,T

(
x

(1)
v,T + x

(2)
v,T

)
=

b∗

16
√
kρ

.

Given a partly-feasible allocation S, Algorithm 3 implements the necessary additional
conflict resolution to derive a fully-feasible one. The algorithm decomposes the partly-
feasible allocation to a number of feasible candidate allocations S1, S2, . . . . Each allocation
Si is initialized such that Si(v) = S(v) if vertex v has been removed from all previous
allocations S1, . . . , Si−1. Otherwise Si(v) = ∅. Then a conflict resolution is performed on
Si: The vertices are considered by decreasing indices in the π ordering. If the weight bound
is satisfied and the vertex is conflict free, it is assigned to the current allocation Si and
thus removed from the set V ′ of remaining vertices. Otherwise, if the bound is violated, it
stays in the set of remaining vertices V ′ and is removed from Si by allocating the empty
set. At the end, the best one of the candidate allocations Si is returned. We will see that
each candidate allocation allocates at least half of the remaining vertices a non-empty set.
Therefore at most dlog2 ne candidates are computed and the best one has value at least
b(S)/dlog2 ne.

Lemma 3.4. Given a (not necessarily feasible) allocation S in which Condition 5 is
fulfilled for all v ∈ V , Algorithm 3 calculates a feasible allocation of value at least b(S)/dlog2 ne.

Proof. Obviously, by construction all candidates are feasible and so is the output allo-
cation. Next, we prove that we need at most dlog2 ne iterations of the while loop by showing
that in each iteration at most half of the remaining vertices are removed from the alloca-
tion. This means the cardinality of V ′ is at least halved in each iteration. Intuitively, in
each iteration even if all surviving nodes are assumed to be in the independent set, for at
least half of them the condition for independence is fulfilled with respect to their complete
neighborhood. Formally, this will be a result of the more stringent right-hand-sides to the
LP-constraints and Markov inequality applied to the degrees of nodes. This shows that we
can partition S into O(log n) feasible independent sets.

More formally, let V ′i be the set V ′ after the ith iteration of the while loop; V ′0 = V . Let
us fix i ∈ N, and v ∈ V ′i+1. We know that v has been removed from Si by the algorithm.
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Denoting by S′i the current state of Si while the algorithm considers v, this only happens if∑
u∈V ′i

S′i(v)∩S′i(u) 6=∅

w̄(u, v) ≥ 1

Since Equation 5 is obviously also satisfied for S′i, it has to be∑
u∈V ′i

π(u)>π(v)
S′i(v)∩S′i(u) 6=∅

w̄(u, v) ≥ 1

2
.

For a vertex u ∈ V ′i with π(u) > π(v) we know that the vertex has either been removed
from the allocation before (then u ∈ V ′i+1) or it stays in Si (i. e. S′i(u) = Si(u) = S(u) and
u /∈ V ′i+1). Hence

S′i(u) =

{
∅ if u ∈ V ′i+1

S(u) else
.

Combining these two insights, we get a necessary condition: if v ∈ V ′i+1 then∑
u∈Ui(v)\Ui+1(v)

w̄(u, v) ≥ 1

2
,

where Ui(v) = {u ∈ V ′i | π(u) > π(v), S(v) ∩ S(u) 6= ∅}. Summing up all v ∈ V ′i+1 we get∑
v∈V ′i+1

∑
u∈Ui(v)\Ui+1(v)

w̄(u, v) ≥ 1

2
|V ′i+1| .

On the other hand, we can change the ordering of the sums and use the symmetry of the
weights w̄ to get∑

v∈V ′i+1

∑
u∈Ui(v)\Ui+1(v)

w̄(u, v) =
∑

u∈V ′i \V ′i+1

∑
v∈V ′i+1

π(u)>π(v)
S(v)∩S(u)6=∅

w̄(u, v)

=
∑

v∈V ′i \V ′i+1

∑
u∈V ′i+1

π(u)<π(v)
S(v)∩S(u)6=∅

w̄(u, v) <
1

2
|V ′i \ V ′i+1| ,

where the last bound is due to Condition (5).
In combination this yields |V ′i+1| < |V ′i \ V ′i+1|, which implies |V ′i+1| < 1

2 |V
′
i |, meaning

less than half of the remaining vertices are removed from the partly-feasible allocation in
each iteration. So, since |V ′0 | = n, we can conclude that |V ′i | < 1

2i · n. Therefore, we get
|V ′dlog2 ne

| < 1. Thus the algorithm terminates within dlog2 ne steps.

By definition, for all vertices Si(v) = S(v) for exactly one i ∈ [dlog2 ne] and Si(v) = ∅
else. So

∑
i∈[dlog2 ne]

b(Si) = b(S). This yields for the value of the output

max
i∈[dlog2 ne]

b(Si) ≥
1

dlog2 ne
∑

i∈[dlog2 ne]

b(Si) =
b(S)

dlog2 ne
.

As a consequence, the computed feasible allocation has a value that in expectation is at
most an O(

√
kρ log n) factor smaller than that of the optimal LP solution.
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4. APPLICATIONS

In the previous sections we have described a general algorithmic approach to channel allo-
cation problems when the underlying conflict graph has bounded inductive independence
number. Here we will show that this property is particularly wide-spread among models
for interference in wireless communication. Our aim is not to prove optimal bounds in each
case but to show why we believe a bounded inductive independence number to be a key
insight for understanding algorithmic problems in wireless networking.

The concept of conflict graphs can be applied in two basic scenarios. On the one hand,
the task could be to allocate channels to transmitters. Each transmitter intends to cover
a certain area, e.g., a base station in a cellular network. The interference model defines
which transmitters can be assigned the same channels. On the other hand, instead of single
transmitters one can consider pairs of network nodes (links) that act as sender and receiver.
In such a scenario, “users” are no single network nodes but links. Therefore, the vertices of
the conflict graph are links, and edges define which links can be assigned the same channels.

The following represents a selected set of prominent models. We discuss further examples
in Appendix B.

4.1. Transmitter Scenarios

A very simple, yet instructive model for a transmitter scenario is as follows. We have n
transmitters located in the plane at points p1, . . . , pn ∈ R2. Each of the transmitters has a
transmission range r1, . . . , rn ∈ R>0. Transmitters may be assigned the same channel if their
transmission ranges do not intersect. Under these conditions interference constraints can be
modeled by a disk graph. There is an edge between two vertices if the transmission-range
disks around the corresponding receivers intersect.

Proposition 4.1. Disk graphs have an inductive independence number of ρ ≤ 5.

Proof. Let G = (V,E) be a disk graph. Let π be the ordering of vertices by decreasing
radius of the corresponding disk. So in other words V = {v1, . . . , vn} with r1 ≥ r2 ≥ . . . ≥
rn, where ri is the radius of the disk around vi. If the disk representation is given, this
ordering can be computed in polynomial time by simply sorting the vertices. Let be v ∈ V
and M ⊆ V be an independent set in G. By definition of the ordering, we have for all
u ∈M ∩ Γπ(v) the radius is at least rπ(v).

To show |M ∩Γπ(vi)| ≤ 5, we assume |M ∩Γπ(vi)| ≥ 6. This would yield that there were
two vertices vj and vk whose angle seen from vi were at most 60◦. The distance between the
centers of vj and vk would therefore be no larger than the larger ones of the two distances
between the centers of vi and vj or vi and vk. As rj ≥ ri and rk ≥ ri, this implies that disks
around vj and vk intersect. So, there has to be an edge between these two vertices. This
contradicts the assumption that M is an independent set and thereby proves the claim.

4.2. Unweighted Link-Based Scenarios

There are a number of different interference models for link-based scenarios that can be
described by some unweighted conflict graph. They are often called graph-based interference
models, but to avoid ambiguities we refer to them as binary interference models. Due to the
large variety, we have to confine ourselves to some selected examples.

Probably the best known binary model is the Protocol Model [Gupta and Kumar 2000].
Network nodes are modeled by points located in the plane. A link consisting of sender s
and receiver r may be allocated to a channel if and only if for all other senders s′ on this
channel d(s′, r) ≥ (1 + ∆)d(s, r) for some constant ∆ > 0.

Proposition 4.2 (Wan [2009]). For the protocol model, the resulting conflict graph has
an inductive independence number of ρ ≤ dπ/ arcsin(∆/2(∆+1))e − 1.
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The IEEE 802.11 Model by Alicherry et al. [2006] is a bidirectional variant of this model,
and in this case ρ ≤ 23 [Wan 2009].

4.3. Physical Model

The models mentioned above go well with graph-theoretic concepts. However, radio trans-
missions typically decrease asymptotically with increasing distance. The physical model
captures this property much more accurately and is particularly wide-spread among engi-
neers. Even though the physical model does not fit in the traditional binary graph-theoretic
context, it has similar properties allowing it to be expressed using edge-weighted conflict
graphs.

In this model, network nodes are located in a metric space. The received signal strength
decreases as the distance increases. If a node transmits at a power level p, the signal
strength at a distance of d is p/dα, for a constant α. A transmission is received success-
fully if ratio of the received signal strength of the intended transmission and the stengths
of concurrent transmissions plus ambient noise is above some constant threshold β > 0.
More formally, given pairs of senders si and receivers ri that transmit at power level
pi, receiver ri can decode the signal from sender si successfully if the SINR constraint

pi
d(si,ri)α

≥ β
(∑

j∈M\{i}
pj

d(sj ,ri)α
+ ν
)

is fulfilled. Here M is the set of links transmitting at

the same time on the same channel and ν ≥ 0 is a constant expressing ambient noise.
Note that we can easily reduce the model to a conflict graph if transmission powers are

fixed. Prominent and simple classes of power assignments p : V → R>0 are uniform (p(v) =
1) or linear (p(v) = d(sv, rv)

α) assignments. More generally, we can consider assignments
satisfying the following monotonicity constraints. For link ` we denote by d(`) the distance
between sender and receiver of link `. If d(`) ≤ d(`′) for two links `, `′ then p(`) ≤ p(`′)

and p(`)
d(`)α ≥

p(`′)
d(`′)α . That is, if the distance between a sender and a receiver is larger, the

absolute power is higher (or equal), whereas the received power is smaller (or equal). We
furthermore assume that each sender uses slightly more power than would be necessary
to reach its receiver in the presence of of only ambient noise but no interference. This is

formalized as p(`)
d(`)α ≥ 2βν.1

Proposition 4.3. The interference constraints in the physical model with fixed trans-
mission power can be represented by a weighted conflict graph. If the power assignment satis-
fies the above constraints, the resulting inductive independence number is at most O(log n).

Proof. We choose the edges of the conflict graph to have the following weights. For
` = (s, r), `′ = (s′, r′) we set

w(`′, `) = min

{
1,

β

1 + ε
· p(`′)

d(s′, r)α

/(
p(`)

d(s, r)α
− β

1 + ε
ν

)}
,

where ε =
β

2
min
`=(s,r)

min
`′=(s′,r′)

p(`)

d(s′, r)α

/
p(`)

d(s, r)α
.

By this definition, for any set of links M and any `′ = (s′, r′), we have
∑
`′∈M w(`′, `) < 1 is

equivalent to
∑
`′=(s′,r′)∈M

p(`′)
d(s′,r)α +ν < 1+ε

β
p(`)

d(s,r)α . This is in turn equivalent to this SINR

condition: Any set fulfilling the SINR condition also fulfills this inequality as ε is strictly

greater than 0. However, as any term in the sum is larger than ε
β

p(`)
d(s,r)α , it cannot occur

1Note that the constant 2 could be replaced by any other constant strictly larger than 1, see Kesselheim
and Vöcking [2010].
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that only a strict subset of M is SINR feasible. So a set M fulfills the SINR constraint iff
it corresponds to an independent set in the edge-weighted graph.

Note that apart from the factor the edge weights are equal to the notion of affectance ap
in [Kesselheim and Vöcking 2010], for which we have the following result. Recall that d(`)
denotes the distance between sender and receiver of link `.

Lemma 4.4 (Kesselheim and Vöcking [2010]). Let p be a power assignment satisfy-
ing Conditions 1 and 2 in [Kesselheim and Vöcking 2010]

If M is a set of links that can concurrently transmit and ` is another link with d(`) ≤ d(`′)
for all `′ ∈M , then

∑
`′∈M ap(`

′, `) = O(1) and
∑
`′∈M ap(`, `

′) = O(log n).

This immediately yields the edge-weighted graph to have an inductive independence number
ρ = O(log n).

While these bounds hold for general metric spaces, Halldórsson et al. [2013] have recently
provided tight bounds of O(log log ∆) on the inductive independence number in the physical
model with square-root power assignment and Euclidean distance, where ∆ is the ratio of
longest and shortest distance among any sender-receiver pair.

Interestingly, we can also use our approach if transmission powers are not given upfront.
In this case, our algorithm has to decide about the assignment of links to channels and
which transmission powers to use for each link. The first part is solved by LP rounding as
above. In the LP we use edge weights ensuring that there is a feasible power assignment for
the computed set of links. The second task of power assignment can then be done using a
power control procedure by Kesselheim [2011].

Note that, in contrast to the interference models mentioned above, in this case not all
feasible solutions (i.e., feasibly scheduled sets of links) correspond to independent sets in the
weighted graph. However, for our argument it suffices to observe that each set of feasible
links corresponds to an LP solution for some ρ and that integral LP solutions with ρ = 1 also
correspond to feasible sets of links. Combining these insights with the bounds in [Kesselheim
2011] and the ones we proved above, we obtain the following result.

Theorem 4.5. There is a choice of edge weights such that our algorithm in combina-
tion with the power control procedure in [Kesselheim 2011] achieves an O(

√
k log n) approx-

imation in fading metrics (see [Halldórsson 2013]) and an O(
√
k log2 n) approximation in

general metrics.

Proof. We define the weighted graph as follows. The set of vertices is again the set of
all links R. Let π be the ordering from large to small distances between the sender and its
receiver. For τ = 1

2·3α·(4β+2) , set the weight between two links ` = (s, r) and `′ = (s′, r′) to

w(`, `′) =

{
1
τ min

{
1, d(s,r)α

d(s,r′)α

}
+ 1

τ min
{

1, d(s,r)α

d(s′,r)α

}
if π(`) < π(`′)

0 otherwise
.

As
∑
`′∈L w(`, `′) < 1 implies

∑
`′=(s′,r′)∈L,d(`′)<d(`)

d(s,r)α

d(s,r′)α + d(s,r)α

d(s′,r)α ≤ τ for all ` = (s, r)

because τ ≤ 1, Theorem 3 in [Kesselheim 2011] states that for each independent set in the
weighted graph the power-control algorithm calculates a feasible set of links.

On the other hand Theorem 1 in [Kesselheim 2011] shows that under the above edge
weights each feasible set of links is also an LP solution for some ρ = O(1) in fading metrics.
Theorem 7 in [Kesselheim 2011] shows ρ = O(log n) in general metrics.

In conclusion, this implies that by applying our rounding algorithm to the LP using above
defined weights we get a solution, for which we can apply the power assignment of [Kessel-

heim 2011] to obtain a feasible set of links. The resulting allocation is an O(
√
k log n) ap-

proximation for fading metrics and an O(
√
k log2 n) approximation in general metrics.
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5. ASYMMETRIC CHANNELS

So far, channels were symmetric in terms of interference, which means the same interference
model is applied to each channel. In a more general setting, for each of the k channels a
different edge set Ej resp. a different edge-weight function wj for the interference graph is
given. Then we have an edge weight function w̄j for each channel j ∈ [k]. The above LP
relaxation can be easily adapted by exchanging w̄ by w̄j in the constraints (1b). In contrast,
the analysis of the rounding algorithms internally depends on the assumption of symmetric
channels: We used symmetry when reordering the sums in the proof of Lemma 2.4.

However, when exchanging the probability for a vertex v to choose set T by x
(l)
v,T/2kρ

resp. x
(l)
v,T/4kρ, the proof of Lemma 2.4 can be carried out the same way without using the

symmetry. Hence, for the asymmetric case, we lose a factor of O(k · ρ) resp. O(k · ρ · log n)
in the LP rounding step. This represents our approximation ratio. The result may seem like
a trivial generalization of the k = 1 case. However, this is not true as multiple graphs make
the problem much harder. We can justify the approximation factor by a hardness bound.
It shows that for asymmetric channels our algorithms are close to optimal without making
further assumptions about the interference model.

Theorem 5.1. For each ρ, k with ρ · k = O(log n) there is no ρ·k/2O(
√

log(ρ·k)) approxi-
mation algorithm for asymmetric channels unless P= NP.

Proof. Again, such an algorithm could be used to approximate the independent set
problem in bounded-degree graphs. Given a graph G = (V,E) with maximum degree d, we
construct k graphs G1 = (V,E1), . . . , Gk = (V,Ek) each having an inductive independence
number of ρ = d/k. For simplicity of notation, we assume this is an integer.

Let {v1, . . . , vn} be an arbitrary ordering of the vertices. We now distribute the edges
from E to the edge sets E1, . . . , Ek. For a vertex vi the incident edges to vertices vj of
lower index are distributed such that each edge set gets at most ρ such edges. Since the
maximum vertex degree is d this is always possible. The valuations for the vertices are
chosen such that for all vertices bv,T is 1 only for T = [k] and 0 otherwise.

By this construction allocations of valuation b exactly correspond to independent sets of
size b. Thus, such an approximation algorithm cannot exist unless P= NP.

6. RECENT PROGRESS AND OPEN PROBLEMS

In this paper we present a general framework for secondary spectrum auctions addressing
spectrum redistribution problems that represent a major obstacle to the development of
wireless networking technology today. Our approach of using conflict graphs with bounded
inductive independence number offers application to a wide variety of interference models.
This allows to extend combinatorial auctions by assigning items/channels to independent
sets of bidders.

Recently, we have improved the results for practically relevant classes of valuation func-
tions b(v, T ) [Hoefer and Kesselheim 2012]. In these classes we can significantly reduce the
dependence on the number k of channels. While for symmetric valuations we obtain an al-
gorithm with a bound of O(ρ · (log n+ log k)), for submodular matroid-rank-sum valuations
we even reach O(ρ · log n), thereby dropping the dependence on k completely.

For general valuations, by spending a logarithmic factor we can strengthen the truthful-
ness guarantee to a notion based on stochastic dominance, which is stronger than truth-
fulness in expectation used in this paper and [Hoefer and Kesselheim 2012]. The algorithm
presented in [Hoefer et al. 2013] uses a fractional oversampling technique that replaces the
LP-optimum by a more structured solution, which is then decomposed and rounded by
randomized meta-rounding.

The meta-rounding framework allows an elegant transformation of approximation algo-
rithms into mechanisms that are truthful in expectation. However, it requires repeated
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application of the ellipsoid method, which is prohibitive in practice. Very recently, we have
applied random sampling techniques [Hoefer and Kesselheim 2013] to obtain simple and
quick mechanisms for the case of single-parameter valuations. While we lose a logarith-
mic factor in the approximation guarantee, the resulting mechanisms are even universally
truthful, i.e., they remain truthful even if we publish the internal random coin flips of the
algorithm in advance.

Some open problems in this domain are as follows. How can we extend known algorithms
for (important classes of) ordinary combinatorial auctions or develop new techniques for
secondary spectrum auctions? Our recent work shows promising first steps for techniques
based on fractional oversampling and random sampling. Can we use other techniques for
spectrum auctions, improve the guarantees, or obtain tight inapproximability results?

For truthfulness we use randomized meta-rounding and the ellipsoid method. Can this
be avoided to make algorithms more applicable in practice? In particular, can we derive
universally or deterministically truthful mechanisms with non-trivial guarantees that go
beyond the special cases of [Hoefer and Kesselheim 2012; Hoefer and Kesselheim 2013]?

Another direction is to show that other interference models fit into our framework and
prove tight bounds on the inductive independence number resulting from such models.

Finally, the inductive independence number itself represents a natural property of un-
weighted and weighted graphs that is still quite poorly understood.
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Fanghänel, A., Kesselheim, T., Räcke, H., and Vöcking, B. 2009. Oblivious interference scheduling. In
Proc. 28th Symp. Principles of Distrib. Comput. (PODC). 220–229.
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A. MECHANISM DESIGN

In this section we show how to apply the randomized meta-rounding framework [Lavi and
Swamy 2011] to obtain a truthful mechanism for the problem, in which the valuations for
the allocations are private information. We only highlight the main ideas of this technique
and the most important observations that allow the use for our problem.

The main idea of the approach is to decompose an optimal LP solution x∗ into a set of
polynomially many integral solutions with the following property. For each integral solution
we determine a probability, and the expected social welfare of a randomly chosen solution
according to the probabilities is exactly b∗/α, where in our case α = 8 ·

√
k · ρ. Given such

a decomposition, we can use scaled VCG payments to implement a randomized mechanism
that is truthful in expectation. For an accessible presentation of the complete technique,
see [Nisan et al. 2007, Chapter 12] or [Lavi and Swamy 2011].

In particular, for simplicity let us first consider only a constant number of channels; the
adjustment to arbitrary many channels is treated below. We ask the vertices to obtain all
valuations for all channel bundles and solve the corresponding LP (interference information
is assumed to be publicly available). Note that at this point we are given the optimal solution
to an infeasible LP. We set up a decomposition LP with exponentially many variables – one
for each feasible integral solution – that represent our desired probabilities. This LP has
polynomially many constraints but exponentially many variables. We can construct the dual
with polynomially many variables and exponentially many constraints. The variables can
be interpreted as valuations in an adjusted combinatorial auction problem. If this problem
has an algorithm that verifies an integrality gap, we obtain a separation oracle and can
solve the dual decomposition LP in polynomial time. In particular, it allows us to construct
an equivalent LP with a polynomial number of constraints, i. e., the ones corresponding to
the solutions obtained by our algorithm. For this polynomial-sized dual we construct the
primal and determine the polynomially many probabilities of the solutions found by our
algorithm, which completes the decomposition.

It remains to verify that our algorithms provide integral solutions within the desired inte-
grality gap of α for the adjusted combinatorial auction problems using dual variables as val-
uations. We note here that our algorithms bound the integrality gap of LP (1) and (4), and
they can be derandomized using the technique of pairwise independence. In this way, given
an optimal LP solution x∗ we can obtain an integral solution of value at least b∗/α. Note
that our LP describe, in fact, relaxations of the combinatorial auction problem with conflict
graphs, because Conditions (1b) and (4b) allow each vertex to have multiple neighbors on
the same channel. An arbitrary integral solution to the LP might thus be infeasible for the
original problem. This is even more severe in the case of the physical model with power
control, where even the interpretation of edge weights is significantly disconnected from the
actual interference that is received. However, our algorithms produce feasible integral solu-
tions with the desired gap to the infeasible fractional optimum. Thus, they also prove the
gap for a potential fractional optimum to the LP describing the (more constrained) exact
combinatorial auction problem with conflict graphs in the respective cases. The remaining
arguments can be adapted from [Lavi and Swamy 2011] almost without adjustment.

In case of an arbitrary number of channels, we can use demand oracles to solve the LPs.
This results in only a polynomial number of (non-zero) variables for the LP and for the dual
of the decomposition LP. Note that the procedure to separate the dual of the decomposition
LP does not require demand oracles. In fact, the complete decomposition procedure can be
carried out without accessing the original bidder valuations.

B. BOUNDING THE INDUCTIVE INDEPENDENCE NUMBER IN INTERFERENCE MODELS

Another example for the transmitter scenario is the so-called distance-2 coloring. In contrast
to the above model not only the neighbors (with intersecting disks) must be on different
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channels but also their neighbors. Distance-2 coloring is a common model of transmitter
scenarios. Here, we analyze the restriction on two graph classes. We refer the reader to
[Krumke et al. 2001] for the exact definitions and a discussion of the model. We can prove
ρ = O(1) as well in this case.

Lemma B.1. Let r > 0, a > 0 and D be a disk of radius ar. Then the number of disks
of radius at least r that intersect D but not each other is at most (a+ 2)2.

Proof. W. l. o. g., we assume the surrounding disks to have radius exact r. By scaling
them down and moving them inside their original area, they still do not intersect each other.
By moving them to the respective closest location to D, they still intersect D.

The disks of radius r are fully contained within the disk of radius kr + 2r around the
center of D. Each takes an area of πr2, whereas the available area is only π(ar + 2r)2. So,
the number of surrounding disks is at most π(ar + 2r)2/πr2 = (a+ 2)2.

Proposition B.2. For Distance-2 coloring in disk graphs the associated conflict graph
has an inductive independence number ρ = O(1).

Proof. As for disk graphs, we order the vertices by decreasing ranges. Now consider
a vertex v and a conflicting vertex u of larger range. This vertex can either be directly
connected to v (there are at most 5 ones of this kind) or via an intermediate vertex u′. If
the ru′ < rv is smaller, we see that the disk of radius ru around u intersects the one of
radius 2rv around v. The above lemma yields that there can be at most a constant number
of such vertices. For the case ru′ ≥ rv, we take into consideration the disks around the
intermediate vertices also do not intersect. So, there can be at most 5 intermediate vertices
and as many conflicting vertices. The total number of conflicting vertices is constant.

Proposition B.3. For Distance-2 coloring in (r, s)-civilized graphs the inductive inde-
pendence number of the associated conflict graph is ρ ≤ (4r/s+ 2).

Proof. In this case, the ordering does not matter. Therefore, we do not need to know
the geometric representation of the graph.

Consider a vertex v and a set of vertices M conflicting with v but not with each other.
Since the path length from v to each vertex in M is at most 2, the distance in the plane is
at most 2r. Now consider disks around the vertices in M , each of radius s/2. By definition
of the (r, s)-civilized graph these disks do not intersect each other. However, each of them
intersects a disk of radius 2r around v. Applying the above lemma, we see there are at most
(4r/s+ 2)2 such disks.

As a matter of fact ρ has to depend on this ratio of r and s. Obviously, all graphs can be
represented as (r, s)-civilized if the ratio r and s is unbounded. However, our algorithm’s
running time does not depend on r and s. Therefore, the approximation factor has to depend
on them.

Finally, we discuss another link-based approach of distance-2 matching [Balakrishnan
et al. 2004]. In this case, two edges e 6= e′ may be allocated to the same channel if there
are at least two edges on any connecting path. Typically, results are restricted to certain
graph classes, because in general approximating maximum distance-2 matchings is hard.
For disk graphs, we can also show that the corresponding conflict graph has ρ = O(1).
Interestingly, for distance-2 matching there is already an algorithm and analysis based on
the observation that the inductive independence number is bounded, but the concepts are
termed differently. Barrett et al. [Barrett et al. 2006] analyze a greedy approach to find a
maximum independent set. For a link e = (u, v), they define r(e) = r(u) + r(v), where r(u)
and r(v) are the radius of the disk surrounding u resp. v. The algorithm orders the links
by increasing values of r(e). The key observation is now that for all links e the maximum
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number of links of higher index that collide with e but not with each other is O(1). This
immediately yields ρ = O(1).

Corollary B.4. For distance-2 matching in disk graphs the associated conflict graph
has an inductive independence number ρ = O(1).

Analyses of greedy algorithms are often carried out in a similar manner. Such arguments
already suffice to bound the inductive independence number. There is plenty of opportunity
to further extend our results by similar observations.

C. THEOREMS USED IN THE PROOF OF THEOREM 4.5

Theorems 1 and 7 in [Kesselheim 2011] provide necessary conditions for admissible sets.
These are sets of links, for which there is a power assignment, such that the SINR constraint
is fulfilled.

Theorem C.1 (Theorem 1 from [Kesselheim 2011]). Let L be an admissible set.
Let furthermore s and r be some arbitrary nodes in V . Then we have∑

(s′,r′)∈L
d(s′,r′)≥d(s,r)

min

{
1,
d(s, r)α

d(s, r′)α

}
+ min

{
1,
d(s, r)α

d(s′, r)α

}
= O(1)

in fading metrics2.

Theorem C.2 (Theorem 7 from [Kesselheim 2011]). Let L be an admissible set.
Let furthermore s and r be some arbitrary nodes in V . Then we have∑

(s′,r′)∈L
d(s′,r′)≥d(s,r)

min

{
1,
d(s, r)α

d(s, r′)α

}
+ min

{
1,
d(s, r)α

d(s′, r)α

}
= O(log|L|)

in any metric.

Theorem 3 in [Kesselheim 2011] gives a sufficient condition for a set to be admissible.
In more detail, it states a condition under which the power-control procedure stated in
[Kesselheim 2011] succeeds. Instead of using this procedure, the power assignment could
also be computed by solving the linear equation system directly.

Theorem C.3 (Theorem 3 from [Kesselheim 2011]). If in a link set L the follow-
ing condition is fulfilled for all `′ ∈ L∑

(s,r)∈L
d(s,r)<d(s′,r′)

d(s, r)α

d(s, r′)α
+
d(s, r)α

d(s′, r)α
≤ τ where τ =

1

2 · 3α · (4β + 2)
, (7)

then the power-control procedure in [Kesselheim 2011] computes a power assignment fulfill-
ing the SINR condition.

2Fading metrics have been introduced by Halldórsson [2013] and are a generalization of the standard
assumption to consider the Euclidean plane im combination with α > 2.
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