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We consider truthfulness concepts for auctions with payments based on first- and second-order stochastic

dominance. We assume bidders consider wealth in standard quasi-linear form as valuation minus payments.
Additionally, they are sensitive to risk in the distribution of wealth stemming from randomized mechanisms.

First- and second-order stochastic dominance are well-known to capture risk-sensitivity, and we apply these

concepts to capture truth-telling incentives for bidders.
As our first main result, we provide a complete characterization of all social-choice functions over binary

single-parameter domains that can be implemented by a mechanism that is truthful in first- and second-

order stochastic dominance. We show that these are exactly the social-choice functions implementable
by truthful-in-expectation mechanisms, and we provide a novel payment rule that guarantees stochastic

dominance. As our second main result we extend the celebrated randomized meta-rounding approach for

truthful-in-expectation mechanisms in packing domains. We design mechanisms that are truthful in first-
order stochastic dominance by spending only a logarithmic factor in the approximation guarantee.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Non-

numerical Algorithms and Problems

General Terms: Algorithms, Economics, Theory
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1. INTRODUCTION

Many recent advances in algorithmic mechanism design stem from the use of randomization
in the design of social-choice rules. Especially in the prior-free setting, a number of deep
and non-trivial techniques have been proposed to design mechanisms with optimal or near-
optimal welfare guarantees for different variants of combinatorial auctions. A fundamental
issue with randomization, however, is the definition of incentives over such lotteries. So far
the attention in algorithmic mechanism design has focused on two notions of truthfulness
in the presence of randomization.

— A mechanism is truthful in expectation if reporting the true valuation maximizes the
expected quasi-linear utility for bidder i, i.e., the expected difference of outcome valuation
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vi minus payment pi. This ensures truthfulness if bidders care only about the expectation
of the induced lottery over vi − pi.

— For systems with bidders that take more parameters of the distribution function into
account, the standard concept is universal truthfulness. A mechanism is universally truthful
if it is a probability distribution over truthful deterministic mechanisms. That is, even
when a bidder knows all random decisions in advance, reporting the true valuation is
a dominant strategy. The randomization is not used to ensure truthfulness but only to
guarantee bounds on solution quality.

Universal truthfulness is quite a strong restriction over truthfulness in expectation as it
requires a mechanism to generate incentives that work for any outcome of the random coin
flips. Not surprisingly, there exist domains in which universally truthful mechanisms are
significantly inferior to truthful-in-expectation mechanisms in terms of worst-case solution
quality [Dobzinski and Dughmi 2013; Dughmi et al. 2011].

In contrast, truthfulness in expectation can only incentivize truth-telling for risk-neutral
bidders. In this paper, we explore this issue by considering notions of randomized truthful-
ness based on stochastic dominance. In our approach, random coin flips are not revealed
to the bidders in advance and can therefore be used to ensure truthful-telling, similar to
truthfulness in expectation. However, we do not rely on the strong assumption of risk neu-
trality: Instead of comparing random variables only based on their expectation, we resort
to stochastic dominance relations. Let us point out that we do not make any assumptions
about the users attitude towards risk – which separates our approach from (recent) related
work [Fu et al. 2013; Hu et al. 2010; Maskin and Riley 1984]. In particular, we investigate
approaches that transform truthful in expectation mechanisms into mechanisms that are
truthful with respect to stochastic dominance for users that might have any (unknown)
attitude to risk.

In economic theory, stochastic dominance is a well-established concept to compare the
returns and the riskiness of random outcomes [Mas-Colell et al. 1995, pp 194–199]. Ran-
dom variable X is said to first-order stochastically dominate random variable Y if it yields
“unambiguously higher return”, formally Pr [X ≥ a] ≥ Pr [Y ≥ a] for all a ∈ R. This is an
indubitably convincing concept as any rational agent would prefer the first-order stochastic
dominant distribution, independent of her perception of risk. In addition, we also consider
the weaker notion of second-order stochastic dominance, where X second-order stochasti-
cally dominates Y if the integral over the distribution functions is dominated (for a formal
definition see below). Intuitively, a risk-averse agent would prefer the distribution X against
the second order dominated distribution Y , but a risk-seeking bidder might prefer Y .

The mechanisms that we design will be truthful in first-order stochastic dominance. That
is, the random variable determined by the difference of valuation and payment that arises
when telling the true type first-order stochastically dominates the one that arises when
reporting a false type. This way, neither risk-averse nor risk-seeking bidders have an incentive
to lie. When given impossibility results, we will always show that there is even no mechanism
that is truthful in second-order stochastic dominance. This means, risk-averse bidders can
potentially profit from lying.

Notation and Preliminaries. The problem in mechanism design is to pick an outcome
from a publicly known set A. There are n participants or bidders. Bidder i has a private
valuation function or type vi : A → R, which comes from a publicly known type space
vi ∈ Vi. We denote the cartesian product of types by v ∈ V = V1 × . . .× Vn. A mechanism
is a pair (f, p), where f is a social-choice function that maps the declared types to an
outcome f : V → A. The vector p = (p1, . . . , pn) consists of payment functions, where
pi : V → R assigns a payment for bidder i. The quasi-linear utility or wealth for bidder i is
ui(v) = vi(f(v))− pi(v).
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We are interested in randomized mechanisms, which are probability distributions over
deterministic mechanisms. That is, analogously to randomized algorithms they provide out-
comes and payments according to probability distributions. In the algorithmic mechanism
design literature, there are three standard notions of a truthful mechanism. A deterministic
mechanism (f, p) is (deterministically) truthful if wealth is optimized for a truthful bid

vi(f(v))− pi(v) ≥ vi(f(v′i, v−i))− pi(v′i, v−i) ,

for all vi, v
′
i ∈ Vi and all v−i ∈ V−i. A randomized mechanism (f, p) is universally truthful if

it is a probability distribution over deterministically truthful mechanisms. Here truthfulness
is independent of the outcome of random choices within f and p. Finally, a mechanism (f, p)
is truthful in expectation if the expected wealth is optimized for a truthful bid:

E [vi(f(v))− pi(v)] ≥ E [vi(f(v′i, v−i))− pi(v′i, v−i)]

for all vi, v
′
i ∈ Vi and all v−i ∈ V−i. The expectation is taken over the randomization of

the mechanism. Obviously, every deterministically truthful mechanism is universally truth-
ful, and every universally truthful mechanism is truthful in expectation. In general, these
inclusions are strict.

The obvious drawback of truthfulness in expectation is the assumption that bidders must
care linearly about the expectation of their wealth. In contrast, universal truthfulness is very
demanding, and impossibility results in prominent domains like multi-unit auctions have
been derived. We here propose two different notions based on stochastic dominance that
capture the idea of risk-sensitivity. A mechanism (f, p) is truthful in first-order stochastic
dominance if, for every x ∈ R, the probability to obtain at least a wealth of x is maximized
for a truthful bid:

Pr [vi(f(v))− pi(v) ≥ x] ≥ Pr [vi(f(v′i, v−i))− pi(v′i, v−i) ≥ x] ,

for all vi, v
′
i ∈ Vi, v−i ∈ V−i, x ∈ R. If a mechanism is truthful in first-order stochastic

dominance, then for all users that have any (unknown) intrinsic monotone utility function
of their wealth, their expected utility is maximized by truth-telling.

Risk-averse users are traditionally assumed to act according to the expectation of a mono-
tone and concave function. To incentivize every such risk-averse user, only the cumulative
distribution function needs to be minimized in terms of the lower integral [Mas-Colell et al.
1995]. A mechanism (f, p) is truthful in second-order stochastic dominance if, for every
x ∈ R, the following holds:∫

t∈Vi
t≤x

Pr [vi(f(v))− pi(v) ≤ t] dt ≤
∫
t∈Vi
t≤x

Pr [vi(f(v′i, v−i))− pi(v′i, v−i) ≤ t] dt ,

for all vi, v
′
i ∈ Vi, v−i ∈ V−i, x ∈ R. Every universally truthful mechanism is truthful in first-

order stochastic dominance, which in turn is truthful in second-order stochastic dominance,
which in turn is truthful in expectation. In general, these inclusions are strict.

We consider notions of individual rationality. An individually rational mechanism gives
an incentive to participate in the mechanism, where non-participation yields a utility of 0.
Naturally, these incentives correspond to the aspects of the utility distributions that are
vital in the definition of truthfulness. A deterministic truthful mechanism is individually
rational if ui(vi, v−i) ≥ 0 for his true type vi and every v−i ∈ V−i. Similarly, a universally
truthful mechanism is individually rational if all deterministic mechanisms in the support
are individually rational. A mechanism that is truthful in first- or second-order stochas-
tic dominance is individually rational if non-participation is stochastically dominated, i.e.,
Pr [ui(vi, v−i) < 0] = 0 for the true type vi and every v−i ∈ V−i. Finally, a truthful-in-
expectation mechanism is individually rational if E [ui(vi, v−i)] ≥ 0 for the true type vi and
every v−i ∈ V−i.
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In addition to individual rationality, we assume the mechanisms to make no positive
transfers in domains with non-negative valuations. Note that if computational tractability
is no concern, individual rationality and no positive transfers can be easily achieved in a
deterministic truthful mechanism using VCG.

Our Contributions. Our first main contribution is a characterization of social-choice func-
tions that admit truthful-in-stochastic-dominance mechanisms for binary single-parameter
domains. Interestingly, these are precisely the ones that admit truthful-in-expectation mech-
anisms. We show this equivalence by giving a black-box transformation turning any truthful-
in-expectation mechanism into a mechanism that is truthful in first-order stochastic domi-
nance by only changing the payment scheme. In particular, we turn payments into a lottery
that, in addition to truthfulness in first-order stochastic dominance, guarantees non-positive
transfers and a notion of individual rationality. It also yields the same expected social welfare
and expected revenue as the truthful-in-expectation mechanism.

We show that such a black-box transformation in this generality cannot exist for much
more general domains. In particular, even for fractional single-parameter domains or (bi-
nary) single-minded combinatorial auctions there are mechanisms that are truthful in expec-
tation but that cannot be turned into truthful-in-second-order-stochastic-dominance mech-
anisms under standard assumptions without changing the social-choice function.

A similar problem arises when considering truthful-in-expectation mechanisms derived by
the meta-rounding framework by Lavi and Swamy [2011]. This is due to the fact that op-
timal LP solutions lack certain monotonicity conditions required for truthful-in-stochastic-
dominance mechanisms. Our second main contribution is an alternative framework that
also uses meta-rounding to derive mechanisms that are truthful-in-stochastic-dominance.
In contrast to the standard approach, we do not use the optimal LP solution but an ap-
proximate one. We lose only a factor of O(logm+ log n) in the approximation guarantee of
social welfare, where n is number of bidders and m is a parameter of the problem, e.g., the
number of items in a (multi-unit) combinatorial auction.

Related Work. First-order stochastic dominance is a classic truthfulness property in the
social-choice literature, as it implies truthfulness in expectation for every realization of or-
dinal preferences in cardinal utility values. Gibbard [1977] showed an impossibility theorem
for randomized mechanisms without payments. The random dictatorship mechanism is the
unique social-choice rule which is truthful in first-order stochastic dominance and never puts
positive probability on Pareto-dominated solutions. More recently, truthfulness in first-order
stochastic dominance for randomized social choice has been considered, e.g., by Aziz et al.
[2013] who characterize voting rules with respect to several less demanding concepts of ef-
ficiency and truthfulness, including weaker versions of truthfulness in first-order stochastic
dominance. For another approach to preferences over distributions generalizing stochastic
dominance see Peters et al. [2010].

Over the last decade, there has been increased interest in characterizing randomized
social-choice mechanisms for restricted domains of allocation problems. Initial contributions
that consider truthfulness in first-order stochastic dominance discuss the random priority
mechanism, a repeated version of random dictatorship [Zhou 1990; Abdulkadiroglu and
Sönmez 1998]. Bogomolnaia and Moulin [2001] and Katta and Sethuraman [2006] introduce
and examine a probabilistic serial mechanism that satisfies stronger efficiency guarantees but
a weaker variant of truthfulness in stochastic dominance. In contrast to the classic approach
where the distribution obtained by truth telling should weakly dominate all distributions
obtained from lying, the weaker variant only requires that the truthful distribution is never
strictly dominated by any distribution obtained from lying. For similar randomized mecha-
nisms in allocation with dichotomous preferences see Bogomolnaia and Moulin [2004]. More
recently, a variety of works are extending this line of research. In addition, single-peaked
preferences have become a domain of interest as, notably, Ehlers et al. [2002] extended the
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characterization of Moulin [1980] to randomized mechanisms that are truthful in first-order
stochastic dominance.

First- and second-order stochastic dominance are well-known to capture the incentives
for risk-sensitive agents in markets. For a basic treatment of fundamental connections see,
e.g., [Mas-Colell et al. 1995, pp 194–199]. Risk aversion is a recent trend in algorithmic mech-
anism design [Dughmi and Peres 2012; Fu et al. 2013; Bhalgat et al. 2012; Sundararajan
and Yan 2010]. Most closely related to our work is a note by Dughmi and Peres [2012], who
consider risk-averse bidders that optimize expectation over a concave utility function. They
show that every social-choice rule of a truthful-in-expectation mechanism for risk-neutral
bidders can be turned into a truthful-in-expectation mechanism for risk-averse bidders by
designing appropriate payments. In our terms, there is a black-box transformation for ev-
ery truthful-in-expectation mechanism into one that is truthful in second-order stochastic
dominance. While being very general, the transformation does not guarantee payments to
flow only in one direction. In fact, we are able to show a different transformation in single-
parameter domains, where we even obtain first-order stochastic dominance. Additionally, we
can guarantee a natural individual rationality constraint and non-negativity of payments.
In contrast, we give an example for single-minded combinatorial auctions where the result
of [Dughmi and Peres 2012] is impossible to achieve in combination with these conditions.

In the mechanism design literature, risk aversion has often been considered for single-item
auctions. In this context, several works have characterized revenue and differences between
first- and second-price auctions [Maskin and Riley 1984; Esö and Futo 1999; Hu et al. 2010].
Recently, Fu et al. [2013] consider a Bayesian setting and design prior-independent auctions
for revenue maximization with risk averse bidders. Valuation of an item is drawn from a prior
distribution, and risk aversion takes a very particular form, i.e., the concave utility function
grows linearly up to a capacity bound and stays constant afterwards. Given knowledge about
the capacity, it is possible to construct optimal auctions and prior-independent constant-
factor approximations of it. These auctions outperform the optimal revenue in the risk-
neutral case significantly by exploiting knowledge about the form of risk averseness. In
contrast, similar to Dughmi and Peres [2012] we assume that the bidders attitude towards
risk is unknown, so our auctions cannot exploit specific knowledge about risk sensitivity. In
particular, risk neutrality of bidders remains a possible option, and hence our mechanisms
must fulfill strictly stronger conditions than truthful-in-expectation mechanisms.

On the technical side, some of our proofs are related to recent advances in algorith-
mic aspects of combinatorial auctions. We adjust the celebrated randomized meta-rounding
technique of Lavi and Swamy [2011] and combine it with a fractional overselling algorithm
recently studied by Krysta and Vöcking [2012]. Our truthfulness concepts lie in between
truthfulness in expectation and universal truthfulness, for which separation and characteri-
zation results in terms of complexity and approximation have recently attracted significant
interest. For a discussion of the recent literature see, e.g. [Vöcking 2012; Dughmi 2012], and
for connections to risk aversion see [Dughmi and Peres 2012].

Outline. The black-box transformation for single-parameter domains is presented in Sec-
tion 2. The meta-rounding approach for multi-parameter domains is presented in Section 3.
In Section 4 we present a number of applications of our technique. In Section 5 we discuss
our approach in the context of related work and conclude in Section 6 with interesting
avenues for future work.

2. SINGLE-PARAMETER AND SINGLE-MINDED DOMAINS

Single-Parameter Domains. For binary single-parameter domains, each valuation can be
represented by a private scalar vi ∈ R. For each bidder i, there is a publicly known interval
such that vi ∈ [v0i , v

1
i ]. In addition, for each bidder there is publicly known subset Wi ⊂ A

labeled as winning outcomes. For each winning outcome, bidder i’s valuation is vi, for every
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other outcome it is 0. For a given randomized mechanism, we denote by wi(v) the probability
that it outputs an outcome from Wi. The following classic characterization of truthful-in-
expectation mechanisms of Myerson [1981] is taken from Nisan [2007]. For simplicity, we
consider normalized mechanisms, for which wi(v

0
i , v−i) = 0 and pi(v

0
i , v−i) = 0.

Theorem 2.1 ([Myerson 1981; Nisan 2007]). A normalized mechanism (f, p) over
a binary single parameter domain is truthful in expectation if and only if for every bidder i
and every v−i we have

(1 ) the winning probability wi(vi, v−i) is monotonically non-decreasing in vi, and

(2 ) E [pi(vi, v−i)] = vi · wi(vi, v−i)−
∫ vi

v0i

w(t, v−i)dt.

Our main result in this section shows that we can strengthen the “if” part of this char-
acterization as follows. Given any randomized social-choice function f over a binary single
parameter with monotonically non-decreasing winning probabilities, we can devise random-
ized payments p so that (f, p) is truthful in first-order stochastic dominance.

Theorem 2.2. A normalized mechanism (f, p) over a binary single parameter domain
is truthful in first-order stochastic dominance if for every bidder i and every v−i we have

(1 ) the winning probability wi(vi, v−i) is monotonically non-decreasing in vi, and
(2 ) pi(vi, v−i) = 0 if f(vi, v−i) 6∈ Wi; otherwise pi(vi, v−i) is drawn at random by setting

pi(vi, v−i) = min{p | wi(p, v−i) ≥ β}, where β is drawn uniformly at random from
[0, wi(vi, v−i)].

Note that monotonicity is required even for truthfulness in expectation. Therefore, this
theorem implies that for every normalized mechanism (f, p) over a single-parameter domain
that is truthful in expectation, there is an equivalent one (f, p′) that is truthful in first-order
stochastic dominance. The equivalent mechanism uses the same social-choice function f but
possibly different, randomized payment rules.

Proof of Theorem 2.2. The intuition behind this payment rule is that a bidder can
barely influence the probability distribution of her payment. For example, by reporting
a higher valuation, the overall probability of winning and being charged a low payment
does not change. Only probability mass is shifted from non-winning outcomes to winning
outcomes with high payments. As we will show, reporting the true valuation balances prob-
ability masses in such a way that it maximizes the probability of positive utility.

To show truthfulness in first-order stochastic dominance, we have to show that for all
x ∈ R, we have

Pr [ui(vi, v−i) ≥ x] ≥ Pr [ui(v
′
i, v−i) ≥ x] .

As v−i remains fixed throughout this proof, we omit this argument from now on to keep
notation simple.

Let us first consider the case that x ≤ 0. Observe that the payment is upper bounded by
the bid, so the utility will always be non-negative when bidding truthfully. Formally, this
means Pr [ui(vi) < 0] = 0, or in other words Pr [ui(vi) ≥ x] = 1 for all x ≤ 0. Therefore,
we trivially have Pr [ui(vi) ≥ x] ≥ Pr [ui(v

′
i) ≥ x] for all v′i ∈ R for x ≤ 0.

In case x > 0, two events have to occur to have ui(v
′
i) ≥ x. First, bidder i needs to be

assigned a winning outcome, i.e., f(v′i) ∈Wi. The probability for this event is wi(v
′
i). Second,

the payment has to be at most y = vi−x. Let us consider this probability given that f(v′i) ∈
Wi. The payment will never exceed v′i, so we know that Pr [pi(v

′
i) ≤ y | f(v′) ∈Wi] = 1 for

y ≥ v′. For y ≤ v′, in turn, the payment is bounded by y if and only if some β is chosen
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such that wi(y) ≥ β. The probability for this event is wi(y)
wi(v′i)

. That is, in total, we get

Pr [ui(v
′
i) ≥ x | f(v′i, v−i) ∈Wi] =

{
1 if vi − x ≥ v′i
wi(vi−x)
wi(v′i)

if vi − x ≤ v′i

and therefore

Pr [ui(v
′
i) ≥ x] =

{
wi(v

′
i) if vi − x ≥ v′i

wi(vi − x) if vi − x ≤ v′i
= min{wi(v′i), wi(vi − x)} .

In particular, as wi is non decreasing, we have Pr [ui(vi) ≥ x] = wi(vi − x) ≥
min{wi(v′i), wi(vi − x)} = Pr [ui(v

′
i) ≥ x] for all x > 0 and all v′i ∈ R. This proves the

claims.

Observe that our mechanisms are individually rational because no bidder is charged
more than his bid. Similarly, by adjusting the payments we can also guarantee individual
rationality for the corresponding truthful-in-expectation mechanisms (e.g., by dividing the
payment of Theorem 2.1 by wi(vi, v−i) and assigning it only in case f(v) ∈ Wi). Finally,
the mechanisms also have no positive transfers for vi0 ≥ 0 because the minimum payment
is bounded by vi0.

Single-Minded Combinatorial Auctions. When we consider the slightly more general set-
ting of single-minded combinatorial auctions, we fail to obtain a similar general correspon-
dence result as for single-parameter domains. In this scenario we have n bidders and m
indivisible items. Each bidder i has a private value vi ∈ R and a private set Si ⊆ [m].
An outcome is an allocation of items to bidders. If bidder i gets assigned a set S ⊇ Si of
items, his valuation for the outcome is vi, otherwise it is 0. The main difference to single-
parameter domains is that in single-minded combinatorial auctions the sets Si are also
private knowledge.

The following characterization of mechanisms that are truthful in expectation is easy
to derive; it collapses to the well-known monotonicity criterion for deterministic mecha-
nisms [Nisan 2007]. We omit the straightforward proof.

Theorem 2.3. A normalized mechanism (f, p) for single-minded combinatorial auc-
tions is truthful in expectation if and only if for every bidder i with bid (vi, Si) and every
v−i, S−i we have

(1 ) wi(vi, Si, v−i, S−i) ≥ wi(v′i, Si, v−i, S−i) for v′i ≤ vi,

(2 )

∫ vi

0

wi(t, Si, v−i, S−i)dt ≥
∫ vi

0

wi(t, S
′
i, v−i, S−i)dt for S′i ⊇ Si,

(3 ) pi(vi, Si, v−i, S−i) = vi · wi(vi, Si, v−i, S−i)−
∫ vi

v0i

w(t, Si, v−i, S−i)dt

The characterization requires that the integral over the winning probability is mono-
tonically decreasing in the declared set. As a direct corollary from our previous result we
show that if the winning probability is monotone in both valuation and set, we can apply
our previous technique and design payments for a mechanism that is truthful in stochastic
dominance.

Corollary 2.4. A normalized mechanism (f, p) for single-minded combinatorial auc-
tions is truthful in first-order stochastic dominance if for every bidder i with bid (vi, Si) and
every v−i, S−i we have

(1 ) wi(vi, Si, v−i, S−i) ≥ wi(v′i, Si, v−i, S−i) for v′i ≤ vi,
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(2 ) wi(vi, Si, v−i, S−i) ≥ wi(vi, S′i, v−i, S−i) for S′i ⊇ Si,
(3 ) pi(vi, Si, v−i, S−i) = 0 if f(vi, Si, v−i, S−i) 6∈ Wi; otherwise determine

pi(vi, Si, v−i, S−i) at random by setting pi(vi, Si, v−i, S−i) = min{p |
wi(p, Si, v−i, S−i) ≥ β}, where β is drawn uniformly at random from
[0, wi(vi, Si, v−i, S−i)].

Proof. Similarly to the proof of Theorem 2.2 we can argue that the payments for the
true bid yield Pr [u(v, S) ≥ x] = min{w(v, S), w(vi−x, Si, v−i, S−i)}. Hence, a bidder i that
keeps the true vi and deviates to a larger set suffers because w is monotone in Si. Keeping the
true Si and deviating to different valuations is stochastically dominated because of previous
arguments for the single-parameter case. In combination, this shows the corollary.

All truthful-in-expectation mechanisms can again be made individually rational. In addi-
tion, the mechanisms described in Corollary 2.4 are individually rational because payments
do not exceed bids. However, note that Condition (2) in Theorem 2.3 only requires the in-
tegral of w to be monotone whereas Condition (2) in Corollary 2.4 requires monotonicity of
the function w itself. Indeed, this brings about a fundamental difference to the case of binary
single-parameter settings. In contrast to Theorem 2.2, there are monotone functions w for
single-minded combinatorial auctions that admit implementation as truthful-in-expectation
mechanisms but not as mechanisms that are individually rational and truthful in second-
order stochastic dominance.

Lemma 2.5. There are single-minded combinatorial auctions with randomized social-
choice functions f such that the following holds. There are payments p such that (f, p) is a
normalized and individually rational mechanism which is truthful in expectation, but there
are no payments p′ such that (f, p′) is a normalized and individually rational mechanism
with no positive transfers that is truthful in second-order stochastic dominance.

Proof. We provide a simple counterexample to highlight the argument. There is one
bidder and two items. For simplicity, we restrict all valuations to come from the interval
[0, 1]. The winning probability based on f is such that

w(x, S) =


x if S = {1}
0 if S = {2} or S = {1, 2}, and x < 0.5

1 otherwise.

Note that w fulfills monotonicity in the integrals, because for all x ∈ [0, 1]∫ x

t=0

w(t, {1})dt =
x2

2
≥ max{0, x− 0.5} =

∫ x

t=0

w(t, {1, 2})dt .

Thus, we can turn this function into a mechanism that is truthful in expectation.
Now assume there is a mechanism (f, p′) which is normalized, individually, with no pos-

itive transfers, and truthful in second-order stochastic dominance. Consider the case that
the bidder has true type (v, S) = (0.9, {1}) and suppose he lies (v′, S′) = (0.5, {1, 2}).
For individual rationality we require the payment to be at most the bid (for second-
order one might exclude measure-zero sets of bids). Hence, for infinitely many bids in,
say, [0.5, 0.6] the bidder is always charged at most the bid. W.l.o.g. we assume this is
true for declaring (0.5, {1, 2}), where the bidder is charged at most 0.5. This results in
Pr [v(f(0.5, {1, 2}))− p′(0.5, {1, 2}) ≥ 0.4] = 1. In contrast, when being truthful, the prob-
ability Pr [v(f(0.9, {1}))− p′(0.9, {1}) ≥ x] ≤ 0.9 for every x ∈ (0, 0.9].

This means ∫ 0.4

t=0

Pr [v(f(v, S))− p′(v, S) ≤ t] dt ≥ 0.4 · (1− 0.9) ,
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but ∫ 0.4

t=0

Pr [v(f(v′, S′))− p′(v′, S′) ≤ t] dt = 0 ,

and contradicts second-order stochastic dominance.

Observe that individual rationality requires payments to be upper bounded by bids (for
second-order except measure-zero sets of bids), and our proof critically relies on this prop-
erty. In fact, if we drop the conditions on the payments, the reduction by Dughmi and Peres
[2012] implies a black-box transformation even for all general multi-parameter domains.

Fractional Single-Parameter Domains. Even if we restrict attention to single-parameter
domains but drop the integrality condition, a similar black-box transformation as for binary
domains becomes impossible. In a fractional single-parameter domain, each bidder i has a
private value vi ∈ R as above. Instead of subsets of winning outcomes Wi that yield value
vi, every outcome is now interpreted as a fractional winning assignment. For a vector b of
bids, we obtain f(b) = (x1, . . . , xn), and the utility of bidder i becomes ui(b) = xi · vi −
pi(b). Whereas we here consider randomized mechanisms, Archer and Tardos [2001] give
a characterization of deterministic mechanisms that are truthful on this domain which is
similar to the one by Myerson [1981].

Our result is similar to the previous one, and it also relies on individual rationality.

Lemma 2.6. There are fractional single-parameter domains with randomized social-
choice functions f such that the following holds. There are payments p such that (f, p)
is an individually rational mechanism which is truthful in expectation, but there are no pay-
ments p′ such that (f, p′) is an individually rational mechanism with no positive transfers
that is truthful in second-order stochastic dominance.

Proof. We construct a similar counterexample as for combinatorial auctions. There is
one bidder, and we restrict all valuations to come from the interval [0, 1]. The randomized
function f yields a probability distribution over fractional outcomes for the bidder as follows

f(b1) =


0.1 with prob. 1, if b1 ≤ 0.5,

1 with prob. 0.5, if b1 > 0.5,

0 with prob. 0.5, if b1 > 0.5.

The following payments yield a truthful-in-expectation mechanism.

p(b1) =

{
0 if b1 ≤ 0.5,

0.2 otherwise.

Reporting a value below 0.5 gives expected utility 0.1v1. Reporting above 0.5 gives expected
utility 0.5v1 − 0.2. Observe

0.1v1 ≥ 0.5v1 − 0.2 ⇔ v1 ≤ 0.5 ,

and, thus, truthful reporting gives maximum expected utility.
Now assume there is a mechanism (f, p′) which is normalized, individually, with no pos-

itive transfers, and truthful in second-order stochastic dominance. Consider the case that
the bidder has true type v = 0.7 and suppose he lies v′ = 0. For individual rationality we
require the payment to be at most the bid (for second-order one might exclude measure-zero
sets of bids). Hence, for infinitely many bids in, say, [0, 0.01] the bidder is always charged
at most the bid. W.l.o.g. we assume this is true for declaring 0, where the bidder is charged
nothing. This results in Pr [v(f(0))− p′(0) ≥ 0.07] = Pr [v(f(0))− p′(0) ≥ 0.7 · 0.1] = 1. In
contrast, when being truthful, the probability Pr [v(f(0.7))− p′(0.7) ≥ 0.07] ≤ 0.5.
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This means ∫ 0.05

t=0

Pr [v(f(v))− p′(v) ≤ t] dt ≥ 0.05 · (1− 0.5) ,

but ∫ 0.05

t=0

Pr [v(f(v′))− p′(v′) ≤ t] dt = 0 ,

and contradicts second-order stochastic dominance.

3. MULTI-PARAMETER PACKING DOMAINS

In the previous section we observed that even for single-minded combinatorial auctions
there exist social-choice functions of truthful-in-expectation mechanisms that do not admit
individually rational mechanisms that are truthful in second-order stochastic-dominance.
Moreover, it can be shown that this holds even for social-choice functions derived via the
randomized meta-rounding framework of Lavi and Swamy [2011]. In this section, we present
an alternative approach to design mechanisms that are individually rational and truthful in
first-order stochastic dominance under the same prerequisites as in [Lavi and Swamy 2011].

The general idea of the meta-rounding approach is as follows. One assumes that the
underlying social-choice problem is given by maximizing social welfare via a packing in-
teger program. Furthermore, one assumes that there is an efficient algorithm A verifying
an integrality gap of α ≤ 1 in the natural LP relaxation. That is, given an optimal frac-
tional solution x∗ of social welfare vTx∗ to the LP relaxation, A delivers a feasible integral
solution for which social welfare is at least α · vTx∗. This algorithm A is then used to
decompose the optimal (fractional) LP solution x∗ into polynomially many integral solu-
tions as x∗ = α

∑
` λ`x

`. To determine the output allocation, the weights λ` are interpreted
as a probability distribution. By using scaled VCG payments with respect to the optimal
fractional solution, one obtains a truthful-in-expectation mechanism.

The general idea in our approach remains based on randomized meta-rounding. In con-
trast, we do not decompose a scaled variant of x∗, our mechanisms compute and decompose
a different solution x. It might be suboptimal but fulfills some important monotonicity
conditions that allow to implement truthfulness in stochastic dominance.

More formally, we keep intuition and notation similar to combinatorial auctions intro-
duced in the previous chapter. For each bidder i, there is a set Si containing multiple entities
S ∈ Si, one of which can be assigned to this bidder. In the integer program, variable xi,S
captures if bidder i is assigned to entity S. Each bidder can be assigned at most one entity.
In addition, there are packing constraints that restrict the possible entity-bidder combina-
tions, i.e., the overall allocation. The goal is find an allocation that maximizes social welfare
as given by the sum of valuations of assigned entities.

The underlying allocation problem can be stated by the following integer linear program:

Max. vTx
s.t. Ax ≤ 1∑

S∈Si

xi,S ≤ 1 for all i ∈ [n],

xi,S ∈ {0, 1} for all i ∈ [n], S ∈ Si .

The extension over ordinary combinatorial auctions lies in matrix A. We denote by m the
number of rows in A. In combinatorial auctions each entity is a set of items, each row in A
corresponds to one item, and the row constrains the item to be given to at most one bidder.
We here assume A may contain arbitrary non-negative entries. Thereby it allows to express
more complex constraints on the allowed combinations of entities that can be allocated to
bidders.
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ALGORITHM 1: Fractional Overselling MPU Algorithm

Initialize xi,S = 0 for all i, S;

Add each bidder uniformly at random to set STAT ⊆ [n] with probability 1
2
;

if STAT 6= ∅ then let L := maxi∈STAT maxS vi,S else let L := 0;

Set p0 = L
4m

;

foreach constraint e ∈ [m] do p1e := p0;
foreach bidder i ∈ [n] \ STAT do

Set Si := Di(p
i);

Set xi,Si = 1;
foreach constraint e ∈ [m] do

if
∑
i′ ae,(i′,Si′ )

≥ log(4mb) + 3 then set pi+1
e =∞;

else update pi+1
e := pie · 2ae,(i,Si) ;

Note that the number of columns in A equals the dimension of x and amounts to∑
i∈[n] |Si|. We set b to the reciprocal minimal positive entry in the matrix A, but to at

most n. Formally, this means b = min
{
n,maxi,S,e; ae,(i,S) 6=0

1
ae,(i,S)

}
. In our algorithms we

use a scaling parameter γ = log(4mb) + 4. Finally, let x∗ be the optimal fractional solution
to the integer program shown above, respectively. An integral solution computed by our
mechanism is denoted by xALG.

We assume that we can access each bidder’s valuation by a demand oracle Di(p), which
returns the preferred entity given a vector of prices p. Given a vector of prices (pe)e∈[m], it
returns the S ∈ Si maximizing vi,S −

∑
e∈[m] ae,(i,S)pe. It may occur that this quantity is

negative for all entities S. In this case, the bidder would prefer to opt out of the mechanism.
To simplify notation, we add a virtual entity ∅ to each set Si with vi,∅ = 0 and all-zero
coefficients in A. This way, no bidder will ever receive any set S for which the sum of prices
exceeds his valuation.

In order to obtain the LP solution x which shall be decomposed, our mechanism uses
a fractional overselling technique specified in Algorithm 1. It is similar to the one used
by Krysta and Vöcking [2012]. The overall idea is to randomly divide the set of bidders
into two sets and to sequentially make posted-price offers to the bidders in one set. The
prices for outcomes are determined as follows: At each time, each of the constraints e in
the matrix A has a different price. The price of outcome S depends on the values of a(i,S),e,
i.e., it depends on how allocating this outcome influences the constraints. The bidder then
chooses his most preferred entity based on the prices using his demand oracle. Afterwards,
the algorithm updates the prices for the next bidder. The other set of bidders, who do not
participate in these auctions, are used to determine the initial prices.

Lemma 3.1. Algorithm 1 computes a vector x such that (1) A · x ≤ γ · 1, (2) for each
bidder i there is at most one Si ∈ Si such that xi,Si

= 1 and all other entries are zero, and
(3) E

[
vTx

]
≥ 1

64v
Tx∗.

Parts (1) and (2), which are statements on feasibility of the solution, follow directly
from the construction of the algorithm. To show part (3) we adapt the proof in [Krysta and
Vöcking 2012] below. First, however, let us present our final mechanism given in Algorithm 2.
It runs the overselling algorithm as a subroutine, which returns allocation x. Using part (1)
of Lemma 3.1, x′ = 1/γ ·x can be interpreted as a feasible fractional LP solution. Therefore,
this solution x′ can be treated like the optimal LP solution in the framework by Lavi and
Swamy [2011] and be decomposed into polynomially many integral solutions. As payments
we use the prices that were originally paid in the overselling algorithm.
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ALGORITHM 2: Randomized Meta-Rounding Mechanism

Compute overselling solution (x, p) by running Algorithm 1;

Set x′ := 1
γ
· x, where γ = log(4mb) + 4;

Decompose x′ = α
∑
` λ`x

` with
∑
` λ` = 1;

Choose one of the x` at random with probability λ` each;

Assign entities according to chosen x`;
foreach bidder i = 1, 2, . . . , n do

if x`i,Si
= 1 then charge bidder i payment

∑
e∈[m] ae,(i,Si)p

i
e ;

else charge bidder i no payment;

Let us bound the solution quality of Algorithm 2 under the assumption that Lemma 3.1
holds.

Theorem 3.2. E
[
vTxALG

]
≥ α

64γ
· vTx∗ =

α

O(log(m) + log(n))
· vTx∗ .

Proof. We have vTx′ = 1
γ v

Tx and
∑
` λ`x

` = αx′. The expected social welfare of the

computed solution is given by vT
∑
` λ`x

`. Assembling these bounds, we get E
[
vTxALG

]
=

vT
∑
` λ`x

` = αvTx′ = α
γ v

Tx. Finally, by Lemma 3.1, we have E
[
vTx

]
≥ 1

64v
Tx∗, which

proves the theorem.

We replace the optimal LP solution by the suboptimal solution x′, because it fulfills
stronger monotonicity conditions that make the mechanism truthful in first-order stochastic
dominance.

Theorem 3.3. Mechanism 2 is truthful in first-order stochastic dominance.

Proof. To show truthfulness in first-order stochastic dominance, we consider the in-
fluence that a single bidder has on its assigned entity. Due to scaling and decomposition,
there are only two possible cases for bidder i. With probability α

γ , she gets her selection

Si made in Step 1 of the overselling algorithm and pays
∑
e∈[m] ae,(i,Si)p

i
e. With proba-

bility 1 − α
γ , she receives no entity and valuation, payments and utility are 0. Note that

Si is the entity maximizing vi,S −
∑
e∈[m] ae,(i,S)p

i
e over all entities S ∈ Si, and α and

γ are independent of any bids. Thus, Pr [vi(f(v))− pi(v) ≥ x] is 1 for x ≤ 0, it is α
γ for

0 < x ≤ vi,Si
−
∑
e∈[m] ae,(i,Si)p

i
e and 0 otherwise.

Suppose i lies v′i or, equivalently, demands a different entity S′i. The prices pie remain
unaffected, but the received entity might be inferior. As the demanded entity is the only
one that i is able to obtain,

Pr [vi(f(v′i, v−i))− pi(v′i, v−i) ≥ x] = 0 <
α

γ
= Pr [vi(f(v))− pi(v) ≥ x] ,

for vi,S′i −
∑
e∈[m] ae,(i,S′i)p

i
e < x ≤ vi,Si

−
∑
e∈[m] ae,(i,Si)p

i
e and

Pr [vi(f(v′i, v−i))− pi(v′i, v−i) ≥ x] = Pr [vi(f(v))− pi(v) ≥ x]

otherwise. Thus, truthfulness is first-order stochastically dominant.

In addition to truthfulness, observe that the use of demand oracles ensures individual
rationality and no positive transfers.

Analysis of Algorithm 1. It remains to show part (3) of Lemma 3.1: For the LP solution
x returned by Algorithm 1 we have E

[
vTx

]
≥ 1

64v
Tx∗. For a set B ⊆ [n] of bidders, let
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x∗(B) be the optimum solution of the LP where only bidders in B have non-zero entries.
Furthermore, let i1st and i2nd be the bidders with the highest and the second highest
maximum bid, respectively. In the following, we condition on the event that i1st 6∈ STAT
but i2nd ∈ STAT. As vTx∗([n] \ {i2nd}) ≥ 1

2v
Tx∗, we have

E
[
vTx∗([n] \ STAT)

∣∣ i1st 6∈ STAT, i2nd ∈ STAT
]
≥ 1

2
vTx∗([n] \ {i2nd}) ≥ 1

4
vTx∗ .

Furthermore, we let p∗e be the final price reached for constraint e ∈ [m] after running the
algorithm, i.e., p∗e = pn+1

e .

Lemma 3.4. If i2nd ∈ STAT, p∗e <∞ for all e ∈ [m].

Proof. Consider any constraint e ∈ [m]. We are done if there is no t ∈ [n] such that∑
i≤t
∑
S∈Si ae,(i,S)xi,S ≥ γ − 4. Hence, let t be the smallest such number. This definition

ensures
∑
i<t

∑
S∈Si ae,(i,S)xi,S < γ − 4 and therefore

∑
i≤t
∑
S∈Si ae,(i,S)xi,S < γ − 3.

Furthermore, for each i > t, we have pie ≥ p0 · 2γ−3 = p0 · 2log(4mb)+1 ≥ bL. This means, to
get outcome S ∈ Si, bidder i > t has to bid at least ae,(i,S)bL. As we assume i2nd ∈ STAT,

there is only bidder i1st whose maximum bid exceeds L. Only this bidder can be allocated
an entity S such that ae,(i,S) ≥ 1

n . Therefore, we have
∑
i>t

∑
e∈[m] ae,(i,S)xi,S ≤ 2. In

combination, this means
∑
i,S ae,(i,S)xi,S < γ − 1 and therefore p∗e <∞.

Lemma 3.5. If i2nd ∈ STAT, then vTx ≥
∑
e∈[m] p

∗
e −mp0.

To prove the lemma, we use the following extension of the geometric-sum formula.

Claim 3.6. Let r > 1. For all a1, a2, . . . , an ∈ [0, 1], we have

∑
i∈[n]

air
si−1 ≤ rsn − 1

r − 1
, where si =

i∑
j=1

aj .

Proof. We show this claim by induction on n. For n = 0, we have 0 = 0 and therefore
the claim holds. For the induction step, we first observe that 1 + an+1(r− 1) ≥ ran+1 . This
is due to the fact that the function f : [0, 1] → R, f(x) = rx is convex. Therefore, we have
rx = f(x) ≤ x · f(1) + (1− x)f(0) = xr + (1− x) = 1 + x(r − 1). Now, we have∑

i∈[n+1]

air
si−1 =

∑
i∈[n]

air
si−1 + an+1r

sn .

By induction hypothesis, the first part is upper-bounded by rsn−1
r−1 , giving us in total an

upper bound of

rsn − 1

r − 1
+ an+1r

sn =
rsn + (r − 1)an+1r

sn − 1

r − 1

=
rsn (1 + (r − 1)an+1)− 1

r − 1

≥ rsnran+1 − 1

r − 1

=
rsn+1 − 1

r − 1
.

This claim is used in the proof of the lemma as follows.
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Proof of Lemma 3.5. Let `∗e =
∑
i,S ae,(i,S)xi,S . As we assume i2nd ∈ STAT, we have

p∗e < ∞ for all e ∈ [m] and therefore p∗e = 2`
∗
ep0. For each bidder i ∈ [n], we have vi(Si) ≥∑

e∈[m] ae,(i,Si)p
i
e. and thus

vTx ≥
∑

i∈[n],S∈Si

∑
e∈[m]

ae,(i,S)xi,Sp
i
e .

As we have pi+1
e = 2ae,(i,S)xi,S · pie, Claim 3.6 yields a lower bound on this sum of

p0
∑
e∈[m]

2`
∗
e − 1

2− 1
=
∑
e∈[m]

p∗e −mp0 .

Lemma 3.7. It holds vTx ≥ vTx∗([n] \ STAT)−
∑
e∈[m] p

∗
e.

Proof. For all i ∈ [n], Si is set to option S maximizing vi,S −
∑
e∈[m] ae,(i,S)p

i
e. That

is, we have

vi,Si
−
∑
e∈[m]

ae,(i,Si)p
i
e ≥ vi,S −

∑
e∈[m]

ae,(i,S)p
i
e

for all S. As ae,(i,Si)p
i
e ≥ 0, pie ≤ p∗e, and ae,(i,Si) ≤ 1, this implies

vi,Si
≥ vi,S −

∑
e∈[m]

p∗e

for all S. Furthermore, x∗([n] \ STAT) is an LP solution. Therefore, we have
∑
S x
∗
i,S([n] \

STAT) ≤ 1. In combination, we get

vi,Si ≥
∑
S

x∗i,S([n] \ STAT)vi,Si

≥
∑
S

x∗i,S([n] \ STAT)

vi,S − ∑
e∈[m]

p∗e


≥ vTx∗([n] \ STAT)−

∑
e∈[m]

p∗e .

When adding the inequalities shown in the previous two lemmas, we obtain 2vTx ≥
vTx∗([n] \ STAT) − mp0 if i2nd ∈ STAT. If furthermore i1st 6∈ STAT, we have L ≤
vTx∗([n] \ STAT) and therefore mp0 = L

4 ≤
vT x∗([n]\STAT)

4 . That is, we have

E
[
vTx

∣∣ i1st 6∈ STAT, i2nd ∈ STAT
]
≥ E

[
1

4
vTx∗([n] \ STAT)

∣∣∣∣ i1st 6∈ STAT, i2nd ∈ STAT

]
.

In total, we get

E
[
vTx

]
≥ Pr

[
i1st 6∈ STAT, i2nd ∈ STAT

]
E
[
vTx

∣∣ i1st 6∈ STAT, i2nd ∈ STAT
]

≥ Pr
[
i1st 6∈ STAT, i2nd ∈ STAT

] 1

4
E
[
vTx∗([n] \ STAT)

∣∣ i1st 6∈ STAT, i2nd ∈ STAT
]
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≥ 1

64
vTx∗ .

4. APPLICATIONS

Using the techniques we present in this paper many existing mechanisms can be strength-
ened. In this section, we give some example applications considering problems for which so
far only truthful-in-expectation mechanisms were known. There is a large number of mech-
anisms that use the framework by Lavi and Swamy, for instance, mechanisms for geometric
intersection problems [Christodoulou et al. 2010] or secondary spectrum auction [Hoefer
et al. 2014; Hoefer and Kesselheim 2012; Gopinathan et al. 2011; Zhu et al. 2012]. We here
explain the necessary adjustments for two classic problems concerning routing in graphs. In
either setting, we are given a graph G = (V,E) with m edges and edge capacities ue ≥ 1. The
bidders wish to have source and sink nodes connected. In the edge-disjoint paths problems
(EDP), source node si needs to be connected to ti by a path, while at most ue paths may
use the edge e at the same time. The all-or-noting multi-commodity flow problem (ANF) is
a relaxation, where instead of a path one only needs a flow of value one to connect si to ti.
Again, the maximum flow over edge e has to be bounded by ue.

For a number of variants of EDP and ANF, Lavi and Swamy [2011] present truthful-in-
expectation mechanisms that are built upon approximation algorithms by Chekuri et al.
[2005]. All of these mechanisms are for the “known” case, in which each bidder wants to have
one source-sink pair connected, which is public knowledge. So the only private information is
the respective valuation wi for being connected. This makes this problem a single-parameter
scenario and our transformation from Section 2 can directly be applied. At this point, it
is important that the payments can be computed in polynomial time by binary search.
Therefore, we get efficient mechanisms that are truthful in first-order stochastic dominance
and have the following welfare approximation guarantees: (i) O(logm) for EDP on planar
graphs when B = mine∈E ue ≥ 2, (ii) O(log2m) for ANF on general graphs, and O(logm)
for planar graphs.

Going beyond the single-parameter case, e.g., if sources and sinks are private information,
the mechanisms designed in [Lavi and Swamy 2011] do not necessarily ensure truthfulness.
Fortunately, our multi-parameter mechanism can cover this case, too; even when a bidder
has multiple options of source and sink nodes with different valuations. To see this, we first
realize that the LP (Route-P) in [Lavi and Swamy 2011] fits into the pattern described
in Section 3. The matrix A has |E| rows, and there is a polynomial-time demand oracle
solving only shortest-path problems. By applying Algorithm 1, we get an LP solution with
an important property: For each bidder there is at most one path selected. For this reason,
we can perform the rounding the same way as in the single-parameter case. Truthfulness in
first-order stochastic dominance is ensured by the fact that any bidder gets her preferred
paths connected with probability exactly α

γ . Without making any further assumptions, we

lose a factor of at most O(log|E| + log n) in comparison to the social-welfare guarantees
described above.

In all of the other application domains mentioned above, we can apply our transforma-
tion from Section 2 to the single-parameter settings, where our lottery payments can be
computed in polynomial time by binary search. This way, the truthfulness is strengthened
to truthfulness in first-order stochastic dominance. The multi-parameter problems fit into
the framework described in Section 3. As the involved LPs have only polynomially many
constraints in the input size, one loses at most a logarithmic factor in the input size in
comparison to the known approximation results for truthfulness in expectation.
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5. CRITICAL DISCUSSION OF OUR APPROACH

A key aspect in our approach is that we make no assumptions on the particular risk atti-
tude of the bidders. In our approach, bidders are comparing lottery outcomes with respect
to stochastic dominance over wealth vi − pi. One might equivalently assume that they are
expectation maximizers over ui(vi − pi), where ui : R → R is a monotone function that
encodes the attitude towards risk. From this perspective, we ensure that the outcome maxi-
mizes expectation over ui(vi−pi) for every monotone function ui – including, in particular,
linear ones.

For second-order stochastic dominance, we assume only slightly more information by
restricting to all classes of risk-averse bidders – including risk-neutral ones. This implies
that the outcome maximizes expectation over ui(vi − pi) for every monotone and concave
function ui – including linear ones. In this way, the sets of truthful-in-stochastic-dominance
mechanisms obviously must be refinements of the set of truthful-in-expectation mechanisms.
This is in contrast to recent approaches in the literature about mechanisms in the Bayesian
setting, where it is assumed that mechanisms can be tailored towards particular classes of
functions ui, which then gives more power to the mechanism designer and allows to, e.g.,
extract much more revenue.

Our approach addresses randomized mechanism design in the prior-free setting where it
is common to maximize social welfare given by the sum of valuations

∑
i vi. In this way,

we measure the total monetary value generated by the allocation, without payment money
that stays within the system. While this has a natural appeal when thinking about bidders
comparing lotteries, it is less obvious to take this approach when thinking about bidders
optimizing concave utility functions. The attitude towards risk can be seen as a distortion
of incentives that happens due to the randomization of the mechanism. An alternative
definition of social welfare [Dughmi and Peres 2012; Fu et al. 2013] is to take this distortion
into account and apply a utilitarian approach:

∑
i pi +

∑
i ui(vi − pi). Here the first part is

the utility (i.e., the revenue) of the (risk-neutral) principal.
Which of these two notions of social welfare is more reasonable? Our approach to social

welfare can be seen as an “ex-post” measure of wealth generated for society. After the
mechanism has made all coin flips, no bidder is subject to risk and thus values the outcome
by vi−pi. Hence, the expected total wealth in the system after the mechanism is executed is
given exactly by the sum of valuations. Instead, the latter approach taking the risk attitude
into account can be seen as an “ex-ante” approach, in which the bidders perception of risk
due to random choices of the mechanism is incorporated.

We believe both approaches have their merits. In particular, maximizing ex-post wealth
of the society is a desirable goal for a mechanism. It naturally extends the definition of social
welfare of deterministic mechanism design. Randomization is only used to cope with com-
putational limitations. In contrast, maximizing the ex-ante utilities inherently requires ran-
domization and knowledge of attitudes towards risk. Eliciting utility functions in a prior-free
mechanism would, e.g., require an extension of the bidding space. This might be unnatural,
impractical, and give rise to additional issues, which can be avoided in our approach.

6. CONCLUSIONS AND OPEN PROBLEMS

In this paper, we have studied truthfulness concepts based on stochastic dominance for
mechanisms with money. These concepts help to incentivize agents that are sensitive to
risk. Our main results are a black-box transformation for single-parameter domains and an
application of the randomized meta-rounding technique to yield polynomial-time mecha-
nisms for multi-dimensional packing domains. There are a large number of open problems,
for instance, the existence of black-box transformations for meaningful domains. More gen-
erally, it is important to obtain separation results to the standard concepts truthfulness
in expectation and universal truthfulness in order to understand in which way stochastic
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dominance gives different power to a mechanism designer. Last but not least, the design of
good mechanisms approximating social desiderata such as welfare or revenue in combination
with truthfulness in stochastic dominance is an interesting field of future work.
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