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Abstract. Matching and coalition formation are fundamental problems
in a variety of scenarios where agents join efforts to perform tasks, such
as, e.g., in scientific publishing. To allocate credit or profit stemming from
a joint project, different communities use different crediting schemes in
practice. A natural and widely used approach to profit distribution is
equal sharing, where every member receives the same credit for a joint
work. This scheme captures a natural egalitarian fairness condition when
each member of a coalition is critical for success. Unfortunately, when
coalitions are formed by rational agents, equal sharing can lead to high
inefficiency of the resulting stable states.
In this paper, we study the impact of changing profit sharing schemes in
order to obtain good stable states in matching and coalition formation
games. We generalize equal sharing to sharing schemes where for each
coalition each player is guaranteed to receive at least an α-share. This
way the coalition formation can stabilize on more efficient outcomes. In
particular, we show a direct trade-off between efficiency and equal treat-
ment. If k denotes the size of the largest possible coalition, we prove an
asymptotically tight bound of k2α on prices of anarchy and stability. This
result extends to polynomial-time algorithms to compute good sharing
schemes. Further, we show improved results for a novel class of matching
problems that covers the well-studied case of two-sided matching.

1 Introduction

Matching problems are central to a variety of research at the intersection of
computer science and economics. The standard model of matching with prefer-
ences is stable matching, in which a set of agents strives to group into pairs,
and each agent has an ordinal preference list over all possible partners. In this
case, a matching is stable if it has no blocking pair, i.e., no pair of players could
both improve by pairing up and dropping their current partners. Applications
of this model include, e.g., matching in job markets, hospitals, colleges, social
networks, or distributed systems [2, 8, 15, 17, 18]. Numerous extensions of this
standard model have been treated in the past [15,22].
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While the basic stable matching model uses ordinal preferences, many ap-
plications allow cardinal preferences to express incentives in terms of profit or
reward. Perhaps the most prominent case of cardinal preferences studied in the
literature are correlated preferences, in which each matched pair generates a
profit that is shared equally among the involved agents. This model has favor-
able properties, e.g., existence of a stable matching is guaranteed by a potential
function argument, and convergence time of improvement dynamics is polyno-
mial [1]. These conditions extend even to hedonic coalition formation games,
when instead of matching pairs the agents construct a partition into coalitions
of k > 2 players. However, these properties come at a cost – the total reward of
every stable coalition structure can be up to k times smaller than in optimum.

For projects which need the joint effort of multiple agents to be realized it
is difficult to decide how to share the produced value among the participating
agents. Oftentimes there is no direct correlation between some player’s effort or
invested time and the value of the final result. Thus mainly two concepts are
used in literature to determine how much is handed to which player. Either all
players receive an equal share of the gained value taking into account that all
agents were needed to fulfill the project and had to put effort into it or players
can negotiate using outside options (e.g. other projects they could take part in
instead) to justify their (desired) share. As stated above the main drawback of
equal sharing is that it might result in inefficient stable states. On the other
hand bargaining might not even reach a stable state and further can result in
rather unfair distributions. Our hope is that if some kind of community or ruler
can dictate the value-distribution of each project, it is possible to provide more
efficient stable outcomes while also having close-to-equal shares. To better un-
derstand the conflict between efficient stable states and equal shares we consider
the following small example:

1 2 3 4
500 800 500

Here the agents are given by the vertices while the edges symbolize projects.
The edge weight gives the value of the project. Now obviously realizing project
{1, 2} and {3, 4} would be optimal in this case, but if we choose the equal-sharing
rule 2 and 3 will prefer their joint project which makes {{2, 3}} the only stable
state. As 1 would gain 0 in such a state in a bargaining solution he might be
willing to offer 2 450 of the total 500 their project would be worth to outbid
the 400 2 receives from {2, 3}. This way 1 would still get 50 > 0. The same
considerations might motivate 4 to give a higher share to 3. Then the optimal
solution {{1, 2}, {3, 4}} is stable, but 1 would only receive 10% of the value his
project generates. Even if 1 will only slightly outbid the share of project {2, 3}
he cannot keep more the 20% of the project value for himself. Now if we can
dictate the shares we could divide project {1, 2} such that player 2 gets 308
while 192 remain for 1 and project {2, 3} such that 307 would go to 2 and 493
to 3. The 2 would want to form {1, 2} which only leaves {3, 4} for 3. At the
same time both projects are now divided roughly 5

13 ≈ 38, 5% \ 8
13 ≈ 61, 5 and



project {3, 4} can even be shared equally without jeopardizing the stability of
the optimal solution.

In practice we can find equal sharing schemes as well as those which factor
in power or effort of the different agents. For agents working on a joint project,
equal sharing implements a natural egalitarian fairness condition. For example,
in mathematics and theoretical computer science it is common practice to list
authors in alphabetical order, which gives equal credit to every author involved
in a paper. This is justified by the argument that a ranking of ideas that led to the
results in a paper is often impossible. On the other hand, in many other sciences
the author sequence gives different credit to the different authors involved in
the project. In some cases, these approaches are overruled by the community
which gives most credit for a paper to its most prominent author (or to authors
that are PhD students). Naturally, such different profit sharing schemes generate
different incentives for the agents to form coalitions. In this paper, we study the
impact of profit distribution on fairness and efficiency in the resulting coalition
formation games. It is known that completely arbitrary sharing can lead to
non-existence of stable states or arbitrarily high price of anarchy [3]. Similar to
recent work [20], our focus is to design good profit or credit distribution schemes
such that the stable states implement good outcomes. In this direction, it is not
difficult to observe that using arbitrarily low profit shares we can stabilize every
optimal partition. However, such sharing schemes are clearly undesirable when
we want to maintain egalitarian fairness conditions. In our analysis, we provide
asymptotically tight bounds on the inherent tension between efficiency and equal
treatment. Further, we give efficient algorithms to compute good sharing schemes
and show complementing hardness results. Before we state our results, we start
with a formal description of the model.

1.1 Stable Matchings and Coalition Structures

We assume that there is a simple, undirected graph G = (V,E), where V is the
set of agents and E the set of possible projects or edges. In the matching case, we
assume each edge is a pair e = {u, v} ∈ E and yields some profit w(e) > 0 that
is to be shared among u and v. Our goal is to design a profit distribution scheme
d with du(e), dv(e) ∈ [0, 1] and du(e) + dv(e) = 1 for all e ∈ E. This implies that
u gets individual profit du(e)w(e) when being matched in e. The profits yield
an instance of stable matching with cardinal preferences. The stable matchings
M ⊂ E are matchings that allow no blocking pair – no pair {u, v} ∈ E \M
of agents that can both strictly increase their individual profit by destroying
their incident edge in M (if any) and creating {u, v}. The social welfare of a
matching M is w(M) =

∑
e∈M w(e). We denote by M∗ a (possibly non-stable)

optimum matching that maximizes social welfare. The price of anarchy/stability
(denoted PoA/PoS) is the ratio of w(M∗)/w(M), where M is the worst/best
stable matching, respectively. While the set of stable matchings depends on d,
the social welfare of a particular matching is independent of d, and so is the set
of optimum matchings.



We generalize this scenario to hedonic coalition formation with arbitrary
coalition size in a straightforward way. Instead of edges e we are given a set of
possible hyperedges or coalitions C ⊆ 2V . Each S ∈ C fulfills |S| ≥ 2 and yields
profit w(S) > 0. The distribution scheme has du(S) ∈ [0, 1] and

∑
u∈S du(S) = 1.

Then d again specifies the fraction of w(S) allocated to u ∈ S when coalition S
forms. A coalition structure S ⊆ C is a collection of sets from C that is mutually
disjoint. S is core-stable if there is no blocking coalition – no S ∈ C \ S of agents
that each and all strictly improve their individual profit by destroying their
incident coalition in S (if any) and creating S. Observe that the usual definition
of core-stability involves all possible coalitions S ∈ 2V . We can easily allow this
by assuming that w({v}) = 0 for all v ∈ V and w(S) = −1 for all S ∈ 2V \C with
|S| > 1. Definitions of social welfare and prices of anarchy and stability extend
in the obvious way. An instance is called inclusion monotone if for S, S′ ∈ C and
S′ ⊂ S, we have w(S)/|S| > w(S′)/|S′|. We denote by k = maxS∈C |S|. Stable
matchings are exactly core-stable coalition structures when |S| = 2 for all S ∈ C.
By definition, every such instance is inclusion monotone.

Our aim is to design d in order to obtain good core-stable coalition structures.
To characterize the tension between stability and equal treatment, a distribution
scheme is termed α-bounded if du(S) ≥ α for all S ∈ C and all u ∈ S. If d is
α-bounded, the resulting instance of hedonic coalition formation is termed α-
egalitarian.

Throughout the paper, we assume a profit of 0 for singleton coalitions, which
is in some sense without loss of generality. Suppose we have {v} ∈ C with
w({v}) > 0 for a node v ∈ V . Such a player will participate in a coalition
only if he receives profit at least w({v}). Thus, we can reduce the profit of every
coalition S ∈ C with v ∈ S by this amount. By executing this step for every
player and every coalition, we obtain an instance with the desired properties.
Coalitions that arrive at zero profit in this way can be disregarded, as they can be
assumed to be neither part of any equilibrium nor in the optimum solution. Ap-
plying our algorithms to the remaining instance, we strive to equally distribute
the surplus that the coalition generates over individually required profits. This
objective is closely related to Nash bargaining solutions [21]. Note that in the
remaining instance with all w({v}) = 0, we get larger prices of anarchy and
stability. As our bounds apply to all instances of this sort, they continue to hold
accordingly for all instances with arbitrary positive w({v}).

1.2 Results and Overview

In Section 2 we characterize the effect of α-boundedness on the resulting prices
of anarchy and stability. We provide asymptotically tight bounds on prices of
anarchy and stability depending on α. Given an optimum coalition structure S∗,
we show how to design a distribution scheme d that guarantees (1) existence of a
core-stable coalition structure and (2) a price of stability of max{1, k2α}, for any
α ∈ [0, 1/k]. This result shows, in particular, that for every α ≤ 1/k2, we can
construct α-bounded schemes with an optimal core-stable coalition structure.
This is asymptotically tight – using α-bounded schemes we cannot achieve a price



of stability of less than (k2−k)α, i.e., the price of stability for α-bounded schemes
is in Θ(k2)α. Conversely, this bound translates into a bound on α ≤ δ/(k2 − k)
to guarantee price of stability at most δ. For inclusion monotone instances, we
can also provide the same upper bound of max{1, k2α} on the price of anarchy,
i.e., in such instances and α ≤ 1/k2, every core-stable structure is optimal.
In contrast, there exist instances that are not inclusion monotone, in which α-
bounded schemes cannot guarantee a price of anarchy of 1, even for arbitrarily
small α > 0.

While computing S∗ is NP-hard, we can also combine our algorithms with
efficient approximation algorithms for the set packing problem of optimizing so-
cial welfare. If S∗ is an arbitrary ρ-approximation to the optimum solution, our
algorithms can be used to construct in polynomial time an α-bounded distribu-
tion scheme that guarantees price of stability of ρ ·max{1, k2α}. The same result
can be achieved for the price of anarchy in inclusion monotone instances.

In addition, we study a problem inspired by computing core imputations
in coalitional games. For a given coalition structure with profits we aim to de-
termine a distribution scheme with largest α that stabilizes a given optimum
solution S∗. This problem is shown NP-hard whenever we have coalitions of size
k ≥ 3. The problem remains hard for k = 2 if instead of a solution, we have a
given bound W , and the goal is to maximize α such that at least one solution
of social welfare at least W is stable.

In Section 3 we study stable matching games. As the general results from the
previous section carry over, we concentrate on a subclass of instances that we
term acyclic alternating. This includes the standard case of bipartite matching.
In this case, we can show that even 1/3-bounded distribution schemes yield a
PoS of 1. In addition, given an instance and any solution M , an α-bounded
distribution scheme stabilizing M with maximal α can be found efficiently.

1.3 Related Work

We study profit distribution in cardinal stable matching and more general games.
Stable matching has been extensively studied [22] and the literature on the
problem is too vast to survey here. Directly related to our work are [4, 5] which
address the price of anarchy in stable matching and related models. Very recently,
we have studied the price of anarchy under different edge-based profit sharing
schemes [3]. In contrast, this paper concentrates on designing profit shares to
guarantee good stable matchings.

Profit sharing in more general coalition formation games has been studied
recently [6] in a related model, where coalitions are represented by resources.
Agents can join and leave a resource/coalition unilaterally. The authors focus
on submodular profit functions and three particular sharing schemes. For the
resulting games, they derive results on existence of pure Nash equilibrium, price
of anarchy, and convergence of improvement dynamics. In contrast to this model,
we do not restrict the number of coalitions that can be formed simultaneously
and assume coalitional deviations and core-stability.



In cooperative game theory, profit sharing has been a major focus over the last
decades. For example, core stability in the classic transferable-utility cooperative
matching game assumes that the total profit of a global maximum matching is
distributed to all agents such that every subset S of agents receives in sum at least
the value of a maximum weight matching for S. Computing such imputations is
closely related to LP duality [13]. Computing different solution concepts in this
game has also been of interest [7, 12, 19]. In contrast, we assume utility transfer
only within coalitions and evaluate the quality of a scheme based on the price
of anarchy for coalitional stability concepts in the resulting coalition formation
game. Additionally, we focus on trade-offs between efficiency and equality.

Computing stability concepts in hedonic coalition formation games is a recent
line of research in computational social choice [10, 16]. Many stability concepts
are NP- or PLS-hard to compute. This holds even in the case of additive-separable
coalition profits, which can be interpreted by an underlying graph structure
with weighted edges, and the profit of a coalition is measured by the total edge
weights covered by the coalition [14, 23]. In addition, some price of anarchy
results recently appeared in [9]. While our main focus are structures inspired by
matching problems, designing profit shares in the additive-separable case can be
formulated in our model, and it represents an interesting avenue for future work.

Designing good cost sharing schemes to minimize prices of anarchy and stabil-
ity [11,24] in resulting strategic games is a topic of recent interest in algorithmic
game theory.

2 Coalition Formation

We start by analyzing the relation between α-boundedness and the PoS/PoA.
At first we will see that we can give non-trivial upper bounds on the PoS and
PoA subject to α. In addition, given an optimum solution we can compute a
distribution scheme that obtains these bounds.

Theorem 1. For any α ∈
[
0, 1k

]
, there is a distribution scheme d(α) that is

α-bounded and results in a PoS of at most max{1, k2α}. If further the in-
stance is inclusion monotone, the distribution scheme ensures a PoA of at most
max{1, k2α}. Given any social optimum S∗, we can compute the distribution
scheme in polynomial time.

Proof. We provide algorithms that compute the suitable distribution schemes.
For the PoS see Algorithm 1 and for the PoA see Algorithm 2. The idea of both
algorithms to always consider the worthiest remaining coalition S and use it to
decide which coalition S∗i to stabilize next. If S is part of the optimal coalition
structure S∗ we make it S∗i . Otherwise, if S is overlapping with some worthy
enough coalition S′ of S∗, we pick S′ as S∗i . Thus in both cases we stabilize an
edge of the optimal coalition structure. If the coalition S is not in S∗ but too
worthy to be outbid by a 1

k -share of some overlapping coalition of S∗, we set
S = S∗i instead. As that only happens when the value difference is quite big and



Algorithm 1: Ensuring PoS

Data: Instance (N, C, w), social optimum S∗, bound α
1 set i = 0, C0 = C and S = ∅;
2 while Ci 6= ∅ do
3 choose S with w(S) = max{w(S) | S ∈ Ci};
4 set i = i+ 1;
5 if S ∈ S∗ then
6 set S∗i = S;
7 else if S /∈ S∗ and αw(S) < 1

k
w(S′) for some S′ ∈ S∗ then

8 choose S′ ∈ S∗ with αw(S) < 1
k
w(S′);

9 set S∗i = S′;

10 else
11 set S∗i = S;
12 set Ci = Ci−1 \ {S∗i } and S = S ∪ {S∗i };
13 foreach u ∈ S∗i do
14 set du(S∗i ) = 1

|S∗i |
;

15 foreach S′ ∈ Ci with S′ ∩ S∗i 6= ∅ do
16 choose u ∈ S′ ∩ S∗i and set du(S′) = α;
17 foreach u′ ∈ S′ \ {u} do
18 set du′(S

′) = 1−α
|S′| ;

19 set Ci = Ci \ {S′};

the number of affected optimal coalitions per occurrence is limited, this way we
get a good bound on how much we loose against the optimum. In S we keep
track of the stable solution. To ensure that S∗i is stable, w(S∗i ) is shared equally
and all overlapping coalitions such that the players joint with S∗i only receive an
α-share.

We start with proving that in both cases S is core-stable. Obviously S is a
coalition structure. The crucial point for the algorithms to work is as follows.
All coalitions S′ distributed in round i are of value at most w(S) for the initially
chosen S of round i. Hence, for every S′ of round i at least one of the players
they share with S∗i wants to stay at S∗i as by choice of S∗i

1
|S∗i |

w(S∗i ) ≥ 1
kw(S∗i ) >

αw(S′). Furthermore, in Algorithm 2 for all coalitions S′ of round i the players
they share with S∗i actually prefer S∗i for the same reason. Then obviously S
is stable as for every S+ ∈ C \ S we have S+ ∈ Ci−1 \ Ci for some i. Hence
there is some agent in S+ ∩S∗i (namely u of Line 16 in Algorithm 1 respectively
Line 17/Line 21 in Algorithm 2) which refuses to deviate from S∗i to S+.

For Algorithm 2 we show that further there is no other core-stable state under
d(α). To see this assume some other coalition structure S ′ and consider some
coalition S+ of S \ S ′ with i minimal such that S+ ∈ Ci−1 \ Ci. Now S+ = S∗i
and all coalitions of S ′ which intersect with S+ where distributed in the same
round i – as otherwise there would have been a coalition of an earlier round in
S \ S ′. Thus all involved players want to deviate to S∗i because they are either
unmatched or get worse profit from their coalition in S ′ than from S∗i . Here it is



Algorithm 2: Ensuring PoA

Data: Instance (N, C, w), C inclusion monotone, social optimum S∗, bound α
1 set i = 0, C0 = C and S = ∅;
2 while Ci 6= ∅ do
3 choose S with w(S) = max{w(S) | S ∈ Ci};
4 set i = i+ 1;
5 if S ∈ S∗ then
6 set S∗i = S;
7 else if S /∈ S∗ and αw(S) < 1

k
w(S′) for some S′ ∈ S∗ then

8 choose S′ ∈ S∗ with αw(S) < 1
k
w(S′);

9 set S∗i = S′;

10 else
11 set S∗i = S;
12 set i = i+ 1, Ci = Ci−1 \ {S∗i } and S = S ∪ {S∗i };
13 foreach u ∈ S∗i do
14 set du(S∗i ) = 1

|S∗i |
;

15 foreach S′ ∈ Ci with S′ ∩ S∗i 6= ∅ do
16 if S′ ⊂ S∗ then
17 foreach u ∈ S′ do
18 set du(S′) = 1

|S′| ;

19 else
20 foreach u ∈ S′ do
21 if u ∈ S∗i then
22 set du(S′) = α;

23 else

24 set du(S′) =
1−α|S∗i ∩S

′|
|S′\S∗i |

;

25 set Ci = Ci \ {S′};

important that the profits are inclusion monotone to ensure that all the players
of subcoalitions of S∗i and not just some want to switch due to higher profits
from S∗i (Line 17).

Hence, we can use S to give an upper bound on the PoS respectively the
PoA. We compare S to the optimal outcome S∗ we used for the algorithm. For
each coalition in S∩S∗ both structures give the same value. Next we assign each
coalition S ∈ S∗ \ S to the coalition S∗i for i such that S ∈ Ci−1 \ Ci. Now each
S∗i has at most k coalitions S assigned to it as the size of S∗i limits the number
of mutually disjoint coalitions intersecting with S∗i . Further, by the choice of S∗i
each of the Ss fulfills αw(S) < 1

kw(S∗i ). That is, S looses at most k2αw(S∗i )
compared to S∗ for every coalition S∗i in S \ S∗. This gives us a PoS and a PoA
at most k2α. ut

The previous proof can be applied directly even if S∗ is not an optimum solution.
Optimality of S∗ only served to establish a relation to the optimum value for
social welfare. Hence, if we run Algorithms 1 and 2 on a ρ-approximate solution
S, we obtain core-stable states for which social welfare is at most k2α worse than



w(S). This allows to obtain α-bounded distribution schemes with bounded PoS
and PoA in polynomial time.

Corollary 1. Given any coalition structure S that is a ρ-approximation to the
optimum, Algorithm 1 computes an α-bounded distribution scheme such that the
PoS is at most ρ ·max{1, k2α}. The same result holds for Algorithm 2 and PoA
in inclusion monotone instances.

Now, while we had to make no assumptions about the profits to ensure the
bounds on the PoS for the PoA we asked for w to be inclusion monotone. The
question arises whether this limitation was solemnly due to the structure of our
algorithm or if non-inclusion monotone instances do not allow the same bounds
on the PoA. It turns that while we can get arbitrary close to and even reach
1 for the PoS and the PoA of inclusion monotone instances if we just make α
small enough, we can find non-inclusion monotone instances where the PoA is
at least 2− ε independent of the choice of α. That is, even if we allow α to drop
to zero basically allowing to give nothing to some (participating) players there
can still be suboptimal stable states.

Proposition 1. There exist instances with n agents and w not inclusion mono-
tone, in which the PoA is at least 2− 4

n+2 for every distribution scheme.

Proof. Consider the instance N = {1, . . . , n} with profits w(N) = n, w(S) =⌈
n+1
2

⌉
for every S ⊂ N with |S| =

⌈
n+1
2

⌉
and w(S) = 0 for every other S ⊂

N . The unique social optimum is the grand coalition S = N as each other
coalition structure can hold at most 1 set of size

⌈
n+1
2

⌉
. Assume that there is

some distribution scheme d which ensures that N is stable. Consider the set
S of the

⌈
n+1
2

⌉
players which get the lowest shares. We have to destabilize all

coalitions of size
⌈
n+1
2

⌉
. Hence, the grand coalition has to offer in total at least⌈

n+1
2

⌉
+ ε with arbitrarily small ε > 0 to each group of

⌈
n+1
2

⌉
players. Then at

least one of the players in S gets at least⌈
n+1
2

⌉
+ ε⌈

n+1
2

⌉
and, by the choice of S, every player in N \ S as well. Thus, N distributes total
profits of at least

(

⌈
n+ 1

2

⌉
+ ε) + (n−

⌈
n+ 1

2

⌉
) ·

(⌈
n+1
2

⌉
+ ε⌈

n+1
2

⌉ )
> n

a contradiction. ut

Next we want to analyze how close the values provided by our algorithms are
to the actual bounds. Note that for the extreme of equal sharing of the biggest
coalitions α = 1

k , we get an upper bound of k for the PoS and the PoA while for
α = 1

k2 we reach PoS = PoA = 1. In particular for every α ≤ 1
k2 we can always

assure optimality of core-stable coalition structures.



Conversely, for all k and α = 1
k we can show tightness through the example

N = {1, . . . , k2} with w({1, . . . , k}) = 1 + ε, w({i + jk | j = 0 . . . k − 1}) = 1,
i = 1 . . . k and w(S) = 0 for every other coalition S. For ε → 0 this leads to a
PoS of k.

Furthermore our algorithms provide asymptotically tight bound for all choices
of α as there are instances of α-egalitarian games where PoS ∈ Θ(k2)α.

Proposition 2. For every k > 2, there is an instance in which every α-bounded
distribution scheme yields a PoS of at least max{1, (k2 − k)α}.

Proof. Consider the following instance with N = {vi,j | i = 1 . . . k, j = 1 . . . k −
1} ∪ {v0} and C = C1 ∪ C2 where C1 = {Sj = {vi,j | i = 1 . . . k} | j = 1 . . . k − 1}
and C2 = {{v0} ∪ {vij ,j | j = 1 . . . k − 1} | j = 1 . . . k − 1, ji = 1 . . . k}. For
S ∈ C1 w(S) = 1 and for S ∈ C2 we have w(S) = 1+ε

kα for some small enough ε.
Note that each single coalition of C2 covers every other coalition of C2 via v0 and
every coalition Sj of C1 via some v·,j . Thus for α < 1

k2−k C1 with a total value of
k− 1 is the unique social optimum. Regardless of the distribution scheme on C1
there is always coalition C in C2 which meets an offer of at most 1

k from every
coalition in C1. Thus, even if we share C such that dv0(C) = 1 − (k − 1)α and
dv = α for every other v ∈ C, we still have an offer of ≤ 1

k versus α( 1+ε
kα ) = 1+ε

k
at every vertex C shares with some coalition of C1, that is, C destabilizes C1.
Hence the PoS is

k − 1
1+ε
kα

=
k − 1

(1+ε)(k−1)
k(k−1)α

ε→0−→ (k2 − k)α. ut

Remark. In reverse, there are instances where for PoS at most δ the required
α is at least δ

k2−k . Our algorithms compute a distribution scheme for α = δ
k2 .

We next consider deciding if a given α is small enough to allow for a distribu-
tion scheme with a core-stable coalition structure that obtains guaranteed total
profit. Equivalently, we consider finding the smallest α such that an α-bounded
distribution scheme yields a stable structure with a certain social welfare.

Theorem 2. It is NP-hard to decide whether for a given α > 0 and a given
value W > 0 there is an α-bounded distribution scheme that admits a core-stable
coalition structure S such that

∑
S∈S w(S) ≥ W . This holds even for instances

with k = 2.

Proof.
For the proof we will show a reduction of 3Sat and use only coalitions of size

2. Given a 3Sat formula with n variables x1, . . . , xn and m clauses C1, . . . , Cm,
where clause Cj contains the literals l1j , l2j and l3j , we have N = {xi, xi | i =
1 . . . n}∪{Cj,1,1, Cj,1,2, Cj,2,1, Cj,2,2, Cj,3,1, Cj,3,2 | j = 1 . . .m} and C = C1∪C2∪
C3 ∪ C4 where C1 = {{xi, xi} | i = 1 . . . n}, C2 = {{Cj,1,1, Cj,1,2}, {Cj,2,1, Cj,2,2},
{Cj,3,1, Cj,3,2} | j = 1 . . .m}, C3 = {{Cj,1,1, Cj,2,1}, {Cj,2,1, Cj,3,1}, {Cj,3,1, Cj,1,1} |
j = 1 . . .m} and C4 = {{Cj,1,1, l1j}, {Cj,2,1, l2j}, {Cj,3,1, l3j} | j = 1 . . .m}. For
the values we have w(S) = 10 for S ∈ C1, w(S) = 9 for S ∈ C2, w(S) = 100 for
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Fig. 1. Gadget for C = x ∨ y ∨ z

S ∈ C3 and w(S) = 11 for S ∈ C4. For α we choose 10
21 and we want to reach

a value of W = 10n + 109m. Note that each set Cj,1,1, Cj,2,1, Cj,3,1 allows one
coalition of value 100 and this coalition cannot be destabilized by any of the
smaller intersecting coalitions.

Assume that the 3Sat formula is satisfiable and consider some satisfying
assignment. For each coalition in C1 we offer the 1− α share of its value to the
player which represents the value of the variable in the satisfying assignment.
Further every coalition in C4 offers α of its value to its variable player. All
other coalitions are distributed equally and we chose S to be C1 as well as some
{Cj,i,1, Cj,i,2} with lij satisfied and the coalition between the two remaining Cj,·,1
players for every j = 1 . . . k. Then S has exactly value 10n+ 109m. Assume that
S is not core-stable, that is, there is some S ∈ C\S such that both players would
strictly prefer S. As C1 is fully in S S /∈ C1. If S would be of C2 then one of
the players Cj,·,1 of S would be in a coalition of C3 and offered 50 > w(S) from
there, so S /∈ C2. Further S /∈ C3 as again one of the players is in a coalition of C3
and thus offered the same from its coalition as from S. This leaves S ∈ C4. Now
if the player v which S shares with the coalition of C1 is part of the satisfying
assignment it is offered (1 − α)10 = 110

21 = αw(S) and thus does not want to
switch. If v is not in the satisfying assignment then player Cj,·,1 of S is in a
coalition of C3. Hence again no switch is desired.

Now assume we have a distribution which offers at least α of each coalition-
value to each included player and a core-stable coalition structure S of size
≥ 10n + 109m. At first we note that in every set Cj,1,1, Cj,2,1, Cj,3,1 two of the
players build a coalition as 100α > (1−α)w(S) for S ∈ C2∪C4. The sum of these
coalitions provides a value of 100m. Thus in each of these sets one player Cj,·,1
remains. Each coalition of C4 provides a value of 11 and there can be at most
min{2n,m} such coalitions in S. Further h coalitions of C4 rule out h of the m



possible coalitions of C2 (after placing the C3-coalitions) and
⌈
h
2

⌉
coalitions of C1.

Thus the value of a coalition structure which holds h coalitions of C4 has a value
of at most 11h+(m−h)9+(n−

⌈
h
2

⌉
)10+100m = 10n+109m+(

⌊
h
2

⌋
11−9h) <

10n+109m for h > 0. Then S must consist of all of C1, m coalitions of C2 and m
coalitions of C3 (one of each for each clause) to meet the value-limit. We observe
that α · w(S) = 110

21 = (1 − α)w(S′) but α · w(S) = 110
21 > 99

21 = (1 − α)w(S′′)
for every S ∈ C4, S′ ∈ C1 and S′′ ∈ C2. By assumption C can be stabilized with
a lower bound of α. Thus every coalition S of C4 which is not overlapping with
some coalition of S ∩C3 has to be stabilized via the overlapping S′ of C1 and for
this S′ has to offer 1−α of its value to the player of S leaving only α ·w(S′) for
the other player. Especially S′ cannot stabilize any C4-coalitions which overlap
with S′ through the other player. Now to each variable x we assign the value
of the player of {x, x} which gets offered the 1 − α share. If non of the players
gets offered that much, we just assign some value randomly. We know that for
every clause there is one coalition S ∈ C4 which is not intersecting with some
edge of S ∩C3. As S is stable, this coalition is stabilized by the 1−α share of its
intersecting variable-coalition, that is, the clause is fulfilled in our assignment.
Hence the formula is satisfiable. ut

Corollary 2. Given α > 0, it is NP-hard to decide the largest reachable social
welfare value by a core-stable solution under a α-bounded distribution scheme.

Corollary 3. Given W > 0, it is NP-hard to decide the value of the largest α
such that some α-bounded distribution scheme can stabilize at least one coalition
structure of value at least W .

Intuitively, finding the largest α gets easier when the coalition structure to be
stabilized is some social optimum given in advance. Sadly, for k > 2 we again
show NP-hardness of this problem. Conversely for k = 2 we will in Section 3
below provide an algorithm implementing this task in polynomial time under
mild additional constrains.

Theorem 3. Let k ≥ 3. Given an optimal coalition structure S∗, it is NP-hard
to decide whether for a given α there is an α-bounded distribution scheme such
that S∗ becomes core-stable. This even holds for instances with all coalitions of
size exactly k.

Proof. For the proof we will show a reduction of 3Sat and use only coalitions
of size k. Given a 3Sat formula with n variables x1, . . . , xn and m clauses
C1, . . . , Cm, where clause Cj contains the literals l1j , l2j and l3j , we have N =
N1 ∪ N2 where N1 = {xi, xi | i = 1 . . . n} and N2 = {axi,h | i = 1 . . . n, h =
1 . . . k−2}∪{aC,h | h = 1 . . . k−3} and C = C1∪C2 where C1 = {{xi, xi}∪{axi,h |
h = 1 . . . k − 2} | i = 1 . . . n} and C2 = {{l1j , l2j , l3j} ∪ {aC,h | h = 1 . . . k − 3} |
j = 1 . . .m}. The coalitions of C1 have value 1 and the coalitions of C2 have value
1.5. For S we have C1 which is an optimal coalition structure as for k > 3 every
coalition of C2 rules out all other coalitions of C2 (through the shared aC,h) as
well as 3 coalitions of C2 and thus is a decline and for k = 3 it is possible to



have more than one coalition of C2 in some matching but for h non-overlapping
coalitions of C2 we loose at least

⌈
3h
2

⌉
coalition of C1. Finally we set α = 2

2k+1 .
Assume that the 3Sat formula is satisfiable and consider some satisfying

assignment. We give a distribution scheme respecting α under which S is stable.
For each coalition in C1 we offer the 1− (k− 1)α share of its value to the player
which represents the value of the variable in the satisfying assignment and a α
share to each other player. For each coalition S in C2 we pick one fulfilled literal
and offer only α ·w(S) to the according player. The rest of the coalition’s value
is shared equally among the remaining players. Then S is stable as for every
coalition S of C2 there is some S′ ∈ C1 such that S′ offers (1− (k− 1)α)w(S′) =
1− (k − 1) 2

2k+1 = 3
2k+1 = α · w(S).

Now assume conversely that we have some α-bounded distribution d such
that S is stable. If S is stable there is at least one player v in every coalition
S ∈ C2 which does not want to switch to S. Obviously this player has to be in
some coalition of C in S, that is, S /∈ {aC,h | h = 1 . . . k − 3} | j = 1 . . .m}.
Thus v ∈ N1 and we know that 3

2k+1 = (1 − (k − 1)α)w(S′) ≥ dS′(v)w(S′) ≥
dS(v)w(S) ≥ 1.5 = α 3

2k+1 where S′ is the coalition of S including v. Hence
dS′(v) = 1 − (k − 1)α and dS(v) = α. Now for every S′ ∈ C1 there can be at
most one player receiving a 1− (k− 1)α-share. We assign the value of the player
v ∈ N1 ∩ S′, where S′ is the coalition belonging to xi, to xi if v receives the
1− (k − 1)α-share of S′. If no such v exists, we assign some value randomly to
xi. Then as S is stable for each coalition associated with a clause at least one
v ∈ N1 is picked, that is, our assignment satisfies all clauses. ut

3 Stable Matchings and Acyclic Alternating Paths

At first we note that if some matching M is not inclusion maximal, that is, can
be enlarged to a bigger matching by adding some edge, it cannot be stabilized
for any α > 0. In contrast, for α = 0 it is easy to see that every coalition
structure can be stabilized. Inclusion maximality can easily be tested, so we will
only deal with inclusion maximal matchings from now on. The matching case
is a subclass of coalition formation with k = 2. Hence, some properties from
Section 2 translate directly:

• The PoS and (as inclusion monotone profits always hold for matchings) the
PoA are bounded by 4α, and we can compute a suitable distribution scheme
in polynomial time. In particular, for α = 1

4 we can ensure a PoS and a PoA
of 1, while for α = 1

2 the PoS can go up to 2.
• For a given α and a given value W , it is NP-hard to decide whether there

is an α-bounded distribution scheme that admits a stable matching M with∑
e∈M w(e) ≥W .

• For a given α, it is NP-hard to decide the value of the best matching which
can be stabilized by some α-bounded distribution scheme.

• For a given W , it is NP-hard to decide the value of the largest α such that
some α-bounded distribution scheme can stabilize at least one matching of
value at least W .



The lower bounds on the PoS in terms of α given in Proposition 2 do not extend,
as they only hold for k > 2. However, the simple example of 4 players, a path
e1 = {1, 2}, e2 = {2, 3}, e3 = {3, 4} and profits w(e1) = w(e2) = 1 and w(e2) =
1−α+ε
α for some small enough ε > 0 already gives a lower bound of 2α

1−α which

coincides with the upper bound of 2 at the extreme point of α = 1
2 . Obviously e1

and e3 both can offer 1−α to the vertices of the inner edge, but need α 1−α+ε
α =

1− α+ ε > 1− α. This leads to a PoS of 2α
1−α+ε

ε→0−→ 2α
1−α .

For the remainder of this section, we will show improved results by restrict-
ing our attention to a subclass of matching instances, which we term acyclic
alternating. For defining this subclass we make the following observations.

Suppose we want to stabilize some matching M . Consider an edge e 6∈ M
which has a common endpoint v with some e′ ∈ M such that w(e) ≤ w(e′).
Such edge never is a blocking pair for M if we assign only αw(e) of e to v, as
at least αw(e′) ≥ αw(e) is offered to v by e′. Hence, for all following analyses
we will assume that the distribution schemes assign αw(e) of e to v for all edges
e ∈ E \M with w(e) ≤ w(e′) for some adjacent e′ ∈M with e∩e′ = {v} and not
handle them explicitly anymore. Instead, we only focus on the edges e ∈ E \M
for which all adjacent e′ ∈M have w(e′) < w(e). We call such edges dominating
and their adjacent matching edges dominated. We denote the subgraph of G
consisting of the dominating and dominated edges by Gd(M) and the set of
these edges by Ed(M). If every path in Gd(M) which alternates between M and
E \M is acyclic, we call Gd(M) acyclic alternating. We note that for optimal M ,
Gd(M) cannot contain any even cycles alternating between M and E \M as this
would contradict the optimality of M . An acyclic alternating Gd(M) resulting
from some optimal matching M allows us to show improved bounds.

Let us first note that the restriction to graphs with Gd(M) acyclic alternating
for some or even every optimal matching M is not a drastic cutback, as it covers
an interesting subclass of well-studied matching problems.

Proposition 3. Let M∗ be a maximum weight matching for a given graph G
and profits w. Then we have

{(G,w) | G bipartite}
({(G,w) | ∀M∗ : Gd(M

∗) is acyclic alternating}
({(G,w) | ∃M∗ : Gd(M

∗) is acyclic alternating}.

Proof. As for optimal matchings M∗ there are no even circles in Gd(M
∗) and

bipartite graphs have no odd circles both inclusions hold obviously.

For strictness of the first inclusion consider the graph G = ({1, 2, 3}, {e1 =
{1, 2}, e2 = {2, 3}, e3 = {3, 1}}) with values w(e1) = w(e2) = w(e3) = 1. While
G is not bipartite for all three optimal matchings M∗ (each consisting of one
edge) Gd(M

∗) is empty and thus acyclic alternating. For the second inclusion
consider G = ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {2, 4}, {3, 4}}) with values w({1, 2}) =
w({3, 4}) = 1 and w({2, 3}) = w({3, 4}) = 2. Then for M∗1 = {{1, 2}, {3, 4})
Gd(M

∗
1 ) is not acyclic alternating while for M∗2 = {{2, 3}}, Gd(M∗2 ) is. ut



Now we will see that the acyclic alternating property can actually help improving
the lower bound on α needed for a PoS of 1:

Theorem 4. For any optimal matching M∗ such that Gd(M
∗) is acyclic alter-

nating, there is an α-bounded distribution scheme that stabilizes M∗ with α = 1
3 ,

and this bound is tight. Given such an M∗, the distribution scheme can be com-
puted in polynomial time.

Proof. By definition of Gd(M
∗), any edge e = {u, v} ∈ Ed \M∗ must have a

matching edge on both sides, that is, there are e1, e2 ∈ M∗ with u ∈ e1 and
v ∈ e2 as otherwise M∗ ∪ {e} \ {e′ | e ∩ e′ 6= ∅} would actually improve social
welfare in contradiction to M∗ being optimal. Thus, every inclusion maximal
alternating path in Gd(M

∗) begins and ends with an edge of M∗. We call such
an alternating path in Gd(M

∗) dominated.
In this proof we will give a distribution scheme such that for every edge

e ∈ M we have d·(e) ∈ {1/3, 2/3}. For convenience, we will refer to an edge
{u, v} being oriented from u to v if and only if u receives a share of α = 1/3 and
v receives 1− α = 2/3.

First we will analyze a single path and then explain how to apply the resulting
possible distributions to multiple overlapping paths. We start with proving a
useful property for dominated paths. We call a path P = e1e2 . . . em of edges
conflicting if e1, em ∈M∗, w(e1) < 1

2w(e2), w(em) < 1
2w(em−1), and w(e2i−1) ≥

1
2w(e2i) ≤ w(e2i+1) for all i = 2, . . . , (m−12 − 1).

Proposition 4. There is no dominated path P in Gd(M
∗) which contains a

conflicting subpath.

Proof. Assume P conversely that a conflicting subpath P ′ = e1e2 . . . em exists.
Now, on the one hand we know that

1. w(e2)− w(e1) > w(e1),
2. w(e2i+2)− w(e2i+1) ≥ 0 for i = 1, . . . , (m−12 − 1), and

3.
∑m−1

2
i=0 w(e2i+1)−

∑m−1
2

i=1 w(e2i) ≥ 0 (because M∗ is optimal),

which provides

w(em)
3
≥

m−1
2 −1∑
i=0

w(e2i+1)−

m−1
2∑
i=1

w(e2i)

= w(e2)− w(e1) +

m−1
2 −1∑
i=1

w(e2i+2)− w(e2i+1)

1,2
> w(e1).

On the other hand we also have

1. w(em−1)− w(em) > w(em),



2. w(e2i)− w(e2i+1) ≥ 0 for i = 1, . . . , (m−12 − 1), and again

3.
∑m−1

2
i=0 w(e2i+1)−

∑m−1
2

i=1 w(e2i) ≥ 0,

which provides

w(e1)
3
≥

m−1
2∑
i=1

w(e2i+1)−

m−1
2∑
i=1

w(e2i)

= w(em−1)− w(em) +

m−1
2 −2∑
i=0

w(e2i+2)− w(e2i+1)

1,2
> w(em).

Thus, we have w(em) > w(e1) > w(em), that is, no subpath P ′ with the named
properties can exist in P . ut

We will now show how to find a distribution scheme for a single dominated
path P such that M∗ ∩ P is core-stable regarding P . Let P = v1v2 . . . vm =
e1e2 . . . em−1, v1 . . . vm ∈ V , e1 . . . em−1 ∈ E, be a dominated path. Then there
is some jr and some jl such that w(e2i−1) ≥ 1

2w(e2i) for i < jr and either
w(e2jr−1) < 1

2w(e2jr ) or 2jr > m, and w(e2i+1) ≥ 1
2w(e2i) for i > jl and either

w(e2jl+1) < 1
2w(e2jl) or jl = 0. We call jl and jr the bounds of P .

We claim that jl ≤ jr. Assume conversely that jr < jl. Then P holds the sub-
path P ′ = e2jr−1 . . . e2j2+1 with w(e2jr−1) < 1

2w(e2jr ), w(e2j2+1) < 1
2w(e2j2),

and w(e2i−1) ≥ 1
2w(e2i) ≤ w(e2i+1) for all i = jr + 1 . . . jl − 1. By Proposition 4

such a subpath cannot exist in P . Thus jl ≤ jr and the bounds describe a feasible
interval e2jl . . . e2jr of P . We call this interval the variable part of P .

For every 2jl ≤ k ≤ 2jr, consider the distribution scheme dP,k which shares
the edges of P such that ei is oriented form vi to vi+1 for i < k and ei from
vi+1 to vi for i ≥ k. dP,k is a scheme with ”inward pointing” orientation which
switches orientation at position k. We will show that every such distribution
scheme stabilizes P ∩M∗ regarding P . Consider such a scheme and some e ∈
P \M∗. If e = ei with i < k, vi is offered an α-share of w(ei) but an (1 − α)-
share from w(ei−1). As i < k ≤ 2jr we know that w(ei−1) ≥ 1

2w(ei), that is,
(1−α)w(ei−1) = 2

3w(ei−1) ≥ 1
3w(ei) = αw(ei). Thus, there is no incentive for vi

to switch from ei−1 ∈M∗ to ei = e and e is non-blocking. Similarly, if e = ei with
i ≥ k, vi+1 is offered an α-share of w(ei) and an (1 − α)-share from w(ei+1).
As i ≥ k ≥ 2jl we know that w(ei+1) ≥ 1

2w(ei), that is, (1 − α)w(ei+1) =
2
3w(ei+1) ≥ 1

3w(ei) = αw(ei). Thus, there is no incentive for vi to switch from
ei+1 ∈M∗ to ei = e.

Subsequently, we will analyze Algorithm 3 and prove that it provides a 1/3-
bounded distribution scheme for all edges of G which stabilizes M∗. Observe that
this algorithm does not necessarily run in polynomial time. It merely serves as
a formalization of the existence argument. For computing distribution schemes
with maximal α in polynomial time, we refer the reader to Theorem 5 below.



Algorithm 3: Distribution scheme using only 1
3 \

2
3 shares

Data: Instance (G,w), social optimum M∗

1 set F = E;
2 foreach e ∈ E \M∗ do
3 if ∃e′ ∈M∗: w(e) ≤ w(e′) and e ∩ e′ = {u} then
4 orient e away from u;
5 set F = F \ {e};
6 foreach P = v1v2 . . . vm = e1e2 . . . em−1 dominated path in Gd(M

∗) do
7 find the bounds jl and jr for P ;
8 foreach i < 2jl do
9 orient ei from vi to vi+1;

10 set F = F \ {ei};
11 foreach i > 2jr do
12 orient ei from vi+1 to vi;
13 set F = F \ {ei};
14 while F 6= ∅ do
15 choose e = {u, v} ∈ F ;
16 orient e from u to v;
17 call Propagate(e, u, F );
18 call Propagate(e, v, F );

The algorithm works as follows. At first, in the loop starting at Line 2, we
take care of all edges in E \ Ed(M∗). Each of those edges shares an endpoint
with a matching edge of equal or larger value. We can easily ensure non-blocking
status by orienting the edge away from one endpoint incident to a higher-valued
matching edge. Next, in the loop starting at Line 6, for every dominated path
we orient edges outside the variable part using ”inward pointing” as above. We
need to show that for each edge e, although we might handle it repeatedly due
to overlapping dominated paths, all these paths result in the same orientation.
Assume for contradiction that there are two dominated paths P = v1 . . . vm =
e1 . . . em−1 and P ′ = v′1 . . . v

′
m′ = e′1 . . . e

′
m′−1 and an edge e = {u, v} such that

P induces an orientation of e from u to v while P induces an orientation from
v to u. Let jl and jr be the the bounds of P and j′l and j′r the bounds of P ′.
Then e = ei with i < 2jl or i > 2jr and e = e′i′ with i′ < 2j′l or i > 2j′r. We only
discuss the case that i < 2jl and i′ < 2j′l as all other cases are similar. Consider
the path P ′′ = em−1em−2 . . . eiei′+1 . . . e

′
m′ and note that ei = ei′ . The fact that

i < 2jl, i
′ < 2j′l , and the orientations given by P and P ′ are contradictory tells

us that in P we have u = vi and v = vi+1 while in P ′ we have u = v′i′+1 and
v = v′i′ . Thus P ′′ is again a dominated path. Then for P ′′ again we have bounds
j′′l and j′′r . Now applying the definition to P ′′ it turns out that the position of 2j′′r
coincides with the position of 2jl in the P -part and the position of 2j′′l coincides
with the position of 2j′l in P ′. But then j′′r < j′′l which was already proven to be
impossible.

Further, let us observe that once the algorithm reaches Line 14, there is no
dominated path P = v1 . . . vm = e1 . . . em−1 and indices i1 < i2 < i3 such



Algorithm 4: Propagate

Data: edge e, vertex u, set of undetermined edges F
1 if e ∈M∗ then
2 foreach e′ = {u, v′} ∈ F \M∗ do
3 orient e′ from v′ to u;
4 set F = F \ {e′};
5 call Propagate(e′, v′, F );

6 else
7 foreach e′ = {u, v′} ∈ F ∩M∗ do
8 orient e′ from v′ to u;
9 set F = F \ {e′};

10 call Propagate(e′, v′, F );

that ei1 and ei3 are oriented in the same direction (either ei1 from vi1 to vi1+1

and ei3 from vi3 to vi3+1 or ei1 from vi1+1 to vi1 and ei3 from vi3+1 to vi3)
but ei2 ∈ F . Put differently, ei2 has no orientation yet, or ei2 is oriented in
the opposite direction. Assume for contradiction that there is such path P and
indices i1 < i2 < i3. We will consider the case that ei1 is oriented from vi1 to vi1+1

and ei3 from vi3 to vi3+1. The other case works similarly. As ei3 was not oriented
when P was considered, there must be some path P ′ = v′1 . . . v

′
m′ = e′1 . . . e

′
m′−1

which shares ei3 with P , say ei3 = {vi3 , vi3+1} = {v′i′ , v′i′+1} = e′i′ (assuming
that the vertices in P ′ are labeled such that P and P ′ are both increasing in
the same direction on ei3). Let jl and jr denote the bounds of P and j′l and
j′r denote the bounds of P ′. As ei2 is not oriented by P , we know that 2jl <
i2 < 2jr and, as ei3 is oriented from v′i′ to v′i′+1, we know that i′ < j′l . Consider
P ′′ = v1 . . . vi2v

′
i′+1 . . . v

′
m′ , where vi2 = v′i′ . Now P ′′ again is a dominated path

and further the bound j′′l of P ′′ coincides with j′l of P ′. But P ′′ was considered
in Line 6 as well and caused the orientation of all edges outside of its variable
part between j′′l and j′′r . In particular, P ′′ caused the orientation of ei2 , and
ei2 is oriented in the same direction as ei1 and ei3 . Note, that this means that
at Line 14 for every dominated path P the part P ∩ F of unoriented edges is
connected.

Now we come to the final part starting at Line 14, where we orient the
intersection of variable parts of all paths. Intuitively, in this part we can sim-
ply pick a random edge, which is not oriented yet, and choose its v-vertex as
the position where the switch of orientation should take place. Then, using the
Propagate subroutine outlined in Algorithm4 we ensure that for every dominated
path which includes v the remaining unoriented edges get consistently oriented
(towards v). Thus for each dominated path we obtain a distribution scheme as
discussed above, that is, the non-matching edges in each path are non-blocking.
Together with the edges in G \ Gd(M∗) that were already handled in the first
loop, we thus have ensured that all non-matching edges are non-blocking. Hence
M∗ is stable.



To show tightness, we consider the following simple path, in which any value
α > 1

3 will fail to stabilize the unique M∗.

1 2 3 4
1 2− ε 1

Let α > 1
3 and 0 < ε < 3α−1

α . Then, the unique M∗ consisting of {1, 2} and {3, 4}
cannot be stabilized as 1− α = 2α− (3α− 1) = α(2− 3α−1

α ) < α(2− ε). ut

Note that this bound gives a real improvement compared to graphs without
acyclic alternating structure:

Proposition 5. There are matching games where a PoS of 1 requires α = 1−√
1
2 ≈ 0.2929 < 1

3 .

Proof.

1 2

3

4

z

x

1

x

We consider the example above resulting in an upper bound of α = 1 −
√

1
2 ≈

0.2929. Let N = {1, 2, 3, 4}, C = {{1, 2}, {2, 3}, {2, 4}, {3, 4} with w({1, 2}) = z,
w({2, 3}) = w({2, 4}) = x and w({3, 4}) = 1. In this small example assuming
that S = {{1, 2}, {3, 4}} is the social optimum the best strategy on {3, 4} is
obliviously to give 1

2 to each side. Let α be the lower bound on the share each
player should at least get. Then {1, 2} will be shared such that 1 gets αz and 2
gets (1 − α)z as 1 as no option to switch while 2 might get tempted by the x
coalitions. We know that 1+z > x and further need either 1

2 ≥ αx or (1−α)z ≥
αx. The most extreme α we can derive for these constrains is α = 1 −

√
1
2 for

x = 1

2−2
√

1
2

and z = 1

2
√

1
2

. ut

In Section 2 we observed NP-hardness of deciding whether a given α suffices to
stabilize some optimal matching. Using the acyclic alternating property, we can
optimize α to stabilize arbitrary matchings. Hence, this property helps not only
in stabilizing optimal but any given inclusion maximal matching with optimal
α.

Theorem 5. Given a matching M such that Gd(M) is acyclic alternating and
some α ∈

[
0, 12
]
, we can decide in polynomial time if there is an α-bounded

distribution scheme stabilizing M .



Algorithm 5: Computing a Distribution Scheme for M

Data: Instance (G,w), matching M , bound α
1 set S = E;
2 foreach e ∈ E \M do
3 if ∃e′ ∈M : e ∩ e′ = {u} and w(e) ≤ w(e′) then
4 share e such that αw(e) is offered to u;
5 set S = S \ {e};
6 foreach e = {u, v} ∈M do
7 set su = αw(e), sv = αw(e) and reste = (1− 2α)w(e);
8 while S 6= ∅ do
9 if ∃e = {u, v} ∈M : u /∈ e′∀e′ ∈ S \ {e} then

10 set sv = sv + reste and reste = 0;
11 share e such that su is offered to u and sv is offered to v;
12 set S = S \ {e};
13 foreach e′ ∈ S with e′ ∩ e = {v} do
14 if sv ≥ αw(e′) then
15 share e′ such that αw(e′) is offered to v;
16 set S = S \ {e′};
17 if ∃e = {u, v} ∈ E \M : u /∈ e′∀e′ ∈ S ∩M then
18 if ∃e′ ∈ S ∩M : v ∈ e′ and sv + reste′ ≥ αw(e) then
19 if sv < αw(e) then
20 set sv = αw(e) and reste′ = reste′ − (αw(e)− sv);
21 share e such that αw(e) is offered to v;
22 set S = S \ {e};
23 else
24 return ’M cannot be stabilized with lower bound α’;

Proof. We have already seen how to find a distribution scheme for α ≤ 1
3 in

Theorem 4. Here we will treat the slightly more general approach as shown in
Algorithm 5. We first describe the intuitive idea behind the algorithm. The main
idea of the algorithm for Gd(M) is using that in every round there is an edge
for which the profit of one agent is already determined by the algorithm. In
particular, for e ∈ M there are only edges e′ 6∈ M on one side that we have to
make non-blocking and for e ∈ Ed(M) \M there is only one e′ ∈M left on one
side which can be used to make e non-blocking. This property is due to the fact
that no alternating path in Gd(M) contains a cycle. Deciding the distribution
for e ∈ Ed(M) \M is easy. We give the smallest possible value αw(e) to the
side where an edge e′ ∈ M is supposed to ensure non-blocking status of e. In
contrast, for matching edges e ∈ M we have to be more careful. We start by
giving each side only the minimal portion of αw(e) and keep the rest as buffer.
Now every time we encounter an e′ ∈ Ed(M) \M which can only be stabilized
by e, we raise the share on that side just as much as needed using up some of
the buffer. If such e′ are left only on one side, we can push all the remaining
buffer to that side and check whether (some of) the e′ become non-blocking by
this assignment.



More formally consider the execution of Algorithm 5. At first we show that
we will not get stuck in the while-loop, that is, in every execution of the loop at
least one edge is removed from S (or we find out that M cannot be stabilized and
stop). Assume conversely that although S 6= ∅, there neither is a matching edge
with no adjacent edges at one side nor a non matching edge with no adjacent
matching edge at one side. Then S contains a cycle which alternates between
matching and non matching edges in contradiction to the properties of Gd(M).

Next we will see that, if the algorithm does not terminate early, the final
output is an α-bounded distribution scheme which stabilizes M . Every edge e of
E \M is shared (αw(e), (1− α)w(e)) and every edge e = {u, v} in M is shared
according to (su, sv) which is a valid distribution as throughout the algorithm
su+sv+reste = w(e), where the buffer reste = 0 in the end. Obviously we never
exceed nor undercut the value of an edge. Further, su and sv start at αw(e) and
increase monotonically. Thus, our distribution respects the lower bound of α.
We claim that every e ∈ Ed(M)\M that is dropped from S is already stabilized
by an offer according to the current value su of some incident agent u. Then,
with S empty in the end and all matching edges shared according to the su-
values (that increase over the run of the algorithm) M is indeed stable. If e has
been removed at Line 5, the agent (denoted u) to which αw(e) is offered will
get at least as much from its incident matching edge e′. If e has been removed
at Line 16, it is stabilized by the matching edge which is removed along with
it. Further, each edge removed at Line 22 is stabilized as well, as the sv-value is
adjusted to be large enough if it has not been before. Hence M is stable under
the given distribution.

Now assume that the algorithm terminates early declaring that M cannot
be stabilized. Obviously, at the point where this decision is made, the currently
examined edge e ∈ Ed(M) \M cannot be made non-blocking anymore, because
either the incident matching edges where fully shared and removed already with-
out the share being large enough to make e non-blocking and delete it from S
(Line 16) or the current offer combined with the remaining buffer of the inci-
dent matching edge is smaller than αw(e). Thus, we have to show that we did
not offer a bigger share than needed to the other side earlier. In the beginning
each sv is set to αw(e) where e is the matching edge containing v, so nothing
is wasted. Now there are only two points where sv is enlarged. If sv is changed
in Line 10, we already know there are only edges on the side of v which re-
main to be stabilized, as we have seen above that every dropped edge is already
stabilized. Thus by giving the rest of the buffer to v we waste nothing for the
other side. The other time sv is changed is at Line 20 where it is enlarged to
meet the minimal possible offer of the currently examined non matching edge
e = {u, v}. Now e has been picked because there is no matching edge left on one
side of it, that is, either u is not matched in M , then e has to be stabilized at v
and thus it is necessary to rise sv, or the matching edge of u is already deleted
from S. But when deleting a matching edge we always ensure to delete all non
matching edges which get stabilized by the matching edge as well. Hence, again
it is necessary to stabilize e at v, and the algorithm only terminates early, if it



is not possible to stabilize M while respecting the α-bound. Together with the
fact that the algorithm provides an α-bounded distribution scheme under which
M is stable, if it terminates with S = ∅, this proves the theorem. ut

Proposition 6. Suppose we are given a matching M and an α-bounded dis-
tribution scheme with maximal α stabilizing M . There are at most |E|3 many
relevant values for such a maximal α, each computable in polynomial time. This
holds even if Gd(M) is not acyclic alternating.

Proof. Consider some edge e = {u, v} ∈ M and let Le = {e′|u ∈ e′ ∈ E \
M,w(e′) > w(e)} ∪ {ea} and Re = {e′|v ∈ e′ ∈ E \M,w(e′) > w(e)} ∪ {ea}
where we assume ea to be some auxiliary edge of value w(ea) = w(e). Now let
e1 ∈ Le be the edge of highest value in Le which has to be put to non-blocking
status by e and, similarly, e2 ∈ Re be the edge of highest value in Re which has
to be put to non-blocking status by e. If on some side there are no edges which
have to be handled, we choose ea to ensure an offer of α. Now the largest α which
allows e putting both e1 and e2 (and all smaller edges on the respective sides)
to non-blocking fulfills exactly w(e) = αw(e1) + αw(e2). As |M |, |Le| and |Re|
are all of size at most |E|, the number of different such α-values arising from M
is limited by |E|3. We claim that the maximum α for an α-bounded distribution
scheme stabilizing M must be among these candidate values. Assume conversely
the optimal α∗ does not fulfill the equation w(e) = α∗w(e1) + α∗w(e2) for any
e ∈ M , e1 ∈ Le, e2 ∈ Re. Now consider some α∗-bounded distribution scheme
d which stabilizes M . For each e ∈ M let e∗1 be the worthiest edge of Le which
is non-blocking and e∗2 the worthiest edge of Re which is non-blocking because
of e under d. We know that α∗w(e∗1) + α∗w(e∗2) � w(e) for every e ∈ M . Let
α+ = min{α | αw(e∗1) +αw(e∗2) = w(e) for some e ∈M}. Then α+ > α∗ and we
can stabilize M with an α+-bounded distribution scheme in the following way.
We share each edge e′ in E \M such that α+ is offered to (one of) the matching
edge which ensures non-blocking status for e′ in d, and we share each e ∈ M
such that du(e)w(e) ≥ α+w(e∗1) and dv(e)w(e) ≥ α+w(e∗2) for its respective e∗1
and e∗2. This contradicts maximality of α∗ and completes the proof. ut

Corollary 4. Given a matching M such that Gd(M) is acyclic alternating, we
can in polynomial time find the maximal bound α for which M can be stabilized
as well as suiting distribution scheme.

Observe that for general matching games, the relevant α-values can be bounded
and computed in the same way, even if Gd(M) is not acyclic alternating. How-
ever, in general it is not clear how to use this information to construct an optimal
distribution scheme, as it remains to decide which matching edges have to sta-
bilize which non-matching edges within cycles.

The characterization for the number of candidate values for optimal α can
be directly generalized to larger coalitions using the same arguments. However,
we have already seen in Theorem 3 that even the knowledge of the optimal value
for α does not help in finding a stabilizing distribution scheme efficiently.
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