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This paper studies the effects of altruism, a phenomenon widely observed in practice, in the model of atomic
congestion games. Altruistic behavior is modeled by a linear trade-off between selfish and social objectives.
Our model can be embedded in the framework of congestion games with player-specific latency functions.
Stable states are the pure Nash equilibria of these games, and we examine their existence and the conver-
gence of sequential best-response dynamics. In general, pure Nash equilibria are often absent and existence
is NP-hard to decide. Perhaps surprisingly, if all delay functions are affine, the games remain potential
games even when agents are arbitrarily altruistic. The construction underlying this result can be extended
to a class of general potential games and social cost functions, and we study a number of prominent exam-
ples. These results give important insights into the robustness of multi-agent systems with heterogeneous
altruistic incentives. Furthermore, they yield a general technique to prove that stabilization is robust even
with partly altruistic agents, which is of independent interest.

In addition to these results for uncoordinated dynamics, we consider a scenario with a central altruistic
institution that can set incentives for the agents. We provide constructive and hardness results for finding
the minimum number of altruists to stabilize an optimal congestion profile and more general mechanisms
to incentivize agents to adopt favorable behavior. These results are closely related to Stackelberg routing
and answer open questions raised recently in the literature.
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1. INTRODUCTION
The study of algorithmic issues in systems with interacting rational agents has fo-
cused on models for a variety of important applications in the Internet, in traffic or so-
cial networks. A fundamental assumption in the analytical models, however, is that all
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1:2 M. Hoefer and A. Skopalik

agents are selfish. Their goals are restricted to optimizing their direct personal benefit,
e.g. their personal delay in a routing game. The assumption of selfishness in the prefer-
ences of agents is found in the vast majority of present work on algorithmic aspects of
economic problems in large networks. However, this assumption has been repeatedly
questioned by economists and psychologists. In experiments it has been observed that
participant behavior can be quite complex and contradictory to selfishness [Ledyard
1997; Levine 1998]. Various explanations have been given for this phenomenon, e.g.,
senses of fairness [Fehr and Schmidt 1999], reciprocity among agents [Gintis et al.
2005], or spite and altruism [Levine 1998; Eshel et al. 1998].

Prominent developments in the Internet like Wikipedia, open source software devel-
opment, or Web 2.0 applications involve or explicitly rely on voluntary participation
and contributions towards a joint project without direct personal benefit. These exam-
ples display forms of altruism, in which agents accept certain personal burdens (e.g., by
investing time, attention, and money) to improve a common outcome. While malicious
behavior has been considered recently for instance in nonatomic routing [Karakostas
and Viglas 2007; Babaioff et al. 2009; Chen and Kempe 2008], virus inoculation [Mosci-
broda et al. 2009], or Bayesian congestion games [Gairing 2008], a deeper analysis of
the effects of altruistic agents on competitive dynamics in algorithmic game theory is
only starting to evolve.

We consider and analyze a model of altruism inspired by Ledyard [1997, p. 154],
and studied for non-atomic routing games by Chen and Kempe [2008]. Each agent i
is assumed to be partly selfish and partly altruistic. Her incentive is to optimize a
linear combination of personal cost and social cost, given by the sum of cost values of
all agents. The strength of altruism of each agent i is captured by her altruism level
βi ∈ [0, 1], where βi = 0 results in a purely selfish and βi = 1 in a purely altruistic
agent.

Chen and Kempe [2008] proved that in non-atomic routing games Nash equilibria
are always guaranteed to exist, even for partially spiteful users, and analyzed the
price of anarchy for parallel link networks. More recently, Chen et al. [2011] and Cara-
giannis et al. [2010] considered the price of anarchy in several classes of games with
altruists. In our paper, we conduct the first study of the existence and complexity of
equilibrium concepts with altruistic agents in atomic congestion games, a well-studied
model for resource sharing. A standard congestion game is given by a set N of myopic
selfish users and a set E of resources. Each resource e has a non-decreasing delay func-
tion de. Every agent i can pick a strategy Si from a set of possible strategies Si ⊆ 2E ,
which means she allocates the set Si of resources (e.g. a path in a network). She then
experiences a delay corresponding to the total delay on all resources in Si, which in
turn depends on the number of agents that allocate each resource. Each agent strives
to pick a strategy minimizing her experienced delay. A stable state in such a game is
a pure Nash equilibrium, in which each agent picks exactly one strategy, and no agent
can decrease her delay by unilaterally changing her strategy. The study of congestion
games received a lot of attention in recent years, mostly because of the intuitive for-
mulation and their appealing analytical properties. In particular, they always possess
a pure Nash equilibrium and every sequential better-response dynamics converges to
one such equilibrium.

As one might expect, the presence of altruists can significantly alter the convergence
and existence guarantees of pure Nash equilibria in congestion games. After a formal
definition of congestion games with altruists in Section 2, we concentrate on pure equi-
libria and leave a study of mixed Nash equilibria for future work. Our results are as
follows.

It is a simple exercise to observe that even in a singleton game, in which each strat-
egy consists of a single resource, and for agents with symmetric strategy spaces, where
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each agent has the same set of strategies, a pure Nash equilibrium can be absent. This
is the case even for pure altruists and egoists, i.e. a population of agents which are
either purely altruistic or purely selfish and their βi ∈ {0, 1}. However, we show in
Section 3 that such games admit a polynomial time algorithm to decide the existence
problem. Furthermore, our algorithm can be adapted to compute the Nash equilibrium
with best and worst social cost if it exists, for any agent population with a constant
number of different altruism levels.

For slightly more general asymmetric singleton games, in which strategy spaces of
agents differ, we show in Section 3 that deciding the existence of pure Nash equilibria
becomes NP-hard. Nevertheless, for the important subclass of convex delay functions,
i.e., linear and superlinear functions, previous results [Milchtaich 1996; Ackermann
et al. 2009] imply that for any agent population a pure Nash equilibrium exists and
can be obtained in polynomial time. In contrast, we show in Section 4.1 that convex-
ity of delay functions is not sufficient for more general games. In particular, even for
symmetric network games, in which strategies represent paths through a network,
quadratic delay functions and pure altruists, pure Nash equilibria can be absent and
deciding their existence is NP-hard.

Perhaps surprisingly, if all delay functions are affine with de(x) = aex + be, then
there is a potential function. Thus, for every agent population pure Nash equilibria
exist and better-response dynamics converges. We present this result in Section 4.2 in
the form of a characterization for more general potential games. We outline a class of
games and social cost functions that guarantee the existence of a potential function
even upon introduction of altruists. As examples of such games we briefly study local
interaction games and selfish scheduling with a Time-Sharing coordination mecha-
nism. In Section 4.3 we extend to weighted congestion games and show that even for
parallel links, identical delays de(x) = x and pure altruists, pure Nash equilibria can
again be absent and deciding their existence is NP-hard. If, however, we consider social
cost as the weighted sum of cost values for all agents, then these games again are part
of our class, and existence and convergence are guaranteed.

In addition to these results for uncoordinated dynamics, in Section 5 we consider
a slightly more coordinated scenario, in which there is a central institution striving
to obtain a good outcome. An obvious way to induce favorable behavior is to convince
agents to act altruistically. In this context a natural question is how many altruists are
required to stabilize a social optimum. This has been considered under the name “price
of optimum” in [Kaporis and Spirakis 2009] for Stackelberg routing in nonatomic con-
gestion games. As a Nash equilibrium in atomic games is not necessarily unique, we
obtain two measures - an optimal stability threshold, which is the minimum number
of altruists such that there is any optimal Nash equilibrium, and an optimal anar-
chy threshold, which asks for the minimum number of altruists such that every Nash
equilibrium is optimal. For symmetric singleton games, we adapt our algorithm for
computing Nash equilibria to determine both thresholds in polynomial time.

In our model the optimal anarchy threshold might not be well-defined even for sin-
gleton games. If all agents are altruists, there are suboptimal local optima in sym-
metric games with concave delays, or in asymmetric games with linear delays. Hence,
even by making all agents altruists, the worst Nash equilibrium sometimes remains
suboptimal. In contrast, we adapt the idea of the optimal stability threshold to a very
general scenario, in which we can find a stable state with a given, not necessarily op-
timal, congestion profile. Each agent has a personalized stability cost for accepting a
strategy under the given congestions. We provide an incentive compatible mechanism
to determine an allocation of agents to strategies with minimum total stability cost.
Unfortunately, such a general result is restricted to the case of singleton games. Even
for symmetric network games on series-parallel graphs, we show that the problem of
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determining the optimal stability threshold is NP-hard. Our reduction also yields inap-
proximability within any finite factor. This resolves an open problem raised by Kaporis
and Spirakis [2008] on computing the “price of optimum” in atomic congestion games.

2. MODEL AND INITIAL RESULTS
A congestion game with altruists G is given by a set N of n agents and a set E of
m resources. Each agent i has a set Si ⊆ 2E of strategies. In a singleton congestion
game each agent has only singleton strategies Si ⊆ E. A vector of strategies S =
(S1, . . . , Sn) is called a state. Each agent i has a personal weight wi. We call a game
unweighted if w1 = . . . = wn = 1, and weighted otherwise. We consider weighted
games only in Section 4.3. For brevity we use the term congestion game to refer to
the unweighted version throughout and explicitly mention when weighted games are
under consideration.

For a state we denote by ne =
∑
i:e∈Si

wi the congestion, i.e. the total weight of
agents using a resource e in their strategy. Each resource e has a latency or delay func-
tion de(ne), and the delay for an agent i playing Si in state S is di(S) =

∑
e∈Si

de(ne).
The social cost of a state is the total delay of all agents c(S) =

∑
i∈N

∑
e∈Si

de(ne) =∑
e∈E nede(ne). Each agent i has an altruism level of βi ∈ [0, 1], and her individual cost

is ci(S) = βic(S) + (1 − βi)di(S). We call an agent i an egoist if βi = 0 and a βi-altruist
otherwise. A (pure) altruist has βi = 1, a (pure) egoist has βi = 0. A game G with only
pure altruists and egoists is a game, in which βi ∈ {0, 1} for all i ∈ N . A game G is
said to have β-uniform altruists if βi = β ∈ [0, 1] for every agent i ∈ N . A (pure) Nash
equilibrium is a state S, in which no agent i can decrease her individual cost by uni-
laterally changing her strategy. We exclusively consider pure Nash equilibria in this
paper.

With the exception of Section 4.3 we consider unweighted congestion games. If all
agents are egoists, such ordinary (unweighted) congestion games have an exact po-
tential function Φ(S) =

∑
e∈E

∑ne

x=1 de(x) [Rosenthal 1973]. Thus, existence of Nash
equilibria and convergence of iterative better-response dynamics are guaranteed. Ob-
viously, if all agents are altruists, pure Nash equilibria correspond to local optima of
the social cost function cwith respect to a local neighborhood consisting of single player
strategy changes. Hence, existence and convergence are also guaranteed. This directly
implies the same properties for β-uniform games, in which an exact potential function
is Φβ(S) = (1− β)Φ(S) + βc(S).

In general, however, pure Nash equilibria might not exist.

PROPOSITION 2.1. There are symmetric singleton congestion games with only pure
altruists and egoists without a pure Nash equilibrium.

Example 2.2. Consider a game with two resources e and f , three egoists and one
(pure) altruist. The delay functions are de(x) = df (x) with de(1) = 4, de(2) = 8, de(3) =
9, and de(4) = 11. Then, in equilibrium each resource must be allocated by at least one
egoist. In case there are two agents on each resource, the social cost is 32. In this case
the altruist is motivated to change as the resulting cost is 31. In that case, however,
one of the egoists on the resource with congestion 3 has an incentive to change. Thus,
no pure Nash equilibrium will evolve.

Our interest is thus to characterize the games that have pure Nash equilibria. To-
wards this end we observe that an altruistic congestion game can be cast as a con-
gestion game with player-specific latency functions [Milchtaich 1996]. In such a game
the delay of resource e to agent i depends on the congestion and on the agent, i.e.,
ci(S) =

∑
e∈Si

de(ne, i).

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1, Publication date: January 1.



Altruism in Atomic Congestion Games 1:5

PROPOSITION 2.3. A congestion game with altruists is a player-specific congestion
game.

PROOF. To embed our games within the framework of player-specific congestion
games, we first consider a game with only pure altruists and egoists. An altruist moves
from Si to S′i if the decrease in total delay nede(ne) on the resources e ∈ Si − S′i she is
leaving exceeds the increase on resources e ∈ S′i − Si she is migrating to. Hence, al-
truists can be seen as myopic selfish agents with ci(S) = d′i(S) =

∑
e∈Si

d′e(ne) with
d′e(ne) = nede(ne)− (ne − 1)de(ne − 1), for ne > 0. We set d′e(0) = 0. This implies the re-
sult for games with pure altruists and egoists. Naturally, a βi-altruist corresponds to a
selfish agent with player-specific function ci(S) = (1− βi)di(S) + βid

′
i(S). Thus, conges-

tion games with altruists can be embedded into the class of player-specific congestion
games.

For some classes of player-specific congestion games it is known that pure Nash
equilibria always exist. In particular, for games in which all individual delay functions
are monotone and in which the strategy space of each agent is a matroid, existence and
polynomial-time computation of a pure Nash equilibrium is guaranteed [Ackermann
et al. 2009]. Non-existence in Example 2.2 is due to the fact that the individual delay
function for the altruist is not monotone. Monotonicity holds, in particular, if delay
functions are convex, which yields the following corollary.

COROLLARY 2.4. [Milchtaich 1996; Ackermann et al. 2009] For any matroid con-
gestion game with altruists and convex delay functions a pure Nash equilibrium exists
and can be computed in polynomial time.

3. SINGLETON CONGESTION GAMES
In the previous section we have seen that there are symmetric singleton congestion
games with only pure altruists and egoists with and without pure Nash equilibria. For
this class of games we can decide the existence of Nash equilibria in polynomial time.
In addition, we can compute a Nash equilibrium with minimum and maximum social
cost if they exist.

THEOREM 3.1. For symmetric singleton games with only pure altruists and egoists
there is a polynomial time algorithm to decide if a pure Nash equilibrium exists and to
compute the best and the worst Nash equilibrium.

PROOF. We first tackle the existence problem and present an approach similar
to [Ieong et al. 2005] based on dynamic programming. The main idea is to reduce
the Nash equilibrium property to a constant number of constraints on the congestion
values of the machines. These constraints concern the maximum delay of any machine
and the minimum delay that an additional altruist or egoist would experience if he ar-
rives on any machine. For each of the polynomially many combinations of these values,
we make use of symmetry and implicitly enumerate all allocations that can be a Nash
equilibrium. Furthermore, using the social cost to guide the recursion, we are able to
find the best and worst Nash equilibria.

Suppose we are given a game G with the set N0 of n0 egoists and the set N1 of
n1 = n − n0 altruists. For a state S consider the set of resources E0 =

⋃
i∈N0

Si on
which at least one egoist is located. The maximum delay of any resource on which an
egoist is located is denoted dmax0 = maxe∈E0

de(ne) and minimum delay of any resource
if an additional agent is added dmin+

0 = mine∈E de(ne + 1). Similarly, consider the set of
resources E1 =

⋃
i∈N1

Si. The maximum altruistic delay of any resource, on which an
altruist is located, is denoted dmax1 = maxe∈E1

d′e(ne) and the minimum altruistic delay
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1:6 M. Hoefer and A. Skopalik

of any resource dmin+
1 = mine∈E d

′
e(ne + 1). A state is a Nash equilibrium if and only if

dmax0 ≤ dmin+
0 and dmax1 ≤ dmin+

1 . (1)

This condition yields a separation property. Consider a Nash equilibrium, in which
nE′,0 egoists and nE′,1 altruists are located on a subset E′ ⊂ E of resources. The Nash
equilibrium respects the inequalities above for certain values dmax0/1 and dmin+

0/1 . Note
that it is possible to completely change the assignment of agents in E′. If the new
assignment respects the inequalities for the same values, it can be combined with the
assignment on E − E′ and again a Nash equilibrium evolves.

This property suggests the following approach to search for an equilibrium. Suppose
the values for dmax0/1 and dmin+

0/1 are given. Our algorithm adds resources e one by one
and tests the possible numbers of egoists and altruists that can be assigned to e. Sup-
pose we have processed the resources from a subset E′ and have found the numbers of
altruists and egoists, for which there is an assignment to resources E′ such that there
is no violation of equations (1) for the given delay values. In this case, we know the
feasible numbers of altruists and egoists that are left to be assigned to the remain-
ing resources. Suppose we have marked these combinations of remaining agents in a
boolean matrix R of size (n0 + 1)× (n1 + 1). Here rij = 1 if and only if there is a feasible
assignment of n0 − i egoists and n1 − j altruists to E′. For the new resource e we now
test all combinations (ne,0, ne,1) of altruists and egoists that can be allocated to e such
that the equations (1) remain fulfilled. We then compile a new matrix R′ of the feasible
combinations of remaining agents for the remaining resources E −E′ − {e}. In partic-
ular, for each tuple (ne,0, ne,1) and each positive entry rij of R we check if i − ne,0 ≥ 0
and j−ne,1 ≥ 0. If this holds, we set the entry of R′ with index (i−ne,0, j−ne,1) to 1. If
e is the last resource to be processed, we check if the resulting matrix R′ has a positive
entry r′0,0 = 1. In this case a Nash equilibrium exists for the given values of dmax{0,1} and
dmin+
{0,1} , otherwise it does not exist. Due to the separation property mentioned above,

this approach succeeds to implicitly test all allocations that fulfill equations (1) for the
given values. Finally, note that there are only at most O(n2

0n
2
1m

4) possible values for
which we must run the algorithm, as there are at most (n0 + 1)m possible values for
each dmax0 and dmin+

0 and at most (n1 + 1)m values for each dmax1 and dmin+1
1 .

The separation property mentioned above also applies to the best or worst Nash
equilibrium. In particular, consider the best Nash equilibrium S that respects (1) for
some fixed values dmax{0,1} and dmin+

{0,1} . Consider any subset of resources E′ with a number
nE′,0 and nE′,1 of egoists and altruists, respectively. S is the cheapest Nash equilib-
rium that respects (1) for the given values if and only if the assignment of S in E′

is the cheapest assignment with nE′,0 egoists and nE′,1 altruists that respects (1) for
the values. Thus, we can adjust our approach as follows. For a set E′ of processed re-
sources, instead of simply noting in rij that there is a feasible assignment to E′ that
leaves i egoists and j altruists, we can remember the social cost of the cheapest of such
assignments. Thus, the matrix R is then a matrix of positive entries, for which we use
a prohibitively large cost to identify infeasible combinations. When we compile a new
matrix R′ after testing all feasible assignments to a new resource e, we can denote
in each entry the minimum cost that can be obtained for the respective combination.
A similar argument works for computing the worst Nash equilibrium. This decides
the existence question and finds the cost values of best and worst Nash equilibria. By
tracing back the steps of the algorithm we can also discover the strategy choices of
agents.
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Note that the previous proof can be extended to a constant number k of different
altruism levels. In this more general scenario we choose the delay parameters for each
level of altruists. For each resource e we then test all possible combinations of agents
from the different levels that we can allocate to a resource e and satisfy all bounds. The
matrix R changes in dimension to (nβ1

+ 1)× . . .× (nβk
+ 1) to account for all feasible

combinations of remaining agents. Finally, we need to test all combinations of delay
bounds. However, if k is constant, all these operations can be done in polynomial time.

COROLLARY 3.2. For symmetric singleton games with altruists and a constant
number of different altruism levels, there is a polynomial time algorithm to decide if
a pure Nash equilibrium exists and to compute the best and the worst Nash equilib-
rium.

As a byproduct, our approach also allows us to compute a social optimum state in
polynomial time. We simply assume all agents to be pure altruists and compute the
best Nash equilibrium.

COROLLARY 3.3. For symmetric singleton congestion games a social optimum state
can be obtained in polynomial time.

In case of asymmetric games, however, deciding the existence of pure Nash equilibria
becomes significantly harder.

THEOREM 3.4. It is NP-complete to decide if a singleton congestion game with only
pure altruists and egoists has a pure Nash equilibrium if G is asymmetric and has
concave delay functions.

PROOF. Membership in NP is obvious. To show completeness, we reduce from 3SAT.
Given a formula ϕ, we construct a congestion game Gϕ that has a pure Nash equilib-
rium if and only if ϕ is satisfiable. Let x1, . . . , xn denote the variables and c1, . . . , cm
the clauses of a formula ϕ. Without loss of generality [Tovey 1984], we assume each
variable appears at most twice positively and at most twice negatively.

For each variable xi there is a selfish agent Xi that chooses one of the resources
e1
xi

, e0
xi

, or e0. The resources e1
xi

and e0
xi

have the delay function 9x and resource e0

has the delay function 7x + 3. For each clause cj , there is a selfish agent Cj who can
choose one of the following three resources. For every positive literal xi in cj he may
choose e0

xi
. For every negated literal x̄i in cj he may choose e1

xi
. Note that there is a

stable configuration with no variable agent on e0 if and only if there is a satisfiable
assignment for ϕ. Additionally, there are three selfish agents u1, u2, and u3 who can
choose e1 or e2. Each of the resources e1 and e2 has delay 4 if used by one agent, delay 8
if used by two agents and delay 9 otherwise. The only pure altruist u0 chooses between
e1, e2, and e0. Note that the altruist chooses e1, e2 if one of the variable agents is on e0.

If ϕ is satisfiable by a bitvector (x∗1, . . . , x
∗
n), a stable solution for Gϕ can be obtained

by placing each variable agent xi on e
x∗i
xi . Since (x∗1, . . . , x

∗
n) satisfies ϕ there is one

resource for each clause agent that is not used by a variable agent. Thus, we can place
each clause agent on this resource. He then shares this resource with at most one other
clause agent due to our assumption on variable appearances in the 3SAT instance. Let
the altruist u0 use e0, u1 and u2 choose e1, and u3 choose e2. It is straightforward to
verify that this is a Nash equilibrium.

If ϕ is unsatisfiable, there is no stable solution. To prove this it suffices to show that
one of the variable agents prefers e0. In that case the altruist never chooses e0 and the
agents u0, . . . , u3 play the subgame of Example 2.2. For the purpose of contradiction
assume that ϕ is not satisfiable but there is a stable solution in which no variable
wants to choose e0. This implies that there is no other agent, i.e., a clause agent, on
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t
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Fig. 1: Structure of the network of GΓ (solid edges only) and G′Γ.

a resource that is used by a variable agent. However, if all clause agents are on a
resource without a variable agent we can derive a corresponding bit assignment which,
by construction, satisfies ϕ.

Therefore, Gϕ has a stable solution if and only if ϕ is satisfiable.

4. GENERAL GAMES
4.1. Congestion Games with Convex Delays
For any singleton game G with altruists and convex delay functions, Corollary 2.4
implies that a pure Nash equilibrium always exists. For more general network struc-
tures, we show that convexity of delay functions is not sufficient. In particular, this
holds even for games with only pure altruists and egoists in the case in which almost
all delay functions are linear of the form de(x) = aex, except for two edges, which have
quadratic delay functions de(x) = aex

2. For simplicity, we use some edges with con-
stant delay be. We can replace these edges by sufficiently many parallel edges with
delay bex. This transformation is of polynomial size and yields an equivalent game
with only linear and quadratic delay functions.

THEOREM 4.1. It is NP-hard to decide if a symmetric network congestion game
with only pure altruists and egoists and quadratic delay functions has a pure Nash
equilibrium.

PROOF. We first reduce from 3SAT to asymmetric congestion games. Again, we as-
sume each variable appears at most twice positively and at most twice negatively. In a
second step, we show that the resulting congestion games can be turned into symmet-
ric games while preserving all necessary properties.

Our reduction is similar to the construction that we used in the proof of Theorem 3.4.
The structure of the resulting network congestion game GΓ is depicted in Figure 1. The
delays are given as in Table I.
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Edge delay function
e0 7x+ 3

e1 2

e2 17

e4 2.4x2

e6 x2

e10 18.5

e0
xi

,e1
xi

9x

(s′, sxi
) ∀1 ≤ i ≤ n Mx

(s′, scj ) ∀1 ≤ j ≤ m Mx

(s′, s1), (s′, s2), (s, s′) Mx

(s, s0) (n+m+ 5)M

(t0, t) (n+m+ 5)M

(t′, t) Mx

Table I: Delay functions on the edges of GΓ and G′Γ. Edges not listed here have delay 0.

Each agent Xi chooses one of three paths from his source node sxi
to his target

node t′ and therefore uses exactly one of the edges e0
xi

, e1
xi

, or e0. Each clause agent
Cj uses a path from scj to t′ and uses one of the three edges as described in the proof
of Theorem 3.4. That is, for each positive literal xi in cj he may choose a path that
includes the edge e0

xi
. For every negated literal x̄i in cj he may choose a path that

contains the edge e1
xi

.
There is a selfish agent u1 that chooses a path from s1 to t′ and two selfish agents

u2 and u3 that allocate the path from s2 to t′. Finally, one altruistic agent u0 chooses
a path from s0 to t0. As in the proof of Theorem 3.4, we can conclude that there is a
variable agent whose best response includes edge e0 if and only if Γ is not satisfiable.
If no variable agent is on e0, a Nash equilibrium can be obtained by placing u1 on the
path that begins with (e1, e0) which incurs delay of 12. For agent u0 it is optimal to
choose the path (e8, e6, e3) which results in social cost of 39. This is a Nash equilibrium
since the alternative paths are more expensive: for u1 the path via e10 costs 18.5 and
the path (e4, e5, e6, e7) costs 18.4. For u0 choosing the path (e7, e4, e2) would result in
cost of 39.4.

However, if at least one variable agent is on the edge e0, there is no pure Nash
equilibrium. First observe that the path starting with (e1, e0) would have delay of at
least 19 for u1 and is always more expensive than the path starting with e10. It remains
to consider the remaining four strategy profiles of u0 and u1. If the altruist u0 is on the
path (e8, e6, e3), the best response for u1 is the path (e4, e5, e6, e7) which has delay of
18.4. The alternative path via e10 has delay of 18.5. If u1 is the path (e4, e5, e6, e7), the
best response for the altruist u0 is path (e7, e4, e2) which results in social cost of 63.2.
This is less than the social cost of 66.4 on the alternative path. If u0 is on (e7, e4, e2),
the best response for u1 is the path that begins with the edge e10 and has delay of 18.5.
The alternative path (e4, e5, e6, e7) has delay of 18.6 This, finally, is a state in which the
best response for u0 is (e8, e6, e3) with social cost of 45.5 which is less than 45.9 on his
alternative path. Thus, the constructed network congestion game GΓ has a pure Nash
equilibrium if and only if the formula Γ is satisfiable.

Now, we turn the asymmetric network congestion game GΓ into a symmetric conges-
tion game G′Γ. We add a new source node s, a new target node t and a node s′ to the
network and connect them toGΓ as depicted by the dashed edges in Figure 1. Note that

ACM Transactions on Economics and Computation, Vol. 1, No. 1, Article 1, Publication date: January 1.



1:10 M. Hoefer and A. Skopalik

M is an integer that is larger than the sum of possible delay values in GΓ. If all agents
play their best responses, then we can observe the following: Each outgoing edge of s′
is used by exactly one selfish agent and the altruist chooses a path that begins with
the edge (s, s0). Every best response path of a selfish agent finishes with the edge (t′, t).
Every best response path of the altruist ends with the edge (t0, t). Therefore, G′Γ has a
pure Nash equilibrium if and only if GΓ has a pure Nash equilibrium.

4.2. A General Condition for Existence and Convergence
Perhaps surprisingly, if every delay function is affine de(x) = aex + be, then an ele-
gant combination of the Rosenthal potential and the social cost function yields a po-
tential for arbitrary βi-altruists. Hence, existence of Nash equilibria and convergence
of sequential better-response dynamics is always guaranteed. The proof carefully ex-
ploits the structure of altruistic behavior, as for congestion games with general player-
specific affine latency functions a potential does not exist [Gairing et al. 2011].

We prove this result in a more general way for games with weighted potential func-
tion. Our construction applies to a general class of these games, in which potential and
social cost function have a correlated structure. In particular, we consider potential
games with n agents. For simplicity we stick to our notation with Si for the strategy
space of agent i and S = (S1, . . . , Sn) as state of the game. In addition, we assume that
there is a personal cost ci(S) for agent i, a potential function Φ(S), and an arbitrary
social cost function c(S). When we consider such games with altruists, an altruistic
agent with βi ∈ [0, 1] again optimizes the trade-off (1 − βi)ci(S) + βic(S). While in our
examples below we continue to choose c(S) =

∑
i ci(S), we want to highlight that such

a choice is not necessary for our general argument.
We consider the introduction of altruists into potential games with a weighted po-

tential function Φ. In a game with a weighted potential function there is a value yi > 0
for each agent i such that

ci(S)− ci(S′i, S−i) = yi · (Φ(S)− Φ(S′i, S−i)) ,

for every state S and every strategy S′i ∈ Si. In this section we consider games with
weighted potential functions of the form

Φ(S) = a · c(S) +

n∑
i=1

hi(Si) , (2)

where a > 0 is a constant and hi is an arbitrary function that does not depend on any
strategy choice Sj by any agent j 6= i. While we can always assume a = 1 by division
of the functions hi and the values yi, we will allow general values of a for simplicity.
The next theorem shows that when we introduce altruists into such games, existence
of Nash equilibria and convergence of sequential better-response dynamics is always
guaranteed.

THEOREM 4.2. For every game with weighted potential function, in which social
cost and potential function satisfy Equation (2), any corresponding game with altruists
is a potential game with weighted potential function

Ψ(S) = c(S) +

n∑
i=1

yi · (1− βi)
βi + a · yi · (1− βi)

· hi(Si) ,

where changes in individual cost of agent i and Ψ scale with factor (βi + a · yi · (1− βi)).

PROOF. We show that we can transform the potential Φ for the original game into a
potential Ψ for the game with altruists. Consider a state S and an improving strategy
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change of an agent i from Si to S′i resulting in a strategy profile S′. We show that
Ψ strictly decreases. For the sake of clarity and brevity we set ∆Φ = Φ(S) − Φ(S′),
∆C = c(S) − c(S′), and ∆h = hi(Si) − hi(S′i). Note that an improving strategy change
for agent i requires

(1− βi)(ci(S)− ci(S′)) + βi(c(S)− c(S′))
= yi(1− βi)∆Φ + βi∆C

> 0 .

This yields

Ψ(S)−Ψ(S′) =

(
∆C +

yi · (1− βi)
βi + a · yi · (1− βi)

·∆h

)
=

1

βi + a · yi · (1− βi)
· ((βi + a · yi · (1− βi))∆C + yi(1− βi)∆h)

=
1

βi + a · yi · (1− βi)
· (a · yi(1− βi)∆C + yi(1− βi)∆h + βi∆C)

=
1

βi + a · yi · (1− βi)
· (yi(1− βi)∆Φ + βi∆C)

> 0 ,

which proves the theorem.

We proceed to discuss a number of example games from different domains with po-
tential functions given by (2).

4.2.1. Congestion Games with Affine Delays. First, let us consider the case of congestion
games with altruists and affine delay functions. For simplicity of presentation, we con-
sider linear delays de(x) = aex without offset be. This is not a restriction, because (as
noted above) we can turn each game with affine delays into an isomorphic game with-
out offsets. If resource e has offset be, for each player i we introduce a new resource ei
with linear delay dei(x) = bex. Resource ei is contained only in the strategies of player
i that contain e. This yields an isomorphic game, in which all individual costs for all
states are preserved.

If all delays are linear without offset, then c(S) =
∑
e∈E aen

2
e, whereas the Rosenthal

potential reads Φ(S) = 1
2

∑
e∈E ae(ne(ne + 1)). We can set a = 1/2, yi = 1, and hi(Si) =∑

e∈Si
ae/2 for all agents i. With Theorem 4.2 we obtain the weighted potential function

Ψ(S) = c(S) +
n∑
i=1

1− βi
1 + βi

∑
e∈Si

ae .

This yields the following corollary.

COROLLARY 4.3. For any congestion game with altruists and affine delay functions
there is always a pure Nash equilibrium and sequential better-response dynamics con-
verges.

Unfortunately, it follows directly from previous work [Fabrikant et al. 2004] that
the number of iterations to reach a Nash equilibrium can be exponential in the size
of the instance, and the problem of computing a Nash equilibrium is PLS-hard. For
regular congestion games with matroid strategy spaces [Ackermann et al. 2008] Nash
dynamics converge in polynomial time. It is an interesting open problem if a similar
result holds for games with altruists.
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1 2

1 a,a d,c

2 c,d b,b

Φ 1 2

1 a-c 0

2 0 b-d

Fig. 2: Payoffs and potential functions for symmetric 2× 2 games.

Note that for convex delay functions the construction of Theorem 4.2 breaks. The
reason is that the theorem needs social cost and potential to be related via terms hi(Si),
which are specific to strategy Si and independent of S−i. For instance, suppose player
arrives on a resource with convex delay function. The relation between change in social
cost and potential now depends crucially on the number of players on this resource and
cannot be expressed via the independent terms ae/2 as for linear delays. As a result,
pure Nash equilibria may not exist as observed in Theorem 4.1 above.

4.2.2. Local Interaction Games. Another class of games to which the argument can be
applied are local interaction games. In a local interaction game [Morris 2000] each
player is a node in a graph. He plays a separate symmetric 2 × 2 coordination game
with every neighbor. However, he can pick his strategy only once and has to apply it
in every game he is involved in. Local interaction games are central in the study of
cascading behavior and the diffusion of trends in networks (see, e.g., [Kleinberg 2007]
for an exposition). Network interaction games [Hoefer and Suri 2012] generalize the
construction to games with a possibly different arbitrary symmetric 2 × 2 game on
each edge. A symmetric 2 × 2 game is a 2-player game with S1 = S2 = {1, 2} and
arbitrary payoffs given as in Figure 2. Note that these games have an exact potential
function, which is displayed in Figure 2. For the social cost function we again assume
c(S) = c1(S) + cs(S). We set a = 1/2, y1 = y2 = 1. With h(1) = −c/2, h(2) = −d/2, and
h1 = h2 = h, the function

Ψ(S) = c(S) +
∑
i=1,2

2(1− βi)
1 + βi

· hi(Si)

is a weighted potential function for a 2 × 2 game with altruists. This construction
directly extends to network interaction games, where the cost of a player is summed
over different bilateral games played with different players. Thus, Theorem 4.2 yields
the following corollary.

COROLLARY 4.4. For network interaction games with altruists there is always a
pure Nash equilibrium and every sequential better-response dynamics converges.

This class of games generalizes local optimization of weighted MaxCut with the FLIP
neighborhood, which is defined by moves of single vertices from one partition to the
other. To embed such an instance of weighted MaxCut into our games, every node
becomes a player with two strategies representing the two partitions of the cut. Each
weighted edge is turned into a bilateral game, where the cost to both players is the edge
weight if they pick the same strategy and 0 for both if they pick different strategies. It
is straightforward to observe that social cost is twice the cost of edges included in the
partitions. Thus, minimizing social cost is equivalent to maximizing the cut weight.
A player unilaterally decreases his cost if and only if he decreases his incident edge
weight within his partition. Thus, every unilateral deviation is equivalent to a move
in the FLIP neighborhood, and it is profitable for the player if and only if it leads to
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an increase of cut weight. Thus, every better-response dynamics in this game can be
seen as a run of some local search algorithm in the MaxCut instance. This shows that
the number of iterations to reach a pure Nash equilibrium can be exponential, and the
problem of computing a pure Nash equilibrium is PLS-complete.

The potential function of this game is strikingly similar to the one for congestion
games with affine delay functions. This is no coincidence, as local interaction games
can be reformulated as congestion games with linear delays. It obviously suffices to
model the bilateral 2× 2 games separately. For such a game we introduce four classes
of resources with delays de1(x) = (a − d)x, de2,i(x) = (2d − a)x, de3(x) = (b − c)x, and
de4,i(x) = (2c − b)x, for i = 1, 2. Strategy 1 for agent i contains resources e1 and e2,i,
strategy 2 contains e3 and e4,i. It is straightforward to verify that in every state this
yields exactly the same payoffs for all players as the original game.

4.2.3. Selfish Scheduling. Our third example comes from the domain of selfish schedul-
ing with coordination mechanisms [Christodoulou et al. 2009]. In this game each agent
is a task and chooses one out of m machines as strategy. Thus, the strategy space of
each agent is Si = {1, . . . ,m} for each i = 1, . . . , n. When agent i picks machine Si, the
processing time of his task on Si is pi,Si > 0. There is a local scheduling policy that all
machines use to process the tasks that choose to be on the machine. The personal cost
ci(S) of agent i in a state S is the completion time on the chosen machine Si given the
allocation decisions of all agents.

A simple example for a local policy is the Shortest-First policy, in which each machine
processes the tasks assigned to it without preemption in order of increasing processing
time (using a consistent tie-breaking, e.g., based on agent ID). Given the ordering the
first task is processed completely, afterwards the second task is started and processed
completely, and so on. Recently, a Time-Sharing policy has been proposed by Cohen
et al. [2011], in which each machine processes all tasks assigned to it in parallel using
processor sharing. Each task that allocates the machine is initially given an equal
share of processing time. When a task finishes, then the machine is divided equally
among the remaining tasks. Consider for example 3 tasks with processing times 1, 2
and 3 that choose the same machine. With Shortest-First task 1 finishes at time 1,
task 2 at time 3 and task 3 at time 6. With Time-Sharing task 1 finishes at time 3,
task 2 at time 5, task 3 at time 6. As the social cost of S under the Shortest-First policy
(denoted cSF (S)) and Time-Sharing policy (denoted cTS(S)) we again consider the sum
of all player costs.

Both selfish scheduling games with Shortest-First and with Time-Sharing policies
are potential games. While for Shortest-First this is established using a lexicographic
potential function [Immorlica et al. 2009], games with Time-Sharing allow an exact
potential function. A straightforward observation based on cost differences upon mi-
gration of a single agent shows that social cost and potential functions satisfy Equa-
tion (2). We can reformulate the potential function Φ for selfish scheduling with Time-
Sharing policy given in [Cohen et al. 2011] to

Φ(S) = cSF (S) =
1

2

(
cTS(S) +

n∑
i=1

pi,Si

)
.

With Theorem 4.2 this yields a potential function Ψ for the game with altruists given
by

Ψ(S) = cTS(S) +

n∑
i=1

1− βi
1 + βi

· pi,Si
.
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COROLLARY 4.5. For selfish scheduling with Time-Sharing policy and altruists
there is always a pure Nash equilibrium and every sequential better-response dynamics
converges.

The similarity of the potential function to the cases before is apparent, and again the
game can be transformed into a congestion game with linear delay functions as follows.
We first add an agent- and strategy-specific resource ei,Si

to every strategy Si of agent
i with delay dei,Si

(x) = 2pi,Si
x. This accounts for the additional offset in the potential

function and the time in cTSi (S), which is spent on processing the task of agent i. The
remaining delay of cTSi (S) can be accounted towards other agents. In particular, when
pij ≥ pi′j , then agent i is delayed pi′j units due to simultaneous processing of agent i′.
Similarly, agent i′ is delayed only pi′j time units due to the presence of i. This allows
to construct a local interaction game, in which agents minimize costs, and each pair of
agents i and i′ plays a symmetric m ×m game. The costs for state (j, j) in this game
are min{pij , pi′j} for both agents and j = 1, . . . ,m. The cost for every other state is 0
for both agents. Note that all these local interaction games can easily be turned into
congestion games with linear delays. Finally, combining this with the resources ei,Si

completes the construction.
In contrast to general congestion games with linear delays, we show that comput-

ing a Nash equilibrium can be done in polynomial time. This result is established
with a centralized algorithm that computes a state minimizing the potential. It is an
open problem to characterize the duration of better-response dynamics in this class of
games.

THEOREM 4.6. For selfish scheduling with Time-Sharing policy and altruists a
Nash equilibrium can be computed in polynomial time.

PROOF. We show how to compute a state minimizing the potential Ψ given above.
This is obviously a pure Nash equilibrium. Ψ consists of the social cost using the
Shortest-First policy and some offset terms. This allows to adjust an efficient algo-
rithm for optimizing Shortest-First schedules to compute an optimum for Ψ as well.

The algorithm to find a social optimum schedule for the Shortest-First policy is based
on bipartite matching [Bruno et al. 1974] by setting up a complete bipartite network.
In this network, one partition is the set of tasks, and the other partition consists of
nm nodes (j, k) for positions k = 1, . . . , n and machines j = 1, . . . ,m. The kth-to-last
position on machine j induces a cost of k · pij for task i. This cost is attached to the
corresponding edge {i, (j, k)}. Note that this is not the cost that i experiences himself
but the delay he causes by his presence to himself and the tasks at later positions on
machine j. For a perfect matching consider the sum of all edge costs. By changing the
order of summation, it is straightforward to observe that the total cost of the match-
ing edges is exactly the social cost of the schedule implied by the matching. Hence, a
minimum cost perfect matching implies an optimal assignment. A simple pairwise ex-
change argument shows that the optimal assignment computed by the matching must
use a Shortest-First ordering on every machine.

To use this algorithm to minimize our potential, we have to account for the addi-
tional terms 1−βi

1+βi
· pi,Si

in Ψ. We do this as follows. We simply add an offset 1−βi

1+βi
· pij

to each edge weight between task i and any position on machine j. Then, by sum-
ming the new weights of edges in a perfect matching, we now sum the original edge
weights and offsets. The offsets are added up correctly. By reversing the order of sum-
mation for the original weights, we get the social cost of the assignment implied by the
matching. Note that for a single agent i, the offsets are the same for every edge to any
position on machine j. Thus, the same exchange argument as above shows that the
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optimal assignment computed by the matching must use a Shortest-First ordering on
every machine. Consequently, this implies that finding a minimum cost perfect match-
ing yields a Shortest-First assignment that minimizes the potential Ψ. Thus, we can
efficiently compute a global minimum of Ψ, which must be a Nash equilibrium.

For selfish scheduling with Shortest-First policy and altruists it is possible to show
that there is no potential function, even for small games with four players and two
identical machines, i.e., pi,1 = pi,2 = pi for all agents i [Hoefer and Skopalik 2009b].

4.3. Weighted Congestion Games with Affine Delays
4.3.1. Sum-of-Weighted-Delays Social Cost. In this section we examine the extension to

the case of weighted congestion games with linear delay functions. In particular, we
consider arbitrary weighted congestion games with delay functions de(x) = aex. Note
that the case of affine delays with offsets be can again be handled similarly by intro-
ducing a player-specific resource for each player i with linear delay (be/wi)x. The case
of singleton strategies has received a lot of attention under the name KP-model [Kout-
soupias and Papadimitriou 2009]. These games were studied as Makespan policy for
selfish scheduling [Immorlica et al. 2009]. Weighted congestion games with linear de-
lays have a weighted potential function [Fotakis et al. 2005] given by

Φ(S) =
∑
e∈E

aen
2
e +

n∑
i=1

aSi
w2
i =

n∑
i=1

wi · ci(S) +

n∑
i=1

aSi
w2
i .

For agent i we have ci(S) − ci(S′i, S−i) = 1
2wi

(Φ(S) − Φ(S′i, S−i)). We first consider the
social cost function cw(S) =

∑n
i=1 wici(S), which close to what is known in the schedul-

ing literature as sum of weighted completion times. We can use Theorem 4.2 to obtain
a potential function Ψ for the game with altruists given by

Ψ(S) = cw(S) +

n∑
i=1

2wi(1− βi)
βi + 2wi(1− βi)

· aSi
w2
i .

COROLLARY 4.7. For weighted congestion games with affine delays and social cost
cw(S) there is always a pure Nash equilibrium and every sequential better-response
dynamics converges.

For the KP-model, Feldmann et al. [2003] proved that for a population of only ego-
ists better-response dynamics can take O(2

√
n) steps to converge to a Nash equilib-

rium. However, for identical delay functions there is a scheduling of moves to reach a
Nash equilibrium with best-response dynamics in polynomial time. In addition, there
are polynomial time algorithms to compute Nash equilibria for asymmetric singleton
games with linear delay functions [Feldmann et al. 2003; Gairing et al. 2010].

4.3.2. Sum-of-Delays Social Cost. As a second social cost function let us again consider
c(S) =

∑
i ci(S), which has been done previously for this model in [Hoefer and Souza

2010; Berenbrink et al. 2006]. This cost function is close to what is known in the
scheduling literature as sum of completion times. Although in this case the relation
between potential and social cost function is only slightly different from the condition
in Equation (2), our results are mostly negative. We observe that even for identical
delays and only one altruist, existence of a pure Nash equilibrium is not guaranteed.

Example 4.8. Consider a game with two edges, one pure altruist with w1 = 5, and
four egoists with w2 = 10, w3 = w4 = w5 = 1. Assume there is a pure Nash equilibrium,
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then agent 2 chooses a different edge than agent 1. The agents 3, 4, and 5 choose a dif-
ferent edge than agent 2. However, agent 1 would choose the machine with only agent
2, which leads to a contradiction. The idea can be adjusted to an arbitrary altruist with
β1 > 0 by adding sufficiently many agents with small weight. In particular, instead of
3 we add strictly more than 1 + 1.4

β1
many egoists, which all have equally small weight,

and for which their total weight adds up to 3. For this game it can be shown that all
arguments given above are preserved.

In addition, we can show that it is NP-complete to decide if a pure Nash equilibrium
exists. The reduction is from PARTITION.

THEOREM 4.9. It is NP-complete to decide if a weighted congestion game on three
identical parallel links with linear delays and one pure altruist has a pure Nash equi-
librium.

PROOF. Membership in NP is obvious. To show completeness, we reduce from PAR-
TITION. An instance I is given as (a1, . . . , an) ∈ Nn and I ∈ PARTITION if and only
if ∃I ⊂ {1, . . . , n} with

∑
i∈I ai =

∑
j∈{1,...,n}\I aj . We first reduce a given instance

I = (a1, . . . , an) to an instance I ′ = (a1, . . . , an, an+1, . . . , an+8) with an+1 = . . . = an+8 =∑
i∈{1,...,n} ai. Clearly I ∈ PARTITION if and only if I ′ ∈ PARTITION.
In a second step we construct a game GI′ that has a Nash equilibrium if and only

if I ′ ∈ PARTITION. The game consists of three edges and n+ 8 + 2 agents. The weight
wi of agent 1 ≤ i ≤ n + 8 is ai. Agent n + 9 has weight pn+9 =

∑
1≤j≤n+8 aj and agent

n + 10 has weight pn+10 = 1
2

∑
1≤j≤n+8 aj . All agents are pure egoists except for task

n+ 10 who is a pure altruist.
If I ∈ PARTITION, there is an I ⊂ {1, . . . , n + 8} with

∑
i∈I ai = 1

2

∑
1≤j≤n+8 aj .

Assigning all agents i ∈ I to edge one, all agents j ∈ {1, . . . , n+ 8} \ I to edge two, and
the remaining agents n + 9 and n + 10 to edge three is a Nash equilibrium. Note that
the first two edges have a total weight of 1

2

∑
1≤j≤n+8 aj and edge three has a weight of

3
2

∑
1≤j≤n+8 aj . Obviously, no agent from the first two edges has an incentive to change

to edge three. Neither has agent n+9 an incentive to change to one of the first two edges
because his delay would not change. The altruistic agent cannot improve the social cost
by changing to one of the first two edges. Note that at least 4 agents (half of the agents
n, . . . , n + 8) are assigned to each of the first two edges. Therefore, when the altruistic
agents migrates the social cost increases by at least 4wn+10 − (wn+10 + wn+9) > 0.

If I /∈PARTITION, assume for the sake of contradiction that there is a Nash equilib-
rium. Observe that agent n+ 9 does not choose the edge that agent n+ 10 is on. Since
there is no I ⊂ {1, . . . , n + 8} with

∑
i∈I ai = 1

2

∑
1≤j≤n+8 aj , there exists an edge that

has congestion of less than 1
2

∑
1≤j≤n+8 aj (while ignoring agent n + 9). On the other

hand, each of the agents 1, . . . , n + 8 can always choose an edge that has congestion
less than pn+9. Therefore, in equilibrium they choose the other two edges. Note, that
each of these two edges has at least 4 of the agents n, . . . , n + 8. Finally, the altruistic
agent n + 10 chooses the edge that only agent n + 9 is assigned to (changing to one of
the other two edges increases the social cost by at least 4wn+10 − (wn+10 + wn+9) > 0).
This contradicts the existence of a Nash equilibrium.

Our proof requires the presence of agents with different altruism levels. It is an in-
teresting open problem if the existence of a potential function can be shown for games
with β-uniform altruists.
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5. STABILIZATION METHODS
This section treats a scenario in which a central institution can convince selfish agents
to adopt socially favorable behavior and act altruistically. For simplicity of presentation
we first restrict to games with only pure altruists and egoists. This is closely related
to Stackelberg routing [Korilis et al. 1997; Roughgarden 2004; Fotakis 2010] in atomic
congestion games, in which an altruistic leader can control the strategy choice of a
fixed portion of agents and strives to minimize the overall cost of the resulting Nash
equilibrium.

A natural question in our scenario is how many altruists are required to guarantee
that there is a Nash equilibrium with a certain cost, e.g. a Nash equilibrium as cheap
as a social optimum state. This problem has been considered in non-atomic congestion
games in [Kaporis and Spirakis 2009; Sharma and Williamson 2009]. We term this
number the optimal stability threshold. In a more pessimistic direction it is of interest
to determine the minimum number of altruists needed to guarantee that the worst-
case Nash equilibrium is optimal. We term this number the optimal anarchy threshold.
Let us denote by n+

1 and n−1 the optimal stability and anarchy threshold, respectively.
As a consequence from Theorem 3.1 we can compute both numbers for symmetric sin-
gleton congestion games in polynomial time. For each number of altruists we check if
the best and/or worst Nash equilibrium is as cheap as the social optimum.

COROLLARY 5.1. For symmetric singleton congestion games with only pure altruists
and egoists there is a polynomial time algorithm to compute n+

1 and n−1 .

Note that the optimal anarchy threshold is not well-defined, because the worst Nash
equilibrium might always be suboptimal, even for a population of altruists only. In case
of symmetric singleton games and convex delay functions, an easy exchange argument
serves to show that in this case any local optimum is also a global optimum. However,
for concave delay functions or asymmetric singleton games, a local optimum might still
be globally suboptimal.

Example 5.2. Consider a symmetric game with two resources, d1(1) = 16, d1(2) =
32, d1(3) = 36, and d2(x) = 45. If all agents allocate resource 1, we get a Nash equi-
librium of cost 108. In the optimum two agents allocate resource 2 resulting in a cost
of 106. Now consider an asymmetric game with three resources and delay functions
d1(x) = d2(x) = 8x, and d3(x) = 4x. Agent 1 can use resources 1 and 2, agents 2 and 3
can use resources 2 and 3. The state (2, 3, 3) is a Nash equilibrium of cost 32, while the
social optimum is a state (1, 2, 3) of cost 20.

Note that for symmetric games, our algorithm is able to detect the cases in which
suboptimal local optima exist. In the asymmetric case, however, a similar approach
fails, because of the NP-hardness of determining existence of a pure Nash equilibrium.
Thus, in the following we concentrate on the optimal stability threshold.

In asymmetric games, it is also required to determine the identity of agents, so here
we strive to find a set (denoted N+

e ) of minimum cardinality. For an optimal set of
congestion values n∗E = (n∗e)e∈E we can determine N+

1 (n∗E) such that there is a Nash
equilibrium of the game with congestion values n∗e for all e ∈ E.

THEOREM 5.3. For singleton games with only pure altruists and egoists and a social
optimal congestion vector n∗E there is a polynomial time algorithm to compute N+

1 (n∗E).

PROOF. Suppose we are given a congestion vector n∗E that results in minimum social
cost. Our aim is to derive a state of the game (i.e., an assignment agents to resources)
such that the state is a Nash equilibrium, we have congestion n∗e on every resource e,
and a minimal set of altruists are needed. Note that whenever we assign an agent to
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become an altruist, we are free to assign him to any resource – if the resulting state
has the social optimal congestion vector n∗E , an altruist has no incentive to deviate in
this state from any strategy he is playing. For an egoist, we can determine – given that
the final state has congestion vector n∗E – which of the resources would qualify as a
best response for him. That is, in the final state he needs to be assigned to a resource
e ∈ Si such that de(n∗e) ≤ de′(n∗e′ + 1) for every e′ ∈ Si.

This allows to compute N+
1 (n∗E) by constructing a weighted bipartite graph as fol-

lows. One partition is the set of agents N . In the other partition we introduce for each
resource e a number of n∗e vertices. If e ∈ Si we connect agent i to all vertices that were
introduced due to e. Suppose e represents a best response for i with respect to egoistic
delay d. Then we assign a weight of 0 to all corresponding edges between i and the ver-
tices of e. To all other edges we assign a weight of 1. Note that any feasible allocation of
agents to strategies that generates the congestion vector n∗E is represented by a perfect
matching. If we match an agent to a strategy, which is not an egoistic best response,
it has to become an altruist and a weight of one is counted towards the weight of the
matching. By computing a minimum weight perfect matching [Cook and Rohe 1999],
we can identify a minimal set N+

1 (n∗E) of altruists required to stabilize n∗E .

Observe that by creating the edges of cost 1 only to strategies which represent best
responses with respect to the altruistic delay d′, we can compute N+

1 (nE) for arbitrary
congestion vectors nE . In this case, the set might be empty, if, e.g., the congestion
vector corresponds to a very expensive state and can never be generated by a Nash
equilibrium for any distribution of altruists. This case, however, can be recognized by
the absence of a perfect matching in the bipartite graph.

This approach turns out to be applicable to an even more general natural scenario.
Suppose each agent i has a stability cost cie for each strategy e ∈ Si. This cost yields
the disutility for being forced to play a certain strategy given a congestion vector nE .
In this scenario we slightly change N∗1 (nE) to the set agents of minimal stability cost.
Still, we can compute this set by a minimum weight perfect matching if we set the
weights to cie for all edges connecting i to vertices of e. The stability cost allows for
general preferences exceeding categories like altruists and egoists.

COROLLARY 5.4. For singleton games and a congestion vector nE there is a polyno-
mial time algorithm to compute N+

1 (nE) with minimal stability cost.

The underlying problem can be seen as a slot allocation to agents. As the computed
allocation has minimal stability cost, it is possible to turn the algorithm into a truth-
ful mechanism using VCG payments (see e.g. [Nisan et al. 2007, chapter 9]). Our final
mechanism (1) learns the stability costs from each agent, (2) determines the allocation,
and (3) pays appropriate amounts to agents for truthful revelation of cost values and
adaptation of allocated strategies. Computing the optimal allocation as well as the pay-
ments are bipartite matching problems (computing an optimum solution, computing
optimal solutions excluding single agents). All of these problems can be solved in poly-
nomial time, and hence the resulting mechanism can be implemented in polynomial
time.

COROLLARY 5.5. For singleton games and a congestion vector nE there is a truthful
VCG-mechanism to compute N+

1 (nE) in polynomial time.

These general results are restricted to the case of singleton games. For more gen-
eral games we show that it is NP-hard to decide if there is a Nash equilibrium as
cheap as the social optimum. Our next theorem establishes this even for symmetric
network congestion games with linear delays, in which an arbitrary Nash equilibrium
and a social optimum state can be computed in polynomial time [Fabrikant et al. 2004].
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Furthermore, the result requires only a series-parallel network. Thus, even in this re-
stricted case it is NP-hard to decide if the number n+

1 of pure altruists required is 0 or
1, or equivalently if N+

1 (n∗E) is empty or not. This directly yields hardness of approxi-
mation within any finite factor.

THEOREM 5.6. For symmetric network congestion games with 3 agents, linear delay
functions on series-parallel graphs and optimal congestions n∗E it is NP-hard to decide
if there is a pure Nash equilibrium with congestions n∗E .

PROOF. We reduce from PARTITION. Let an instance be given by positive integers
a1, . . . , ak and a =

∑k
i=1 ai, where a is an even number. Create a network with two

nodes and two parallel edges e1 and e2 for each integer ai. The delay de1(x) = 2aix,
and de2(x) = aix. All these networks are concatenated sequentially. We denote the first
node of this path gadget by u and the last by v. In addition, we add one edge f = (u, v)
with delay df (x) = 3

4ax. Finally, the game has three egoists, which need to allocate a
path from u to v.

The unique social optimum is to let one agent use f and the other two agents use two
edge-disjoint paths through the path gadget. This yields an optimal social cost of 15

4 a.
However, for a Nash equilibrium each path through the gadget must not have more
delay than 3

2a. If the instance of PARTITION is solvable, then the elements assigned to
a partition represent the edges of type e1 that an agent allocates in Nash equilibrium.
Otherwise, if the instance is not solvable, there is no possibility to partition the path
gadget into two edge-disjoint paths of latency at most 3

2a.
The reduction works for a small constant number of agents but only shows weak NP-

hardness. If the number of agents is variable, it is possible to show strong NP-hardness
with a similar reduction from 3-PARTITION.

We remark that the previous theorem contrasts the continuous non-atomic case, in
which a minimal fraction of altruistic demand stabilizing an optimum solution can be
computed in any symmetric network congestion game [Kaporis and Spirakis 2009].

6. CONCLUSIONS
In this paper, we have initiated the study of altruists in atomic congestion games.
Our model is similar to the one presented by Chen and Kempe [2008] for nonatomic
routing games, however, we observe quite different properties. In the nonatomic case,
existence of Nash equilibria for any population of agents is always guaranteed, even if
agents are partially spiteful. In contrast, our study answers fundamental questions for
existence and convergence in atomic games. For the case of linear latencies, an elegant
combination of social cost and the Rosenthal potential proves guaranteed existence
and convergence. In addition, this result is based on a more general condition, which
is applicable to prove existence and convergence in games with potential function from
different domains. In the case of weighted congestion games on parallel links with
linear delay functions we have observed that even a slight variation in the interplay of
social cost and potential functions can lead to instability and negative results.

There are a number of open problems and research directions that stem from the re-
sults in this paper. An interesting open problem is to consider the relations to results
on Stackelberg games [Fotakis 2010]. While we have studied existence of pure Nash
equilibria and convergence of better-response dynamics in congestion games with sum
social cost, the natural open problem is to analyze the model for other prominent social
cost functions – with maximum cost of any player being the prime example. In addi-
tion, there are several generalizations such as bottleneck congestion games, in which
consideration of altruistic behavior might be worthwhile. More generally, it is impor-
tant to obtain a deeper understanding of more general (potential) games, in which pure
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Nash equilibria exist and convergence is guaranteed even for altruistic agents. Finally,
the complexity of computing such an equilibrium and the duration of best- and better-
response dynamics in classes of games with altruistic agents represent intriguing open
problems for further research.
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