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Abstract. The prevaling assumption in game theory is that all players
act in a purely selfish manner, but this assumption has been repeatedly
questioned by economicsts and social scientists. In this paper, we study
a model to incorporate social context, i.e., the well-being of friends and
enemies, into the decision making of players. We consider the impact of
such other-regarding preferences in potential games, one of the most pop-
ular and central classes of games in algorithmic game theory. Our results
concern the existence of pure Nash equilibria and potential functions in
games with social context. The main finding is a tight characterization of
the class of potential games that admit exact potential functions for any
social context. In addition, we prove complexity results on finding pure
Nash equilibria in numerous popular classes of potential games, such as
different classes of load balancing, congestion, cost and market sharing
games.

1 Introduction

Game theory deals with the mathematical study of the interaction of rational
agents. A prevelant assumption in many game-theoretic works is that agents
are selfish, they consider only their own well-being and act upon their own
interest. The assumption that players are purely selfish disregards complicated
externalities or correlations in agent interests and has been repeatedly questioned
by economists and social scientists [12, 13, 19]. In many applications, agents are
embedded in a social context resulting in other-regarding preferences that are
not captured by standard game-theoretic models. There are numerous examples,
such as bidding frenzies in auctions [22] or altruistic contribution behavior on
the Internet, in which players act spiteful or altruistic and (partially) disregard
their own well-being to influence the well-being of others. Despite some recent
efforts, the impact of such other-regarding preferences on fundamental results in
game theory is not well-understood.

In this paper, we study a general appoach to incorporate externalities in
the form of other-regarding preferences into strategic games. Our model is in
line with a number of recent approaches on altruistic and spiteful incentives in
games. We transform a base game into another strategic game, in which players
aggregate dyadic influence values combined with personal utility of other players.
Relying on dyadic relations is also a popular approach in social network analysis.
? Supported by DFG grant Ho 3831/3-1.



Consequently, we refer to the set of dyadic influence values as social context [3].
Our results concentrate on (exact) potential games, a prominent class of games
with many applications that has received much attention in algorithmic game
theory. Most notably, potential games always possess pure Nash equilibria, and
a potential function argument shows that arbitrary better-response dynamics
converge. Our interest is to understand how these conditions change when social
context comes into play.

Not surprisingly, potential functions and pure Nash equilibria might not exist
with social contexts, even in very simple load balancing games [3]. For a variety of
prominent classes of simple potential games, such as load balancing, congestion,
or fair cost-sharing games, we even show hardness of deciding existence of pure
Nash equilibria. On the positive side, our main finding is a tight characterization
of all games that remain exact potential games under social context. We prove
that every such game is isomorphic to a congestion game with affine delays. In
this sense, our characterization is similar to the celebrated isomorphism result
by Monderer and Shapley [21].

Model We consider strategic games Γ = (K, (Si)i∈K , (ci)i∈K) with a set K
of k players. Each player i ∈ K picks a strategy Si ∈ Si. A state or strategy
profile S is a collection of strategies, one for each player. The (personal) cost for
player i in state S is ci(S). Each player tries to unilaterally improve his cost by
optimizing his strategy choices against the choices of the other players. A state
S has a unilateral improvement move for player i ∈ K if there is S′i ∈ Si with
ci(S

′
i, S−i) < ci(S). A state without improvement move for any player is a pure

Nash equilibrium (PNE).
In an (exact) potential game, we have a potential function Φ(S) such that

ci(S) − ci(S
′
i, S−i) = Φ(S) − Φ(S′i, S−i) for every state S, player i ∈ K and

strategy S′i ∈ Si. Φ simultaneously encodes the cost changes for all players in
the game. The local optima of Φ are exactly the PNE, and every sequence of
improvement moves is guaranteed to converge to such a PNE. It is well-known
that every exact potential game is isomorphic to a congestion game [21]. In
a congestion game [23] we have a set R of resources and for each i ∈ K the
strategy space Si ⊆ 2R. For state S, we define the load nr(S) of resource r
to be the number of players i with r ∈ Si. Each resource r ∈ R has a delay
dr(S) = dr(nr(S)), and the personal cost of player i ∈ K is ci(S) =

∑
r∈Si

dr(S).
We consider the effects of social context on the existence of potential func-

tions. We extend a strategic game Γ by a social context defined by a set of
weights F that contains a numerical influence value fij for each pair of players
i, j ∈ K, i 6= j. In particular, the perceived cost of player i ∈ K is given by his
personal cost and a weighted average of cost of other players

ci(S, F ) = ci(S) +
∑

j∈K,j 6=i

fijcj(S) .

We will assume throughout that the context is symmetric, i.e., fij = fji. In
games with social context a state has a unilateral improvement move for player



i if i can decrease his perceived cost by switching to another strategy. A PNE in
a game with social context is a state without improvement moves for perceived
costs. For our lower bounds, we will restrict to binary contexts F with fij =
fji ∈ {0, 1}.Our existence results, however, do also allow non-binary and negative
values. In the following, we say two players i and j are friends if fij = fji = 1.

We will consider social contexts in a variety of well-studied classes of potential
games which we define more formally in the respective sections.

Results In Section 2 we provide the following tight characterization of the exis-
tence of potential functions in strategic games with social context. Every strate-
gic game that admits an exact potential function for every binary context is
isomorphic to a congestion game with affine delay functions. In turn, every con-
gestion game with affine delays has an exact potential function for every social
context. Hence, the class of games that allows exact potential functions for all
social contexts is exactly given by congestion games with affine delays.

In the following sections we consider many popular classes of potential games
and examine deciding existence of a PNE for a given game and a given binary
context. In most of these games, however, a PNE might not exist and deciding
existence is NP-complete. In Section 3.1 we show that this holds even for simple
classes of congestion games with increasing delays, e.g., for singleton congestion
games with concave delays, general congestion games with convex delays, or
weighted load balancing games on identical machines. For decreasing delays, we
show in Section 3.2 NP-completeness of deciding PNE existence in fair cost-
sharing games, even in the broadcast case where every node of a network is a
player. If we consider cost sharing with priority-based sharing rules such as the
Prim rule [6], it turns out that PNE exist in undirected broadcast games, but not
necessarily in directed broadcast games. However, even though equilibrium exists
in undirected networks, convergence of improvement dynamics is not guaranteed.
In fact, these games are not even weakly acyclic. Finally, in Section 3.3 we also
briefly consider hardness of PNE existence in market sharing games. All proofs
missing from this extended abstract can be found in the Appendix.

Related Work The study of social contexts and other-regarding preferences has
prompted increased interest in recent years, especially in well-studied classes of
potential games such as load balancing [25] or congestion games [23]. Existence
of equilibrium with binary contexts and different aggregation functions in simple
congestion and load balancing games was studied in [3]. Binary contexts with
sum aggregation were also considered in inoculation games [20]. More recently,
social cost of worst-case equilibria with and without context were quatified for
general non-negative contexts in load balancing games [4]. Coalitional stabil-
ity concepts in a model with social context and aggregation via minimum cost
change were studied for load balancing games in [16].

Several works examined the impact of altruism on the price of anarchy [5,7,8]
and equilibrium existence [17, 18] in congestion and load balancing games, and
in fair cost-sharing games [11]. Altruism in these works is also modelled via



a weighted sum of personal and social cost. For a recent characterization of
stability of social optima in several classes of games with altruism see [2].

The impact of social context with sum aggregation was also studied in other
game-theoretic scenarios, for instance in auctions (see, e.g., [22] or [9] and the
references therein), market equilibria [10], stable matching [1], and others.

Characterizing the existence of potential functions and pure Nash equilibria
was recently discussed in weighted potential games [14, 15]. The results imply
existence only for the classes of linear and exponential delay functions. This
characterization refers to existence of a property for all games from a class
with the same delay functions. In contrast, we provide a stronger result similar
to [21] in the form of a one-to-one correspondence for each individual game under
consideration.

2 Characterization

We start by characterizing the prevalence of potential functions under social
contexts. We say a potential game has a context-potential Φ if there exists a
function Φ(S, F ) with ci(S, F )− ci(S′i, S−i, F ) = Φ(S, F )− Φ(S′i, S−i, F ) for all
states S, social contexts F , players i ∈ K, and strategies S′i ∈ Si. Thus, a context-
potential ensures that the game is potential game for every social context F . We
show the following theorem.

Theorem 1. A strategic game has a context-potential if and only if it is iso-
morphic to a congestion game with affine delay functions.

We prove the theorem in two steps. We first show that a game Γ that has
a context-potential for every binary context must be isomorphic to a congestion
game with affine delays by constructing an isomorphic game. Afterwards, we
show that these games admit a potential also for every non-binary social context
by providing a context-potential.

Lemma 1. If a strategic game has a context-potential for every binary context,
then it is isomorphic to a congestion game with affine delay functions.

Proof. It is insightful to consider an arbitrary 4-tuple of states involving the
deviations of 2 players, say players i and j. Here we denote S1 = (Si, Sj , S−{i,j}),
S2 = (S′i, Sj , S−{i,j}), S3 = (S′i, S

′
j , S−{i,j}), and S4 = (Si, S

′
j , S−{i,j}). For the

cycle (S1, S2, S3, S4, S1) consider the difference in personal cost of the moving
players ∆12

i = ci(S
2) − ci(S1), ∆23

j = cj(S
3) − cj(S2), ∆34

i = ci(S
4) − ci(S3),

∆41
j = cj(S

1) − cj(S
4). Note that existence of an exact potential function is

equivalent to assuming that this difference is 0, i.e.,

∆12
i +∆23

j +∆34
i +∆41

j = 0 , (1)

for every pair of players i and j and every 4-tuple of states as detailed above [21].
Now suppose Γ is an exact potential game for every binary context F . Note

that for 2 players, every exact potential game is isomorphic to a congestion game



with affine delays, because each resource is used by at most 2 players. Hence,
consider a game with at least three players. The main idea of the proof is to
characterize the impact on the personal cost of player h when a different player i
makes a strategy switch. Using this characterization, we then construct resources
and affine delay functions.

Consider three different players i, j, h ∈ K and F with fih = fhi = 1 and 0
for all other pairs of players in the game. We assume that the resulting game
has an exact potential, we have

∆12
i + ch(S2)− ch(S1) +∆23

j +∆34
i + ch(S4)− ch(S3) +∆41

j = 0 ,

and by using Eqn. (1) above and the definition of S1, . . . , S4, we see that

ch(S′i, Sj , S−{i,j})− ch(Si, Sj , S−{i,j}) = ch(S′i, S
′
j , S−{i,j})− ch(Si, S

′
j , S−{i,j}) .

The sides of this equation describe the change of personal cost of h when i
switches from Si to S′i, once with j playing Sj (left) and once with j playing
S′j (right). We can derive this identity for all strategies of each player j 6= i, h.
This shows that when i changes his strategy from Si to S′i, then the change in
personal cost of h is independent of the strategy of any other player j. Hence,
there is

∆h(S′i, Si, Sh) = dh(S′i, Sh, S−{i,h})− dh(Si, Sh, S−{i,h}) .

To show that these values are pairwise consistent, we again consider F with
fih = fhi = 1 and 0 for all other pairs of players. However, this time i and h do
the strategy switches. By considering a 4-cycle as above and using Eqn. (1), we
obtain

ch(S′i, Sh, S−{i,h})− ch(Si, Sh, S−{i,h})

+ ci(S
′
i, S
′
h, S−{i,h})− ci(S′i, Sh, S−{i,h})

+ ch(Si, S
′
h, S−{i,h})− ch(S′i, S

′
h, S−{i,h})

+ ci(Si, Sh, S−{i,h})− ci(Si, S′h, S−{i,h}) = 0 ,

or, equivalently,

∆h(S′i, Si, Sh) +∆i(S
′
h, Sh, S

′
i) +∆h(Si, S

′
i, S
′
h) +∆i(Si, S

′
i, Sh) = 0 . (2)

We now construct an equivalent congestion game Γ ′ with affine delay functions.
We consider each pair of players i 6= h and introduce a single resource rSi,Sh

for
every pair of strategies in Sh × Si. For strategy Sh, we assume that it contains
all resources for which it appears in the index. Let us first restrict our attention
to one pair of players i and h. Due to the fact that the values ∆i and ∆h

can be given separately for each pair i, h and do not depend on other player
strategies, we can effectively reduce the game to a set of 2-player games played
simultaneously.

For each resource r associated with strategies of both i and h, we set all
delays dr(1) = 0. The delay dr(2) is set to 1 for one arbitrarily chosen resource



rSh,Si
. The other delays dr(2) simply are derived via the differences ∆h and

∆i. In particular, with r′ = rS′i,Sh
and r = rSi,Sh

we have dr′(2) = dr(2) +
∆h(S′i, Si, Sh). Similarly, with r′ = rSi,S′h

and r = rSi,Sh
we have dr′(2) =

dr(2) +∆i(S
′
h, Sh, Si). The set of values dr(2) defined in this way is consistent,

because Eqn (2) essentially proves existence of an exact potential function when
differences are given by ∆h and ∆i values, as the sum of changes in all 4-cycles of
the state graph is 0. By our assignment, we essentially use this potential function
for the dr(2) values.

In our construction so far, we guarantee that in Γ ′ player i suffers from
the same cost change as in Γ when the other player moves. So far, however, it
does not necessarily implement the correct personal cost or cost change for the
moving player. For this we introduce a single resource rSi

for strategy Si ∈ Si
of every player i ∈ K. This resource is used only by player i and only if he plays
strategy Si. We again set the delay dr(1) = 1 for some arbitrary resource rSi

.
Then consider a state (Si, S−i) and the deviation to (S′i, S−i). The difference
in cost for player i is denoted by ∆i(S

′
i, Si, S−i), and with r = rSi , r′ = rS′i ,

Rij = {rSi,Sj
| Sj ∈ Sj} and R′ij = {rS′i,Sj

| Sj ∈ Sj} we get

dr′(1) = dr(1) +∆i(S
′
i, Si, S−i) +

∑
j∈K
j 6=i

 ∑
s∈Rij

ds(Si, S−i)−
∑
s∈R′ij

ds(S
′
i, S−i)

 .

Thus, we simply account for all delay changes from the sets of resources Rij and
R′ij and correct the cost to implement the correct delay change of ∆i(S

′
i, Si, S−i)

via our resource rSi
. Note that this gives a consistent set of values for dr(1). For

a fixed S−i, this implies the same cost changes for i as in Γ . To show that
this correctly implements all cost changes for player i as in Γ , consider the
switch from Si to S′i for a different set of strategies S′−i and the cost change
∆i(S

′
i, Si, S

′
−i). To see that the correct cost change is present also in Γ ′, we

implement the deviation via the following shift. We first let all players other then
i change to S−i. By construction this changes i’s personal cost as in Γ . Then
we let i deviate to Si in state (S′i, S−i). This yields a change in personal cost as
in Γ by definition. Afterwards, we let other players switch back to S′−i. Again,
the cost changes of player i are implemented as in Γ . Hence, in conclusion, by
implementing the correct cost change ∆i(Si, S

′
i, S−i) for a single strategy switch

of Si to S′i, all other cost changes for switches among these strategies are uniquely
and correctly determined.

This shows that we can turn Γ into a congestion game Γ ′ with the same
potential function, in which every resource is accessed by at most two players.
Trivially, for every such resource we can generate the required delays dr(1) and
dr(2) via an affine delay function dr(x) = ar · x+ br. ut

Lemma 2. A congestion game with affine delay functions has a context-potential
for every social context.



Proof. The context-potential function is given by

Φ(S, F ) =
∑
r∈R

nr(S)∑
j=1

dr(j) +
∑

i 6=j∈K,
r∈Si∩Sj

fijar

In case of affine delays dr(x) = ar · x + br, we can equivalently assume that all
delays are linear dr(x) = ar · x by appropriate introduction of player-specific
resources that account for the offsets br. Then, the change of cost for player j
if i changes from Si to S′i is given by 0 for the resources of Sj that are used in
neither or both Si and S′i. The change is ar or −ar for each resource r that is
joined or left by i, respectively. Hence, when we examine the potential, we see
that

Φ(Si, S−i, F )− Φ(S′i, S−i, F )

= ∆i(S
′
i, Si, S−i) +

∑
i 6=j∈K,
r∈S′i∩Sj

fijar −
∑

i 6=j∈K,
r∈Si∩Sj

fijar

= ∆i(S
′
i, Si, S−i) +

∑
i6=j∈K,

r∈(S′i−Si)∩Sj

fijar −
∑

i 6=j∈K,
r∈(Si−S′i)∩Sj

fijar

= ∆i(S
′
i, Si, S−i) +

∑
i 6=j∈K

fij ·∆j(S
′
i, Si, S−i) ,

as desired. This proves the lemma. ut

We note that even for binary social contexts, every context-potential game
must be isomorphic to a congestion game with affine delays. In turn, our positive
result is more general – congestion games with affine delays are context-potential
games for arbitrary social contexts F .

3 Computational Results

In this section, we study the computational complexity of deciding existence of
PNE in a given potential games with social context. Throughout this section,
we focus on binary contexts. We will say that player i is friends with player j if
fij = fji = 1.

3.1 Congestion Games

We first focus on congestion games as introduced above. For this central class of
games we can prove a NP-completeness result even for singleton games, in which
|Si| = 1 for all players i ∈ K and all strategies Si ∈ Si. We start with a game
that does not have a PNE. This game is then used below in our construction to
show NP-completeness of the decision problem.



Example 1. Consider a congestion game Γ consisting of the set of players K =
{1, 2, 3, 4} and the set of resources R = {r1, r2}. Players 1 and 2 have only one
strategy each, with S1 = {{r1}} and S2 = {{r2}}. Players 3 and 4 both have two
strategies, S3 = S4 = {{r1}, {r2}}. Both resources have the same delay function
dr with dr(1) = 4, dr(2) = 8 and dr(3) = dr(4) = 9. The binary context is such
that player 4 is friends with all other players. Every other player is only friends
with player 4.

It is easy to verify that this game has no PNE: In a state in which both
resources are used by two players, player 4 has an improvement move by moving
to the other resources. In a strategy profile in which player 3 and 4 are both on
the same resource, player 3 has an improvement move by moving to the other
resource.

Theorem 2. It is NP-complete to decide if a singleton congestion game with
binary context has a pure Nash equilibrium.

The previous result uses concave delay functions to construct a game without
PNE. It is an open problem if PNE always exist in singleton congestion games
with binary context and convex delays. For more general structures of strategy
spaces, however, convex delay functions are not sufficient. Again, we use the
example below to prove NP-completeness of deciding existence.

Example 2. We consider a congestion game with six players denoted by K =
{1, . . . , 6}. Player 1 is friends with 3 and 4. Player 2 is friends with 5 and 6. The
set of resources is R = {r1, r2, r3, r4, r5}. Players 1 and 2 have two strategies.
The strategies of player 1 are S1 = {{r1}, {r2, r3}}. The strategies of player
2 are S2 = {{r2, r4}, {r3, r5}}. The remaining players have one strategy each,
S3 = {{r1}}, S4 = {{r3}}, S5 = {{r2}} and S6 = {{r5}}.

Note that r4 is used by at most 1 player, r1, r5 by at most 2 players each,
r2, r3 by at most 3 players. We define the convex delays only for the required
number of players. For r1 we have dr1(1) = 15 and dr2(2) = 16. Resources r2
and r3 have the same delay function with dr(1) = 5.5, dr(2) = 6 and dr(3) = 10.
Resource r4 has delay dr4(1) = 1. Finally, r5 has delay dr5(1) = 0 and dr5(2) = 1.

Note that only players 1 and 2 have more than one strategy. Thus, to verify
that this game does not have a PNE, we have to check the four possible states
represented by the strategies of players 1 and 2. In state ({r1}, {r2, r4}) the
perceived cost of player 1 is 16 + 16 + 6 = 38 and he would improve by changing
to strategy {r2, r3} resulting in perceived cost of 15 + 10 + 6 + 6 = 37. In state
({r2, r3}, {r2, r4}), the perceived cost of player 2 is 10 + 10 + 1 + 0 = 21 and
he would improve by changing to strategy {r3, r5} resulting in perceived cost of
10 + 1 + 6 + 1 = 18. In state ({r2, r3}, {r3, r5}), the perceived cost of player 1
is 6 + 10 + 15 + 10 = 41 and he would improve by changing to strategy {r1}
resulting in perceived cost of 16 + 16 + 6 = 38. In state ({r1}, {r3, r5}), the
perceived cost of player 2 is 6 + 1 + 5.5 + 1 = 13.5 and he would improve by
changing to strategy {r2, r4} resulting in perceived cost of 6 + 1 + 6 + 0 = 13.

Theorem 3. It is NP-complete to decide if a general congestion game with bi-
nary context has a pure Nash equilibrium even if the delay functions are convex.



As an extension to ordinary congestion games, we also consider weighted con-
gestion games. In this case, each player i ∈ K has a weight wi ∈ N. Instead of
the number of players using resource r, the delay function dr now takes the sum
of weights of players using r as input and maps it to a delay value. The personal
cost of a player is the sum of delays of chosen resources. Weighted congestion
games are known to possess PNE for linear and exponential delay functions,
see [15]. Here we show that with binary context, even singleton weighted con-
gestion games with identical linear delays might not have PNE.

Example 3. Consider the following game on two identical resources. Each re-
source r has the delay function dr(x) = x. The game consists of four players
with weights 1,1,4, and 9, respectively. The binary context is such that the three
players with weights 1 and 4 are all friends with each other, but the player with
weight 9 is not friends with anyone. It is easy to verify that this game does not
have a PNE.

Theorem 4. It is NP-complete to decide if a weighted singleton congestion game
with binary context has a pure Nash equilibrium even if all delay functions are
linear.

3.2 Cost Sharing

In this section, we consider several classes of cost sharing games. We first study
Shapley or fair cost-sharing games. These games are congestion games with delay
functions dr(x) = cr/x, where cr ∈ N is the cost of the resource. In these games,
the cost of a resource is assigned in equal shares to all players using the resource.
As a subclass, we consider broadcast games with Shapley sharing in which there
is a directed or undirected graph G = (V,E) with a single sink node t ∈ V .
Every edge e ∈ E is a resource. Every node vi ∈ V , vi 6= t is associated to a
different player i. The strategy set Si consists of all vi-t-paths in G.

A different cost sharing scheme proposed in [6] yields Prim cost-sharing
games. In this case, resources are edges of a directed or undirected graph G =
(V,E) and players are situated at a subset of the nodes in this graph. There is
a single sink node t, and the set of strategies for a player i in node vi is the set
of vi-t-paths in G. There is a global ranking of players and the cost of an edge
is assigned fully to the highest ranked player using it. The ranking of players
derives from the ordering, in which Prim’s algorithm would add players to con-
struct a minimum spanning tree (MST). In particular, the first player i is the
one which has the cheapest path to t in G. The second player is the one, which
has the cheapest path to {t, vi}, and so on. Again, in a broadcast game with
Prim sharing every node v 6= t is associated with a different player.

We first show that Shapley cost-sharing games with binary context might not
possess a PNE. Remarkably, this even holds for broadcast games with undirected
edges as the following example shows. We then use this example game as a
building block in our NP-completeness result for broadcast games with Shapley
sharing and binary context.



  

v6
v5

v4 v2

v1
v3

t

1

1

100

100

50

50

1

1

Fig. 1. A Shapley cost-sharing game that does not have a pure Nash equilibrium. The
players v3, v4, and v5 are friends.

Example 4. Consider a broadcast game with Shapley sharing in the network
depicted in Figure 1. The edges are labeled with their costs. The players that
belong to the vertices v3, v4, and v5 are mutual friends. If player v5 chooses the
path via v3 (or v4), the best response of player v6 is to choose his path via v3 (or
v4, respectively). However, the best response of player v5 is inverted. If player
v6 chooses the path via v3 (or v4), the best response of player v5 is to choose his
path via v4 (or v3, respectively). Thus, no PNE exists.

Theorem 5. It is NP-complete to decide if a broadcast game with Shapley shar-
ing and binary context has a pure Nash equilibrium.

For Prim cost-sharing games existence and convergence results become more
delicate. In particular, for undirected broadcast games with Prim sharing and
arbitrary binary context there always exists a PNE. However, we first show that
a similar result does not hold for directed broadcast games. The following ex-
ample shows that such games with binary contexts do not have PNE in general.
The main idea to prove existence of PNE and convergence without social con-
text is that the player priorities induce a lexicographic potential function for the
game. If we allow additive social context, the lexicographic improvement prop-
erty breaks. This is then used to prove NP-completeness of deciding existence of
PNE below.

Example 5. Figure 2 shows an example of a Prim cost-sharing game that does
not have a PNE. In this game player d is friends with all other players and the
players b and c are friends. Observe that in every state, d uses the edge of cost
1000. Hence, this cost is part of the perceived cost of every player in every state.
Therefore, the players never have an incentive to use one of dashed edges. On the
other hand, these are the edges that define the priorities of the players. Given
their priorities, it is straightforward to verify that the players never agree on a
subset of the edges of small cost to buy. Hence, no state of the game qualifies as
a PNE. To turn this game into a broadcast game, note that we can safely add
another player to every intermediate (non-filled) node. These players have only
one strategy each, they will end up with lowest priority, and thus they do not
change the cyclic incentives of players a, b, c and d described above.
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Fig. 2. An example of a Prim cost-sharing game with a binary context that does not
have a pure Nash equilibrium. Here, player d is friends with a, b, and c and the players
b and c are friends.

Theorem 6. It is NP-complete to decide whether a directed broadcast game with
Prim sharing has a pure Nash equilibrium.

In contrast, if we consider undirected broadcast games with Prim sharing
and binary contexts, we can construct a PNE using an efficient centralized as-
signment algorithm. While this shows existence of a PNE, convergence of im-
provement moves might still be absent. In fact, our theorem below shows the
slightly stronger statement that these games are not even weakly acyclic.

Theorem 7. For every undirected broadcast game with Prim cost sharing there
is a pure Nash equilibrium if the social context F satisfies fij = fji ∈ [0, 1] for
all i, j ∈ K. The pure Nash equilibrium can be computed in polynomial time.

Proof. The proof of the theorem is mainly a consequence of classic arguments
showing non-emptiness of the core in cooperative minimum spanning tree games.
We here use Prim’s MST algorithm not only to define the priority ordering of
players but also to construct a PNE. We first consider the cheapest incident
edge to t and assign the incident player v to play strategy {v, t}. Subsequently,
consider the set V ′ of players connected to t. Consider the cheapest edge con-
necting a player of V ′ to a player in V − V ′. We denote the players incident to
this edge by v′ ∈ V ′ and v ∈ V − V ′. Now we expand V ′ by assigning v to play
the strategy composed of edge (v, v′) and the path that v′ uses to connect to t.
This inductively constructs a state, in which the cost of a MST is shared. Note
that the players are added in order of their priority, and hence every player pays
exactly for the first edge on his path to t. We will argue that this state is a PNE
for every social context with fij = fji ∈ [0, 1] for all i, j ∈ K.

Assume that a player i has a profitable strategy switch that decreases his
perceived cost. This switch does not change the personal cost of any higher
ranked player, these players will stay connected to t by sharing the cost of their



subtree. In addition, the set of all players shares the cost of a MST, i.e., a
minimum cost network connecting all players to t. Hence, the sum of all personal
costs cannot decrease in a strategy switch. First, suppose the personal cost of
player i strcitly decreases in the strategy switch. Note that all players connecting
to t via his node vi have lower priority. Hence, we could construct a cheaper
network by letting all these players imitate i’s strategy switch, because this
would not change the personal cost of the imitating players. In this way, we would
obtain a strictly cheaper network connecting all players to t, a contradiction.

Thus, the only way to improve the perceived cost is to strictly decrease the
cost of other players that he is friends with. However, player i can only decrease
the cost of lower ranked players by paying some of the edges currently assigned
to them. As fij = fji ≤ 1, he obtains no benefit from paying these edges himself.
As fij = fji ≥ 0, he obtains no benefit from forcing lower ranked players to pay
the edges he vacates. Hence, if he strictly lowers his perceived cost in this way,
then he must also strcitly decrease his personal cost, which is impossible as noted
above. ut

Theorem 8. There is an undirected broadcast games with Prim sharing and
binary context with the property that there exists a starting state from which
there is no sequence of improvement moves to a PNE.

Proof. We construct an example game and an appropriate starting state. Our
game is an adaptation of the game in Fig. 2. We simply turn every directed edge
into an undirected edge. The social context is as before, but here we also assume
that the three auxiliary players in non-filled nodes are all friends with d. In our
starting state, player d uses the edge of cost 1000, and all other players use some
cycle-free path to t that goes over node d. The main invariant is that players c
and b always remain on the edge of cost 1000. Given this condition, player c has
no incentive to switch to a path containing an edge of cost 101, because otherwise
b would be assigned to pay a cost of 1000. If c is assigned to pay the cost of 1000,
all players have an incentive to join c on this edge as the corresponding paths
become cheaper. Thus, no player will have an improvement move purchasing
some of the edges of cost 101, 102 or 103. However, it is straightforward to verify
that without these edges, no PNE can be obtained, and hence no sequence of
improvement moves leads to a PNE. ut

3.3 Market Sharing Games

Market sharing games are a class of congestion games that model content distri-
bution in ad-hoc networks. There is a set of players and a set of markets. Each
player i has a budget Bi, each market has a cost Ci. In addition, a market has a
query rate qi. There is a bipartite network specifying which player can participate
in which market. From the set of markets a player is connected to, he can choose
as strategy any subset for which the sum of costs is at most his budget. The
reward from a market is the query rate, and it is shared equally by the players
that pick the market. Every player gets as utility the sum of rewards of markets



chosen in his strategy. More generally, market games are congestion games with
utility-maximizing players and reward functions dr(x) = qr/x. Market costs and
budgets determine the structure of the strategy spaces.

In market sharing games with binary context, we again observe absence of
PNE and NP-completeness of deciding PNE existence.

Example 6. Consider the following market sharing game with two identical mar-
kets. Each market has cost of 1 and its query rate (revenue) is 1. There are four
players 1, 2, 3, and 4 in this game. Each player is interested in both markets and
each player has a budget of 1. The players 1, 2, and 3 are mutual friends. It is
easy to see that this game does not have an equilibrium. The players 1, 2, and
3 prefer an outcome in which one of them is in a market by himself.

Theorem 9. It is NP-complete to decide if a market sharing game with a binary
context has a pure Nash equilibrium.
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A Missing Proofs

A.1 Proof of Theorem 2

Proof. We reduce from 3Sat. Without loss of generality [24], we assume each
variable appears at most twice positively and at most twice negatively. Given a
formula ϕ, we construct a congestion game Gϕ that has a PNE if and only if ϕ
is satisfiable. Let x1, . . . , xn denote the variables and c1, . . . , cm the clauses of a
formula ϕ.

For each variable xi there is a player Xi that chooses one of the resources
r1xi

, r0xi
, or r0. The resources r1xi

and r0xi
have the delay function 9x and resource

r0 has the delay function 7x+ 3.
For each clause cj , there is a player Cj who can choose one of the following

resources. For every positive literal xi in cj he may choose r0xi
. For every negated

literal ¬xi in cj he may choose r1xi
. Note that there is a stable configuration with

no variable player on r0 if and only if there is a satisfiable assignment for ϕ.
Additionally, there are four players u0, u1, u2, and u3 and two resource r1

and r2. Each of the resources r1 and r2 has delay 4 if used by one player, delay 8
if used by two players and delay 9 otherwise. Player u1 is always on resource r1
and player u2 is on resource r2. The players u4 choose between r1 and r2. Player
u0 chooses between r1, r2, and r0. Player u0 is friend with each of the players
u1, u2, and u3. These are the only friendship relations in this game. Note that
player u0 choses r1 or r2 if one of the variable agents is on r0.

If ϕ is satisfiable by an assignment (x∗1, . . . , x
∗
n), a stable solution for Gϕ

can be obtained by placing each variable player Xi on r
x∗i
xi . Since (x∗1, . . . , x

∗
n)

satisfies ϕ there is one resource for each clause player that is not used by a
variable player. Thus, we can place each clause player on this resource, which he
then shares with at most one other clause player. Let u0 use r0 and u1 and u2
choose r1 and u3 choose r2. It is easy to check that this is a PNE.

If ϕ is unsatisfiable, there is no stable solution. To prove this it suffices to show
that one of the variable players prefers r0. In that case player u0 never chooses
r0 and the players u0, . . . , u3 essentially play the game of Example 1. For the
purpose of contradiction assume that ϕ is not satisfiable but there is a stable
solution in which no variable player wants to choose r0. This implies that there
is no other player, i.e. a clause player, on a resource that is used by a variable
player. However, if all clause players are on a resource without a variable player
we can derive a corresponding bit assignment which, by construction, satisfies
ϕ.

Therefore, Gϕ has a stable solution if and only if ϕ is satisfiable. ut

A.2 Proof of Theorem 3

Proof. We reduce from 3Sat. Given a formula ϕ, we construct a congestion
game Gϕ that has a PNE if and only if ϕ is satisfiable. Let x1, . . . , xn denote
the variables and c1, . . . , cm the clauses of a formula ϕ. Without loss of general-
ity [24], we assume each variable appears at most twice positively and at most
twice negatively.



For each variable xi there is a player Xi that chooses one of the resources
r1xi

, r0xi
, or r0. The resources r1xi

and r0xi
have the delay function 9x and resource

r0 has the delay function 7x+ 3.
For each clause cj , there is a player Cj who can choose one of the following

three resources. For every positive literal xi in cj he may choose r0xi
. For every

negated literal x̄i in cj he may choose r1xi
. Note that there is a stable configuration

with no variable player on r0 if and only if there is a satisfiable assignment for
ϕ.

Additionally, there are six players u1, . . . , u6 and five resources r1, r2, r3, r4, r5.
The delay functions are as follows.
Resource r1 delay of 15 for one player and delay of 16 for two or more players.

Resources r2 and r3 delay of 5.5 for one player, delay of 6 for two players and
delay of 10 for three or more players. Resource r4 has delay of 1. Resource r5
has delay of 0 for one player and delay of 1 for two or more players.

The strategies of player u1 are S1 = {{r1}, {r2, r3}}. The strategies of player
u2 are S2 = {{r2, r4}, {r3, r5}}. The strategies of player u3 are S3 = {{r1}, {r0}},
The remaining players have one strategy each, S4 = {{r3}}, S5 = {{r2}} and
S6 = {{r5}}.

Player u1 is friend with u3 and u4. Player u2 is friend with u5 and u6. These
are the only friendship relations in this game. Note, that the players u1, . . . , u6
essentially play the game described in Example 2 if player u3 never chooses
strategy {r0}.

If ϕ is satisfiable by an assignment (x∗1, . . . , x
∗
n), a stable solution for Gϕ can

be obtained by placing each variable player xi on r
x∗i
xi . Since (x∗1, . . . , x

∗
n) satisfies

ϕ there is one resource for each clause player that is not used by a variable
player. Thus, we can place each clause player on this resource, which he then
shares with at most one other clause player. Let u1 play {r1}, u2 play {r2, r4},
and u3 play {r0}. It is easy to check that this is a PNE.

If ϕ is unsatisfiable, there is no stable solution. To prove this it suffices to
show that one of the variable players prefers r0. In that case player u3 never
chooses {r0} and the players u0, . . . , u6 play the sub game of Example 2. For the
purpose of contradiction assume that ϕ is not satisfiable but there is a stable
solution in which no variable player wants to choose r0. This implies that there
is no other player, i.e., a clause player, on a resource that is used by a variable
player. However, if all clause players are on a resource without a variable player
we can derive a corresponding bit assignment which, by construction, satisfies
ϕ.

Therefore, Gϕ has a stable solution if and only if ϕ is satisfiable. ut

A.3 Proof of Theorem 4

Proof. We reduce from 3Sat. Without loss of generality [24], we assume each
variable appears at most twice positively and at most twice negatively. Given a
formula ϕ, we construct a congestion game Gϕ that has a PNE if and only if ϕ
is satisfiable. Let x1, . . . , xn denote the variables and c1, . . . , cm the clauses of ϕ.



For each variable xi (1 ≤ i ≤ n) there are two resources Yi and Ȳi. For each
clause cj (1 ≤ i ≤ n) there are three resources Zj , K1

j , and K2
j . Each resource

has the delay function d(x) = x.
For each variable xi there is a player x̃i with weight 1000 that chooses either

Yi or Ȳi. For each clause j that contains the positive literal xi, there is a player
xi,j with weight 100. His first strategy is {Yi} and his second strategy is {Zj}.
For each clause j that contains the negated literal ¬xi, there is a player x̄i,j with
weight 100. His first strategy is {Ȳi} and his second strategy is {Zj}.

For each clause cj , there are eight players. There is player c̃j with weight
20. He chooses either Zj or K1

j . There are four players k1j , . . . , k4j with weights
1, 1, 4, and 9, respectively. They choose between resource K1

j and K2
j . The

binary context consists of m cliques of friends among the players k1j , k2j , and k3j ,
respectively. Finally, there are three dummy players of weight 500, 500, and 499
that are on resource K1

j , K2
j , and Zj respectively.

If φ is satisfiable with χ1, . . . , χn, the following strategy is a PNE: For 1 ≤ i ≤
n, let player x̃i allocate resource Yi if χi is true, and Ȳi otherwise. For 1 ≤ i ≤ n
if χi is true, the players xi,j play their second strategy and the players x̄i,j play
their first strategy. If χi is false, the players x̄i,j play their second strategy and
the players xi,j play their first strategy. For 1 ≤ j ≤ m, each player c̃j plays
strategy K1

j and players k1j , . . . , k4j play K2
j . One can easily check that this is

indeed a PNE.
For the sake of contradiction assume φ is not satisfiable but there is a PNE.

Let χ1, . . . , χn be a truth assignment defined as follows: χi = 1 if and only
if player x̃i plays {Yi}. In a PNE the players xi,j (and x̄i,j) play their first
strategy if and only if χi = 1 (χi = 0, respectively). Now pick a clause cj that
is not satisfied by χ. The best response of c̃j is {Zj} since there is none of the
variable players on Zj . The players k1j , . . . , k4j play the game of Example 3 on
the resources K1

j and K2
j which does not have an equilibrium which yields the

contradiction. ut

A.4 Proof of Theorem 5

Proof. We reduce from 3Sat. Without loss of generality [24], we assume each
variable appears at most twice positively and at most twice negatively. Given
a formula φ with variables X1, . . . , Xn and clauses C1, . . . , Cm, we construct a
broadcast game Gφ that has an equilibrium if and only if the φ is satisfiable.

Before we describe the reduction in detail, let us briefly outline the basic
ideas of the construction. See Figure 3 for reference. The game is consists of n
gadgets for the variables and m gadgets for the clauses. For each clause there
is a gadget similar to the game of Example 4. Note that player cj was denoted
by v6 there. In Gφ vertex cj of each clause gadget has three additional outgoing
edges that connect to a variable gadget each. This gives player cj three more
paths to choose from compared to Figure 3. If he does not use one of those, the
players of the clause gadget essentially play the game of Example 4 which does
not have an equilbrium. However, if the players in a connected variable gadget
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Fig. 3. Two gadgets of a Shapley cost-sharing game Gφ. On the left: A variable gadget
of an variable xi. On the right: A clause gadget that contains the literal xi.

play a profile which corresponds to a satisfying assignment, player cj may leave
the clause gadget using the additional edge. The remaining players of the clause
gadget then have equilibrium strategies.

Let us now describe the reduction in more detail. For each variable Xi with
i ∈ {1, . . . , n}, there is variable gadget that consists of players y1i , y2i , y3i , xi, x̄i
The subgraph which connect theses players and the target node t is depicted on
the left hand side of Figure 3.

For each clause Cj with j ∈ {1, . . . ,m} there is a clause gadget depicted on
the right hand side of Figure 3. For each literal of Cj there is a connection from
the vertex cj to a variable gadget. If Xi is a literal in Cj , vertex cj is connected
to xi with an edge of weight 100. If ¬Xi is a literal in Cj , vertex cj is connected
to x̄i with an edge of weight 100 . The only friendship relations in this games
are the three pair of friends in each clause gadget as in Example 4.

It remains to show that Gφ has a PNE if and only of φ is satisfiable.
Note that in a PNE the players y1i , y2i , y3i use the same path from vertex y3i

onwards. Choosing the upper path via vertex xi corresponds to Xi is set to true.
Likewise, choosing the lower via vertex x̄i corresponds Xi is set to false.

Observe that for a player cj the cost of choosing a path via a vertex xi (or
x̄i) is higher than the cost of any path in the clause gadget if none of the players
y1i , y

2
i , y

3
i choose the path via vertex xi (or x̄i, respectively). Note that at most

one other clause player and the player xi (or x̄i) can use this edge.
On the other hand, the cost of a path a via vertex xi (or x̄i) is lower that

the cost of any path in the clause gadget if all three players y1i , y2i , y3i choose the
path via vertex xi (or x̄i, respectively).



Therefore, if the formula is satisfiable, there is an equilibrium by letting the
players of the variable gadget play according to a satisfying assignment and the
clause players choosing a path via a vertex of a variable that satisfy this clause.
Conversely, if there is no satisfying assignment, there is a clause player whose
best response is a path in the clause gadget. The players of the clause gadget
play the game of Example 4 that does not have an equilibrium. ut

A.5 Proof of Theorem 6
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Fig. 4. A clause gadget (left) and a variable gadget (right) of a Prim cost-sharing game
Gφ.

Proof. We reduce from 3Sat. Given a formula φ with variables X1, . . . , Xn and
clauses C1, . . . , Cm, we construct a cost sharing game Gφ that has an equilibrium
if and only if the φ is satisfiable. See Figure 4 for reference. Again, we will make
sure that the players do not have an incentive to use the dashed edges.

The game consists of three nodes t, e, f and of one gadget for every clause
and one gadget for every variable in φ. Player f and player e are friends. Observe
that it is always a best response for f to choose the path via e and pay for the
edge of cost 1000.

For every clause Cj there is a clause gadget which is essentially a copy of the
example given in Figure 2. However, the edge from d to t of cost 1000 in the
original network is now replaced by an edge of cost 0 to e. Here, only the players
bj and cj are friends.

For every variable Xi there is a variable gadget which consists of three players
yi, xi and x̄i. Player yi has essentially (ignoring the dashed edges) two paths he



can choose from. One via a vertex xi and one via x̄i. The clause and variable
gadgets are connected by edges in the following way. If clause Cj contains the
literal Xi (¬Xi) there is a edge from vertex cj to xi (x̄i, respectively).

Now, if there is a satisfying assignment χ1, . . . , χn for φ, one can obtain an
equilibrium as follows. Player f chooses the path via e and pays for the edge of
cost 1000. For every positive (negative) variable χi, let player yi choose the path
via xi (x̄i, respectively). For every clause Cj , let player cj choose the path via xij
(xij ) where ij is the index of a positive (negated) literal Xij (¬Xij , respectively)
that satisfies clause Cj in χ. Note, that the edge of cost 50 is being payed by
yij . The players aj choose the paths starting with the edges of cost 12 and the
players bj the paths starting with the edges of cost 10.

For the sake of contradiction, assume that φ is unsatisfiable and there is a
PNE. As argued above, f chooses the path via e and pays for there edge of cost
1000. Obviously, none of the dashed edges is used in a PNE as there is always
a cheaper path. We define a bit assignment χ as follows. Let χi = 1 if player yi
choose the path via xi and χi = 0, otherwise. Let j be the index of a clause that
is not satisfied by χ. Then player cj would have to pay for every edge of cost
50 if he chooses a path via a variable gadget. Thus, the players of this clause
gadget play the game of Example 5 which does not have an equilibrium.

ut

A.6 Proof of Theorem 9

Proof. We present a similar reduction from 3Sat as in Theorem 2. Without
loss of generality [24], we assume each variable appears at most twice positively
and at most twice negatively. Given a formula ϕ, we construct a market sharing
game Gϕ that has a PNE if and only if ϕ is satisfiable. Let x1, . . . , xn denote
the variables and c1, . . . , cm the clauses of a formula ϕ.

For each variable xi there a player Xi with budget 10 that chooses one of the
markets r1xi

, r0xi
, or {r0, rai }. The markets r1xi

and r0xi
each have query rate and

cost 10. Markets r0 and rai have query rate 4 and cost 5.
For each clause cj , there is a player Cj with budget 10 who can choose one of

the following three markets. For every positive literal xi in cj he may choose r0xi
.

For every negated literal ¬xi in cj he may choose r1xi
. Note that there is a stable

configuration with no variable player on r0 if and only if there is a satisfiable
assignment for ϕ.

Additionally, there are four players u0, u1, u2, and u3 and two markets r1
and r2. Each of the markets r1 and r2 has query rate and cost 5. Each player is
interested in both markets and each player has a budget of 5. The players u1, u2,
and u3 are mutual friends. These are the only friendship relations in this game.

Note that player u0 choses r1 or r2 if one of the variable agents is on r0, in
which case there is no PNE in the game.

If ϕ is satisfiable by an assignment (x∗1, . . . , x
∗
n), a stable solution for Gϕ can

be obtained by placing each variable player Xi on r
x∗i
xi . Since (x∗1, . . . , x

∗
n) satisfies

ϕ there is one market for each clause player that is not used by a variable player.



Thus, we can place each clause player on this market, which he then shares with
at most one other clause player. Let u0 use r0 and u1 and u2 choose r1 and u3
choose r2. It is easy to check that this is a PNE.

If ϕ is unsatisfiable, there is no stable solution. To prove this it suffices to
show that one of the variable players prefers {r0, rai }. In that case player u0 never
chooses r0 and the players u0, . . . , u3 essentially play the game of Example 6. For
the purpose of contradiction assume that ϕ is not satisfiable but there is a stable
solution in which no variable player wants to choose r0. This implies that there
is no other player, i.e. a clause player, on a market that is used by a variable
player. However, if all clause players are on a market without a variable player
we can derive a corresponding bit assignment which, by construction, satisfies
ϕ.

Therefore, Gϕ has a stable solution if and only if ϕ is satisfiable. ut


