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Abstract

We study the convergence times of dynamics in games involving graphical relationships of players.
Our model of local interaction games generalizes a variety of recently studied games in game theory
and distributed computing. In a local interaction game each agent is a node embedded in a graph and
plays the same 2-player game with each neighbor. He can choose his strategy only once and must apply
his choice in each 2-player game he is involved in. This represents a fundamental model of decision
making with local interaction and distributed control. Furthermore, we introduce a generalization called
2-type interaction games, in which one 2-player game is played on edges and possibly another game is
played on non-edges. For the popular case with symmetric 2 x 2 games, we show that several dynamics
converge to a pure Nash equilibrium in polynomial time. This includes arbitrary sequential better-
response dynamics, as well as concurrent dynamics resulting from a distributed protocol that does not
rely on global knowledge. We supplement these results with an experimental comparison of sequential
and concurrent dynamics.
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1 Introduction

In this paper we examine convergence of dynamics in a fundamental model for distributed decision making
with local interactions. We introduce two game-theoretic models, one a generalization of the other, that
combine strategic interaction with the notion of graph-based locality. This extends a variety of game-
theoretic settings that have been studied intensively in the literature. In our model of a local interaction
game there is a graph G along with a 2-player symmetric game, I'. Players are the nodes, and the graph
models the local interaction possibilities. In particular, I' is played along each edge of G, and each player
plays the same strategy against each of their neighbors. The payoff of a player is simply the sum of the payoffs
earned from playing each neighbor. We also introduce a generalization of local interaction games called 2-
type interaction games. Intuitively, a 2-type interaction game is a graph where one 2-player symmetric game
is played on the edges, and another 2-player symmetric game is played on the non-edges. Whereas local
interaction games model the restricted interaction possibilities of players through the topology of the graph,
2-type interaction games also model different types of interactions that occur between players. This is a
natural assumption when considering e.g. social networks, as they do not necessarily indicate restrictions of
interactions, but rather show that there is a special relationship, which is likely to alter the incentives of the
involved actors. Our model allows one to specify for example how one person treats a friend differently than
a stranger. In addition, it is possible to study distributed graph clustering problems (such as correlation
clustering [22]) within this framework.

Our main interest is how the set of players can quickly arrive at a stable set of decisions—a Nash equi-
librium of the game—using distributed decision making policies. Our main result is that myopic sequential
better-response dynamics converge in polynomial time to a Nash equilibrium. This results holds for 2-type
interaction games based on arbitrary symmetric 2 x 2 games and arbitrary graphs, which encompasses the
vast majority of cases considered previously in related work. More interestingly, we can show a similar result
for a payoff-relative concurrent protocol without central coordination. This result holds for arbitrary local
interaction games, and 2-type interaction games with polynomially bounded payoffs. While sequential better
response has a natural and intuitive appeal, our concurrent policy is carefully designed. It exhibits a number
of favorable properties, such as respecting player incentives and relying only on local information. Designing
such policies that yield provably rapid convergence is a major concern in wireless networks and distributed
control systems (see, e.g. [I7.B4]), and our results contribute to this research agenda. In particular, our
dynamics can be interpreted as efficient distributed algorithms to compute a Nash equilibrium, which stands
in sharp contrast to other game-theoretic models of restricted (graphical) interaction [I3}30].

The comparison of convergence times for sequential and concurrent dynamics in local interaction games
without a dominant strategy reveals that the lack of central control can result in concurrent dynamics being
slower than sequential ones. This, however, is a worst-case result, and we indicate that in coordination
games, where the incentive is to join neighbors in their strategy choice, concurrent dynamics resulting from
our protocol can be significantly faster. This does not necessarily hold for anti-coordination games, where
players try to pick different strategies than their neighbors. Here a simple adjustment of our concurrent
dynamics to a fixed choice p for the migration probability can yield better results. However, the choice of
this value is delicate, as resulting dynamics might abruptly drown in oscillation. It remains an interesting
open problem to find improved analytical bounds for expected convergence times in specific classes of local
interaction games.

The rest of the paper is structured as follows. We revisit related work in Section[I.I]and define the model
in Section Sequential dynamics are treated in Section 2] concurrent dynamics in Section [3l In Section @
we compare sequential and concurrent convergence times in simple local interaction games. Finally, Section[H]
concludes the paper.

1.1 Related Work

This paper fits into a recent stream of works that study subclasses of local interaction games. For example,
our model of local interaction games generalizes a game considered by Bramoullé [9], which concentrates
on the subclass of symmetric 2 x 2 anti-coordination games on the edges and does not have any games



on the non-edges. In the rest of this section we discuss models that are related to, but are not necessarily
specializations of local interaction games. A special class of anti-coordination game derived from the MaxCut
problem has been used in [I6]. It was studied by Christodoulou et al. [I2] in terms of convergence time to
Nash equilibria and social welfare of states obtained after a polynomial number of best-response steps.

Variants of local interaction games with coordination games are central in the study of threshold phenom-
ena, cascading dynamics, and information diffusion in networks [33]. Closest to our focus is a recent paper by
Montanari and Saberi [37] who consider a special case of our model of local interaction games, in which the
2 x 2 games are symmetric coordination games. For these games, they study a class of noisy best-response
dynamics called logit-response, heat bath, or Glauber dynamics. For potential games, in the long run, the
time this process spends at a state scales proportional to the potential value and the noise level. For small
noise levels the dynamics thus remain exclusively at global potential maximizers. For coordination games
this is a state in which all players use the same strategy, and in such games it is also the state maximizing the
social welfare (defined as the sum of player utilities). Studying properties of these dynamics in this class of
games has been a popular topic in numerous works over the last two decades [6,IT14.[40]. The results of [37]
are complementary to ours in the sense that they consider the hitting time of a global potential maximizer
in a significantly more restrictive model. They show that convergence times increase from polynomial to
exponential time when the graph becomes more well-connected. This contrasts our polynomial time bounds
for all graphs and arbitrary symmetric 2 x 2 games when only convergence to local potential maximizers is
required. Note that in our more general model, a potential maximizer can be arbitrarily bad in terms of
social welfare (e.g., for 2 x 2 prisoner’s dilemma games it is even a minimizer of social welfare). Naturally,
in terms of stability, a potential maximizer remains a desirable state, however, the results of [37] indicate
that quick convergence by better-response protocols to such states does not hold. Furthermore, in our more
general scenario, even computing a potential maximizer is NP-complete, e.g., in the MaxCut game. This
motivates us to derive protocols that guarantee convergence to a slightly less stringent notion of stability,
i.e., to pure Nash equilibria.

Our concurrent dynamics are closely related to recent work on protocols for concurrent strategy updating
in potential games for distributed control in networks [3435], some of which are inspired by evolutionary game
theory [II7I8]. In addition, there is a large body of related work on strategic learning [21,[41], various forms
of dynamics such as calibrated [19] or regret learning [Bl2542] or best response/ficticious play [2IT21620136],
and a variety of equilibrium concepts such as correlated Nash [3] or sink equilibria [I523]. In a related work,
Kearns and Tan [32] design a voting protocol with polynomial time convergence in a similar 2-strategy
coordination scenario. In contrast to our work they also require convergence to a state where all players play
the same strategy. In the graphical model of evolutionary game theory introduced by Kearns and Suri [31]
all players play a 2-player symmetric game with a randomly chosen neighbor. The authors characterize
evolutionary equilibria in terms of the graph structure. However, they give no notion of dynamics that
converge to equilibrium.

While in our model the graph is fixed and specified in advance, there are several works on games with
network formation. In particular, 2 X 2 anti-coordination games on endogenous graphs were studied in [10].
More work has been done on network formation and 2 x 2 coordination games. In these games, players
strategically decide both which links to build and which strategy to play in the games on the links. These
games are classes of local interaction games with network creation, i.e., they allow only connected players
to interact. There has been no focus on duration of dynamics, social welfare, and computation of Nash
equilibria and optimal states. Instead, properties of the network structure and payoff properties in Nash
equilibria were analyzed [4], or stochastically stable states were characterized [24127].

1.2 Model and Notation
We begin by giving the formal definition of a 2-type interaction game.

Definition 1. A 2-type interaction game is a graph G = (V, E) together with two, possibly different, 2-player
symmetric games I'¢ and 'Y, where the set of strategies is the same in both games.



Intuitively, on each edge e € E connected players play a 2-player symmetric game I'¢. In addition, for
each non-edge the pair of disconnected players play a possibly different symmetric 2 x 2 game, I'?. Each
player plays the same strategy in all games he is participating. In this work, we restrict I' and I'? to be
2 x 2 symmetric games with strategies 1 and 2, and payoffs for I' and I'? are denoted as shown in Figure [Tl

Next we introduce some notation that will allow us to define the utility function for each player in a
2-type interaction game. We will let T, = {I'*,T?}. We denote by n = |V| the number of players, m = |E|

Ie 1 2 I 1 2
1 a,a d,c 1 e.e h.,g
2 c,d b,b 2 g.h f.f

Figure 1: Payoffs in the Games.

the number of edges, and deg(v) the degree of player v. Let S = {1,2}" be the set of states of the game and
s = (sy)vev € S a state, where s, € {1,2} is the strategy of player v. For a state s the set of players playing
strategy 1 is denoted Vi(s), and their number is denoted |s|;. For a player v the number |s|} denotes the
number of her neighbors playing 1. Va, |s|2, |s|§ are defined similarly for strategy 2. The size of the cut of a
state s, which is the number of edges connecting players that play different strategies, is denoted by m2(s).
A player v has utility for strategy 1

util, (1,5-,) = [a- sy + a-|sly]
+ le-(sh —=1—1s]f) + h-(Isl2—Is3)] ,

o

while for strategy 2 he has utility
util, (2,s-,) =

c-lsly + b-ls[3]
+ lg-Ush=lslt) + £-(lsl2—1-1sl3)] -

Note that symmetric 2 x 2 games are known to be exact potential games [6,40], and the potential is given

as follows:
c [ a—c 0 ia_ [ e—8g 0
(I)_( 0 b—d) (I)_( 0 f—h)'

Here the potential for two players playing strategies ¢ and j respectively, where i,j € {1,2}, is ®°(, j)
for I'® and ®9(i, 5) for T,
Proposition 1. Every local interaction game has an exact potential function ®(s) defined as sum of the
corresponding potentials ®° and ®¢ of the symmetric 2 x 2 games.

Proof. Consider an arbitrary state s and a player v changing his strategy.
util(1, s—,) — util(2, s_,)

= Y a+ D> d+ Y e+ Ddoon—| Y e+ D v+ Y g+ > ot

(u,v)EE (u,v)EE (u,v)¢E (u,v)gE (u,v)EE (u,v)EE (u,v)¢E (u,v)ZE
Su=1 Su=2 Su=1 Su=2 Su=1 Su=2 Su=1 Su=2
= Y (@=e) =0+ Y (O0-(@-a)+ Y (e-g-0+ Y (0-(f-h)
(u,v)EE (u,v)EE (u,v)¢E (u,0)¢E
Su=1 Su=2 Su=1 Su=2
= > (Lsu) - O2su)+ D> BU(Lsu) — BU(2,54)
(u,v)EE (u,v)¢E

= D(1,5-,) — P(2,5-y) -



2 Sequential Dynamics

In this section, our goal is to examine the duration of sequential iterative better-response dynamics. We
provide an analysis of the potential function, which yield polynomial convergence times in 2-type interaction
games.

Theorem 1. For every 2-type interaction game every sequence of better-response moves from any initial
state terminates in a pure Nash equilibrium after at most (n + 1)(m + 1)? steps.

Proof. Our proof relies on a more insightful characterization for the potential function. Looking carefully
at the structure of the potential function, we can derive games in the doubly symmetric form described by
Figure[2l which have the same potential function. This implies that they also have the same payoff differences
for the players and, in particular, the same Nash equilibria. We use A=a—-c,B=b—-d, E=e—g, and
F = f—h. A trivial calculation (see, e.g., chapters 1 and 2 of [39]) shows that the new game exhibits the same
potential functions as the original game. Note that this game is not equivalent in terms of social welfare, as
we alter the total payoffs in some of the states.

re 1 2 rd 1 2
1 AA 0,0 1 E,E 0,0
2 0,0 B,B 2 0,0 F,F

Figure 2: Payoffs in games transformed to be doubly symmetric.

We analyze the potential function more closely and denote by S=A+B, T=E+F, AA=A—E, and
AB = B — F. The potential function of Iy, is

O(s) = Y AfsfHE-(sh—1—s|)+ > B-ls|s+F-(lsla—1—1s[3)
veVi(s) vEVa(s)
= E-fsli- (sl —1)+F-[sla- (s =1+ Y AA-[si+ Y AB-[sf3
veVi(s) veEVa(s)

= E-fsh-(sh =D +F-(n—sh)(n—lsh=1) = > Ad-|sly+ > Ah-deg(v)

veVi(s) veVi(s)
Z AB - |s|] + Z AB - deg(v

vEVa(s) vEVa(s)
= Fa(n—1)+ -(||>2—<2F<n—1> >-||1+<T—s>-mu<s>

+ Z AA - deg(v Z AB - deg(v

veVi(s) veEVa(s)

= Fan(n—1)+T-(s)1)* = (2F(n — 1)+ T) - |s|s + (T — S) - mya(s)

+2ABm + (AA— AB) Y deg(v) .
veVi(s)

It is possible to drop the constant terms Fn(n—1)+2ABm from every state and derive an equivalent potential
function

U(s)

®(s) —Fn(n—1) —2ABm (1)
T-(|s])?> = (2F(n = 1)+ T) - |s|1 + (T — S) - maa(s) + (AA — AB) Y deg(v). (2)

veVi(s)



For the proof of the theorem we observe that ¥ depends—in addition to the payoffs—only on three pa-
rameters: the number |s|; of players playing strategy 1, their degrees Zve\/l(s) deg(v) and the cut size
m12(s). Observe that |s|; can range from 0 to n, which constitutes the factor n+ 1 in the guarantee. mqz(s)
and 3, ¢y, (s deg(v) can take at most m + 1 different values each. Hence, the total number of possible

combinations for these parameters yields a total of (n + 1)(m + 1)? different values for ¥ and ®. As each
better-response iteration must strictly increase ® in each step, every such sequence takes at most this number
of iterations to reach a local optimum of ®, from any starting state. This proves the theorem. O

The main technique in the previous proof is transforming any game to an equivalent doubly symmetric
game with only four different payoff values. The main outcome of this is the function ¥ in Equation (@), a
potential function for our original game with an insightful representation.

The basis of the previous proof is a simple argument that can be applied somewhat more generally.
Suppose every pair of players plays the same, exact potential game, each player can pick his strategy only
once for all games, and the payoffs he receives are summed up. Then the whole game has an exact potential
function. Consider a local interaction game in which each pair of players plays a k& x k potential game with
constant k. We can classify edges into O(k?) classes depending on the current state of the game on the edge.
This yields only a polynomial number of different combinations and potential values. The same holds if we
generalize 2-type interaction games to a constant number of different k x k potential games with constant k.
On the other hand, if we allow a different game on each edge, then even with k = 2 this more general class of
games includes the party affiliation or weighted MaxCut game as a special case, for which finding a pure Nash
equilibrium is known to be PLS-hard, and in which there are games and starting states from which every
sequence of better-response steps is of exponential length [I6,28]. Similarly, the class of local interaction
games with & x k games and k < n extends weighted MaxCut games, as we can simultaneously embed a
MaxCut game into payoff matrix and graph structure for a subgraph of k/2 nodes. Thus, for k = Q(n)
strategies, the class again includes MaxCut games in which convergence time is necessarily exponential.
Thus, in these natural extensions of our model, a similar result as in Theorem [l is not possible. A deeper
characterization along these lines is left for future work.

3 Concurrent Dynamics

In this section we consider round-based concurrent dynamics, in which in each round all players simulta-
neously update their strategy choices. A simple approach, which is considered frequently in the area of
information diffusion in networks [33], is to allow all players to simultaneously play their best responses to
the current state of the game. This approach converges rapidly if all players have dominant strategies. In
fact, we would reach the dominant strategy equilibrium after the first round, which speeds up the convergence
time by a factor of n over the sequential process considered previously. One might think that concurrent dy-
namics should always yield a significant speed-up due to the possibility of simultaneous updates. However,
due to the absence of global coordination, these dynamics can easily get stuck in oscillations. The main
design challenge proves to be to avoid oscillation and to obtain reasonable convergence times. In order to do
this we follow the idea of [I7] and design a policy in order to increase the potential function in expectation
in each round. The challenge here is to enlarge migration probabilities to converge quickly, yet to guarantee
potential increase in expectation.

To guarantee convergence we introduce the notion of inertia, i.e., we allow players with a certain probabil-
ity to continue playing their strategy although there is currently a better alternative. For instance, suppose
each player independently at random migrates to a better response with a probability less than 1. This
allows for the construction of a Markov chain on the states, where migration probabilities of the players
yield transition probabilities between states. Note that, due to inertia, with a possibly tiny probability the
concurrent process can resemble any sequential better-response dynamics. Thus, the only absorbing states
of the Markov chain are the pure Nash equilibria, to which the process must converge with probability 1
in the limit (see, e.g., [35]). The bounds on the convergence time that can be derived from this argument,
however, are usually extremely large.



Subsequently, we analyze a protocol with migration probabilities proportional to the relative payoff
increase. For technical reasons, we here assume that all payoffs are non-negative integer numbers, i.e.,
a,b,c,d,e,f,g,h € N. We first show that this protocol is unlikely to get stuck in oscillation. Afterwards,
we consider several preprocessing steps to adjust the payoff values such that the incentives of players are
preserved and convergence is obtained in expected polynomial time.

Algorithm 1 Relative Migration Protocol (RMP), repeatedly executed by all players in parallel.

1: For player v let © < s, and y < 3 — z.

2: if util, (y, s—y) > util,(x, s_,) then

3:  with probability

utily (y, s—y) — util, (z, s—y)

utily (v, $—v)

1
sz:X'

migrate from strategy = to y.
4: end if

In a state s a player v considers changing from strategy « € {1, 2} to strategy y = 3 — x if util, (y, s—,) —
util, (x,s—,) > 0. If this is the case, she migrates with migration probability that depends on her relative
payoff increase (see the Relative Migration Protocol (RMP), Algorithm [I). Observe that to execute the
RMP a player only needs to know its strategy and the strategy of its neighbors. If every player updates his
strategy choices using the RMP, a new state s’ evolves. We define a vector As = (s'(v) — $(v))pev .-

Lemma 1. Ifc =d, g = h, and A chosen sufficiently large, then as long as the 2-type interaction game is
not in a Nash equilibrium, it holds that E [®(s + As)] > O(s).

Say player v could improve his utility by switching to a new strategy. He decides to switch with a
probability based on the action profile of his neighbors. At the same time as v changes strategy, his neighbors
might do so as well. Thus this proof works by bounding the error in how much v expects to gain before
switching versus how much v actually gains after switching.

Proof. For a state s and a vector As consider a player v. Let x = s(v) denote v’s current strategy and let
y = s(v) + As(v) denote v’s strategy after migration. The change in v’s utility after migration, assuming
no other players change their strategy is denoted Autil, (s_,) = util,(y, s—,) — util,(z, s_,). Let the virtual
potential gain be defined as
VPG(s,As) = Z Autil, (s—y).
veV
The virtual potential gain simply sums all the presumed payoff increases of all players that chose to migrate.

The real potential gain ®(s + As) — ®(s) can be different if more than a single player moves. In this case
the simultaneous migration of players u and v creates an error F'*¥(s, As). Thus,

O(s+ As) — (s) = VPG(s,As) — > F""(s,As). (3)
u,veV

In order to show that E [®(s+As)]—®(s) > 0, and conclude the proof of Lemmalll, we will relate expected
virtual potential gain and expected error, which are the two terms on the right hand side of Equation (B]).
We denote by A* =~ - % : (1 + max{é b'e i}), where v > 1 is a constant.

b’a’f’e
Lemma 2. If c =d, g =h, then for A\ > \* it holds that E[®(s + As)] — D(s) > 7771 -E[VPG(s, As)].
Proof. We will show that the error terms > oy E[F*?(s, As)] are at most a constant fraction of E [V PG(s, As)],

and the lemma will follow by taking the expectation of Eqn. [B]). We will account the expected virtual poten-
tial gain partially to each pair of nodes u,v € V, and thereby relate it to the expected error of the potential



gain between u and v. For simplicity we drop the indices s, As and s_,,. Note that

Autll
E[VPG]) = Zuw Autil, = )\Z atily(
veV
= XZAutilv-R
veV

where (i, is defined in Algorithm[Iand we use R, = Autil, /util, (y). We split this expected virtual potential
gain into parts denoted VPG*"?, which are accounted towards the pair (u,v) of players, for every u # v,
u,v € V. For a player v we account a fraction of his gain depending on the payoff that the game with player
u contributes to util, (y).

The following analysis is done for a player v with s(v) = 2 = 1 that migrates to strategy y = 2 and pairs
of neighboring players. The arguments can be repeated similarly for a switch from 2 to 1 and/or disconnected
players. We first consider a neighbor u with s(u) = 2. For player v we account a fraction of

b 1 [ Autil, \> b
— .Y - Autil,=b- = - v N
util,(2) F12T oM ) (utilv(2)) P

of the expected virtual potential gain to the edge (u, v). Similarly, u has an incentive to change from strategy
2 to 1, and we account a fraction of

a 1 Autil, \°  a
cuo-Autil, =a - = - u = 2. R?
util, (1) Herote T Ay (utilu(l)) PR

of the expected virtual potential gain to (u,v). Thus, we have
1
E[VPG“"] = 1 (aR2 +DbR2).

The expected error is calculated as follows. Player v presumes a change in payoff of b — ¢, player v presumes
a—d = a— c. However, if both players migrate the combined change in potential is (a — ¢) + (¢ — a) = 0.
Thus, the error is a + b — 2¢, and the expected error is

a+b

E[F""] = wply - (a+b—20) < 20

Ry R, .

Thus, the expected potential gain for the pair (u,v) is at least

1 b
E[VP"] -E[F*"] > 5 (bRﬁ +aR2 - (a“; )RuRU)
This expression is strictly positive if we ensure that (a+b)/A < 2min{a, b}, which yields A > 1-(1 4+ max {2,2}).
By our choice of A > A\* this is guaranteed and yields

1
E[F*“*] < - -E[VPG""] .
'7
This proves the case for a neighbor u with s(u) = 2.

The case for a neighbor u with s(u) = 1 follows similarly. For player v we account a fraction of

[¢]

C
Y, Autil, = S - R?
util,(2) F2r o

)\ v
of his expected virtual potential gain to the edge (u, v). Similarly, u has an incentive to change from strategy
1 to 2, and we account a fraction of

C

C
Y Autil, = S R?
util,(2) 2Tt T Y

u



of the expected virtual potential gain to (u,v). Thus, we have

C

E[VPG"] = <

(R, + R})

The expected error on edge (u,v) is calculated as follows. Each player presumes a change in payoff of ¢ — a,
however, if both players migrate, the change in potential is ¢ —a+ b — c = b — a. Thus, the error is
2(c —a)+ (a—b) =2c —a—Db, and the expected error is

2c

B[F") = pypity - (20 —a—b) < 55 - R~ Ry

Due to the consistent factor c in this case we can actually argue with b, c > 0 and simple calculus that for
any constant A > 1 we have

1

E[F“’] < =~ -E[VPG""] < = -E[VPG"“"] .
g

> =

The same argument can be repeated for all pairs of players and all possible strategy constellations.
Finally, we see that

> E[F"]< - -E[VPG]

u, eV

2|

This combined with Equation (3] proves Lemma O

Note that, as long as at least one payoff value of a, b, c,d is strictly positive, we make a strictly positive
increase in the potential function whenever a player moves. This proves Lemma [I] o

In the following we will adjust local interaction games such that we preserve the incentives of players and
the dynamics resulting from the RMP converge to a Nash equilibrium in expected polynomial time. We first
turn the games into doubly symmetric games of the form in Figure2l We then use the fact that for any such
local interaction game we can find a game that preserves all player preferences and has A,B € [—2n?,2n?],
which we prove below. Finally, adjusting doubly symmetric games of Fig. [2] to ensure that all payoffs are
positive is straightforward by adding 2max{|A|, |B|} to every payoff value. Note that this adjustment at
most triples the maximum absolute value of all payoffs. When we run the RMP in the equivalent game
with payoffs adjusted in this way, we can guarantee polynomial convergence time. We refer to this as the
perturbed RMP.

Note that perturbed RMP induces the same preference relation for the players as the original game. That
is, a player v prefers strategy 1 over 2 for given strategies s_, in the original game if and only if he does
so in the perturbed game. However, we change the actual payoff values for the players to be of polynomial
size. This only has an effect on the amount by which players prefer states, and results in altered migration
probabilities. For instance, it always ensures that they are at least polynomially large (apart from being 0).

Theorem 2. For local interaction games the dynamics resulting from the perturbed RMP converge to a Nash
equilibrium in expected polynomial time.

Proof. We first observe that we can always replace payoff values by numbers in O(n?) that yield the same
player incentives. Then we show that this adjustment results in polynomial convergence time.

Let us consider the game I, of the form in Fig. Note that if A>0>Bor B> 0 > A, the game has a
weakly dominant strategy and we get an equivalent game with A, B € {1,0, —1}. We here treat the case that
A,B > 0, the completely negative case is similar.

Consider any player v € V. The number of neighbors of v playing strategy 1 or 2 define the payoffs and
the preferences of v. In particular, for every player v of degree deg(v) the utility function is given by |s|{A
or (deg(v) — |s|[V)B if s, is 1 or 2, respectively. For fixed values A, B the preference for strategy 1 or 2 for



v depends only on the number of neighbors playing strategy 1. Consider the preference function pref(z,y)
that depends on A and B and is given by

0 ifzA=1yB
pref(z,y) =<1 if zA < yB
2 if zA > yB

Note that for every player v and every state s of every local interaction game with payoffs A and B, strategy
pref(|s|V, deg(v) —|s|V) is the strategy preferred by player v in state s, where strategy 0 means that v prefers
to stick to s,.

We will now define integer values A’, B’ with 1 < A’, B’ < 2n? such that the preference function pref’(z,y)
resulting from A’, B’ has pref’(z,y) = pref(z,y) for all z,y € {0,1,...,n}. This implies that for every local
interaction game with A,B > 0, there is an equivalent local interaction game with A’,B’ € O(n?) in the sense
that for every player v and every state s, the incentives of v in s are the same in both games. Thus, in
particular, the better-response dynamics and the set of pure Nash equilibria is the same in both games.
Obviously, however, the exact utility values of players for the states may differ.

Note that we always have pref(0,0) = pref’(0,0) = 0. Furthermore, as A,B > 0 by assumption, we have
pref(0,y) = pref’(0,y) = 2 and pref(x,0) = pref’(z,0) = 1 whenever A’,B’ > 0 and =,y € {1,...,n}. For the
remaining values, we rearrange the definition of pref and use the positivity of x and y to observe

0 A/B=y/x
pref(z,y) =<¢ 1 » << A/B>y/x
2 A/B<y/x
Hence, using
Bt = min {E | pref(x,y) = 2 or pref(z,y) = O}
zyef{l,...n} LT
and y
B = a {— ef(xz,y) = 1 or pref(z, :O}
pglix G et y) v pref(z, y)
implies B~ < A/B < B*. By definition, one can express B~ = by /b, and BT = b /b for values

by, by ,b3,by € {1,...,n}. Now if A/B = B~, then pick A’ = b] and B’ = b;. Similarly, pick A’ = b}
and B’ = by if A/B = B*. Otherwise, pick A’,B’ € {1,...,2n?} such that

A = biby +0b7by
B = 2byb .

Then A'/B' € (B~, BT). With this choice it is straightforward to observe that for all z,y € {1,...,n}

0 A/B=y/x N/B =y/x
pref(z,y) =< 1 » <= < A/B>y/x p <= A/B' >y/z } <= pref'(z,y)=<¢ 1
2 A/B<y/x N/B <y/x 2

We have seen that we can obtain an equivalent game with the same preferences for every player and
payoffs with absolute values in O(n?). Hence, as observed above, we can further adjust this to an equivalent
game with non-negative payoffs bounded by O(n?). The perturbed RMP is the RMP in this adjusted game.
Here we can observe \* € O(n?), i.e., the expected virtual potential gain in each round of the dynamics is
in Q(1/n*) and so is the expected potential increase. Examining the potential for local interaction games
with payoffs in O(n?) reveals that the maximum value of the potential is bounded by O(n?*). The expected
time to reach a state of maximum potential is thus bounded by O(n®). This shows that the perturbed RMP
converges to a Nash equilibrium in expected polynomial time. O

10



10* 1000 10*

T
Sequential ~ + 900 Sequential ~ + +++++*++ Sequential ~ +
Concurrent @ L Concurrent  ©
800 Concurrent o e 3
700 ++++++ 10 Concurrent (0.27)
o
o 600 o
8 e,
S 500 o
"
2 400 e
i
300 e
200 |
100
10° 0 10°
10° 10 10° 10° 10! 10° 200 400 600 800 1000 1200 1400 1600 1800 2000 10°° 10 10° 10 107 10°
p n p

(a) (b) (c)

Figure 3: Running times of sequential and concurrent dynamics. (a) Coordination games on G, , with
n = 1000 and varying p. RMP dynamics are significantly faster for p > # with ¢ < 1. (b) Coordination
games on G, with p = logfl(n) and varying n. Sequential running times increase linearly, the times
for RMP dynamics remain almost constant. (c¢) Coordination games on random unit disk graphs with
n = 1000 and varying radius r. Running times of RMP dynamics are faster than sequential dynamics.
Rapid convergence is achieved for concurrent dynamics with constant migration probability p = 0.27.

The previous theorem holds for local interaction games. For the more general class of 2-type interaction
games, it is straightforward to argue that if an 2-type interaction game has payoffs polynomial in n, i.e., in
O(n*) for some constant k, then \* € O(n*) and the perturbed RMP yields an expected potential increase
in each iteration that is in Q(n~(*+1). In this case the maximum potential value is in O(n*+2), which
directly yields the following corollary.

Corollary 1. For 2-type interaction games with payoffs bounded by O(n*) with a constant k the dynamics
resulting from the perturbed RMP converge to a Nash equilibrium in expected polynomial time.

For 2-type interaction games with arbitrary payoffs that are not necessarily bounded by O(n*), we
conjecture that the results of Theorem 2] still hold. However, constructing a similar reduction as in Theorem
2 is quite a tedious approach. A formal proof of this conjecture is an interesting open problem.

4 Comparison of Convergence Times

The bound on convergence times presented in previous sections hold in general for any 2-type interaction
game. However, there are significant differences between different types of games. We will exhibit these
differences experimentally using the simpler local interaction games. In dominant strategy games concur-
rent dynamics have an obvious advantage, because there is no error when allowing players to migrate. In
particular, by appropriately adjusting payoffs to 0 and 1 we can easily ensure that in the RMP every player
migrates with arbitrarily large probability to the dominant strategy.

If there is no (weakly) dominant strategy, the game I', is either a coordination game with A,B > 0,
or an anti-coordination game with A,B < 0. For simplicity we restrict to elementary games, in which
a,b,c,d € {0,1}. For such games it is possible to show a time bound of O(n?) for sequential dynamics, and
of O(n3) for concurrent dynamics resulting from the RMP, which will will call RMP dynamics.

4.1 Coordination Games

First we consider elementary coordination games with a = b = 1 and ¢ = d = 0. The worst-case upper bound
for the convergence time of RMP dynamics is a factor of ©(n) larger than the bound for sequential dynamics.
It is possible to design a game matching this difference, i.e., a game in which the RMP dynamics are a factor
of Q(n) slower than any sequential better-response dynamics. In this game, no concurrent better-response
dynamics can be faster than any sequential dynamics.

11



(a) (b)

Figure 4: Elementary (a) coordination and (b) anti-coordination games establishing a worst-case lower bound
on the running time of concurrent dynamics with k£ = 4. Filled vertices play strategy 1, empty vertices play
strategy 2. Starting with v players along the (a) middle and (b) upper line will switch to the opposite
strategy one at a time.

Proposition 2. For every k > 1 there is an elementary coordination game with n = 3k+4 players, in which
every sequential better-response dynamics take exactly k steps and every concurrent dynamics take at least
k steps. In particular, the RMP dynamics converge in Q(kn) steps in expectation.

Proof. Consider a game of the class depicted in Fig. In this game we have a line of vertices vy, ..., v,
and all players currently play strategy 1. In addition, there are two cliques of size k + 1, in one clique all
players play 1, whereas in the other clique all players play 2. Finally, there are two additional vertices that
play strategy 2. Each vertex on the line is connected to all vertices of the clique that plays 2 and to k — 1
vertices of the clique that plays 1. Starting with vq, in each round ¢ the only player that wants to switch is
player v; from 1 to 2. Obviously, even if all players are given the possibility to jump, only this one player will
migrate. For the RMP dynamics we observe that the relative improvement in payoff for the migrating player
is in ©(1/n) in each round, so it takes an expected number of ©(n) rounds until one player migrates. (]

This game reveals a fundamental dilemma for concurrent dynamics. On the one hand, it is possible to
match the speed of sequential dynamics only if we let each player migrate with a large probability. On the
other hand, frequent migration can yield long-lasting oscillations in other games. For the task of designing
protocols with guaranteed rapid convergence, this problem is certainly critical. However, the bad properties
are mainly due to the adversarial construction with an inherent partition into two parts that are intrinsically
stable attached to opposite strategies.

We contrast these worst-case results with the average-case behavior on random graphs generated accord-
ing to the G, , model, as is done in the work of [29,31]. We will observe similar behavior also on random
unit disk graphs below. It turns out that in these games aggressive concurrent dynamics can make very
rapid progress in initial stages.

Theorem 3. Let 0 < ¢ < 1 be a constant and = < p < 1

e 5 and let G be generated via G, . Consider
a state in the elementary coordination game with at least (1/2 4+ §)n nodes playing strategy 1 and at most
(1/2—14) nodes playing strategy 2, where 1/2 > § > 0 is a constant. After 1 round of concurrent best-response

dynamics all but o(n) nodes will be playing strategy 1.

Proof. For convenience let us define the S-degree of a vertex as follows.

Definition 2. For a graph G = (V, E) and S CV, the S-degree of a vertex v € V is deg(v,S) = [{u e V|
(u,v) € E,u € S}|.
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The theorem follows by showing that a large number of vertices have similar neighborhoods. This idea
is formalized in the following lemma and is similar to an argument given in [31].

Lemma 3. Let 0 < ¢ < 1 be a constant and % <p< % Let S CV be such that |S| > n for some constant
7> 0. For any constant 1/6 > ¢ > 0 the number of nodes that have S-degree outside the range (14 €)ptn is
at most o(n).

Proof. The main vehicle for proving this lemma is Theorem 2.14 of Bollobas [8]. First we check that the

necessary assumptions of that theorem are met: Glggg]()") < GIOge(,f L |S|. The inequalities hold

because # < pand ¢ < 1. Thus for the set of nodes with a significantly unexpected number of neighbors
Zs ={2€V\S:|[l(z)NS| — prn| > eprn} the theorem gives us with - < p and ¢ < 1 that

26| < 121log(n) < 12log(n)n — o(n)
e2p €2

O

We now apply the lemma to show our theorem. Since there are at least (1/2 + d)n nodes playing 1, by
Lemma [ the number of nodes playing 2 with V;-degree outside the range (1/2 + 6)(1 + €)pn is at most
o(n). Similarly, since there are at most (1/2 — §)n nodes playing 2, by Lemma [3] the number of nodes with
Va-degree outside the range (1/2 — §)(1 £ €)pn is at most o(n). We can choose € small enough such that
(1/2 4 6)(1 — e)pn > (1/2 — §)(1 + €)pn. Thus, all but o(n) of the nodes playing strategy 2 have more
neighbors playing strategy 1 than strategy 2, and the best response for all but o(n) of the nodes playing 2
is to switch to 1. By an analogous argument we can show that all but o(n) of the nodes playing strategy 1
have more neighbors that play strategy 1 than 2. Thus all but o(n) of the nodes playing 1 will have the best
response of continuing to play 1. O

If the dynamics are sequential instead of concurrent, one can show by a similar argument to the above
that after n rounds all but o(n) nodes will be playing strategy 1.

Next, we show a number of experimental results in Fig. Bl For each value of n and p we generated 10
random graphs, and on each random graph we chose 25 starting states uniformly at random. From each
starting state we initiated 25 runs of RMP dynamics. For the sequential dynamics we deterministically chose
in each round one player that yields the largest payoff gain. The constant A\ was set to A = 1.1 throughout.
Fig. shows the average number of rounds for n = 1000 and p increasing exponentially between 1075
and 1. When the large component forms (around p = 0.005) the sequential times are close to n/2, while the
RMP dynamics converge rapidly in a constant number of runs.

Although Theorem [3 does not directly bound the convergence time to Nash equilibria, it provides the
main intuition for the explanation of the results. After random initialization there are close to n/2 players
playing each strategy. Afterwards, due to similar neighborhoods and coordination structure of the game,
nearly all players accumulate on one strategy. Although this does not happen in one step, it still occurs quite
rapidly, as each player migrating to a predominant strategy increases the probability for others to follow.
Thus, in essence the behavior of the RMP dynamics is characterized by the insights from Theorem Bl

The intuition follows similarly for the sequential case, see Fig. It depicts running times on graphs
with increasing n and p = log_1 (n). Observe that RMP dynamics yield rapid convergence times that increase
only very slightly. Sequential dynamics need roughly ©(n) rounds until a Nash equilibrium is reached.

4.2 Anti-Coordination Games

The elementary anti-coordination game is the MaxCut game with a =b =0 and ¢ = d = 1. For this game
the worst-case results are similar to the coordination case. More specifically, RMP dynamics can be a factor
of Q(n) slower than any sequential better-response dynamics, and the game reveals that every concurrent
dynamics are at least as slow as any sequential dynamics.

13



10* - 3000 10*
& s

Sequential  +
Concurrent o
Concurrent (0.27)

Sequential  +
Concurrent ~ ©
10% Concurrent (0.27)

Sequential ~ +
2500 Concurrent

2000

1500

rounds

1000

500

[ 10
10° 10 10° 10° 10! 10° 200 400 600 800 1000 1200 1400 1600 1800 2000 10°° 10 102 10 107 10°
p n p

(a) (b) (c)

Figure 5: (a) Anti-coordination games on G, , with n = 1000 and varying p. Running times of RMP

dynamics increase linearly for p > % with ¢ < 1. For concurrent migration with probability p = 0.27,

oscillation becomes dominant abruptly. (b) Anti-coordination games on G,, , with p = log™*(n) and varying
n. Sequential running times increase linearly, the times for RMP dynamics increase with roughly with n logn.
(¢c) Anti-coordination games on random unit disk graphs with n = 1000 and varying radius r. Running times
of RMP dynamics increase with increasing node degree. For concurrent dynamics with constant migration
probability, oscillation becomes dominant on dense graphs.

Proposition 3. For every k > 1 there is an elementary anti-coordination game with n = 4k + 4 players, in
which every sequential better-response dynamics take exactly k steps and every concurrent dynamics take at
least k steps. In particular, the RMP dynamics converge in Q2 (kn) steps in expectation.

Proof. The class of games we consider is depicted in Fig. There are two pure sets of k vertices each, one
set playing strategy 1, one set playing strategy 2. Each set of vertices is connected to one stabilizing vertex
of the opposite strategy. In addition, there are two lines of length k + 1, which are connected into a grid.
Players on the second line play strategies alternatingly, starting with strategy 2. On the first line vy, ..., vg
the assignment is the same except for the leftmost vertex vy, which is assigned to strategy 1. In addition,
all vertices v; with ¢ > 1 are connected to all vertices from both pure sets. Starting in this configuration,
player vy is the only vertex that wants to switch. In the following, in round 7 only player v; will switch to the
opposite strategy. Again, even if all players are given the possibility to jump, only one player will migrate.
For the RMP dynamics we observe that the relative improvement in payoff for the migrating player is in
O(1/n) in each round, so it takes an expected number of ©(n) rounds until one player migrates. O

We complement this lower bound with experimental results in Fig. [0l Fig. and are generated
using the same parameters as for Fig. and respectively. While for small p the behavior of both
dynamics is similar to the coordination case, it changes when p > # for ¢ < 1 which corresponds to
roughly p > 1072 in Fig. Observe the linear increase in running time with growing p for the RMP
dynamics, which for large p leads even to worse convergence times than for sequential dynamics. A linear
dependence on p is also supported by Fig. as here p = 1og_1(n), and the time growth for the RMP
dynamics is proportional to nlogn. In fact, the linear dependence is a result from the RMP dynamics
being too passive. Unlike in the coordination case, players do not accumulate on one strategy choice. In
most iterations there is no significant majority playing one strategy. Payoff differences remain small, so with
degrees growing linear in p, migration probabilities ¥ drop to a level proportional to 1/p. The expected time
until a player migrates then grows linearly in p. This effect is present until p is very close to 1, in which case
the convergence times of sequential dynamics drop to 0, as uniformly random initialization yields an almost
stable profile. Furthermore, for almost complete graphs, the RMP dynamics yield a sequential process with
high probability. This is because in very dense graphs almost all players have the same neighborhood and
experience the same changes in payoff. The migration probabilities in the RMP dynamics of roughly 1/n
are balanced by the ©(n) players that are willing to migrate in each round, so there is a roughly constant
number of player migrating in each round.

Large running times are due to the payoff-relative update rule of the RMP. With different choices it is
possible to achieve much more rapid convergence. Fig. also depicts the convergence times of concurrent
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dynamics on graphs with n = 1000 and varying p where all migration probabilities ;¥ are chosen as a
fixed value p = 0.27, other values yield similar results. The increased migration significantly decreases the
expected running times below the sequential times. At some point, however, the dynamics rather abruptly
hit an “oscillation barrier” and convergence times start growing exponentially. Characterizing this barrier
and providing further analytical insights on suitable choices of migration probabilities in concurrent dynamics
remains a fascinating open problem.

Finally, we note that the key observations hold similarly for the case of random unit-disk graphs, which
are a popular model for interference in distributed networks. We generated graphs by placing n points
uniformly at random in the unit square. An edge was created between two points if the distance under the
maximum norm was at most r. For each graph we chose 25 starting states uniformly at random, and from
each state we initiated 25 runs of the dynamics. We provide average running times in Figure and

5 Conclusion

We have studied distributed decision making in a fundamental class of network interaction games with
various applications in distributed systems and social networking. Our results concern the convergence
time of sequential and concurrent better-response dynamics. The analysis reveals polynomial convergence
times for sequential dynamics in both local interaction games and 2-type interaction games. For concurrent
dynamics resulting from the RMP there is polynomial convergence time in local interaction games, and in
2-type interaction games with polynomially bounded payoffs. In these games a local potential maximizer
— i.e. a pure Nash equilibrium — can be obtained efficiently using distributed protocols, and thus efficient
distributed decision making is possible. This stands in contrast to noisy better-response dynamics and global
potential maximizers, which can even be NP-hard to compute (for instance, in MaxCut games). Even for
coordination games, in which computation is trivial, noisy better-response dynamics can take exponential
time to converge [37].

While our results establish a general upper bound, the actual convergence times differ significantly based
on the type of interaction and the underlying network. Using experiments we have shed light on the influence
of incentives and the degree of connectedness. More work is needed to obtain analytical characterizations
for specific games and graph classes of interest.

Our dynamics result from the RMP using payoff-based probabilistic migration. While we use special
assumptions (such as, e.g., non-negativity of payoffs) for defining the protocol, we can transform all local
interaction games and 2-type interaction games (with polynomially bounded payoffs) into an equivalent
representation that fits the needs of our protocol. It is an interesting open problem if we can also achieve
fast convergence using a more direct approach, e.g., for migration probabilities chosen as a suitable constant,
according to a logit response rule, or more general update rules [7]. It seems that the analysis of such rules
would require to significantly extend the techniques we used in this paper.
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