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Abstract

We study stable marriage and roommates problems under locality constraints. Each player
is a vertex in a social network and strives to be matched to other players. The value of a match
is specified by an edge weight. Players explore possible matches only based on their current
neighborhood. We study convergence of natural better-response dynamics that converge to
locally stable matchings — matchings that allow no incentive to deviate with respect to their
imposed information structure in the social network. If we have global information and control
to steer the convergence process, then quick convergence is possible and for every starting state
we can construct in polynomial time a sequence of polynomially many better-response moves
to a locally stable matching. In contrast, for a large class of oblivious dynamics including
random and concurrent better-response the convergence time turns out to be exponential. In
such distributed settings, a small amount of random memory can ensure polynomial convergence
time, even for many-to-many matchings and more general notions of neighborhood. Here the
type of memory is crucial as for several variants of cache memory we provide exponential lower
bounds on convergence times.
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1 Introduction

Matching problems are at the basis of many important assignment and allocation tasks encountered
in economics and computer science. A prominent model for these scenarios are stable matching
problems [13], as they capture the aspect of rationality and distributed control that is inherent in
many assignment problems today. A variety of allocation problems in markets can successfully be
analyzed within the context of two-sided stable matching, e.g., the assignment of jobs to workers [5,
14], organs to patients [19], or general buyers to sellers. In addition, stable marriage problems are an
interesting approach to model a variety of distributed resource allocation problems in networks [3,
12,18].

In this paper, we examine a dynamic variant of stable matching for collaboration in (social)
networks without central coordination. Players are rational agents that are looking for partners for
a joint activity or relationship, such as, e.g., to do sports, write a research paper, share an office,
exchange data etc. Such problems are of fundamental interest in economics and sociology, and they
serve as basic coordination tasks in computer networks with distributed control. We can capture
these problems within the stable roommates problem, an extension of stable marriage that allows
arbitrary pairs of players to be matched.

Traditionally, in the stable marriage problem we have sets of men and women, and each man
(woman) has a full preference list over all women (men). Each man (woman) can be matched to
exactly one woman (man), where all players would rather be matched than unmatched. A blocking
pair is a pair of a man and a woman such that both prefer this match to their currently assigned
partners (if any), and a stable matching is a matching that allows no blocking pair. It is well
known that in this bipartite case a stable matching always exists and can be found in polynomial
time using the classic Gale-Shapley algorithm [11]. This does not hold for the extension to the
non-bipartite stable roommates problem, where simple examples without stable matching exist.

A crucial aspect of ordinary stable marriage and roommates problems is that every player knows
the complete player set and can match arbitrarily. In contrast, for many of our examples above,
we would not expect a player to be able to, e.g., write a research paper with any other player
instantaneously. Instead, there are often restrictions in terms of knowledge and information that
allow certain players to match up easily, while others need to get to know each other first before
they can engage in a joint project. We incorporate this aspect by assuming that players are vertices
in a static social network of existing social links. Each player strives to build a matching edge to
another player. The network defines a dynamic information structure over the players, where we
use a standard idea from social network theory called triadic closure: If a knows b and b knows ¢,
then a and c are likely to meet and thus can engage in a joint project. When matching a to the
2-hop neighbor ¢, both players engage in a joint project and thus become more familiar with each
other. In this case, triadic closure suggests that a learns about all direct neighbors of ¢, which can
allow him to find a better matching partner among those players. More formally, at any point in
time, we assume that each player can match only to accessible players, that is, players in the 2-hop
neighborhood in the graph composed of social links and currently existing matching edges.

In this paper, we will for the most part focus on the prominent class of correlated [1,2] (also
called acyclic [18]) preferences or weighted matching, where each possible match yields a single
benefit value for both incident players, and preference lists are ordered according to edge benefits.
For the ordinary correlated stable roommates problem, existence of a stable matching is guaranteed,
a stable matching can be computed in polynomial time [1]. Furthermore, these games are potential
games and a variety of dynamics converge to a stable matching in polynomial time [2].



Contribution For many of the assignment and matching tasks in (social) networks that motivate
our study, there is an inherent lack of information and coordination. Hence, we are interested
in distributed dynamics that allow players with locality restrictions to reach a stable matching
quickly. We consider convergence to locally stable matchings — matchings that allow no blocking
pair of accessible players — for variants of sequential best-response and better-response dynamics,
where in each step a blocking pair of accessible players (or local blocking pair) is allowed to deviate
to establish their joint edge. It follows directly from results in, e.g., [1,2] mentioned above that
our games are potential games, and thus all such dynamics are guaranteed to converge to a locally
stable matching. This holds even for more general variants, in which each player can build up to
k > 1 matching edges, or each player has access to all players within £ > 2 hops in the graph.

After a formal definition of our model in Section 2, we show in Section 3 that in our basic
game with £ = 1 matching edges and lookahead ¢ = 2 per player we can always achieve fast
convergence: For every game and every starting state there is a sequence of polynomially many
better-response moves to a locally stable matching. While this shows that locally stable matchings
are achievable, the sequence heavily relies on global knowledge of the graph. In contrast, oblivious
dynamics without such knowledge like random or concurrent better-response need an exponential
number of steps. When we turn to more general games with k£ > 1 or £ > 2, there are even games
and starting states such that every sequence of better-response moves to a locally stable matching
is exponentially long. For the special case of stable marriage, we show that for general preference
relations there are states, from which convergence might never be achieved. We also show improved
results for special cases of the problem, especially for one-sided social networks and the job-market
model of [5].

Perhaps surprisingly, instead of the usual structural aspects in social networks such as, e.g.,
low diameter or power-law degree distribution, a natural aspect resulting in polynomial-time con-
vergence is memory. In Section 5 we consider the case that every polynomial number of steps each
player remembers (uniformly at random) one of the players he had been matched to before. This
random memory is natural, e.g., when we assume there is a random process bringing players together
for a limited amount of time. For instance, imagine a research conference where players have the
chance to meet some of their previous co-authors, which gives them a temporary chance to renew
their collaboration. This seemingly small but powerful adjustment allows to show polynomial-time
convergence for a variety of dynamics, for arbitrary £ > 1 and ¢ > 2. We also touch upon the
case when memory is considered as an addressbook or cache in which a bounded number of good
or recent matches are stored. Here we can again show an exponential lower bound for standard
eviction strategies such as FIFO or LRU. This shows that convergence in distributed settings does
not only rely on the presence of memory but on the right type of memory. The strength of random
memory is that players never completely forget previous matches. Essentially, they just have to
wait until by chance they happen to meet the right partner again. In contrast, for cache memory
we can construct instances in which matching edges that are crucial for progression of the dynamics
are forgotten because memories are filled with a large number of unnecessary matches. Then they
have to be rediscovered through the structure of the social network, and this can take exponential
time.

Related Work There has been an enormous research interest in stable marriage and roommates
problems over the last decades, especially in many-to-one matchings and preference lists with
ties [6,9,14,20]. For a general introduction to the topic, see standard textbooks [13,20].



Theoretical work on convergence issues in ordinary stable marriage has focused on better-
response dynamics, in which players sequentially deviate to blocking pairs. It is known that for
stable marriage these dynamics can cycle [17]. On the other hand, there is always a sequence of
polynomially many moves to a stable matching [21]. However, if the ordering of moves is chosen
uniformly at random at each step, convergence time is exponential [2]. A prominent case with
numerous applications [1,4,12,18], in which fast convergence is achieved even by random dynamics,
is correlated or weighted stable matching where each matched pair generates a benefit (or edge
weight) for the incident players and the preferences of the players are ordered with respect to edge
benefit [1,18].

Local aspects of stable matching are of interest in distributed computing, e.g., communication
complexity of distributed algorithms [16]. A localized version of stable marriage is analyzed in [10],
where men and women are vertices in a graph and can only match to adjacent women or men,
respectively. Each player can only exchange messages with their neighbors and the goal is to design
a local algorithm that computes an “almost” stable matching. Similar approaches to almost stable
matchings in decentralized settings include, e.g., [7]. In addition, there exist online [15] and parallel
algorithms [8] for stable marriage.

Our model of locality is similar to Arcaute and Vassilvitskii [5], who consider locally stable
matchings in a specialized case of stable marriage. In their job-market game, there are firms that
strive to hire workers. Social links exist only among workers, and each firm can match to k workers,
but each worker only to one firm. They show that best-response dynamics converge almost surely
and show several characterization results for locally stable matchings and the number of isolated
firms after a run of a local variant of the Gale-Shapley algorithm. In this paper we greatly extend
their results on convergence of dynamics.

2 Model and Initial Results

We consider stable matching games with social context and correlated preferences as follows. We
are given a social network N = (V, L), where V is a set of n players and L C V x V is a set of
undirected and fixed social links. In addition, we have a set E of undirected potential matching
edges, where we denote m = |E|. Each edge e € E has a benefit b(e) > 0. A state M C E of the
game contains for each player at most k incident matching edges, i.e., each player can be involved in
up to k > 1 matching edges simultaneously. Unless specified otherwise we will assume throughout
that k = 1. The utility or welfare of a player w in state M is 3¢, ,yeps 0({w, v}) if he is matched to
at least one player and 0 otherwise. The restriction of E to a subset of all edges will be mostly for
convenience and clarity of presentation. Most of our lower bounds can be adjusted to allow every
pair as matching edge using only minor technical adjustments. We will indicate the details of this
construction in the proofs below.

In a state M two players u and v are accessible if there is a path of length at most £ in the access
graph G = (V,L U M). We call £ the lookahead of the game and, unless stated otherwise, focus on
the case of triadic closure and ¢ = 2. An edge e = {u,v} € E is called a local blocking pair for M
if u and v are accessible, and if for each of u and v either (a) the player has less than & matching
edges in M or (b) at least one incident edge ¢’ € M has b(¢’) < b(e). Hence, for a local blocking
pair the accessible players both strictly increase their welfare by either adding e or replacing €’ by
e. In the latter case, the replaced edges are removed from M. We call b(e) the benefit of the local
blocking pair. A locally stable matching is a state M for which there is no local blocking pair.



We consider iterative improvement dynamics that lead to locally stable matchings. In a local
improvement move we pick one local blocking pair and allow the involved players to deviate to
their joint edge, thereby potentially removing other edges. We consider sequential processes that in
every step implement one local improvement move. For a single step, we denote by B C E be the
set of all current local blocking pairs. For (random) best-response dynamics, we pick in each step
deterministically (uniformly at random) one local blocking pair that has globally the maximum
benefit, i.e., we choose one pair from the set {e € B | b(e) = maxgcpb(e’)}. As (random) better-
response dynamics we term all sequential dynamics that in each step pick one local blocking pair
in a deterministic (uniformly at random) way from B. Finally, for concurrent better-response
dynamics we assume that every player v picks uniformly at random from the local blocking pairs
he is involved in, i.e., from B, = {{u,v} € B | u € V}. For every local blocking pair that is chosen
by both incident players the corresponding edge is built concurrently. For concurrent best-response
dynamics the choice of player v is uniformly at random from his local blocking pairs with maximum
benefit for him, i.e., from {e € B, | b(e) = max.¢cp, b(e’)}.

In addition, we also consider better-response dynamics with memory. For a dynamics with
random memory we assume that each player at some point recalls a player that he had been
matched to before. In particular, let M! be the set of players that v € V has been matched with
at some point during the first ¢ steps of play. We assume that, in expectation, every T steps each
player v remembers some player u chosen uniformly at random from M}, and u and v become
temporarily accessible in step ¢t + 1. For dynamics with cache memory we assume that each player
has a cache in which he can keep up to r players previously matched to him. A pair of players then
is accessible if and only if they are currently at hop distance at most ¢ in G or one player is present
in the cache of the other player.

Recall that a local blocking pair is a blocking pair with the additional requirement that players
are accessible. Hence, in general every local blocking pair is a blocking pair, but the other direction
holds only in special cases. In general, the set of blocking pairs is a superset of the set of local
blocking pairs. For this reason, every stable matching is also a locally stable matching for every
social network N. In particular, the set of stable matchings is a subset of the set of locally stable
matchings, because locally stable matching must only avoid local blocking pairs (whereas stable
matchings must avoid all blocking pairs). An ordinary stable matching (and, hence, a locally
stable matching) can be computed in time O(nlogn) by a greedy approach that repeatedly adds
an edge for a blocking pair with maximum benefit. This algorithm computes a stable matching in
polynomial time, for every k > 1 and every ¢ > 2. For the ordinary correlated stable roommates
problem even random best-response dynamics converge in polynomial time [2]. These convergence
results, however, do not necessarily translate to locally stable matchings.

3 Convergence in Games with Correlated Preferences

In this section we consider the duration of sequential and concurrent improvement dynamics. Even
when we restrict to accessible players, a new edge built due to a local blocking pair destroys only
edges of strictly smaller benefit. This implies the existence of a lexicographical potential function.
Hence, both sequential and concurrent better-response dynamics are always guaranteed to converge
to a locally stable matching. Moreover, for our standard case with £k = 1 and ¢ = 2 the first result
shows that we can always achieve fast convergence.



Theorem 1. For any state of a stable matching game with correlated preferences, there is a sequence
of O(n -m?) local improvement moves that leads to a locally stable matching. The sequence can be
computed in polynomial time.

Proof. Consider a game with a given network N and a state specified by a set M of existing
matching edges. Suppose there is a local blocking pair e = {u,v} € E for M, so e ¢ M and v and v
are at hop distance 2 along a path u,w,v. Edge e falls in one of two categories: (1) link {u,v} € L
or links {u, w}, {w,v} € L; (2) one of {u,w} and {w, v} is a matching edge €', the other one a link
in L. Note that a path of length 2 with {u,w},{w,v} € E is impossible, because w would have
two incident matching edges.

Suppose e falls in category (2) and let u be the vertex incident to e and ¢’. If v and v deviate to
e, then ¢’ gets destroyed, because u can only be incident to one matching edge. We will think of the
edge moving from €’ to e. This is the motivation for our main tool in this proof, the edge movement
graph Gy The vertex set of this graph is E. Each vertex {u,v} € E has a corresponding vertex
weight b({u,v}). If u and v are at distance at most 2 in IV, their vertex in Gy, is called a starting
point. We denote the set of all starting points by S.

There are two kinds of edges in G0, movement edges and domination edges. For every triple
of players u,v,w € V we introduce a directed movement edge in G, from {u,v} to {u,w} when
{u,v},{u,w} € E, {v,w} € L and b({u,v}) < b({u,w}). Note that the target {u,w} has a strictly
higher vertex weight, and hence the movement edges induce a DAG. The intuition for the movement
is as follows. If edge {u,v} € M, then u and w are accessible. If there is no other matching edge
in M, then {u,w} becomes a local blocking pair.

In contrast, even if edge {u,v} makes u and w accessible and {u,w} has strictly higher benefit
than {u, v}, the edge {u, w} might not constitute a local blocking pair. This happens if w is currently
matched in M with at least as much benefit and is expressed by a domination edge. Formally, for
all pairs {u,w} and {w, v’} in G0 we introduce a directed domination edge from {w, v’} to {u,w}
when b({w,v'}) > b({u,w}). In this case {u,w} is dominated by {w,v'}. If b({w,v'}) > b({u,w}),
{u,w} is strictly dominated by {w,v'}. Note that, in particular, every movement edge has a
domination edge in reverse direction. However, domination edges are independent of the social
network N. They do not necessarily induce a DAG, because the source of a domination edge has
only weakly larger vertex weight than the target.

For an example of the construction of Gy, see Fig. 1. The edge of benefit 4 dominates all
other edges, it has maximum benefit and both incident players have an incentive to destroy any
existing matching edge if this edge is created. Therefore, we introduce a domination edge between
the corresponding vertices in G,,,. In particular, there is a domination edge between the vertices
of weight 4 and 2, even though there is no movement edge, and the edges in the matching game
have no direct relation in terms of local information structure and creation of local blocking pairs.

A state M of the game is equivalent to a marking of all those vertices in G,y that correspond
to the edges in M. A local improvement move from M can only happen if some marked vertex
p has an outgoing movement edge to another vertex p’ (as k = 1, p’ must be unmarked). This
represents a feasible local improvement move only if p is currently undominated, i.e., has no incom-
ing domination edge from a marked vertex. We will describe how to migrate the markings along
movement edges to reach a locally stable matching in a polynomial number of steps.

The general idea of the proof is to construct a migration pattern as follows. We first improve
existing markings in terms of vertex weights without introducing new ones until we reach a subset
of markings that is stable. In this subset, no existing marking can be (1) improved by moving it to
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Figure 1: An example for a matching game (left) with the corresponding edge movement graph
Grov (right). In the matching game, social links are drawn in gray, possible matching edges are
indicated in black. Edge labels show the benefit. In G,,,, movement edges are solid, domination
edges are dashed. Starting points are filled vertices. Vertex labels are weights and correspond to
the edge benefits of the matching edge the vertex represents.

an undominated vertex with higher weight along a movement edge or (2) destroyed by creating a
marking at a dominating vertex. In particular, this implies for the stable matching game that none
of the matching edges represented by the markings can be destroyed neither (1) due to blocking
pairs induced by the matching nor due to (2) local blocking pairs that can be constructed as a
consequence of creating additional edges at starting points. For the latter, we have to ensure
that there is no path of movement edges along undominated vertices from a starting point or an
existing marking to a vertex that dominates a marked vertex. This intermediate goal is achieved
in Phases 1 and 2. Finally, in Phase 3 we imitate the greedy algorithm for stable matching by
iteratively creating a marking at the vertex with largest weight reachable from a starting point via
an undominated path. This preserves the invariant that the existing matching edges are locally
stable and finishes the proof.

Consider the subgraph of G, that is reachable from S U M via movement edges. If a pair
is not in this subgraph, there is no sequence of local improvement moves starting from M that
establishes an edge between these players. Without loss of generality, we will prune the graph and
consider only the subgraph reachable from S U M.

Phase 1: In Phase 1 we move existing markings without introducing new ones. As long as it is
possible, we arbitrarily move an existing marking along a movement edge to an undominated
vertex one at a time. Note that the set of dominated vertices changes in every step. In par-
ticular, a marking is deleted if it becomes dominated in the next step (because a dominating
neighbor with higher benefit becomes marked).

For example, in Fig. 1 let the starting state contain the edges of benefit 1 and 2 and let the
corresponding vertices in Gp,o, be marked. If we improve one of the markings, this means we
create the diagonal edge of benefit 3. Now, by marking the corresponding vertex in Gy,
we must remove both original markings, because by creating the diagonal edge both original
matching edges get destroyed.

Thus, in this process the number of markings only decreases. In addition, for each marking,
the vertex weight of the location only increases. Due to acyclicity of movement edges, a
particular marking can visit each vertex of G0, only once, thus the phase ends after at
most O(n - m) many steps. Note that all of these steps can be found in polynomial time by



examining the markings in G0, and the neighboring vertices.

Phase 2: In Phase 2 we try to improve existing markings even further by introducing new ones
and moving them via undominated paths to strictly dominating vertices. In particular, for a
marked vertex {u,v} in Gy, we do the following. We drop all currently dominated vertices
from consideration. Now we try to find a path of movement edges from a starting point to a
vertex that strictly dominates {u, v}, which can be done in polynomial time applying, e.g., a
DFS from every starting point. If there is such a path, we can introduce a new matching edge
via a new marking at the starting point and move it along the path to the dominating vertex.
As none of the path vertices are dominated, all the moves are local improvement moves in
the game. All markings that become dominated during this process are removed. This also
includes in the last step our original marking at {u,v}. Thus, we can view this process as
moving the marking at {u,v} to the dominating vertex in O(m) steps. After this, we try
to improve all markings by a restart of Phase 1. We keep executing this procedure (move
marking to dominating vertex via undominated path from a starting point and restart Phase
1) until this kind of improvement is impossible for every remaining marking.

Phase 2 can be seen as an extension of Phase 1. Overall, we keep decreasing the number of
markings, and each surviving marking is increased in terms of vertex weight. However, each
such increase might consist of introducing a new marking at a starting point and moving it
to a dominating vertex, which requires at most O(m) steps. This increases the number of
steps to at most O(n - m?).

In terms of computation, we can execute this phase as follows. For each marking we exam-
ine every possible dominating vertex. For each such vertex, we check the existence of an
undominated path from a starting point by dropping all dominated vertices in G,y from
consideration and executing a DFS in the remaining DAG of movement edges. All these
computations obviously require only polynomial time.

Phase 3: There are only two ways in which an existing marking can be changed — either by moving
it along a movement edge to another undominated vertex, or by a sequence of moves that lead
to creation of a marking at a dominating vertex. If the latter is possible, Phase 2 obviously
has not ended, as this is the type of constellation that we address there. Phase 2 ends with a
restart of Phase 1, so the former change is also impossible. Hence, after Phase 2, none of the
remaining markings can be (re)moved. The corresponding edges are therefore stable, and we
call the incident players stabilized. They will not become part of any local blocking pair in
the remaining process.

In Phase 3, we now iteratively add edges until we reach a locally stable matching. Our invari-
ant over the iterations will be that no existing matching edge can be moved or removed. In
an iteration, we first drop all matched players from the game and adjust Gy, by dropping
every vertex including at least one matched player and all incident movement and domination
edges. We then construct the reachable matching edge of largest possible benefit. In particu-
lar, we consider the reduced G0, (Which is now completely unmarked) and find a vertex with
largest benefit that is reachable from a starting point. We then establish the corresponding
edge by moving a new marking along the path. When the marking has reached the end of
the path, i.e., the reachable edge with largest benefit has been constructed, there is no path
to any edge with strictly larger benefit, and no player will get an incentive to remove this



edge. Furthermore, due to our invariant, the process of moving the marking along the path
has not destructed any of the previously existing edges. This implies that after the iteration
there are strictly more stabilized players and the invariant continues to hold. Intuitively, this
is a translation of the greedy matching algorithm for construction of a stable matching in the
ordinary stable roommates problem to our localized environment. Hence, Phase 3 completes
the locally stable matching and terminates after O(n - m) steps in total.

Note that pruning of G,y is easily executed in polynomial time. Finding an undominated
path to the reachable vertex of maximum vertex weight can be done by dropping dominated
vertices from consideration and executing a DFS in the DAG of remaining movement edges.
As we need to introduce only a polynomial number of markings in Phase 3, we can implement
finding all required improvement moves in polynomial time.

O

The computation of the short sequence in the previous theorem relies heavily on identification
of proper undominated paths in the edge movement graph. If we instead consider random or
concurrent dynamics that do not rely on such global information, convergence time can become
exponential.

Theorem 2. For every b € N there is a stable matching game with n € O(b) in which (random)
best-response and random and concurrent better-response dynamics starting from the state M = ()
need Q(1.5%) steps in expectation to converge to a locally stable matching.
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Figure 2: Structure of edge traps in the lower bound of Theorem 2 for b = 4. Social links are
exactly the edges drawn in gray, possible matching edges are edges drawn in black. The sets of
matching edges and social links are disjoint. For the benefits of matching edges we have b(e;) <
min{b(e®), b(e")}, ble*) < b(e®), b(e!) < b(e;41) and b(ef) < b(e;11). The relation of b(e*) and b(e)
can be adjusted to the type of dynamics under consideration.

Proof. We assume that matching edges E and social links L are disjoint. Initially, let M = (). We
first prove the theorem for the case £ C V x V and consider the case E =V x V below.

The gadget construction is based on a structure we call an “edge trap”. For the full instance we
concatenate b edge traps as shown in Fig. 2. In trap 7 there is a starting edge e; € E. Our argument
follows by lower bounding the number of times that e; must be created to lead to construction of



e;i+1. Upon creation of e; there are exactly two local blocking pairs that both destroy e; — either
create the upper edge e* or the lower edge e'. Thus, b(e;) < min{b(e"),b(e)}. If e* is formed,
{w;, viy1} becomes a local blocking pair with e¢ destroying edge e* (i.e., b(e") < b(e®)). At this
point, both w; and v;41 are happy with their matching choice. Now suppose e; is created again,
then player w; will not form e". In this case, v; matches to u;41 via el. Now vi+1 has an incentive
to drop e and match with u; 1, because b(e®) < b(e;41).

By sequential concatenation of edge traps we can make the dynamics simulate a counter with b
bits. In particular, we assume there are b traps attached sequentially. In the first trap, there is an
additional dummy player u’ and two social extra social links to players u; and v;. For the last pair
of vertices upy1 and vy we assume there is also the final edge epy 1. Bit ¢ is set if and only if edge
e in trap 4 is created. We start the dynamics with the empty matching M = (), so the counter is
0. Observe that N is a tree composed of a long path vpy1,...,v1,u ,uy,. .., upr1 with some extra
leaf vertices w;. For M = () it is straightforward to see that the only local blocking pair is ey, as
this is the only pair of accessible players with a matching edge in F.

First consider best-response dynamics, for which we set b(e*) > b(e!) in every trap. Then
creation of e; implies creation of ¢“ and then e in the first trap, i.e., increase of the counter by 1.
At this point, the edge is trapped. Now the only local blocking pair is again ey, and this leads to
improvement steps creating e! and ey that destructs e€ in the first trap. Finally, we create e in the
second trap, and thus make an increase in the bit counter of 1. Observe that every time M consists
of some subset of e®-edges from the traps, e; is the only local blocking pair. Then, a creation of eg
leads to a state of e“-edges from the traps that represents an increase of the bit counter by 1. Thus,
to create ey, 1, the edge of largest benefit, the dynamics needs ©(2°) many creations of e;. Note that
in each step of the dynamics the local blocking pair of maximum benefit is uniquely determined.
This proves the lower bound for both deterministic and random best-response dynamics.

For each state reached during the dynamics, only one local blocking pair except (u1,v1) can
establish their edge. In particular, e* and e’ cannot be created simultaneously as they have a joint
vertex. Hence, as long as the creation of e is sufficiently likely in every trap, we can trap enough
edges that are subsequently destroyed and show a similar lower bound for other dynamics. We
present the argument for random and concurrent better-response dynamics.

Every locally stable matching must contain the edge e,1. We now bound the number of times
we have to create e; until ey, 1 forms. Consider M = (), then e; is the unique local blocking pair.
Suppose edge e; is created and follow this edge moving through the trap. With probability at most
1/2, the edge moves directly to e and arrives at e;. With probability at least 1/2, the edge gets
stuck in e, which implies that a new edge at ej is introduced that destroys the edge in e and
arrives at es with probability 1. Thus, to create a single edge at e2 we have to create e; an expected
number of 1.5 times. The same is true for e; and e; 1 in every trap i. Thus, due to the sequential
nature of the gadget, we need an expected number of Q(1.5°) creations of e; to create edge epy 1.
This proves the lower bound for concurrent and random better-response dynamics.

Finally, we note that by assigning the same tiny benefit of € to all matching edges not explicitly
mentioned above, we can apply the same arguments when E = V x V. Note that the relevant edges
mentioned above all run between one partition composed by vertices v; and the other partition
composed by vertices u; and w;. Edges of benefit € will only be established within partitions, and
within the set of these edges there evolves no dynamic discovery process as they all have benefit
of e. Furthermore, by existing within partitions they cannot speed up the discovery of good edges
between partitions. There is only one slight exception to this observation in trap 1, where an edge
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Figure 3: Block structures in the lower bound of Theorem 3. Social links are drawn in gray,
matching edges with significant benefit are drawn black. Extension to the complete graph structure
by sequential construction as in Fig. 2.

connecting ug to the dummy vertex between u; and v can lead to discovery of {vy,us}. Thereby,
we might directly create {ug,v2} and bypass creation of {wy,vs}. This, however, can be avoided by
introducing another dummy player u” that has a social link only to «’. The matching edge between
these players is of very large benefit and present in the starting state. This way, no dummy player
can be part of any local blocking pair during the dynamics. O

The previous theorem applies similarly to a wide variety of better-response dynamics. The main
condition is the choice rule of the dynamics is such that whenever e; exists and both e* and e’ are
available for creation, then the creation of e* is always at least as likely as that of /. Observe that
the construction allows to set b(e*) < b(e!) or vice versa. By appropriate choice, we can ensure that
the choice rule for a variety of dynamics satisfy the main condition explained above. In particular,
this can be ensured for dynamics that make “oblivious” choices by picking local blocking pairs
based only on their benefits but not their structural position or the history of the dynamics.

An even stronger lower bound applies when we increase lookahead or matching edges per player.

Theorem 3. Let k > 2 or { > 3, then for every b € N there is a stable matching game with
n € O(b-k-L) and a starting state M such that every sequence of local improvement moves from
M to a locally stable matching has length (2°).

Proof. We prove the theorem by examining several cases.

k =1, £ = 3: The construction that provides the exponential lower bound is presented in Fig. 3
(left). The complete network N is divided into b traps and has ©(b) vertices.

The construction uses relevant players (large circles) and dummy players (small circles).
Dummy players are not involved in any of the blocking pairs and just serve to increase dis-
tance between relevant players.
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For the relevant players, each block ¢ contains a starting edge e; between w; and v;. When
the starting edge is created there are exactly two improving moves by the incident players
that lead to creation of a “lower” or an “upper” edge €', e¥, i.e., b(e;) < min{b(e}),b(e})}.
In both cases, the creation leads to a removal of e;. Each of the edges eé(e}‘) yield a unique
improving move that creates el ; (e%, ;) and removes €. (e'), respectively (i.e., b(e) < b(el, ;)
and b(el) < b(el, ), for i =1,2,3).

Suppose both ei and ej are created, then the outer players u; 41 and v; 41 are at hop distance
3 and thus create a direct edge e;11 (b(e;1) > max{b(e¥),b(e})}), thereby removing both e}
and ej. Hence, to create e;11 we have to create ei and e}, which in consequence means we
have to create e; twice.

Now consider a game with b blocks and recall that the last block has an additional edge ey 1.
Initially M = (). For the first block, we assume that u; and vy are connected via a path of
length 3 (involving two dummy players). Upon creation of es, both e, and e¥ from the first
block are removed. By repeating this argument, we see that for creation of ey 11, e; needs to
be created 2° times. This proves the bound for k = 1 and ¢ = 3.

We can use similar adjustments as in the previous proof when all edges are possible matching
edges. This means that a large number of additional matching edges not mentioned above
are present in E. The first problem is that these additional edges might block the dynamics,
destroy the local blocking pairs described above and lead to early termination of the dynamics.
This problem is addressed by giving all additional edges involving non-dummy players a tiny
benefit of €. The second problem is that they lead to early discovery of edges with significant
benefit and thereby speed up the convergence process. It is easy to address this latter problem
for the dummy players. We introduce for each dummy player a second dummy player and
connect them via a matching edge of high benefit, which is present in the starting state. In
this way, no dummy player is part of any local blocking pair, and, in particular, no matching
edge involving a dummy player influences the dynamics. All other additional edges get the
same tiny benefit of €. Then, intuitively, during the evolution of the dynamics, additional
edges can only be created “along paths in N” and edges with significant benefit are present
“between paths in N”. More formally, a straightforward inspection of all steps described above
allows to observe that no additional edge leads to the discovery of any edge with significant
benefit. Thus, they cannot speed up the dynamics, which completes the proof.

k> 1, £ =3: For k > 1, we apply the same block construction, and for each relevant player v we
join it into a clique with k£ — 1 dummy players and match them all up in our starting state.
These edges become the most valuable for all involved players. For the dummy players, there
are no other matching edges in F, so they are not part of any blocking pair. For v this
construction yields k — 1 very valuable matching edges, which he will not remove for the
entire time. Thus, he is left with one matching edge to be created, which allows to construct
the same dynamics within the blocks as before.

When we allow E =V x V in this construction, the K — 1 dummy players in each clique can
create exactly one additional matching edge. These edges could create the same problems
as mentioned above, i.e., early termination or shortcuts through early discoveries of relevant
edges of the exponential-time dynamics. A simple trick can be used to fix these problems: We
set up two copies of the instance described so far. Then connect each dummy vertex from the
cliques to his copy with a matching edge of very high benefit. In this way, all dummy players
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get their £ most beneficial matches in the starting state and are thus never part of any local
blocking pair. The two instances are sufficiently separated such that non-dummy players are
not able to discover relevant edges. Hence, the exponentially long dynamics within the sets
of relevant edges evolve in both instances without influencing each other.

k>1,¢>3: If £ > 3, we simply add more dummy players in order to keep the relevant players at
the correct distance. In particular, instead of one dummy player between relevant players as
in Fig. 3 (left), we introduce (¢ — 2) players to get a hop distance of ¢ between endpoints of
all eé. and e}L by the time of their creation, for j = 1,...,4. The edges that connect eﬁl and e}
receive £ — 3 dummy players to keep u;11 and v, at distance £ when eb and e¥ exist. The
arguments from the previous case with cliques of dummy players and instance copying can
similarly applied here to allow £ > 1 and every edge as matching edge.

k > 1, £ = 2: Finally, we also treat the case with k£ > 1 and ¢ = 2. Here we require only a slight
adjustment of the block structure, as Fig. 3 (right) shows for the case k = 2. We again
add one dummy player for all relevant players with a link and a highly valuable matching
edge. The only exception is to the common endpoint w of eé and ej, which gets no associated
dummy player, because he must be motivated to create two matching edges to relevant players
simultaneously. In this case, we have b(eb) < b(e}) and b(eh) < b(e}). e;41 can only be created
when both e and eé exist, and the creation of e;; destroys them both. In turn, e; must be
created once for eé and e}, respectively. This implies that one creation of e;;1 requires two
creations of e;. Finally, we again attach b blocks sequentially. For k£ > 2 and ¢ = 2, we use a
similar approach of “hard-wiring” matching edges using dummy players in the starting state,
thereby leaving one additional matching edge for all relevant players and two for vertex w in
each block. This allows to show the result for this case using the arguments made above.

To allow every edge as matching edge we can use similar observations as before. The main
intuition in the previous cases is that matching edges with significant benefit are either present
in the starting state and never removed (e.g., for dummy players) or their endvertices are at a
sufficient hop distance in N such that additional edges of benefit € cannot serve to create local
blocking pairs that shortcut the exponential dynamics. In principle, these conditions can be
preserved here as well with one exception. In the gadget as shown in Fig. 3 (right) we could
potentially create an edge of tiny benefit between u; and w. This could lead to the discovery
of ell and e} without creation of e;. However, this shortcut can be avoided by enlarging the
construction and increasing the number of e} and €% edges, similar to Fig. 3 (left). With this
extension the previously outlined constructions can be applied to establish the lower bound
also when every edge can be a matching edge.

This proves the theorem. O

By embedding the lower bound structures from the previous proofs into larger graph structures
of dummy vertices, we can impose a variety of additional properties on the network N that are
often considered in the social network literature. For example, to obtain a small diameter simply
add a separate source and connect each vertex from the gadgets via £ dummy vertices to the source.
We assume that these new vertices have no matching edges, and in this way the lower bounds can
be established accordingly for graphs of diameter ©(¢). Note that in graphs with a diameter of
exactly ¢ we obtain the ordinary correlated stable roommates problem, because every player knows
about every other player in the graph. In this case, polynomial-time convergence is guaranteed.
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There also exist simple adjustments using dummy vertices and tiny and extremely large benefits
to adjust the results to ' =V x V with all possible matching edges as described above.

Corollary 4. Theorems 2 and 3 continue to hold even if diam(N) € ©(¢).

4 Two-Sided Matching and Stable Marriage

In this section we consider the bipartite case of stable marriage. In accordance with [5] we use the
interpretation of a set X of “workers” matching to a set Y of “firms”. We denote n, = |X| and
ny = |Y|. In general, the social network N = (X UY, L) can be arbitrary, and the set of possible
matching edges is £ = X x Y. Each worker (firm) has an arbitrary preference relation over firms
(workers).

A variant of this scenario is the job-market game considered in [5] that represents the natural
special case when the social network N = (X, L) exists only among one partition. Furthermore, in
this game each firm y € Y can build up to k matching edges while each worker can have at most
one matching edge.

We first focus on the more general scenario of stable marriage. In contrast to ordinary stable
marriage, in our localized variant convergence of any better-response dynamics can be impossible.

Theorem 5. There are stable marriage games with general preferences and starting states M such
that no locally stable matching can be reached by any sequence of local improvement mowves from
M, even if N is connected.

Proof. Consider a game with X = {x1, 22,2’} and Y = {y1,y2,¥'}. The network N is connected
and has links (x1, 22), (z1,2"), (2',y'), (v/,y1) and (y1, y2). For the preferences, both 2’ and 3’ prefer
most to be matched to each other. For worker z; the preference is (y2,y1), for x2 it is (y1,y2). For
firm y; the preference is (x1, z2), for yy it is (z2,x1). The starting state is M = {(«/, /), (z1,91)}-
Every pair (z,y) € X x Y such that z and y are at distance 2 in the graph composed of social
links and matching edges has either x = 2’ for y = /. However, due to 2’ and 3’ being matched
to their most preferred partner, no additional matching edge can be introduced into the system.
Instead, the only local blocking pair at state M is (x1,y2), which replaces edge (z1,y1). Next, the
only local blocking pair is (z2,y2), which replaces (z1,y2). Due to the cyclic nature of preferences,
we have reached an equivalent state. O

For weighted matching with correlated preferences, Theorem 1 applies and shows existence of
a short sequence. A central assumption of [5] is that every worker € X has the same preference
list over Y, and every firm y € Y has the same preference list over X. We will refer to this case as
totally uniform preferences. As a generalization we consider worker-uniform preferences, where we
assume that only the preferences of all workers are the same, while firms have arbitrary preferences.
Firm-uniform preferences are defined accordingly. For totally uniform preferences we can number
firms and workers increasingly from least to most preferred in their respective global preference list.
For edge e;; = (x;,y;) we define a benefit b(e;j) = j-n,+1i. Intuitively, here best-response dynamics
give preference to local blocking pairs of the most preferred firm, which can be changed to worker
by using b(e;;) = i - ny + j throughout. For worker-uniform preferences we let the numbering of
workers be arbitrary. For e;; = (x;,y;) we define benefit b(e;;) = j - ny + ij, when worker x; is
ranked at the 7;-th last position in the preference list of firm y;. For firm-uniform preferences the
same idea can be used by exchanging the roles of firms and workers. This shows that all these cases
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are classes of correlated stable matching problems. Our first result is that even for totally uniform
preferences, convergence of best-response dynamics can be slow.

Theorem 6. For every b € N, there is a stable marriage game with totally uniform preferences,
ng,ny € O(b) and a starting state M such that (random) best-response dynamics from M to a
locally stable matching take (expected) time Q(2°).
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Figure 4: Construction in the lower bound of Theorem 6 for b = 3. Filled vertices are firms, empty
vertices are workers. Solid edges are social links, every possible edge between a worker and a firm
can become a matching edge. Dashed edges indicate the matching edges representing the setting
and resetting of bits. Numerical vertex labels are the preference for matching among the respective
other player type, higher number implies more preferred. Symbolic labels indicate how the gadget
relates to the edge trap in Fig. 2.

Proof. Our game is an adjusted version of the edge trap structure in Fig. 2, see Fig. 4 for an
example. In particular, we consider firms and workers numbered in increasing preference and set
without loss of generality edge benefits to b(x;,y;) = j - |[W/| +i. We treat all vertices v; as firms
and all other vertices u;, and w; as workers. The dummy player v’ becomes a worker, as well. In
addition, for each v; we assume there is an additional firm v} and a worker u}. These are connected
in N via {u},v}} and {v],v;}. Vertex v} is firm y; and vertex v; is firm yp114,. For the first edge
trap, the dummy player v/ connects u; and vy, and v is the lowest ranked worker number 1. The
vertices v} and u; are workers number 2 and 3. The top vertices in trap ¢ (labeled z; in Fig. 2)
are workers number 3i + 3. The vertices u; and u; are workers number 3i — 2 and 3i — 1, for every
i > 1. In the starting state we have M = {(u},v;) |i=1,...,b+ 1}.

Our construction implements a bit counter as follows. Bit ¢ is set if the edge corresponding to
ec in Fig. 2 is created in trap i (i.e., edge (¥3(j41), Yp+i+2) in our numbering of workers and firms).
Bit i is reset if instead (uj,,viy1) (or (23441, Yp4it2) in our numbering) is created. The dynamics
thus starts in a state in which all bits are reset. Best-response dynamics always prefer blocking
pairs with the firm ranked highest in the preference order. In the beginning, y,o connects to x3
and then to xg. Then firm y;,3 has an incentive to match with xg, and the first bit is set. Now
UYp+2 again matches with x3, then deviates to x5 and zg. This allows y13 and yp4 to rewire to
29, which removes setting of bit 1 and sets bit 2. Then bit 1 is reset by yp+3 connecting to x4, as
this is the best worker he currently knows that is willing to be match with him. In general, when
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bits 1 to ¢ are set, yp42 matches along the workers z3 and x3;49 for j = 1,...,7 to T3(;49). Then
iteratively all yp4 ;42 remove their bit edges, for j = 1,...,4, until bit ¢ 4 1 is set by creation of
(ﬂ?g(i+2),yb+i+3). Afterwards, iteratively from firm yp1;19 to yp1o all bits are reset. This shows that
the dynamics implement a bit counter with b bits and the theorem is proved. O

A case in which such preferences can still lead to quick convergence is in the job-market game.
Note that for the following theorem we only need worker-uniform preferences.

Theorem 7. For every job-market game with worker-uniform preferences, in which each firm can
create up to k > 1 matching edges, (random) best-response dynamics converge to a locally stable
matching from every starting state in (expected) time O(ng - ny - k), and random and concurrent

better-response dynamics converge in expected time O(n2 - ng k).

Proof. In the job-market game, all firms are isolated vertices in N. Thus, no firm-worker pair is at
distance at most 2. Thus, if a local blocking pair (z;,y;) deviates, this either leads to firm y; having
an additional matching edge or removing an existing one. Also, the existence of a matching edge
(xi,y;) can only create local blocking pairs involving firm y; (as with (x;,y;) no worker becomes
closer to a firm other than y;).

These insights directly show polynomial convergence time if all firms can only create k = 1
matching edge. In this case, no new matching edge can be introduced into the system without
removing an existing edge. Each change of a matching edge involves the same firm, thus there are
only |X| steps involving a single firm y; before it is either stabilized or disconnected. Hence, in
total there are only |M| - |X| steps until we reach a locally stable matching from starting state M.
This holds for arbitrary preference lists among workers and firms.

For k > 1, new matching edges can be introduced by a firm that connects to a worker x; and
creates an additional edge to a neighbor of x;. For this case, fast convergence holds for worker-
uniform preferences. In particular, consider the highest ranked firm y. No worker x currently
matched to f is part of any blocking pair. Also, if there is a local blocking pairs involving the
highest ranked firm y, this is a local blocking pair no matter which matching edges currently exist
to lower ranked firms. Thus, after at most k - |X| steps all existing edges of firm y are stabilized
and no new ones can be introduced. Hence, we can remove y and all matched workers and apply
the argument repeatedly to the remaining instance.

Note that in (random) best-response dynamics at first only local blocking pairs are considered
that involve the highest ranked firm y. The dynamics stabilize y by introducing up to k edges and
moving each of them monotonically to higher ranked workers before proceeding to the next firm.
Applying this insight iteratively, we see that in total these dynamics take at most O(n,-n, - k) steps
until reaching a locally stable matching. For random and concurrent better-response dynamics, we
pick a local blocking pair with maximum benefit with probability at least 1/(n, - ny). This implies

that the dynamics converge in an (expected) number of O(n2 - n% - k) steps. O

In contrast, if we consider firm-uniform preferences, a lower bound for best-response dynamics

can be shown.

Theorem 8. For every b € N and k > 2, there is a job-market game with firm-uniform preferences,
ng € O(b), ny € O(b- k) and a starting state M such that (random) best-response dynamics from
M need Q(2°) steps (in expectation) to converge to a locally stable matching.
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Figure 5: Construction in the lower bound of Theorem 8 for b = 4. Filled vertices are firms, empty
vertices are workers. Social links are indicated in gray, every possible edge between a worker and a
firm can become a matching edge. Bold black edges are “hard-wired” matches never altered during
the dynamics. Dashed edges represent setting and resetting of bits. Higher vertex labels at workers
indicate higher attractiveness for firms.

Proof. For firm-uniform preferences we consider a structure as follows. We describe the structure

for k = 2 first. There are 2b firms and 3b + 1 workers. Let the workers W = {zg,z1,..., 23}
be numbered in increasing preference. The network N is a tree as follows. For every ¢ = 1,...,b
there is a link (x9p4i,20). In addition, there is a path with links (z;,2;41) for i = 0,...,b — 1.
For each worker x; there is an adjacent worker xy,; connected via edge (x;, z;1p), for i =1,... 0.

Worker xop1; prefers most to be matched to firm y;, and for worker xp.; the most preferred firm
is yp4i, for all ¢ = 1,...,b. These pairs are also the matching edges in our starting state, as well
as (i, Yp+i), 1.6., M = {(xpti, ¥i), (Toti, Yori), (Tiy Yprs) | © = 1,...,b}. The preference lists for xg
to xp are given as in Table 1. The construction is shown for b = 4 in Fig. 5. In the starting state

Worker ‘ Preference List
o 1,2,...,b,b+1,...
1 b,b— 1,b 2...,2,2 1—2,1—3,...,4,3,2,1,b+1, ...
9 b,b—1,b— 1—1,1—2,9—3,...,4,3,2,b+ 2,1, ...
T3 b,b—1,b— ,...,z,z—1,7j—2,2‘—3,...,4,3,b—|—3,2,1,...
Ty bb—1,b—2,...,4,1—1,1—2,1—3,...,4,b+4,3,2,1,...
T; bb—1,b6—2,....i,b+i,1—1,i—2,...,4,3,2,1, ...
Tp b,2b,b—1,...,4,i — 1,71 — ,4,3,2,1, ...

Table 1: Preference lists of workers x; for e = 0,1,...
not explicitly listed are ordered arbitrarily at the end of each list.

workers xpy; for i =1,...
preferred workers for the firms.
edges involving these workers.
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,b. The remaining firms y; with j € [b+ 1, 20]

,2b are matched to their highest ranked firms. Also, they are the most
Hence, there will be no local blocking pair removing any of the
For best-response dynamics we always prefer local blocking pairs



of the highest ranked workers. Best-response dynamics thus evolve as a bit counter with b bits.
Creation of edge (x;,y;) corresponds to setting bit ¢, creation of edge (z;, yp+;) to resetting of bit 4,
for i =1,...,b. Thus, in the starting state M all bits are reset.

The dynamics evolve as follows. In the beginning all workers except for worker 0 are matched.
He is the only one involved in a blocking pair, namely, in b blocking pairs with firms 1,...,b.
Picking his most preferred choice, we create (zg,y1). This means y; learns about x; and moves to
(21,y1). Thus, the first bit is set. In this state xo prefers yp; o over yi1, thus, the best local blocking
pair is (xo,y2). Now we get (z1,¥2), (thus, removing the setting of bit 1) and (x2,y2) (setting bit
2). Again, x3 still prefers y,.3 over yo. Now the best pair involves x1, who reconnects with .1,
thus resetting bit 1. More generally, when bits 1 through i are set, worker xy connects to y;41,
which leads to removal of setting of all bits up to ¢ and setting of bit ¢, as worker ¢ + 1 has an
interest to remain connected to yp4it1. Finally, workers ¢ to 1 reconnect iteratively to firms y; to
y1, thereby resetting the lower bits. As in each step the local blocking pair of largest benefit is
unique, the theorem follows also for random best-response dynamics.

For values £ = 3 and higher we add batches of b highly ranked workers that are initially
connected to the firms they like most, such that each firm y; has k — 1 matching edges and g4 ; has
k matching edges in M, for ¢ = 1,...,b. This allows to construct the bit counter as before. O

5 Dynamics with Memory in Games with Correlated Preferences

In this section we consider sequential and concurrent better-response dynamics with memory. Our
first result is a polynomial-time bound for random memory. Recall that in random memory we
assume that, in expectation, every 1" steps each player v remembers some player u chosen uniformly
at random from the set of players v had been matched to before, and v and v become temporarily
accessible in the next step.

Theorem 9. For every k,£ € N and every stable matching game with correlated preferences, in
which each player can create up to k matching edges and has lookahead ¢, (random) best-response
dynamics with random memory converge to a locally stable matching from every starting state in
(expected) time O(n? -m -k -T).

Proof. The dynamics can rely on the information in the random memory to steer the convergence
towards a locally stable matching. Let us consider the dynamics in phases. Phase ¢t begins after
the dynamics has created t mutually different matching edges at least once (including the ones in
the starting state). Let E; be the set of edges which have been created at least once when entering
phase t. During phase t no new edge is created for the first time. Consider an edge e € E; that
represents a (global) blocking pair and has maximum benefit. A step in which such an edge is
available for creation appears in expectation at most every n - T steps. In such a step, (random)
best-response dynamics will establish some (this or some other) edge with maximum benefit from
FE:. Such an edge will not be removed in phase ¢ anymore. Thus, by repeating this argument with
the remaining edges from E;, we see that after at most O(n? - k- T) steps in expectation either a
stable matching has evolved, or phase ¢ has ended by the first creation of a new edge. Note that
in total there can be at most m phases, which results in an expected convergence time of at most
O(n?-m -k -T) for best-response dynamics. O

The result can directly be extended to random and concurrent better-response dynamics.
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Corollary 10. For every k,¢ € N and every stable matching game with correlated preferences,
in which each player can create up to k matching edges and has lookahead £, random better-
response dynamics converge to a locally stable matching from every starting state in expected time
O(n?-m?-k-T), and concurrent better-response dynamics converge in expected time O(n*-m-k-T).

Proof. For random better-response dynamics, we can use essentially the same argument as in
Theorem 9. If an edge e corresponding to a blocking pair of currently maximum benefit becomes
available in phase t, it is chosen with a probability of at least Q(1/t). Hence, the time to discover
and resolve a blocking pair of maximum benefit is increased in expectation by at most O(t) over the
process in the previous theorem, where we directly resolve blocking pairs with maximum benefit.
Note that establishing edges with strictly smaller benefit does not hurt the availability of blocking
pairs with maximum benefit. Therefore, the dynamics are simply delayed by a factor ¢ in each
phase t in expectation through the creation of lower benefit edges. Thus, the expected time until
phase t ends is at most O(n? - k -t - T). This means the dynamics take at most O(n?-m? - k- T)
steps to reach a locally stable matching.

For concurrent dynamics, the probability that edge e is chosen is in €2(1/n2). As the process is
concurrent, we know that an edge corresponding to a blocking pair of maximum benefit is created
after at most n3 - T steps or stops being a blocking pair. By applying the above argument we can
bound the convergence time to O(n*-m - k- T). O

These positive results rely on the property that every polynomial number of steps the memory
presents the “right” edge for creation. In other words, random memory invokes in each phase a
(delayed) execution of a global greedy algorithm that inserts the previously discovered blocking
pairs in order of decreasing benefit. This allows to avoid moving through a bit-counter structure of
edges with smaller benefit. This property is independent of the structure of N, only the discovery
of new edges relies on players being at hop distance £. Thus, the result can be extended to a
scenario when N changes over time, which obviously is the case in many social networks when
players get more familiar with each other or change the players they interact with over time. We
do not have to rely on particular assumptions on the network evolution and can even establish
the convergence result under adversarial conditions when an adversary is allowed to manipulate to
make convergence time as long as possible.

Corollary 11. Suppose in each step t, the network Ny among the players is chosen by an adversary.
For best-response dynamics with random memory there are at most O(n®-m-k-T) steps in expectation
between emergence of a new local blocking pair and the first step in which a locally stable matching
is reached.

A similar result as below holds for the better-response dynamics treated in Corollary 10.

Corollary 12. Suppose in each step t, the network Ny among the players is chosen by an adversary.
For random better-response dynamics with random memory there are at most O(n®-m?-k-T) steps
in expectation between emergence of a new local blocking pair and the first step in which a locally
stable matching is reached.

With random memory no previous matching edge can be completely forgotten during the dy-
namics. Can we allow players to forget some previous matches and still obtain fast convergence
with local dynamics? Towards this end, we here consider two natural examples for cache memory
and show that delayed forgetting of previous matches can be harmful to convergence. We present a
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Figure 6: Structure of edge traps in the lower bound of Theorem 14. Social links are indicated in
gray, possible matching edges are drawn in black.

lower bound for best-response dynamics with cache memory, largest-benefit and FIFO/LRU evic-
tion strategies. We note that we can easily transform the lower bound constructions below for both
caching strategies with our observations above into obtain networks with constant diameter.

Corollary 13. If each player keeps only the r best matches in his cache, then for every b € N
there is a stable matching game with correlated preferences and n € ©(b-r), in which best-response
dynamics starting from the state M = () need Q(2°) steps to converge to a locally stable matching.

Proof. This result is a rather simple corollary of Theorem 2. We first consider r = 1. We denote by
w an arbitrary player in the edge trap of Fig. 2 and create a side-gadget for every such player. We
add three players u{’, u§ and u}. We add the links {u}’, u4'} and {u4,w} and {w, u¥}. In addition,
there are two additional matching edges €/ = {u}’, w} and €’ = {u}{’, u¥'}. The benefit b(e’) is larger
than any benefit of any matching edge in the edge traps, and b(e”) > b(e’). Thus, best-response
dynamics will first establish edge €/, which is recorded in the cache of players w and u}. Afterwards,
uf’ and ug switch to their joint edge, which is then updated in their caches. However, the cache
of player w still remains set to player u}{” and will be throughout the dynamics as this is his best
incident matching edge. However, this edge remains blocked by €”. In this way, best-response
dynamics wrongly initializes the memory of every player in the gadget and the dynamics evolve as
before. For larger memory, we simply create more side-gadgets to fill the complete memory with
blocked edges before the dynamics evolves as before. O

Theorem 14. If each player keeps only the r most recent matches in his cache, then for every b € N
there is a stable matching game with correlated preferences and n € ©(b%-r), in which best-response
dynamics starting from the state M = () need Q(2°) steps to converge to a locally stable matching.

Proof. In our lower bound construction we slightly adjust the edge trap structure from Fig. 2, see
Fig. 6 and 7. As previously, we attach b of these edge trap structures sequentially to create a
gadget. The idea is to create 15br gadgets, each of them representing a bit counter with b bits. The
edge weights are chosen such that all gadgets are updated simultaneously in a round-robin fashion.
The gadgets still have the critical invariant that the creation of a counter edge e¢ corresponding to
bit ¢ in a gadget is preceded by the movement of the edge through the gadget and deletion of all
trapped edges e¢ corresponding to lower bits. At this point we now must also reset the memory
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Figure 7: Gadget structure in the lower bound of Theorem 14. We depict two gadgets (a, ) and
(o + 3,8 4+ 1). Social links are indicated by solid edges. Dotted edges are profitable matching
edges among the vertices shown. Vertices from other gadgets can successfully match to the vertices
depicted here in the process of resetting memory.

of all vertices in the edge traps for lower bits. This is to ensure that the invariant continues to
hold and edges within the gadgets are not created from memory in subsequent steps. To reset the
memory of vertices, we must attach and detach each vertex sequentially to at least r other vertices,
none of which prove useful in later steps for speeding up the bit-counter dynamics in the gadget.
Formally, we create an array of 15br gadgets, each consisting of b sequentially attached edge
traps. In each gadget (o, ) with @« = 1,...,b, 8 = 1,...,15r, the edge between vertices w; and
w; is the i-th counter edge. If the edge e’ is created in each gadget, we use the vertices u? to
reset the memory in other gadgets before creating the i-th counter edge e. In particular, we let
the u? vertices iteratively create and delete edges to vertices in other gadgets until the memory
of all players in the edge traps corresponding to lower bits is filled with vertices u? from other
gadgets. In the end of this process this leads to creation of all the bit-counter edges between u?
and v? in every gadget. Thus, every memory entry in the edge traps refers to vertices uf that
are matched with higher benefit in a different gadget. This implies that all memory entries are
useless and the dynamics unfolds similarly as before in all gadgets. As mentioned earlier, the edge
benefits are chosen such that the dynamics essentially evolve simultaneously in all gadgets, i.e., the
best-response dynamics is unique and implements a step-by-step update in a round-robin fashion.
To carry out our memory reset, we have to construct social links and matching edges between
the gadgets. We describe the construction for a generic gadget (¢, 3), and our numbering is to
be understood in a cyclic fashion (modulo b and 15r, respectively). We delete the link between
vz-z and vil. Instead we add a link to vertex w; in gadget (o + 4,5 + 4r + 1). Hence, before best-
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response dynamics can create the i-th bit-counter edge e in gadget (a, ), u?

¢ is re-matched to
w; in gadget (o + 1,8 + 4r + 1). Then u? “sweeps” part of the other gadget, i.e., it creates and
deletes edges one by one along the lower path w;, u;, w;—1,u;—1,... in this gadget to the leftmost
dummy vertex, and then further along the top path vy, v? vg,v3, ... to vertex v;. Each of these
matching edges has more benefit than the previous one. From v;, there is a social link to w; in
gadget (o + 2,3 + 47 + 2). Then, u? from gadget (, ) switches his matching edge along the
same path in gadget (a + 27,5 + 4r + 2), (o + 34, 5 + 4r + 3) and so on until he finishes sweeping
gadget (a + ri, 3 + 5r). Now u? is in the memory of all the vertices along these paths in gadgets
(a+i,8+4r+1),...,(a+7ri, S+ 5r). Similarly, we can apply this construction in a cyclic fashion
and set the benefits of edges such that best-response dynamics advances the sweeps of vertices
u? from all gadgets in a round-robin fashion. Then each gadget has been covered by sweeps of r
vertices uf from other gadgets and the memories of the involved vertices are fully reset.

However, after this step there are still vertices whose memory is not yet reset. In particular,
from vertex v; in gadget (a+ri, 3+ 5r) there is a social link to u} in gadget (a+ (r+1)i, 3+5r+1).
In addition, there is a social link in this gadget between u! and u? |, for all i = 2,...,b. Note
that these links do not change the exponential dynamics within the gadget. However, they allow
u? from gadget (a, ) to sweep through uil, u?fl, uilfl, and so on. Finally, from u} in gadget
(a + (r + 1)i, 8 + 57 + 1) there is a connection to u! in gadget (o + (r + 2)i, 8 + 5r + 2), in
which the same construction is applied. In total, u? from gadget (o, 3) sweeps through gadgets
(a+ (r+1Di,f+5r+1),...,(a+ (2r)i, + 6r) in this fashion. Again, each vertex in a gadget
becomes attached and detached to exactly r vertices uf from other gadgets in this procedure, and
thus the memories are reset.

Finally, we apply a similar idea for the remaining vertices vil in the upper parts of the gadgets.
Again, we introduce social links from v} to v} ;| in every gadget (o, 3) and for every i = 2,...,b.
Note again that this does not change any of the arguments made above, as profitable matching edges
exist again only for selected vertices u? from other gadgets. In particular, we let our player u? from
gadget (v, B) move his matching edge from v} in gadget 8+6r to v} in gadget (a+(2r+1)i, 3+6r+1)
with the help of a social link between those vertices. Then ul2 sweeps the vl-vertices in gadget
(a + (2r + 1)i, B + 6r + 1) until he hits v1, continues in gadget (o + (2r + 2)i, 8 + 6r + 2) and so
on. Finally, from v} in gadget (a+ (37)i, 3+ 7r) there is a social link to vertex v? in gadget (o, 3).
Hence, at this point the i-th bit-counter edge e° in gadget («, ) is finally created.

Verify that at this point, due to the round-robin update of best-response dynamics, in all gadgets
all the memories of all vertices in all edge traps for bits 1, ..., 4 have been reset. The only exceptions
are uf and v? vertices, but these vertices are matched to each other via an edge of higher benefit.
Hence, after bit ¢ has been set in all gadgets, the dynamics evolves as before as none of the players
in the memories of all vertices in the edge traps of smaller bits is part of any local blocking pair.

For showing correctness, we have to verify that no undesired shortcuts are created in our cyclic
construction of the network links. There are two points, at which this problem can occur and
where a sufficient spread in our construction is critical. The first point is when vertices from one
gadget reset memory in another gadget and vice versa. Instead of sweeping along a path in a
gadget, a player uf might get the opportunity to match to a vertex at the end of the sweep more
quickly. Observe, however, that each gadget («, ) has only links to gadgets (o + 4,5 + 1) and
(a+1i,B8+4r+1), foralli=1,...,b. Due to the size of our array of 157 in the second dimension,
there are no two gadgets (o, ) and (7, d), where vertices of («, 3) reset the memory in gadget (v, d)
and vertices from (v, 0) reset memory in (a, ). The second point where the problem can arise is
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when two vertices u? and u? 4, from gadget (7,9) sweep the same two gadgets consecutively, say,
(o, B) and («, 8+ 1). In this case, u?ﬂ- sweeps more traps than u?. He could use links introduced
for the sweep of u? to avoid sweeping the traps for higher bits and directly enter gadget (c, 3+ 1)
at a trap corresponding to a lower bit. However, we assume players uf and u? 4, continue their
sweep in gadgets (a«+14,8+ 1) and (o + ¢+ j, 8+ 1), respectively. This allows none of the players
to use social ties introduced for other players to shortcut their sweep.

In conclusion, in our construction all shortcuts can be avoided and the dynamics evolve by

incrementing all bit-counters in round-robin fashion as desired. O

6 Open Problems

Our work opens up a variety of fascinating issues for further research. Some immediate open
problems remain for the special case of the job-market model with £ > 2. For general preference
lists, it is simple to extend the lower bound example from [2] to show exponential convergence
time with high probability even for random better-response dynamics. Can these dynamics achieve
polynomial convergence time for correlated preferences? For dynamics with memory it would be
interesting to see if there are forms of memory that allow players to forget about some of their
matches and still obtain a good convergence time. What about the convergence time of, say,
best-response dynamics and random cache updates? While for this particular combination an
exponential lower bound might be obtained along the lines of Theorem 14, nothing is known about
other random dynamics and cache eviction strategies. In addition, it would be interesting to see
how size, fading, or heterogeneity of memory influences the convergence time of these dynamics.
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