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Abstract We examine strategic cost sharing games with so-called arbitrary sharing
based on various combinatorial optimization problems. These games have recently
been popular in computer science to study cost sharing in thecontext of the Internet.
We concentrate on the existence and computational complexity of strong equilibria,
in which no coalition can improve the cost of each of its members. Our main result re-
veals a connection to the core in coalitional cost sharing games studied in operations
research. For set cover and facility location games this results in a tight characteriza-
tion of the existence of strong equilibrium using the integrality gap of suitable linear
programming formulations. Furthermore, it allows to derive all existing results for
strong equilibria in network design cost sharing games witharbitrary sharing via a
unified approach. In addition, we show that in general there is no efficiency loss, i.e.,
the strong price of anarchy is always 1. Finally, we indicatehow the LP-approach is
useful for the computation of near-optimal and near-stableapproximate strong equi-
libria.

Keywords Cost Sharing· Strong Equilibrium· Integrality Gap· Combinatorial
Optimization

1 Introduction

How can a set of self-interested actors share the cost of a joint investment in a fair
and stable way? This fundamental question has motivated a large amount of research
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in economics in the last decades (Young, 1994). More recently, this question has been
studied in computer science to understand the development of the Internet and ques-
tions arising in e-commerce (Jain and Mahdian, 2007). A classic framework to study
cost sharing problems without centralized control arecost sharing games, in which
cost can be specified as an abstract parameter for each playerand/or each coalition.
Relevant to real-world optimization problems are cost sharing games, where the cost
is tied to the investment into specific resources. Such gamesbased on combinatorial
optimization problems have a long tradition in economics and operations research.
They are usually formulated as coalitional game, i.e., there is a set of players, and
each coalition of players has an associated cost value. Thisvalue comes from an op-
timal solution to an underlying optimization problem for the coalition. For example,
consider a multicast network design game, in which players in a network strive to re-
ceive a message by establishing a connection to a common source vertexs. A simple
model for this scenario is aminimum spanning tree game (MST game), in which each
vertexv 6= s is a player, and the edges have costs. The cost of a coalitionC in this game
is the cost of the cheapest network spanning all players inC ands, i.e., the minimum
spanning tree for the setC∪s. In the literature many interesting and important coali-
tional cost sharing games have been studied, e.g., based on problems like MST (Bird,
1976) and Steiner tree (Megiddo, 1978; Granot and Huberman,1981; Tamir, 1991;
Granot and Maschler, 1998), covering and packing problems (Deng et al., 1999),
facility location (Tamir, 1993; Goemans and Skutella, 2004), or TSP (Faigle et al.,
1998). Of central importance in these games is the existenceand computation of
a stable and fair cost sharing among the players. Coalitional cost sharing games are
usuallytransferable utility (TU) games, i.e., the cost can be shared arbitrarily between
the players. This allows for the largest level of generalityfor possible interactions in
the bargaining and coalition formation process. The foremost concept of stability and
fairness in TU cost sharing games is thecore. The core is a set of imputations, i.e.,
of distributions of the cost for the complete player set to the players. To be in the
core an imputation has to fulfill the additional property that no coalition of players
in sum pays more than its associated cost value. Results about the non-emptiness of
the core and characterizations of core solutions have been obtained for many of the
games mentioned above.

A problem with coalitional cost sharing games is that cost shares represent a
strong abstraction from the underlying optimization problem. Players are assumed to
contribute on a global level, and the game does not take into account who pays how
much for which resource. In particular, our simple MST example above is appropri-
ate when we think of a set of players signing up for message reception with a service
provider. The provider then decides which links are established and how the network
is built to serve all users that signed up. Finally, he simplycharges the players a total
cost and they have to come up with a way to pay the bill. Here players are not in
charge of the decision about which edges to create and spend their money on. How-
ever, when studying the incentives in large unregulated settings, such as, e.g., in the
creation of the Internet, there is a need to understand cost sharing on a more detailed
and, in particular, a strategic level. This prompted computer scientists to study strate-
gic cost sharing scenarios. On the one hand, there are a number of recent works on
designingstrategic cost sharing games to obtain favorable Nash equilibrium proper-
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ties (Chen et al., 2010). In these games the underlying assumption is that a central
authority designs and maintains the solution and dictates cost shares for each player.
This is actually quite close to the underlying assumptions in, e.g., coalitional games
with non-transferable utility or cost sharing mechanisms,which have received a lot of
attention (Immorlica et al., 2008; Jain and Vazirani, 2001;Könemann et al., 2008; Pál
and Tardos, 2003). Designing cost shares, e.g., using Shapley value cost sharing (Al-
bers, 2009; Anshelevich et al., 2008a; Epstein et al., 2009;Leonardi and Sankowski,
2007), can yield favorable properties concerning existence and cost of Nash equi-
libria. In contrast, such a model is unsuitable when there isvery little control over
players and their bargaining options. A model that allows for general cost sharing
between players is sometimes referred to asarbitrary cost sharing, and it has been
studied widely (Anshelevich et al., 2008b; Anshelevich andCaskurlu, 2011a,b; Car-
dinal and Hoefer, 2010; Epstein et al., 2009; Hoefer, 2009, 2011; Hoefer and Krysta,
2005). In these cost sharing games the strategy of a player isa payment function that
specifies his exact contribution to the cost of each resource. The outcomes of such
strategic cost sharing games based on combinatorial optimization problems will be
the subject of this paper.

When studying the outcomes of the interaction of rational agents in strategic
games, we need to discuss the appropriate solution concept.The most prominent
stability concept in strategic games is the Nash equilibrium (NE). While a mixed
NE in finite games always exists, a drawback is that it is only resilient to unilateral
deviations. In many reasonable scenarios agents might be able to coordinate their
actions, and under these circumstances a NE is not a reasonable solution concept.
To address this issue we consider thestrong equilibrium (SE)in this paper. A strong
equilibrium (Aumann, 1959) is a state in which no coalition (of arbitrary size) has
a deviation that lowers the cost ofeverymember of the coalition. This resilience to
coalitional deviations is highly attractive. On the downside, strong equilibria might
not exist in a game. This may be the reason they have not received an equivalent
amount of research interest despite their attractive properties. We partly circumvent
this problem by studying approximate versions of the strongequilibrium, which is
guaranteed to exist. However, our treatment of these aspects is brief and mostly left
for future work.

Our main interest is to characterize the existence, social cost, and computational
complexity of SE in strategic cost sharing games based on combinatorial optimization
problems. An initial insight in Section 2 reveals that the concept of SE in strategic
cost sharing games is equivalent to seemingly stronger notions of super-strong or
sum-strong equilibria. Additionally, a SE in a strategic game can always be turned
into a core imputation of the corresponding coalitional game defined on the same
instance of the optimization problem. Hence, a SE represents astrategic refinement
of a core solution, and existence of a SE implies non-emptiness of the core. It also
implies that the strong price of anarchy (Andelman et al., 2009) is 1, i.e., in every SE
a solution is bought that is a social optimum to the underlying optimization problem.

In Section 3 we consider a variety of games based on vertex andset cover and
various facility location problems. For these games we showan equivalence result of
core and SE. In particular, whenever the core in the coalitional game is nonempty,
there is a SE for the strategic game. Our main proof techniquerelies on a connection
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via linear programming to Owen’s linear production model (Owen, 1975), which is
one of the most common ways to show non-emptiness of the core in combinatorial
optimization games (Deng et al., 1999). Using this machinery we are able to tightly
characterize the existence and cost of SE in all these games.Our results extend to
special classes of network design problems. This includes,e.g., MST and classes
of Steiner Network Design Games (Anshelevich et al., 2008b;Hoefer, 2009). As a
byproduct, our general approach yields simple proofs for all known results for SE in
strategic cost sharing games with arbitrary sharing, whichwere previously shown by
Epstein et al. (2009) via complicated combinatorial arguments.

The equivalence between SE and core solutions is an interesting and notable fact.
However, in other cases such as NTU games and appropriate extensions to strategic
games a similar equivalence is obvious. Thus, it may be more surprising to observe
that the relation between SE and core solutions in cost sharing games can be quite
complicated. In particular, in Section 4 we explore equivalence without relying on
linear programming. While in some cases like Terminal Backup Games (Anshele-
vich and Caskurlu, 2011b) we can resort to combinatorial arguments, in other inter-
esting games our results are mostly negative. In particular, we show that in Steiner
Tree connection games or network cutting games equivalencedoes not hold, i.e., the
core might be non-empty but a SE is absent. A similar result isestablished in Sec-
tion 5.1 even for simple vertex cover games when we allow resources to be purchased
fractionally or in multiple units. Characterizing SE in these games remains as an in-
triguing open problem. We observe in Section 5.2 that linearprogramming can be
used to obtain approximate SE in vertex and set cover, as wellas facility location
games. Finally, we conclude in Section 6 with some interesting questions for further
research.

Our main conceptual contribution is to reveal a non-trivialand close relation be-
tween coalitional and strategic games defined on the same instance of the optimiza-
tion problem. The strategic game can be seen as a strategic variant of the coalitional
game. In addition, in many games SE can act as a strategic refinement of rather coarse
core solutions. We believe that this inherent connection should stimulate further re-
search on (strategic) cost sharing with rational agents.

1.1 Preliminaries

We consider classes of cost sharing games based on combinatorial optimization prob-
lems. In each of these games there is a setR of resources. Resourcer ∈ R can be
boughtif the associated costc(r) ≥ 0 is paid for. ForR′ ⊆ R let c(R′) = ∑r∈R′ c(r).
We assume that there is set of playersK. Each playeri ∈ K strives to satisfy a certain
constraint on the bought resources. For example, in the caseof theset cover problem
the player set is the element setK = E. The resources are setsR= S ⊆ 2E over
E. The constraint of playere states that there must be at least one bought setSwith
e∈ S. In a similar way we can base our construction on various costminimization
problems like facility location or network design. We will describe them in more de-
tail in the corresponding sections. However, a common assumption in our problems
is a free disposal property, i.e., if for a set of bought resources all player constraints
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are satisfied, then a superset of bought resources can never make a player constraint
become violated.

For a given set of players, resources, and constraints we define two games - a
coalitional and astrategiccost sharing game. Thecoalitional game∆ = (K,c) is
given by the set of playersK and a cost functionc : 2K → R

+
0 that specifies a cost

value for every subset of players. For a coalitionC⊆K, the cost isc(C) = c(R(C)∗) =
∑r∈R(C)∗ c(r) for anoptimum solution R(C)∗ ⊆ R for C. In particular,R(C)∗ is a min-
imum cost set of resources that must be bought to satisfy all constraints of players
in C. For example, in a set cover gameR(C)∗ is the minimum cost set cover for the
elements inC. We denote the special caseR∗ = R(K)∗ as thesocial optimum.

The goal in a coalitional game is to find a cost sharing ofc(K) for the so-called
grand coalitionK. A vector of cost sharesγ1, . . . ,γk is called animputationif ∑i∈K γi =
c(K). The game∆ is a transferable utility (TU)game, i.e., we are free to choose
0 ≤ γi ≤ c(K). The central concept of stability and fairness in coalitional games is
thecore. The core is the set of imputationsγ, for which c(C) ≥ ∑i∈C γi . Intuitively,
when sharing the cost according to a member of the core, no subset of players has
an incentive to deviate from the grand coalition and make a separate investment -
depending on the underlying optimization problem, e.g., purchase different sets or
construct an independent network.

Thestrategic gameΓ =(K,(Si)i∈K ,(ci)i∈K) is specified by strategies and individ-
ual cost for each player. Thestrategy space Si of playeri ∈ K consists of all functions
si : R→ R

+
0 . Strategysi allows him to specify for each resourcer ∈ R how much he

is willing to contribute tor. A resourcer is boughtif ∑i∈K si(r) ≥ c(r). A vector of
strategiess is a stateof the game. For a states we define|si | = ∑r∈Rsi(r) and the
individual costof playeri asci(s) = |si | if the bought resources satisfy his constraint.
Otherwise,ci(s) = ∞ or a different value that is prohibitively large. Finally, thesocial
costof s is c(s) = ∑i∈K ci(s).

The foremost concept of stability in strategic games is the Nash equilibrium, a
state in which no player unilaterally has an incentive to deviate. In this paper, how-
ever, we consider coalitional incentives and thus resort toa strengthened version
called strong equilibrium (Aumann, 1959). A states has aviolating coalition C⊆ K
if there are strategiess′C = (s′i)i∈C such thatci(s′C,s−C) < ci(s) for eachi ∈ C. A vi-
olating coalition has a deviation, in which all players inC strictly pay less. Astrong
equilibrium is a states that has no violating coalition. Note that in a SE a set of
resources is bought such that all player constraints are satisfied. Each resourcer is
either paid for exactly or not contributed to at all. Thus, a SE represents a cost sharing
of some feasible solutionR for the grand coalition, such thatc(s) = c(R).

In addition, we briefly consider the concept of an(α,β )-approximate strong equi-
librium (denoted(α,β )-SE). A states is a (α,β )-SE if for every coalitionC ⊆ K
and strategiess′C there is at least onei ∈ C such thatci(s) ≤ α · ci(s′C,s−C), and if
c(s) ≤ β · c(K). In such a state no coalition can reduce the cost of every member
by strictly more than a factor ofα, and the cost of the bought solution represents a
β -approximation toc(K).
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2 Strong Equilibria and the Core

Consider a given set of resourcesR with costsc(r) and a set of playersK with con-
straints. Our first insight reveals that several coalitional equilibrium concepts coin-
cide in strategic gamesΓ . In particular, we considersuper-strongandsum-strong
equilibria defined as follows. A states has aweakly violating coalition C⊆ K if
there are strategiess′C = (s′i)i∈C such thatci(s′C,s−C) ≤ ci(s) for each i ∈ C and
ci′(s

′,s−C) < ci′(s) for at least onei′ ∈ C. A states has asum violating coalition
C ⊆ K if there are strategiess′C = (s′i)i∈C such that∑i∈C ci(s′C,s−C) < ∑i∈C ci(s). A
super-strong (sum-strong) equilibrium is a states that has no weakly (sum) violat-
ing coalition. Note that every violating coalition is also weakly violating, and every
weakly violating coalition is also sum violating. Hence, every sum-strong equilibrium
is super-strong, and every super-strong equilibrium is strong. We note this simple fact
because we actually show the absence of sum violating coalitions in our proofs be-
low. In general strategic games it is easy to see that the inclusions are strict, i.e., a
strong equilibrium might not be sum-strong. In our strategic cost sharing gamesΓ ,
however, every strong equilibrium is also sum-strong.

Proposition 1 Every strong equilibrium in a strategic gameΓ is a sum-strong equi-
librium.

Proof Suppose an arbitrary state of the strategic gameΓ has a sum violating coalition
that can achieve a strict improvement in the sum of player costs. We will show that in
this case it also has a violating coalition that can obtain a strict improvement for every
player of the coalition. The proposition then shows that strong equilibria without
violating coalitions are also sum-strong.

Consider a strategic gameΓ and an arbitrary states that has a sum violating
coalitionC with a deviations′C, i.e.,∑k∈C ck(s′C,s−C)< ∑k∈C ck(s′C,s−C). The cost of
a playerk is either his total payment|sk| or ∞. In (s′C,s−C) none of the players inC can
have cost∞, because then the sum of costs cannot represent be a strict improvement
over that ins. Hence, for allk ∈ C we must have finite costck(s′C,s−C) = |s′k| in
(s′C,s−C), and hence, the set of bought resources in(s′C,s−C) satisfies the constraint
of every player inC.

First, suppose that ins there is a playerk∈ K with costck(s) = ∞. This means his
constraint is not satisfied by the bought resources ins. k has a unilateral deviation of
purchasing all resources inR∗ by himself. This yields finite cost fork. Hence,{k} is
both, a (singleton) violating coalition and a sum violatingcoalition.

Second, suppose that ins for all playersk∈ K we have finite costck(s) = |sk|. For
the sum violating coalitionC we consider the subset of playersC0 with |sk| = 0. A
player inC0 cannot achieve a strict improvement, so he cannot be part of aviolating
coalition in whichevery player strictlyimproves. Instead, we prove thatC1 =C−C0

is a violating coalition. Note thatC1 must be non-empty, because all players inK have
finite cost ins. In this case,C1 = /0 would imply thatck(s) = 0 for all k∈C, which is
impossible to improve and contradicts thatC is a sum violating coalition.

We now construct a deviation strictly improving the cost forevery player inC1

as follows. Lets′(r) = ∑ j∈C s′j (r) be the total contribution by players inC to re-
sourcer ∈ R in the deviations′. For each playerk ∈ C we define a strategys′′k(r) =
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(|sk|/∑ j∈C |sj |) · s′(r). Thus, in sum players inC contribute the same tor in s′ and
s′′, however, ins′′ each playerk pays a share at each resource that corresponds to the
fraction of total cost contributed byk in s. Note that this yields|s′′k | = 0 if and only
if |sk| = 0, as in this case the fraction of playerk is 0. Thus, we can let players in
C0 stick to their original strategy and concentrate on playersin C1 for the switch to
s′′C1

= (s′′i )i∈C1. For every playerk∈C1 we have

|s′′k |= ∑
r∈R

|sk|

∑ j∈C |sj |
·s′(r) = |sk| ·

∑ j∈C |s
′
j |

∑ j∈C |sj |
= |sk| ·

∑ j∈C c j(s′C,s−C)

∑ j∈C c j(s)
< |sk| ,

using the assumption that(s′C,s−C) strictly improves the sum of costs for players in
C. Note that for each resourcer we have the same total contribution froms′C ands′′C1

.
Thus, in(s′′C1

,s−C1) the same resources get bought as in(s′C,s−C) and, as observed
above, they satisfy the constraint for every playerk ∈C. Hence, for everyk ∈C1 we
haveck(s′′C1

,s−C1) = |s′′k | < |sk| = ck(s). This proves thatC1 is a violating coalition.
Thus, for every sum violating coalitionC there is a violating coalitionC1. This proves
the proposition. ⊓⊔

We note on the side that for every states, coalitionC, deviations′C = (s′i)i∈C, and
finite α ≥ 1 with ∑i∈C ci(s′C,s−C) = α ·∑i∈C ci(s) we can find in a similar wayC′

ands′′C′ = (s′′i )i∈C′ with ci(s′′C,s
′′
−C) = αci(s) for every i∈C′. Thus, the equivalence of

strong and sum-strong equilibria holds also for approximate versions of the concepts,
in which players must improve their costs by a factor of strictly more thanα.

We continue to show a general connection between core imputations for the coali-
tional game∆ and SE of the strategic gameΓ . We first observe that in a SE players
always share the cost of a social optimumR∗.

Proposition 2 In every strong equilibrium of a strategic gameΓ the players share
the cost of a social optimum. The strong price of anarchy is 1.

Proof Consider a SEs and the setR′ of bought resources. Assume for contradiction
c(R′)> c(R∗). If all players with|sk|> 0 jointly deviate to purchaseR∗, each player
k must pay only a fraction ofc(R∗)/c(R′)< 1 of |sk|. Formally, defines′k(r) = c(r) ·
|sk|

c(R′) . If all contributing players jointly deviate tos′, this obviously strictly decreases

the payment ofall players. Hence, ifc(R′)> c(R∗), thenK is a violating coalition for
s, a contradiction. ⊓⊔

Proposition 3 If the strategic gameΓ has a strong equilibrium, then the coalitional
game∆ has a core solution.

Proof Consider a SEs of Γ , which by Proposition 2 is a cost sharing ofR∗, and
a coalitionC. The coalition has the possibility to deviate and contribute just to buy
R(C)∗. In this case it has to share for each resourcer ∈ R(C)∗ at most the remaining
cost on top of the contribution of players inK\C, i.e.,cC(r) = c(r)−∑k∈K\C sk(r). If

cC(R(C)∗) < ∑k∈C |sk|, the coalition can deviate tos′k(r) = cC(r) ·
|sk|

∑ j∈C |sj |
for every

k ∈C and everyr ∈ R(C)∗, which would represent an improvement for every player
in C. However, ass is a SE,C must not be violating, and socC(R(C)∗) ≥ ∑k∈C |sk|.
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Trivially, c(r) ≥ cC(r), and soc(R(C)∗) ≥ ∑k∈C |sk|. Thus,γ with γk = |sk| is in the
core of∆ . ⊓⊔

Intuitively, this shows that the core is less stringent as weassume in a devia-
tion of a coalitionC that players outsideC “stop contributing”. More formally, non-
emptiness of the core is a necessary condition for existenceof a SE. In the following
we consider various classes of games, in which it is also sufficient. In these cases the
SE is a strategic refinement of the core, as it allows to specify a strategic allocation
of payments to resources.

3 Strong Equilibria using Linear Programming

3.1 Vertex and Set Cover Games

In a variety of fundamental games non-emptiness of the core and existence of SE are
equivalent. We can relate SE existence to the core via linearprogramming duality.
For simplicity we outline the general argument in the setting of set cover games. In a
set cover game, we are given a set of players as elementsE and a set systemS ⊆ 2E,
where eachS∈ S has a costc(S)≥ 0. The constraint of playere is that at least one
setSwith e∈ Smust be bought.

Theorem 1 If a set cover game∆ has a non-empty core, then the strategic gameΓ
has a strong equilibrium.

Proof We consider the integer programming formulation of set cover. In particular,
we consider the following linear relaxation, which employsxS ≥ 0 instead ofxS ∈
{0,1} and thus allows sets to be included fractionally in the solution.

Min ∑
S∈S

xSc(S)

subject to ∑
S:e∈S

xS≥ 1 ∀ e∈ E

xS≥ 0 ∀ S∈ S .

We also consider the corresponding LP dual.

Max ∑
e∈E

γe

subject to ∑
e∈S

γe ≤ c(S) ∀ S∈ S

γe ≥ 0 ∀ e∈ E.

It has been shown by Deng et al. (1999) that the core of∆ is non-empty if and only
if the integrality gap of the underlying set cover problem is1, i.e., if the LP has an
integral optimal solution. With Proposition 3 this is a prerequisite for existence of a
SE inΓ . We strengthen this result by showing that core solutions can also be turned
into an allocation of payments to resources for a SE inΓ . Thus, an integral optimum
is also sufficient.
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For the above programs consider the optimum primal solutionx∗ and the optimum
dual solutionγ∗, wherex∗ is integral and defines a feasible cover. Bothx∗ for the
primal andγ∗ for the dual yield the same objective value. Now assign each playere
to payse(S) = γ∗ex∗S if e∈ Sandse(S) = 0 otherwise. The theorem follows if every set
in the cover is purchased exactly and no coalitionC can reduce their total payments
∑e∈C |se|. The first condition is clearly necessary for a SE, the secondone implies
that no coalition can be sum violating (and thus violating).We first show that the sets
are exactly paid for. Ifx∗S > 0, then due to complementary slackness the inequality
∑e∈Sγ∗e ≤ c(S) is tight, hence by this assignment all the purchased sets getexactly
paid for.

We now show that no coalition can reduce the total payments. The main idea of
this part is to use duality arguments for a cost reduction of resources. In particular,
for an optimumx∗, the objective function can be represented by a linear combination
of tight constraints. The multipliers are the optimal dual variablesγ∗. Due to comple-
mentary slackness, we can replace eachc(S) of a bought setS in the objective of the
primal byc(S) = ∑e∈Sγ∗e . For every coalition, this additive structure allows to reduce
the costs and drop the shares bought by other players outsidethe coalition. In this
way, we can show optimality ofx∗ under the remaining costs for every coalition and
contradict that a coalition is sum violating or violating.

In particular, suppose for contradiction there is a coalitionC that is sum violating,
i.e., it has a deviation to strictly reduce their total payments. To find a deviation for
the coalition that strictly improves their total cost, we formulate the optimization
problem of finding a minimum cost cover for coalitionC given the contributions of
playerse 6∈ C. The players inC can use the contributions by players inK −C, and
thus forC the cost of a setSbecomes

cC(S) = c(S)− ∑
e6∈C,e∈S

γ∗ex∗S .

Finding a minimum cost cover for coalitionC with these adjusted costs can be for-
mulated by the following reduced primal LP

Min ∑
S∈S

xScC(S)

subject to ∑
S:e∈S

xS≥ 1 ∀ e∈C

xS≥ 0 ∀ S∈ S .

Note that for this reduced LP the solutionx∗ is obviously still feasible, because we
only removed all constraints for elementse 6∈C.

The dual of this program is

Max ∑
e∈C

γe

subject to ∑
e∈S

γe ≤ cC(S) ∀ S∈ S

γe ≥ 0 ∀ e∈C.

Note that the constraints of this program read

∑
e∈C,e∈S

γe+ ∑
e6∈C,e∈S

γ∗ex∗S≤ c(S) .
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Settingγe = γ∗e for all e∈C yields a feasible solution to the LP-dual of the reduced
problem, becausex∗S≤ 1 andγ∗ was feasible for the original dual.

We now observe that the objective function value ofx∗ andγ∗ for the reduced
problems is the same by using the integrality ofx∗ and the additive decomposition of
costs resulting from complementary slackness. In particular,x∗ has a value of

∑
S∈S

x∗S

(

c(S)− ∑
e6∈C,e∈S

γ∗ex∗S

)

= ∑
S:x∗S=1

c(S)− ∑
e6∈C,e∈S

γ∗e

= ∑
S:x∗S=1

∑
e∈C,e∈S

γ∗e

= ∑
e∈C

γ∗e .

The first equality follows becausex∗ is binary. The second equality follows because
c(S) = ∑e∈Sγ∗ whenx∗S = 1 due to complementary slackness for the original LPs.
Finally, the third equality is again due to complementary slackness, becauseγ∗e = 0
whenever∑S:e∈Sx∗S> 1.

Hence,x∗ andγ∗ are both feasible for the reduced primal and dual programs and
they yield the same value of the objective function. By strong duality bothx∗ and
γ∗ must be optimal solutions to the reduced primal and dual problems. In particular,
x∗ being an optimal solution to the reduced problem implies that the coalitionC
achieves minimum total payments by paying the remaining cost of the sets bought in
x∗. Hence,C cannot be sum violating and not violating, a contradiction.This proves
thats is a SE. ⊓⊔

For the special case of vertex cover games we can use results from Deng et al.
(1999) to efficiently compute SE. In particular, a game allows a core solution (and
thus a SE) if and only if a maximum matching in the graph has thesame size as
the minimum vertex cover. This condition can be checked in polynomial time by
computing corresponding vertex covers and matchings (Denget al., 1999, Theorem
7 and Corollary 7). Hence, we can check in polynomial time whether a SE exists.
If it exists, we can use the computed vertex cover as primal solution for our LP and
compute cost shares for a strong equilibrium with the corresponding dual solution.

Corollary 1 In a vertex cover game we can decide in polynomial time if a strong
equilibrium exists. If it exists, we can compute a strong equilibrium in polynomial
time.

In addition, we can check in polynomial time whether a given strategy profile is a SE.

Corollary 2 Given a state s for a vertex cover gameΓ we can verify in polynomial
time if it is a strong equilibrium.

If the strategy profile is a SE, it must exactly pay for a vertexcover of the problem.
This yields a primal solution for the LP. In addition, the accumulated cost shares
of players must yield a corresponding dual solution. Finally, both primal and dual
solutions must generate the same value of the objective function. This is a sufficient
and necessary condition for being a SE, which can be checked in polynomial time.
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Another interesting case are edge cover games. Here playersare the vertices of
a graph and resources are the edges. Each vertex wants to ensure that at least one
incident edge is bought. Using the characterization of the non-emptiness of the core
in Deng et al. (1999, Theorem 8 and Corollary 8) we can obtain similar results for
this game as well.

Corollary 3 In an edge cover gameΓ we can decide in polynomial time if a strong
equilibrium exists. If it exists, we can compute a strong equilibrium in polynomial
time. Given a state s for an edge cover gameΓ we can verify in polynomial time if it
is a strong equilibrium.

3.2 Facility Location Games

Another class of games that can be handled via similar arguments are facility loca-
tion games. We outline the arguments on the simple class ofuncapacitated facility
location games(UFL games) and show below how to extend this approach to a more
general class of games considered by Goemans and Skutella (2004) and Cardinal and
Hoefer (2010). In aUFL problemthere is a setT of terminals and a setF of facilities.
We setnt = |T| andnf = |F |. Each facility f ∈ F has an opening costc( f ) ≥ 0, for
each terminalt ∈ T and each facilityf ∈ F there is a connection costc(t, f )≥ 0. The
goal is to open a subset of facilities and buy a set of connections of minimum total
cost, such that each terminal is connected to an opened facility. In the UFL game
each player owns a terminal, i.e.,K = T. The constraint of playert is satisfied if there
is a bought connection(t, f ) to some opened facilityf . We can formalize the UFL
problem by an integer program as follows:

Min ∑
f∈F

c( f )yf + ∑
t∈T

c(t, f )xt f

subject to ∑
f∈F

xt f ≥ 1 for all t ∈ T

yf − xt f ≥ 0 for all t ∈ T, f ∈ F
yf ,xt f ∈ {0,1} for all t ∈ T, f ∈ F,

Theorem 2 If a UFL game∆ has a non-empty core, then the strategic gameΓ has
a strong equilibrium.

Proof We again use the linear relaxation, which can be obtained by replacingyf ,xt f ∈
{0,1} by yf ,xt f ≥ 0. Then the dual can be given by

Max ∑
t∈T

γt

subject to γt − δt f ≤ c(t, f ) for all t ∈ T, f ∈ F
∑t∈T δt f ≤ c( f ) for all f ∈ F.

It has been shown in Goemans and Skutella (2004) that the coreof ∆ is non-empty if
and only if the integrality gap of this LP is 1. We can now arguesimilarly as before.
An integral optimum solution(x∗,y∗) to the LP-relaxation represents a partition of
the terminal setT into a collection of stars, one for each facilityf . The constraints
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corresponding to these sets hold with tightness, and we can assign each playert to pay
for her terminal the amountst(t, f ) = (γ∗t − δ ∗

t f )x
∗
t f as connection cost tof , in which

(γ∗,δ ∗) is the optimum solution to the dual. For the opening costsst( f ) = δ ∗
t f y

∗
f . In

total this pays exactly for all costs of the solution by duality.
Suppose there is a violating coalitionC. We again remove players inK −C and

reduce the costs of connections and facilities by the respective contributions. In order
to represent a violating coalition, the players inC must be able to deviate and reduce
their total sum of payments. However, the solution(x∗,y∗) has the same value for the
reduced LP of coalitionC as(γ∗,δ ∗) for the dual of the reduced LP. By duality both
solutions remain optimal. Thus, coalitionC is purchasing an optimal solution against
the payments of players inK−C and has no possibility to reduce the total payments.
This is a contradiction toC being a violating coalition. ⊓⊔

This result can be used to characterize computational properties of SE. In particu-
lar, we can decide in polynomial time if a given strategy profile forΓ is a SE. We first
check if the payments of players are made only to their own connection and opening
costs. Then we accumulate contributions to cost shares and check if this yields a core
solution - i.e., if the primal solution (given by the purchased solution to the facility
location problem) and the dual solution (given by the cost shares) correspond to each
other and yield the same optimal value for primal and dual LPs.

Corollary 4 Given a strategy vector for a UFL gameΓ we can verify in polynomial
time if it is a strong equilibrium.

As verification is in P, the problem of computing a strong equilibrium is in NP. In
fact, Goemans and Skutella (2004) show for a class of UFL games that deciding the
existence of a core solution is NP-complete. As existence ofSE and core solutions is
equivalent, this yields the following result.

Corollary 5 It is NP-complete to decide if a given UFL gameΓ has a strong equi-
librium.

This main arguments from the proofs above can be extended to the class of
connection-restricted facility location games (CRFL games), in which access to a
facility f can be obtained only by certain allowed coalitionsA f ⊆ 2T . We consider
the special case ofclosedgames (CCRFL games), in which the set systemA f of
allowed coalitions is downward closed, i.e., each subset ofan allowed coalition is
also an allowed coalition. This simplifies the specific allocation of the cost shares
to connections and facilities. While the closed property isa restriction, we note that
many variants of facility location arising in practice fallinto this class of games, e.g.,
problems with capacity or incompatibility constraints. Webelieve that equivalence
between core and SE also holds for CRFL games in full generality, but a proof of this
statement remains as an open problem. For formal discussionand the proof of the
following theorem see the Appendix.

Theorem 3 If a CCRFL game∆ has a non-empty core, then the strategic gameΓ
has a strong equilibrium. Given a strategy vector for a CCRFLgameΓ we can verify
in polynomial time if it is a strong equilibrium.
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3.3 Connection Games

In this section we use a linear program to formulate network design games in directed
and undirected graphs. Perhaps the most frequently studiedvariant is aconnection
gameoriginally formulated by Anshelevich et al. (2008b). In this game there is a
graphG = (V,E), resources are the edges, and each edge has a non-negative cost
c(e)≥ 0. There is a set of playersK, and each playerk has a source-sink pair(sk, tk).
A player is satisfied if there is a path of bought edges connecting his source and
sink. This is a game based on the Steiner network problem in graphs (Goemans and
Williamson, 1995). In a variant based on Steiner Tree calledthesingle-sourcegame,
every player has the same sources. Here we characterize existence of SE based on a
Flow-LP previously studied (Tamir, 1991; Wong, 1984).

Theorem 4 If the Flow-LP has an integral optimum solution, then the strategic con-
nection gameΓ has a strong equilibrium.

Proof We formulate the mixed integer program (MIP) for the problemin directed
graphs. It is simple to adjust it to undirected graphs, wherewe use only one variable
yi j for each (undirected) edgee= (i, j) ∈ E.

Min ∑
(i, j)∈E

ci j yi j

s.t. ∑
{ j | (i, j)∈E}

f k
i j − ∑

{ j | ( j ,i)∈E}

f k
ji ≥ 1 for i = sk

∑
{ j | (i, j)∈E}

f k
i j − ∑

{ j | ( j ,i)∈E}

f k
ji ≥ 0 for i 6= sk, tk

yi j − f k
i j ≥ 0 for (i, j) ∈ E,k∈ K

f k
i j ≥ 0,yi j ∈ {0,1} for (i, j) ∈ E,k∈ K

In this MIP we optimize for each playerk a flow, which is required to have value
1 by the constraints at the source, and which can only exit through the sink. The
individual flows are coordinated by capacity constraintsyi j − f k

i j ≥ 0. Each edge that
is used by at least one player fractionally has to be fully paid for in the objective
function. We can relax this program by usingyi j ≥ 0. Then the dual can be formulated
using variablesδ k

i for the flow conservation constraints andγk
i j for the coordination

constraints. Intuitively, the valuesδ k
i introduce a node potential of contributions, and

γk
i j can be seen as contributions towards the edges that are bought.

It has been observed by Tamir (1991) that this is program is within Owens linear
production model. Hence, if the integrality gap is 1, the optimal dual solution yields
a core solution. Using similar arguments as before, we can also show that in this
case a SE exists. In particular, each player payssk(i, j) = y∗i j (γk∗

i j ) towards edge(i, j).
For a coalitionC we can again reduce costs of edges by removing players ofK −C.
Due to the additive structure of the LP, the primal and dual optimal solutions remain
optimal for the reduced LPs. This means no coalition can reduce total payments, and
no coalition can be violating. This proves the theorem. ⊓⊔
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This insight allows us to derive one of the main results shownby Epstein et al.
(2009) in a simple and compact way.

Theorem 5 (Epstein et al., 2009) For a single-source connection gameΓ on a di-
rected series-parallel graph a strong equilibrium always exists and can be computed
in polynomial time.

The existence result follows easily by observing that the Flow-LP for single-source
games on directed series-parallel graphs has integrality gap 1. A proof can be derived
from (Prodon et al., 1985). Solving this LP resembles the construction of Epstein
et al. (2009).

Another class, in which the above LP can be used to show existence of SE, are
MST games as mentioned in the introduction. MST games are single-source games,
in which in every vertex ofG is a sink node for at least one player.

Theorem 6 In every MST gameΓ there is a strong equilibrium, which can be com-
puted in polynomial time.

For the problem in directed graphs, a SE can be computed from dual solutions of
the LP (Tamir, 1991). One of these dual solutions is the core solution derived for the
original non-emptiness proof (Granot and Huberman, 1981).In this solution, each
playerk pays exactly for the unique arc of the tree leaving his sinktk. This rule has
also been described by Bird (1976). It requires an easy argument to see that it yields
a SE, even for the MST game in undirected graphs.

While in these cases we have guaranteed existence and efficient algorithms to
compute SE, the problem of deciding the existence of SE is NP-hard. This follows
from a simple adjustment, which allows to interpret UFL games as single-source
connection games on directed graphs.

Corollary 6 It is NP-hard to decide if a given single-source connection gameΓ on
a directed graph has a strong equilibrium.

4 Strong Equilibria beyond Linear Programming

4.1 Connection Games

For set cover and facility location games the integrality gap condition provides a
complete characterization of games∆ having core solutions. With our theorems we
obtain a complete characterization also for the existence of SE in strategic gamesΓ .
For network design games like the connection game, the integrality gap condition is
sufficient to show existence of SE and non-emptiness of the core, but it is not neces-
sary. A tight characterization of games with non-empty corehas not been obtained so
far.

For strategic games and SE it has been shown by Epstein et al. (2009) that there is
a single-source connection game without SE, but the corresponding cooperative game
to their example does not allow a core solution as well. By Proposition 3, however,
this is a prerequisite for SE existence. Coalitional connection games with an empty
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Fig. 1 A single-source connection game with 3 players, a non-emptycore, but without a SE.R∗ is an
MST of G and consists of all edges of cost 20.

core (and thus without SE) have already been presented by Granot and Maschler
(1998). We here show that even a spanning property of the optimum solutionR∗ is
not sufficient to guarantee SE existence or to obtain SE from core solutions. This
implies that the relation between core and SE is not as robustas for the other games
considered previously. A complete characterization of theexistence of SE in (single-
source) connection games remains as an open problem.

Lemma 1 There are corresponding strategic and coalitional single-source connec-
tion gamesΓ and∆ such that R∗ is a MST of G and∆ has a core solution butΓ has
no strong equilibrium.

Proof Our example game is shown in Fig. 1. It is based on a game presented by Gra-
not and Maschler (1998), which consisted only of the three lower layers up to node
s′. It was shown that this game has an empty core, butR∗ passes through all vertices
of G. This also implies that there can be no SE.

To obtain our game in Fig. 1, we added the new sourcesand an edge of cost 20 to
the old sources′. Then the constraints for the contributions of the coalitions allow a
feasible cost sharing by assigning each player a share of 160/3≈53.33. This removes
the incentives to deviate on a global scale, which is sufficient for non-emptiness of
the core. On a local scale, however, the instable structure up to s′ is still intact. The
additional contributions towards(s′,s) do not change the strategic incentives within
the lower parts of the graph. It can be verified that in this game no SE exists. This
proves the lemma. ⊓⊔

4.2 Terminal Backup Games

In this section we study games based on the terminal backup problem (Anshelevich
and Caskurlu, 2011b; Anshelevich and Karagiozova, 2011). In this game there is a
graphG= (V,E), each player is a vertex (K ⊂V), and resources are the edges with
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costsc(e) ≥ 0. Each player strives to be connected to at leastd− 1 other player
vertices, ford ≥ 2. It has been shown by Anshelevich and Karagiozova (2011) that
the terminal backup problem can be solved in polynomial timefor d = 2. Here we
show that every core solution can be turned into a SE for thesegames. In addition,
we show how to decide if a game has a SE and how to obtain SE in polynomial time
if they exist.

Theorem 7 If a terminal backup game∆ with d= 2 has a non-empty core, then the
strategic gameΓ has a strong equilibrium.

Proof Suppose there is a core solution in∆ , but there is no SE inΓ . We first adjust
the graph such thatR∗ is only composed path components with two player vertices at
the ends, or of star components with at most three player vertices which are the leaves
of the star. This adjustment can be achieved as follows. Clearly, every componentR∗

is either a path or a star component, and every path end or starleaf is a player vertex.
If there is a star component with a player vertex at the center, we can introduce an
auxiliary vertex, make this the player vertex, and connect it to the star center with an
edge of cost 0. For stars with more than three leaves, we can replace the non-player
center vertex by a clique of sufficiently many vertices and clique edges of cost 0.
In this way, we can split the star up into paths and at most one star of three player
vertices. Note that these adjustments change the structurebut not the cost of any
solution to the underlying optimization problem.

We can allocate the cost shares from a core solutionγ as follows. Consider a star
component in the optimum solutionR∗, which we can assume to consist of exactly
three player vertices at the leaves. We will see that in a coresolutionγ, each player
pays a cost of at most the connection to the center. Let the player vertices in the star
bev1, v2 andv3 and the star centerw. We denote byP(u1,w) the path betweenu1 and
w in the star and byc(u1,w) the cost ofP(u1,w) (for players 2 and 3 similarly). For
contradiction, suppose that the core cost share of player 1 is γ1 ≥ c(u1,w)+ ε with
ε > 0. Then, as players 1 and 2 could deviate to the pathP(u1,w)∪P(u2,w), the core
constraints implyγ1+γ2 ≤ c(u1,w)+c(u2,w). Hence,γ2 ≤ c(u2,w)−ε. Note that the
same argument holds for player 3, soγ3 ≤ c(u3,w)−ε. Thus, in totalγ1, γ2 andγ3 do
not pay completely for the star. The remaining cost of 2ε must hence be contributed
by some other player not in the star component. However, the core constraints imply
that no subset of players pays more than the cost of their component inR∗. This
implies that wheneverε > 0, the cost ofR∗ cannot be fully paid for, a contradiction.
Thus, the core cost share allows each player to pay completely for every edge of
P(ui ,w) in his star, and this is how we assign players to pay in their strategy.

If the component is a path, we allocate the cost shares such that each playerk
considers the edges of the path consecutively starting fromhis end vertex. He tries
to pay them completely in this order until his core cost shareγk is exhausted. Hence,
there is at most one edge on the path for which the cost is shared by the two players.
Because the core constraints forbid any subset of players topay more than the cost of
their component inR∗, the players pay for the cost of the path exactly if and only ifγ
is a core solution.

For the sake of contradiction assume that this allocation isnot a SE. SupposeC
is a violating coalition of players. In their improvement the players ofC can improve
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by changing their connections and create a new component. Ifthis new component
is paid for fully by the players inC, this corresponds to a constraint considered for
the core solution. Hence, the players in such a new componentcannot all profit from
such a deviation.

On the other hand, suppose players inC use edges to create their new component,
for which (part of) the cost is paid for by players not inC. Note that in our assignment,
the edges that playerk contributes to form a consecutive path starting at his terminal.
He shares the cost of at most one edge with one other player at the end of this subpath.
Hence, if in a deviation players ofC use an edge fully paid for byk 6∈ C, we can
includek into the deviating coalition, as sticking to his current strategy will guarantee
that his connection requirement will be satisfied in some newcomponent created by
C as well. Furthermore, all players from the component ofk that are not inC can
be included intoC, as they will all remain connected by sticking to their current
strategies. If the deviation ofC uses an edge for which the cost is shared, we can add
both players that currently pay for the cost toC, because by sticking to their strategies
they remain connected in the deviation as well.

Finally, we can redistribute the costs among all players of the enlarged coalition
C such that everybody improves and pays a strictly smaller amount than before. This
again results in a set of improving players that pays completely for their component.
However, as such deviations are covered by the core constraints, this is a contradiction
to the cost shares being a core solution. This completes the proof of the theorem. ⊓⊔

The above property allows us to efficiently determine if SE and core solutions
exist and to compute them in polynomial time if they exist.

Corollary 7 There is a polynomial time algorithm to determine if a coalitional ter-
minal backup game∆ with d= 2 has a core solution and if the strategic gameΓ has
a strong equilibrium. If they exist, a core solution and a strong equilibrium can be
computed in polynomial time.

Proof We can compute an optimal solution in polynomial time. We then decide if
a core solution exists as follows. As outlined above, the structure of the problem
allows to transform optimal solutions into compositions ofcomponents for two or
three players. Thus, possible deviations from the grand coalition by coalitions of size
4 or larger can be reduced to collections of deviations by coalitions of two or three
players. There are only a polynomial number of such coalitions, and the optimum
solution for each such coalition can be found in polynomial time for each of them.
Hence, the set of inequalities necessary to characterizes the core is only of polynomial
size and can be obtained in polynomial time. Thus, we can check in polynomial time
if this set of inequalities has a solution and in this way obtain a member of the core.
Given a core solution, we can use the computed optimum solution and our structural
insight about SE to find the appropriate allocation of payments to edges in polynomial
time. ⊓⊔

For larger connectivity requirements ofd ≥ 4 we construct games where the con-
secutive payment condition of Theorem 7 is violated. In thiscase, a core solution
cannot be turned into a SE.
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Lemma 2 For any d≥ 4 there is a coalitional terminal backup game∆ with a core
solution and a corresponding strategic gameΓ without a strong equilibrium.

In fact, our example game can be derived directly with the single-source connec-
tion game in Fig. 1 above. We simply replace the sources by a clique of 4 or more
terminals and 0-cost edges.

4.3 Network Cutting Games

In this section we briefly discuss a network cutting game, in which there is a graph
G= (V,E) and each player strives to disconnect a subsetUk ⊂V from another subset
Vk ⊂V. Each edgee∈ E has a costc(e)> 0 for disconnection. This approach yields
coalitional and strategic games based on a variety of minimum-cut problems likes-t-
cut, multicut, multiway cut, etc. It was introduced and studied with respect to NE in
the special cases of multiway cut and multicut by Anshelevich et al. (2010).

More formally, for each playerk denote byPk the set of all paths inG from a
node inUk to a node inVk. When we introduce a variablexe for each edgee∈ E,
then for each pathP∈Pk playerk has the constraint∑e∈Pxe≥ 1. Note that these are
simple 0/1-covering constraints, and thus the resulting integer program is a special
case of the set cover integer program presented above. In particular, we can simply
regard paths as elements and edges as sets. This implies thatif the integrality gap is
1, we have existence of core solutions and SE. For instance, this holds on directed
and undirected graphs for single-source games that haveUk = {u} for eachk∈ K.

Theorem 8 If the Covering-LP has an integral optimum solution, then the strategic
network cutting gameΓ has a strong equilibrium.

Note that there is an important detail in this observation. While in the set cover
game every element (i.e., every path) is a player, in the cutting game players strive to
cover multiple elements (i.e., cut multiple paths). The previous theorem still holds,
because by clustering elements we simply reduce the granularity of possible coali-
tions to those, which can be obtained by the union of setsPk. In fact, by this trans-
formation we increase the set of games that allow a strong equilibrium and a core
solution.

Proposition 4 There are network cutting gamesΓ with strong equilibria, for which
the underlying network cutting problem has an integrality gap of more than 1.

Proof Consider a network multiway cut game, in which every playerk has a vertex
uk ∈V and wants to disconnect it from every other player vertex, i.e.,Vk = {u j : k 6=
j ∈ K}. Consider a star, in which the player vertices are exactly the leaves and all
edges have cost 1. This class of instances is known to have themaximum integrality
gap of 2−2/|K| for the covering LP of the network multicut problem. In particular,
the fractional optimum solution assigns each edge to be in the cut withxe = 1/2,
while the integral optimum fully cuts all but one edge. In a SEwe pick one playerk
to beuncut. Each other playerj 6= k is assigned to purchase the edge incident tosj

completely. Note that every coalitionC without the uncut playerk must pay at least
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Fig. 2 A multicut game on a directed graph with 2 players and a non-empty core. The game has no NE.

|C| to remain disconnected fromk. Every other coalitionC must pay at least|C|−1.
Hence, no coalition can reduce their payments in sum, and theexistence of a SE and
a core solution follows. ⊓⊔

A similar observation can be made for multiway cut games, in which geometric LP
relaxations (Calinescu et al., 2000) have an integrality gap of more than 1. In general
network cutting games, however, the set of strategic games with a SE is not equivalent
to the set of cooperative games with a non-empty core.

Lemma 3 There are corresponding coalitional and strategic networkcutting games
∆ andΓ such that∆ has a core solution butΓ has no strong equilibrium.

Proof For undirected graphs we consider two players and a star graph. We setU1 =
{u1}, U2 = {u2}, V1 = {v1} andV2 = {u1,v1}. The edge costs to the center nodew
arec(u1,w) = c(v1,w) = 2 andc(u2,w) = 3. The set of core solutions isγ1 = 2− ε
andγ2 = 2+ ε for ε ∈ [0,1]. Note that the unique optimum solution is to cut(u1,w)
and(v1,w). In such a solution, however, if|s1|> 0, player 1 can unilaterally improve
by removing the larger of his payments. Player 2 does not pay for both edges, because
paying only for(u2,w) is cheaper.

For directed graphs we can even leaveV2 = {v2} as a singleton. We transform
the graph to the one shown in Fig. 2. A similar argument shows non-existence of SE.
In particular, none of the edges of cost 100 is cut by the players. In the optimum,
the two edges of cost 2 are cut. However, player 1 requires only one of them to cut
his path. Hence, if|s1| > 0, player 1 will unilaterally deviate and drop the larger of
his contributions. Thus, player 2 would have to pay fully forboth edges, but for him
cutting the edge of cost 3 is cheaper. ⊓⊔

This construction implies that when we relax the assumptionthateveryelement
or terminal is a player in a set cover or facility location game, equivalence between
core and SE does not hold anymore. On another note, the proof shows absence of NE
in general strategic network cutting games on undirected games. For directed graphs
the absence of NE holds true even for minimum multicut games,in whichUk andVk

are singleton sets for all playersk∈ K.
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5 Extensions

5.1 Fractional and Non-Binary Resources

Apart from equivalence of core and SE, a natural question is to characterize cases
when we can derive SE from core solutions using linear programming. This was pos-
sible when the integrality gap was 1 in all the cases described above. With exception
of the CCRFL games, all games studied above yield linear constraints that fall into
one of two classes. One type of constraint is∑i xi ≥ 1, i.e., a simple covering con-
straint with 0/1 coefficients, by which we can express exactly the vertex and set cover
games. The other constraint type isyi −∑ j xi j ≥ 0, i.e., a coordination constraint that
requires a resource to become bought when at least one playeruses it. This second
type of constraint allows us to treat facility location and network design cut games.
What happens if we slightly generalize these constraints?

As an example let us first consider dropping the integrality requirement. Using
results on Owen’s linear production model one can show, for instance, that vertex
cover games always allow a core solution if vertices and setscan be bought infrac-
tionalamounts. Does a SE also exist for strategic games in these cases? To answer this
question we must adjust the strategic game to allow verticesto be bought fractionally.
The obvious adjustment is to assign a fraction proportionalto the total payment. In a
statesof the strategicfractional vertex cover gamea vertexv is bought to the degree
xv = ∑k∈K sk(e)/c(v). For a playerk corresponding to edgee= (u,v) the individual
cost is|sk| if xu+ xv ≥ 1 and prohibitively large otherwise.

A second, closely related variant is the case when we keep theintegrality condi-
tion, but we increase the covering requirements and allow multiple units of a resource
to be bought. In particular, we change the constraints to a type∑i xi ≥ b, whereb> 0
andxi ∈N. As for the fractional games the total payments of the players determine the
number of units bought of a resource. We term these gamesnon-binary vertex cover
games. More formally, in a states we havexu = ⌊∑k∈K sk(u)⌋. Playerk correspond-
ing to edge(u,v) has a required coverage ofbk ∈N and individual costck(s) = |sk| if
xu+ xv ≥ bk and prohibitively large otherwise.

Note that for both of these game classes Propositions 3 and 2 continue to hold. In
contrast to our results above, however, we show next that there might be no SE – al-
though non-emptiness of the core can be established via the same linear programming
machinery that was used before.

Theorem 9 There are corresponding strategic and coalitional fractional or non-
binary vertex cover games∆ andΓ such that∆ has a core solution butΓ has no
strong equilibrium.

Proof For both variants the proof follows with a triangle, vertex costs c(u) = 3,
c(v) = 5, andc(w) = 7, and players 1 to 3 corresponding to edges(u,w), (u,v) and
(v,w), respectively.

In the fractional game the unique optimum solution to the underlying vertex cover
problem isx∗u = x∗v = x∗w = 1/2, and the unique core solution isγ1 = 2.5, γ2 = 0.5 and
γ3 = 4.5. Proposition 2 yields thatx∗ has to be purchased in every SE, but no player is
willing to contribute tow. We obviously must haves2(w) = 0. If s1(w) > 0, player 1
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can deviate unilaterally and achieve the amounts1(w)/7 of coverage by contribution
to u with less payments. The same holds for player 2 and vertexv.

For the non-binary version, we set all covering requirements tob1 = b2 = b3 = 4.
Then the unique optimumx∗ to the underlying vertex cover problem and the unique
core paymentsγ are the same as before scaled by factor 4. Observe that we havean
integrality gap of 1 in this game. The core solution is unique, so with Proposition 3
we know that in every SE|s1| = 10 and|s2| = 2. This implies 4≤ s1(w) ≤ 6. By
removing this payment fromw, player 1 reduces the number of units bought ofw by
exactly 1. However, he can obtain an additional unit ofu at a cost of 3. This yields a
profitable unilateral deviation and proves the theorem. ⊓⊔

This shows that in the class of non-binary vertex cover gamesneither non-empti-
ness of the core nor an integrality gap of 1 can guarantee the existence of SE.

5.2 Approximate Equilibria

We have presented a method to derive SE in strategic cost sharing games via linear
programming. A disadvantage of the concept of SE is that theymight not exist in a
game. However, our approach proves to be applicable even to approximate SE. Using
primal-dual algorithms we can compute(α,β )-SE with small (constant) ratios in
polynomial time for vertex cover, set cover, and facility location games. The proof
for the following theorem can be derived directly from arguments in (Cardinal and
Hoefer, 2010).

Theorem 10 There are efficient primal-dual algorithms to compute(2,2)-SE for ver-
tex cover,( f , f )-SE for set cover (where f is the maximum frequency of any element
in the sets), and(3,3)-SE for metric UFL games in polynomial time.

Proof The proof follows with a close observation of the results in (Cardinal and
Hoefer, 2010). In these works, we have observed that the results stated in the theorem
hold for (α,β )-approximateNashequilibria with the same ratios in vertex cover, set
cover, and metric UFL games, even for games in which a single player has control of
more than one edge, element or terminal, respectively.

To outline the general idea of the proof, consider the case of(2,2)-NE in ver-
tex cover games studied by Cardinal and Hoefer (2010). The primal-dual algorithm
makes a single iteration through all the edges in arbitrary order. For a chosen edge, it
raises payments at both endvertices until the total contribution to one the vertices suf-
fices to pay the cost. This is done until all edges are covered,and then the algorithm
terminates. If players own multiple edges, their total payments are made up by the
sum of payments assigned to their single edges. Obviously, the payments of single
edges assigned by the algorithm are independent of which player owns which edge.
Furthermore, observe that a deviation of a player owning multiple edges is equivalent
to a coordinated deviation by the coalition of single edge players. Thus, the proof that
the algorithm computes (2,2)-NE shows that the state computed by the algorithm is a
(2,2)-NE independent of how the edges are owned by the players. Hence, no subset
of edges has a deviation that decreases theirpayments in sumby a factor of strictly
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more than 2. In this case we obviously cannot have a deviationin whicheveryplayer
of a coalition reduces his cost by a factor of strictly more than 2. These observations
yield the result for vertex cover games.

The main properties are that (1) the result holds for Nash equilibria even when
players can own multiple edges, (2) there is a cost per element and the cost for a
player is the sum of his element costs, and (3) the algorithm assigns the element cost
independently of which player owns the element. These conditions hold also for the
algorithms presented for set cover and facility location games (Cardinal and Hoefer,
2010) and hence yield the theorem. ⊓⊔

6 Conclusions and Open Problems

We have studied cost sharing in strategic and cooperative games and shown some
interesting connections between coalitional stability concepts. In simple games such
as vertex cover, set cover, facility location, MST, or simple terminal backup games,
existence of core and SE is equivalent. In these games, even algorithms for computa-
tion of core solutions can be used to compute SE. Here it seemsthat the cooperative
framework is an appropriate abstraction as the consideration of strategic incentives
does not lead to significantly different properties. In moregeneral games, however,
the differences between core and SE highlight the fact that strategic incentives have a
non-trivial effect on stability and fairness in a cost sharing scenario. More work needs
to be done to fully understand and distinguish these effects.

There are a number of open problems that stem from our work. In(single-source)
connection, network cutting and fractional and non-binarygames the use of linear
programming duality does not necessarily yield a complete characterization of the
games that admit SE. In these games and other interesting variants of cost sharing in
network design our work opens up numerous interesting research problems regarding
the characterization and computation of exact and approximate SE.

More generally, we believe that the linkage between core andstrong equilibrium
could be present in other cost sharing games, which go beyondthe classes of games
treated in this paper. Exploring these classes of games is aninteresting avenue for fur-
ther research. More concretely, our games have linear programming formulations that
lie within Owens linear production model. Non-emptiness ofthe core, however, can
also be shown within a more general class of problems. This more general framework,
termed generalized linear production model by Granot (1986), has a non-additive
structure, and it encompasses for instance the cut-based LP-formulation for Steiner
Network problems (Skorin-Karpov, 1995). It is a fascinating open problem to see if
this framework can also be used to derive exact and approximate SE in strategic cost
sharing games.
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A Connection-Restricted Facility Location

In a CRFL problemthere is a setT of terminals and a setF of facilities. We setnt = |T| andnf = |F|. In
addition to the UFL problem each facility has a set of allowable subsetsA f ⊆ 2T . The goal is to open a
subset of facilities and buy a set of connections of minimum total cost, such that each terminal is connected
to an opened facility, and the set of terminals connected to each opened facilityf is in A f . In theCRFL
gameeach player owns a terminal, i.e.,K = T. The constraint of playert is satisfied if there is a bought
connection(t, f ) to some opened facilityf , and the subset of terminals that have a bought connections to
f is in A f . We can formalize the CRFL problem by an integer program as follows:

Min ∑
f∈F

c( f )yf + ∑
t∈T

c(t, f )xt f

subject to ∑
f∈F

xt f ≥ 1 for all t ∈ T

(yf ,x1 f , . . . ,xnt f ) ∈ A f for all f ∈ F
yf ,xt f ∈ {0,1} for all t ∈ T, f ∈ F,

where
A f = {(0, . . . ,0)} ∪ {(1,χAf ) | Af ⊆ T feasible forf} ⊆ {0,1}nt+1, and χAf denotes the characteristic
vector of the subsetAf .

We here concentrate on a subclass ofclosedgames (denoted CCRFL). In these games the setsA f are
downward closed, i.e., for everyA⊆ A′ ∈ A f we haveA∈ A f . Note that this class encompasses a large
variety of facility location problems considered in the literature, e.g., with capacity or incompatibility
constraints.

Theorem 11 If a CCRFL game∆ has a non-empty core, then the strategic gameΓ has a strong equilib-
rium.

Proof Following the argumentation in (Goemans and Skutella, 2004) it is possible to use the conic hull of
the setsA f to derive a linear relaxation:

Min ∑
f∈F

c( f )yf + ∑
t∈T

c(t, f )xt f

subject to ∑
f∈F

xt f ≥ 1 for all t ∈ T

(yf ,x1 f , . . . ,xnt f ) ∈ cone(A f ) for all f ∈ F.

For this program a dual can be given by

Max ∑
t∈T

γt

subject to ∑
t∈Af

γt ≤ c( f )+ ∑
t∈Af

c(t, f )

for f ∈ F andAf ∈ A f .

Now we can apply similar arguments as before. An integral optimum solution(x∗,y∗) to the LP-relaxation
represents a partition of the terminal setT into a collection of feasible setsA∗

f , one for each facilityf . The
constraints corresponding to these sets hold with tightness, and we can assign each playert to pay for her
terminal the amountst(t, f ) = min{γ∗t ,c(t, f )} as connection cost tof with t connected tof , in which γ∗
is the optimum solution to the dual. For the opening costsst( f ) = max{min{c( f ),γ∗t − c(t, f )},0}. Note
that such an assignment is always possible due toA f being downward closed. In particular, no playert is
required to pay for the connection cost of any other player. Thus, no coalition of players can improve by
simply dropping payments.

In total this pays exactly for all costs of the solution by duality. Suppose there is a violating coalition
C. This coalition must be able to connect their terminals differently at a cheaper total cost. Consider the
strategy vector after the coalition has changed its strategy. Each membert ′ ∈C must again be part of some
Af ′ for some facility f ′, for which the total (connection + opening) costs are fully paid for. In particular,
the new payments exactly pay forc( f ′)+∑t∈Af ′

c(t, f ′). Note that no player has increased his payments,

but t ′ has strictly decreased his payments. This means that the original payments coming fromγ∗t violate
the dual constraint corresponding toA f ′ . This is a contradiction toγ∗ being the optimal dual solution.⊓⊔
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The recognition of SE can be done similarly as for UFL games.

Corollary 8 Given a strategy vector for a CCRFL gameΓ we can verify in polynomial time if it is a SE.


