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Abstract We examine strategic cost sharing games with so-calletranpisharing
based on various combinatorial optimization problems.sEhgames have recently
been popular in computer science to study cost sharing indhgext of the Internet.
We concentrate on the existence and computational contpleikstrong equilibria,
in which no coalition can improve the cost of each of its merab®ur main result re-
veals a connection to the core in coalitional cost sharimgagastudied in operations
research. For set cover and facility location games thigit®s a tight characteriza-
tion of the existence of strong equilibrium using the intdily gap of suitable linear
programming formulations. Furthermore, it allows to derall existing results for
strong equilibria in network design cost sharing games waithitrary sharing via a
unified approach. In addition, we show that in general thermiefficiency loss, i.e.,
the strong price of anarchy is always 1. Finally, we indidade the LP-approach is
useful for the computation of near-optimal and near-stapfgroximate strong equi-
libria.

Keywords Cost Sharing Strong Equilibrium- Integrality Gap- Combinatorial
Optimization
1 Introduction

How can a set of self-interested actors share the cost ohaijpiestment in a fair
and stable way? This fundamental question has motivategea énount of research
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in economics in the last decades (Young, 1994). More regehts question has been
studied in computer science to understand the developri#im itnternet and ques-
tions arising in e-commerce (Jain and Mahdian, 2007). Asagtdsamework to study
cost sharing problems without centralized control @st sharing gamesn which
cost can be specified as an abstract parameter for each plagfer each coalition.
Relevant to real-world optimization problems are costislygggames, where the cost
is tied to the investment into specific resources. Such géragsd on combinatorial
optimization problems have a long tradition in economicd aperations research.
They are usually formulated as coalitional game, i.e.,ghera set of players, and
each coalition of players has an associated cost value vahis comes from an op-
timal solution to an underlying optimization problem foetboalition. For example,
consider a multicast network design game, in which playessnetwork strive to re-
ceive a message by establishing a connection to a commoceseentexs. A simple
model for this scenario isminimum spanning tree game (MST ganieyvhich each
vertexv # sis a player, and the edges have costs. The cost of a codlitiothis game
is the cost of the cheapest network spanning all playe@sands, i.e., the minimum
spanning tree for the s€tUs. In the literature many interesting and important coali-
tional cost sharing games have been studied, e.g., basedllems like MST (Bird,
1976) and Steiner tree (Megiddo, 1978; Granot and Huberd®81; Tamir, 1991;
Granot and Maschler, 1998), covering and packing problddeng et al., 1999),
facility location (Tamir, 1993; Goemans and Skutella, 20@ TSP (Faigle et al.,
1998). Of central importance in these games is the existandecomputation of
a stable and fair cost sharing among the players. Coalltmost sharing games are
usuallytransferable utility (TU) games.e., the cost can be shared arbitrarily between
the players. This allows for the largest level of generdbtypossible interactions in
the bargaining and coalition formation process. The forgrooncept of stability and
fairness in TU cost sharing games is ttwe The core is a set of imputations, i.e.,
of distributions of the cost for the complete player set te itayers. To be in the
core an imputation has to fulfill the additional propertyttha coalition of players
in sum pays more than its associated cost value. Results #imnon-emptiness of
the core and characterizations of core solutions have biened for many of the
games mentioned above.

A problem with coalitional cost sharing games is that costreb represent a
strong abstraction from the underlying optimization pesbl Players are assumed to
contribute on a global level, and the game does not take ttoumt who pays how
much for which resource. In particular, our simple MST ex&gbove is appropri-
ate when we think of a set of players signing up for messagptien with a service
provider. The provider then decides which links are esshklil and how the network
is built to serve all users that signed up. Finally, he singhlgirges the players a total
cost and they have to come up with a way to pay the bill. Herggptaare not in
charge of the decision about which edges to create and sheindrioney on. How-
ever, when studying the incentives in large unregulateihgst such as, e.g., in the
creation of the Internet, there is a need to understand hasing) on a more detailed
and, in particular, a strategic level. This prompted corapstientists to study strate-
gic cost sharing scenarios. On the one hand, there are a naigeent works on
designingstrategic cost sharing games to obtain favorable Nashilbequih proper-
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ties (Chen et al., 2010). In these games the underlying gstsamis that a central
authority designs and maintains the solution and dictaissshares for each player.
This is actually quite close to the underlying assumption®ig., coalitional games
with non-transferable utility or cost sharing mechaniswtsich have received a lot of
attention (Immorlica et al., 2008; Jain and Vazirani, 20dnemann et al., 2008; Pal
and Tardos, 2003). Designing cost shares, e.g., using 8haglue cost sharing (Al-
bers, 2009; Anshelevich et al., 2008a; Epstein et al., 2088nardi and Sankowski,
2007), can yield favorable properties concerning existegmed cost of Nash equi-
libria. In contrast, such a model is unsuitable when theneery little control over
players and their bargaining options. A model that allowsdgeneral cost sharing
between players is sometimes referred t@dstrary cost sharing, and it has been
studied widely (Anshelevich et al., 2008b; Anshelevich @adkurlu, 2011a,b; Car-
dinal and Hoefer, 2010; Epstein et al., 2009; Hoefer, 200912Hoefer and Krysta,
2005). In these cost sharing games the strategy of a plaggrgagment function that
specifies his exact contribution to the cost of each resoditte outcomes of such
strategic cost sharing games based on combinatorial gatimn problems will be
the subject of this paper.

When studying the outcomes of the interaction of rationardg in strategic
games, we need to discuss the appropriate solution contleptmost prominent
stability concept in strategic games is the Nash equilibriqNE). While a mixed
NE in finite games always exists, a drawback is that it is oa§ilient to unilateral
deviations. In many reasonable scenarios agents might lee@lgoordinate their
actions, and under these circumstances a NE is not a redsa@mbtion concept.
To address this issue we consider sti®ng equilibrium (SEjn this paper. A strong
equilibrium (Aumann, 1959) is a state in which no coalitiaf érbitrary size) has
a deviation that lowers the cost eferymember of the coalition. This resilience to
coalitional deviations is highly attractive. On the dowdesistrong equilibria might
not exist in a game. This may be the reason they have not estein equivalent
amount of research interest despite their attractive ptimse We partly circumvent
this problem by studying approximate versions of the streqgilibrium, which is
guaranteed to exist. However, our treatment of these aspmebtief and mostly left
for future work.

Our main interest is to characterize the existence, sookt] and computational
complexity of SE in strategic cost sharing games based obiratorial optimization
problems. An initial insight in Section 2 reveals that theoept of SE in strategic
cost sharing games is equivalent to seemingly strongeom®tf super-strong or
sum-strong equilibria. Additionally, a SE in a strategiergacan always be turned
into a core imputation of the corresponding coalitional gaskefined on the same
instance of the optimization problem. Hence, a SE represesttategic refinement
of a core solution, and existence of a SE implies non-emgsiiné the core. It also
implies that the strong price of anarchy (Andelman et al09)Gs 1, i.e., in every SE
a solution is bought that is a social optimum to the undegyiptimization problem.

In Section 3 we consider a variety of games based on vertexseincover and
various facility location problems. For these games we saowquivalence result of
core and SE. In particular, whenever the core in the conlifigame is nonempty,
there is a SE for the strategic game. Our main proof technigjiess on a connection
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via linear programming to Owen'’s linear production modelgn, 1975), which is
one of the most common ways to show non-emptiness of the narembinatorial
optimization games (Deng et al., 1999). Using this maclyimer are able to tightly
characterize the existence and cost of SE in all these gainggiesults extend to
special classes of network design problems. This includgs, MST and classes
of Steiner Network Design Games (Anshelevich et al., 2068ixfer, 2009). As a
byproduct, our general approach yields simple proofs fidcradwn results for SE in
strategic cost sharing games with arbitrary sharing, whieke previously shown by
Epstein et al. (2009) via complicated combinatorial argots.e

The equivalence between SE and core solutions is an integestd notable fact.
However, in other cases such as NTU games and approprigesins to strategic
games a similar equivalence is obvious. Thus, it may be mmmrising to observe
that the relation between SE and core solutions in costraipgames can be quite
complicated. In particular, in Section 4 we explore equnake without relying on
linear programming. While in some cases like Terminal Backames (Anshele-
vich and Caskurlu, 2011b) we can resort to combinatorialiaents, in other inter-
esting games our results are mostly negative. In particslarshow that in Steiner
Tree connection games or network cutting games equivaoeg not hold, i.e., the
core might be non-empty but a SE is absent. A similar resudstablished in Sec-
tion 5.1 even for simple vertex cover games when we allowness to be purchased
fractionally or in multiple units. Characterizing SE in fsegames remains as an in-
triguing open problem. We observe in Section 5.2 that lirragramming can be
used to obtain approximate SE in vertex and set cover, asasdhcility location
games. Finally, we conclude in Section 6 with some intemgguestions for further
research.

Our main conceptual contribution is to reveal a non-triaiadl close relation be-
tween coalitional and strategic games defined on the sartangesof the optimiza-
tion problem. The strategic game can be seen as a strategiotvaf the coalitional
game. In addition, in many games SE can act as a strategiemadint of rather coarse
core solutions. We believe that this inherent connectimukhstimulate further re-
search on (strategic) cost sharing with rational agents.

1.1 Preliminaries

We consider classes of cost sharing games based on conmahapimization prob-
lems. In each of these games there is aRsef resources. Resourees R can be
boughtif the associated cos(r) > 0 is paid for. FoilR C Rletc(R) = 5 ,cr c(r).
We assume that there is set of play€r€ach player € K strives to satisfy a certain
constraint on the bought resources. For example, in theafdke set cover problem
the player set is the element ¢ét= E. The resources are sefs= .7 C 2F over
E. The constraint of playes states that there must be at least one bougts séth

e € S In a similar way we can base our construction on various gosimization
problems like facility location or network design. We wikscribe them in more de-
tail in the corresponding sections. However, a common apiamin our problems
is a free disposal property, i.e., if for a set of bought reses all player constraints
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are satisfied, then a superset of bought resources can nakeraxplayer constraint
become violated.

For a given set of players, resources, and constraints weedifio games - a
coalitional and astrategiccost sharing game. Thepalitional gameA = (K,c) is
given by the set of player& and a cost functiog : 2K — R{ that specifies a cost
value for every subset of players. For a coalit®a K, the costi(C) =c(R(C)*) =
Y rer(c)- (1) for anoptimum solution EC)* C Rfor C. In particularR(C)* is a min-
imum cost set of resources that must be bought to satisfyoaltcaints of players
in C. For example, in a set cover garR&C)* is the minimum cost set cover for the
elements irC. We denote the special caBe= R(K)* as thesocial optimum

The goal in a coalitional game is to find a cost sharing(®f) for the so-called
grand coalitiorK. A vector of cost shareg, .. ., k is called arimputationif 3.« ¥ =
c(K). The gameA is atransferable utility (TU)game, i.e., we are free to choose
0 <y < ¢(K). The central concept of stability and fairness in coalitibgames is
the core. The core is the set of imputatioysfor whichc(C) > Yicc . Intuitively,
when sharing the cost according to a member of the core, reesal players has
an incentive to deviate from the grand coalition and makeparsge investment -
depending on the underlying optimization problem, e.grcpase different sets or
construct an independent network.

Thestrategic gamé = (K, (S )ick, (Gi)ick ) is specified by strategies and individ-
ual cost for each player. Tistrategy space;®f playeri € K consists of all functions
s :R— R{. Strategys allows him to specify for each resource R how much he
is willing to contribute tor. A resource is boughtif Tick s(r) > c(r). A vector of
strategiess is a stateof the game. For a statewe define|s| = 5,crS(r) and the
individual costof playeri asci(s) = |s| if the bought resources satisfy his constraint.
Otherwiseg;(s) = e« or a different value that is prohibitively large. Finalletsocial
costof sis c(s) = Jick Gi(S).

The foremost concept of stability in strategic games is thsHNequilibrium, a
state in which no player unilaterally has an incentive toiakev In this paper, how-
ever, we consider coalitional incentives and thus resod &irengthened version
called strong equilibrium (Aumann, 1959). A stathas aviolating coalition CC K
if there are strategies. = (§)icc such thati(s:,s_c) < ci(s) for eachi € C. A vi-
olating coalition has a deviation, in which all playergrstrictly pay less. Astrong
equilibriumis a states that has no violating coalition. Note that in a SE a set of
resources is bought such that all player constraints aigfiedt Each resourceis
either paid for exactly or not contributed to at all. Thusar8presents a cost sharing
of some feasible solutioR for the grand coalition, such thats) = c(R).

In addition, we briefly consider the concept of(@n 3)-approximate strong equi-
librium (denoted(a, 3)-SE). A statesis a (a,3)-SE if for every coalitionC C K
and strategies there is at least oniec C such thatci(s) < a - ¢i(s.,S¢), and if
c(s) < B-¢(K). In such a state no coalition can reduce the cost of every raemb
by strictly more than a factor af, and the cost of the bought solution represents a
B-approximation ta(K).
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2 Strong Equilibria and the Core

Consider a given set of resourdesvith costsc(r) and a set of players with con-
straints. Our first insight reveals that several coaliti@wuilibrium concepts coin-
cide in strategic games. In particular, we considesuper-strongand sum-strong
equilibria defined as follows. A state has aweakly violating coalition CC K if
there are strategies. = (§)icc such thatci(s.,s.¢) < ci(s) for eachi € C and
ci(s,s_c) < ci(s) for at least ong’ € C. A states has asum violating coalition
C C K if there are strategies. = (§)icc such thatycCi(s,S-c) < JiecGi(s). A
super-strong (sum-strong) equilibrium is a stathat has no weakly (sum) violat-
ing coalition. Note that every violating coalition is als@a&kly violating, and every
weakly violating coalition is also sum violating. Hencegeysum-strong equilibrium
is super-strong, and every super-strong equilibrium @gtrWe note this simple fact
because we actually show the absence of sum violating ioeditn our proofs be-
low. In general strategic games it is easy to see that thesimwis are strict, i.e., a
strong equilibrium might not be sum-strong. In our stratemgist sharing gamdSs,
however, every strong equilibrium is also sum-strong.

Proposition 1 Every strong equilibrium in a strategic gamieis a sum-strong equi-
librium.

Proof Suppose an arbitrary state of the strategic garhas a sum violating coalition
that can achieve a strictimprovement in the sum of playetisciée will show that in
this case it also has a violating coalition that can obtainietsmprovement for every
player of the coalition. The proposition then shows thabregr equilibria without
violating coalitions are also sum-strong.

Consider a strategic ganie and an arbitrary state that has a sum violating
coalitionC with a deviatiors;, i.e., Y kcc Ck(S:,S-c) < Ykec Ck(S:,S-c). The cost of
aplayerkis either his total paymefg| or . In (5;,s_c) none of the players i@ can
have costo, because then the sum of costs cannot represent be a sprichviement
over that ins. Hence, for allk € C we must have finite cost(s;,s-c) = |/ in
(s,s-c), and hence, the set of bought resource&ins_c) satisfies the constraint
of every player irC.

First, suppose that isithere is a playek € K with costcy(s) = . This means his
constraint is not satisfied by the bought resources lirhas a unilateral deviation of
purchasing all resources R by himself. This yields finite cost fde. Hence {k} is
both, a (singleton) violating coalition and a sum violatewalition.

Second, suppose thatsifior all playersk € K we have finite cost(s) = ||. For
the sum violating coalitiol© we consider the subset of play&ls with || = 0. A
player inCy cannot achieve a strict improvement, so he cannot be parviofating
coalition in whichevery player strictiimproves. Instead, we prove theg =C — Cy
is a violating coalition. Note th&; must be non-empty, because all playerkinave
finite cost ins. In this caseC; = 0 would imply thatc,(s) = O for all k € C, which is
impossible to improve and contradicts tiais a sum violating coalition.

We now construct a deviation strictly improving the cost éoery player inC;
as follows. Lets(r) = Y ccS;(r) be the total contribution by players @ to re-
sourcer € Rin the deviatiors. For each playek € C we define a strateggf (r) =
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(Is|/ 3 jecsjl) -S(r). Thus, in sum players i€ contribute the same toin s" and

s’, however, ins” each playek pays a share at each resource that corresponds to the
fraction of total cost contributed biyin s. Note that this yield$s/| = 0 if and only

if || = 0, as in this case the fraction of playleis 0. Thus, we can let players in

Cy stick to their original strategy and concentrate on playefs,; for the switch to

%1 = (§)iec, - For every playek € C; we have

. £ Sjeclsil | FjecCilsSc)
=23 Siclg SO s g TN T g <

using the assumption thé&-,s_c) strictly improves the sum of costs for players in
C. Note that for each resourcave have the same total contribution frefnands, .
Thus, in(s¢,,S-c,) the same resources get bought asgns_c) and, as observed
above, they satisfy the constraint for every playerC. Hence, for everk € C; we
havecy(sg,.s-¢;) = || < Isc| = c(s). This proves thaC, is a violating coalition.
Thus, for every sum violating coalitiddthere is a violating coalitio@;. This proves
the proposition. O

We note on the side that for every stateoalitionC, deviations. = ()icc, and
finite a > 1 With SiccCi(x:S-c) = a - JiccCi(s) we can find in a similar way’
andsl, = (5)iccr With ¢i(4,8" ) = aci(s) for every ic C'. Thus, the equivalence of
strong and sum-strong equmbna holds also for approx@watsions of the concepts,
in which players must improve their costs by a factor of firimore thana.

We continue to show a general connection between core itipuasdor the coali-
tional gameA and SE of the strategic ganie We first observe that in a SE players
always share the cost of a social optimB&n

Proposition 2 In every strong equilibrium of a strategic garhethe players share
the cost of a social optimum. The strong price of anarchy is 1.

Proof Consider a SEand the seR of bought resources. Assume for contradiction
c(R) > c(R*). If all players with|s,| > O jointly deviate to purchade*, each pIayer
k must pay only a fraction of(R*) /c(R') < 1 of |s¢|. Formally, defines (r) = c(r) -

C‘(s“) If all contributing players jointly deviate t¢, this obviously strictly decreases
the payment oéll players. Hence, i€(R') > c(R*), thenK is a violating coalition for

s, a contradiction. O

Proposition 3 If the strategic gamé has a strong equilibrium, then the coalitional
gameA has a core solution.

Proof Consider a SE of I, which by Proposition 2 is a cost sharing &f, and
a coalitionC. The coalition has the possibility to deviate and contehust to buy
R(C)*. In this case it has to share for each resoureeR(C)* at most the remaining
cost on top of the contribution of playerski\C, i.e.,cc(r) = ¢(r) — Sex\c (1) If

cc(R(C)*) < Skecls«|, the coalition can deviate g (r) = cc(r) - Zj‘;c“‘sj‘ for every
k € C and every € R(C)*, which would represent an improvement for every player
in C. However, as is a SE,C must not be violating, and s (R(C)*) > Scc |5/-
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Trivially, c(r) > cc(r), and soc(R(C)*) > Sycc |- Thus,y with y = |s(| is in the
core ofA. O

Intuitively, this shows that the core is less stringent asassume in a devia-
tion of a coalitionC that players outsid€ “stop contributing”. More formally, non-
emptiness of the core is a necessary condition for existeha&E. In the following
we consider various classes of games, in which it is alsocgeffii. In these cases the
SE is a strategic refinement of the core, as it allows to specstrategic allocation
of payments to resources.

3 Strong Equilibria using Linear Programming
3.1 Vertex and Set Cover Games

In a variety of fundamental games non-emptiness of the aodesgistence of SE are
equivalent. We can relate SE existence to the core via lipgagramming duality.
For simplicity we outline the general argument in the sgtbhset cover games. In a
set cover game, we are given a set of players as elerBearid a set systeny’ C 2F,
where eacls € . has a cost(S) > 0. The constraint of playexis that at least one
setSwith e € Smust be bought.

Theorem 1 If a set cover gamé@ has a non-empty core, then the strategic gdme
has a strong equilibrium.

Proof We consider the integer programming formulation of set cdwveparticular,
we consider the following linear relaxation, which emplogs> 0 instead ofxs €
{0,1} and thus allows sets to be included fractionally in the sofut

Min xsc(S)
2

subject to z Xxs>1 VecE
sees

Xs>0 VSe.”.

We also consider the corresponding LP dual.

Max egE Ye

subject to ste <c(§VSey
ec
Ye>0 VecE.

It has been shown by Deng et al. (1999) that the coré &f non-empty if and only
if the integrality gap of the underlying set cover problenijd.e., if the LP has an
integral optimal solution. With Proposition 3 this is a meuisite for existence of a
SE inl". We strengthen this result by showing that core solutiomsatso be turned
into an allocation of payments to resources for a SE.iThus, an integral optimum
is also sufficient.
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For the above programs consider the optimum primal soluti@md the optimum
dual solutiony*, wherex* is integral and defines a feasible cover. Bathfor the
primal andy* for the dual yield the same objective value. Now assign eéayepe
to payse(S) = yixsif e Sandse(S) = 0 otherwise. The theorem follows if every set
in the cover is purchased exactly and no coalitboan reduce their total payments
S ecc |Se|- The first condition is clearly necessary for a SE, the seaoraimplies
that no coalition can be sum violating (and thus violativg. first show that the sets
are exactly paid for. Ikg > 0, then due to complementary slackness the inequality
SecsYe < c(9) is tight, hence by this assignment all the purchased setexgetly
paid for.

We now show that no coalition can reduce the total paymefis.iiain idea of
this part is to use duality arguments for a cost reductioresburces. In particular,
for an optimunx*, the objective function can be represented by a linear coatioin
of tight constraints. The multipliers are the optimal dualisblesy*. Due to comple-
mentary slackness, we can replace eg@) of a bought se§in the objective of the
primal byc(S) = SecsVa. For every coalition, this additive structure allows toued
the costs and drop the shares bought by other players odtsdepalition. In this
way, we can show optimality of* under the remaining costs for every coalition and
contradict that a coalition is sum violating or violating.

In particular, suppose for contradiction there is a caali@ that is sum violating,
i.e., it has a deviation to strictly reduce their total paytse To find a deviation for
the coalition that strictly improves their total cost, wearfuulate the optimization
problem of finding a minimum cost cover for coaliti@hgiven the contributions of
playerse ¢ C. The players irC can use the contributions by playerskn- C, and
thus forC the cost of a sébbecomes

(S =cS- > yeXs -
eZCecs
Finding a minimum cost cover for coalitidd with these adjusted costs can be for-
mulated by the following reduced primal LP

Min z XsCc(S)
S4

subject to z Xxs>1 VeeC
SecS

Xs>0 VSe .

Note that for this reduced LP the solutighis obviously still feasible, because we
only removed all constraints for elememtg C.
The dual of this program is

Max egc Ye

subjectto } e <cc(S)VSe s
ec
Ve >0 VeeC.

Note that the constraints of this program read

g Ye+ YeXs < c(S) .
ec€ees  egbes
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Settingye = y; for all e € C yields a feasible solution to the LP-dual of the reduced
problem, because; < 1 andy* was feasible for the original dual.

We now observe that the objective function valuexbiand y* for the reduced
problems is the same by using the integralitxofnd the additive decomposition of
costs resulting from complementary slackness. In pagicxil has a value of

zxg<c<s>— 3 vgx§>— S oS- 5 %

&£ e#Coes Sx=1 ezCecs

Y

sxg—1ecCecs

:zcyg.

The first equality follows becausé is binary. The second equality follows because
C(S) = YecsY* Whenxg =1 due to complementary slackness for the original LPs.
Finally, the third equality is again due to complementaackhess, becausg = 0
whenevery gecsXs > 1.

Hence x* andy* are both feasible for the reduced primal and dual programs an
they yield the same value of the objective function. By siraluality bothx* and
y* must be optimal solutions to the reduced primal and duallpro$. In particular,
x* being an optimal solution to the reduced problem implieg tha coalitionC
achieves minimum total payments by paying the remainingafabe sets boughtin
x*. HenceC cannot be sum violating and not violating, a contradictifims proves
thatsis a SE. O

For the special case of vertex cover games we can use resutidfeng et al.
(1999) to efficiently compute SE. In particular, a game afiawcore solution (and
thus a SE) if and only if a maximum matching in the graph hasstrae size as
the minimum vertex cover. This condition can be checked ilyrpmmial time by
computing corresponding vertex covers and matchings (2¢agj, 1999, Theorem
7 and Corollary 7). Hence, we can check in polynomial time twbea SE exists.
If it exists, we can use the computed vertex cover as primatisa for our LP and
compute cost shares for a strong equilibrium with the cpoading dual solution.

Corollary 1 In a vertex cover game we can decide in polynomial time if @ansfr
equilibrium exists. If it exists, we can compute a strongiléarium in polynomial
time.

In addition, we can check in polynomial time whether a givieategy profile is a SE.

Corollary 2 Given a state s for a vertex cover gameve can verify in polynomial
time if it is a strong equilibrium.

If the strategy profile is a SE, it must exactly pay for a vetexer of the problem.
This yields a primal solution for the LP. In addition, the aswlated cost shares
of players must yield a corresponding dual solution. Finddbth primal and dual
solutions must generate the same value of the objectivaitmdhis is a sufficient
and necessary condition for being a SE, which can be cheoksalynomial time.
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Another interesting case are edge cover games. Here plasesthe vertices of
a graph and resources are the edges. Each vertex wants te #msuat least one
incident edge is bought. Using the characterization of the @mptiness of the core
in Deng et al. (1999, Theorem 8 and Corollary 8) we can obtailar results for
this game as well.

Corollary 3 In an edge cover game we can decide in polynomial time if a strong
equilibrium exists. If it exists, we can compute a strongildarium in polynomial
time. Given a state s for an edge cover gdmee can verify in polynomial time if it
is a strong equilibrium.

3.2 Facility Location Games

Another class of games that can be handled via similar argtevae facility loca-
tion games. We outline the arguments on the simple clasmodpacitated facility
location gamegUFL games) and show below how to extend this approach to @ mor
general class of games considered by Goemans and Skuf)@nd Cardinal and
Hoefer (2010). In &JFL problemthere is a set of terminals and a sét of facilities.
We setry = |T| andn; = |F|. Each facility f € F has an opening costf) > 0, for
each terminal € T and each facilityf € F there is a connection cosft, f) > 0. The
goal is to open a subset of facilities and buy a set of conmestf minimum total
cost, such that each terminal is connected to an openedyfabil the UFL game
each player owns a terminal, i.& = T. The constraint of playdris satisfied if there
is a bought connectioft, f) to some opened facility. We can formalize the UFL
problem by an integer program as follows:

Min ey + Y clt, Fxs
subject to prﬁ >1 forallteT
S

yi—%; >0 forallteT,feF
yi,%f € {0,1} forallte T, f eF,

Theorem 2 If a UFL gameA has a non-empty core, then the strategic gdmieas
a strong equilibrium.

Proof We again use the linear relaxation, which can be obtainedfigacingys, x s €
{0,1} by y¢,%¢ > 0. Then the dual can be given by

Max teZ %

subjecttoy — & <c(t,f) forallteT,feF
Sier &t <c(f) forall f eF.

It has been shown in Goemans and Skutella (2004) that theo€drés non-empty if
and only if the integrality gap of this LP is 1. We can now argimilarly as before.
An integral optimum solutior{x*,y*) to the LP-relaxation represents a partition of
the terminal sef into a collection of stars, one for each facility The constraints
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corresponding to these sets hold with tightness, and wessigreeach playéito pay
for her terminal the amounst(t, f) = (" — &% )% as connection cost tb, in which
(y*,0%) is the optimum solution to the dual. For the opening cagts) = &’ y;. In
total this pays exactly for all costs of the solution by dtyali

Suppose there is a violating coaliti@h We again remove players k— C and
reduce the costs of connections and facilities by the resjgeontributions. In order
to represent a violating coalition, the player€&imust be able to deviate and reduce
their total sum of payments. However, the solutigh y*) has the same value for the
reduced LP of coalitio® as(y*,d*) for the dual of the reduced LP. By duality both
solutions remain optimal. Thus, coaliti@nis purchasing an optimal solution against
the payments of players K — C and has no possibility to reduce the total payments.
This is a contradiction t€ being a violating coalition. O

This result can be used to characterize computational piep®f SE. In particu-
lar, we can decide in polynomial time if a given strategy pedfir I is a SE. We first
check if the payments of players are made only to their owmeotion and opening
costs. Then we accumulate contributions to cost sharestauk ¢ this yields a core
solution - i.e., if the primal solution (given by the purckdssolution to the facility
location problem) and the dual solution (given by the coatab) correspond to each
other and yield the same optimal value for primal and dual LPs

Corollary 4 Given a strategy vector for a UFL ganfiewe can verify in polynomial
time if it is a strong equilibrium.

As verification is in P, the problem of computing a strong élgrium is in NP. In
fact, Goemans and Skutella (2004) show for a class of UFL gahst deciding the
existence of a core solution is NP-complete. As existen@&Eo@nd core solutions is
equivalent, this yields the following result.

Corollary 5 It is NP-complete to decide if a given UFL gamiehas a strong equi-
librium.

This main arguments from the proofs above can be extendedetalass of
connection-restricted facility location games (CRFL gajné which access to a
facility f can be obtained only by certain allowed coalitioss C 27. We consider
the special case aflosedgames (CCRFL games), in which the set systeimof
allowed coalitions is downward closed, i.e., each subsetnoéllowed coalition is
also an allowed coalition. This simplifies the specific adlit@en of the cost shares
to connections and facilities. While the closed property igstriction, we note that
many variants of facility location arising in practice faito this class of games, e.g.,
problems with capacity or incompatibility constraints. Welieve that equivalence
between core and SE also holds for CRFL games in full gemgrialit a proof of this
statement remains as an open problem. For formal discuasidrihe proof of the
following theorem see the Appendix.

Theorem 3 If a CCRFL gameA has a non-empty core, then the strategic gdme
has a strong equilibrium. Given a strategy vector for a CCRjamel” we can verify
in polynomial time if it is a strong equilibrium.



Strategic Cooperation in Cost Sharing Games 13

3.3 Connection Games

In this section we use a linear program to formulate netwesigh games in directed
and undirected graphs. Perhaps the most frequently stwdigght is aconnection
gameoriginally formulated by Anshelevich et al. (2008b). Inglgame there is a
graphG = (V,E), resources are the edges, and each edge has a non-negstive co
c(e) > 0. There is a set of playeks, and each playdchas a source-sink pa(isy, ti).

A player is satisfied if there is a path of bought edges commgdtis source and
sink. This is a game based on the Steiner network problemaiphgr (Goemans and
Williamson, 1995). In a variant based on Steiner Tree caledingle-sourcggame,
every player has the same souscélere we characterize existence of SE based on a
Flow-LP previously studied (Tamir, 1991; Wong, 1984).

Theorem 4 If the Flow-LP has an integral optimum solution, then thetgic con-
nection gamé has a strong equilibrium.

Proof We formulate the mixed integer program (MIP) for the problendirected
graphs. It is simple to adjust it to undirected graphs, whezeise only one variable
yij for each (undirected) edge= (i, j) € E.

Min ; CijYij
(i,])eE

s.t. S ffi— Y ffi>1fori=s

{il(Deey — (11(GDeE)
fif— Y >0 fori # stk

{il(Deer — {i1(D<E}

yij — >0 for (i,j) e E,ke K

fk > 0,y1j € {0,1} for (i,j) e E,keK

In this MIP we optimize for each playéra flow, which is required to have value
1 by the constraints at the source, and which can only exitutiin the sink. The
individual flows are coordinated by capacity constrajgts- fiK > 0. Each edge that
is used by at least one player fractionally has to be fulldgar in the objective
function. We can relax this program by using> 0. Then the dual can be formulated
using variableg* for the flow conservation constraints apﬁj for the coordination

constraints. Intuitively, the valuezii< introduce a node potential of contributions, and
yi*j can be seen as contributions towards the edges that aretbough

It has been observed by Tamir (1991) that this is programtisizvDwens linear
production model. Hence, if the integrality gap is 1, theimpt dual solution yields
a core solution. Using similar arguments as before, we csm sthow that in this
case a SE exists. In particular, each player afisj) = ¥ (y,‘j*) towards edgéi, j).
For a coalitionC we can again reduce costs of edges by removing playdfs-ot.
Due to the additive structure of the LP, the primal and dusihegl solutions remain
optimal for the reduced LPs. This means no coalition cancedotal payments, and
no coalition can be violating. This proves the theorem. O
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This insight allows us to derive one of the main results shbwikEpstein et al.
(2009) in a simple and compact way.

Theorem 5 (Epstein et al., 2009) For a single-source connection géimen a di-
rected series-parallel graph a strong equilibrium alwaysésés and can be computed
in polynomial time.

The existence result follows easily by observing that thenvHLP for single-source
games on directed series-parallel graphs has integralgylgA proof can be derived
from (Prodon et al., 1985). Solving this LP resembles thestroction of Epstein
et al. (2009).

Another class, in which the above LP can be used to show existef SE, are
MST games as mentioned in the introduction. MST games agbessource games,
in which in every vertex ofs is a sink node for at least one player.

Theorem 6 In every MST gameE there is a strong equilibrium, which can be com-
puted in polynomial time.

For the problem in directed graphs, a SE can be computed fuainsdlutions of
the LP (Tamir, 1991). One of these dual solutions is the coligtisn derived for the
original non-emptiness proof (Granot and Huberman, 1981jhis solution, each
playerk pays exactly for the unique arc of the tree leaving his §infhis rule has
also been described by Bird (1976). It requires an easy agguta see that it yields
a SE, even for the MST game in undirected graphs.

While in these cases we have guaranteed existence and reffdgmrithms to
compute SE, the problem of deciding the existence of SE ishiifd: This follows
from a simple adjustment, which allows to interpret UFL ganas single-source
connection games on directed graphs.

Corollary 6 It is NP-hard to decide if a given single-source connection gdimen
a directed graph has a strong equilibrium.

4 Strong Equilibria beyond Linear Programming
4.1 Connection Games

For set cover and facility location games the integrality gandition provides a
complete characterization of gam@shaving core solutions. With our theorems we
obtain a complete characterization also for the existefi&kEan strategic games.
For network design games like the connection game, therilfgggap condition is
sufficient to show existence of SE and non-emptiness of the bait it is not neces-
sary. A tight characterization of games with non-empty ¢@e not been obtained so
far.

For strategic games and SE it has been shown by Epstein 2080)that there is
a single-source connection game without SE, but the casrepg cooperative game
to their example does not allow a core solution as well. BypBsition 3, however,
this is a prerequisite for SE existence. Coalitional cotinagyames with an empty
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Fig. 1 A single-source connection game with 3 players, a non-eroptg, but without a SER* is an
MST of G and consists of all edges of cost 20.

core (and thus without SE) have already been presented hyoGaad Maschler
(1998). We here show that even a spanning property of thenopti solutionR* is
not sufficient to guarantee SE existence or to obtain SE frore solutions. This
implies that the relation between core and SE is not as r@sufgr the other games
considered previously. A complete characterization o&tkistence of SE in (single-
source) connection games remains as an open problem.

Lemmal There are corresponding strategic and coalitional singteirce connec-
tion gamed™ andA such that Ris a MST of G and\ has a core solution but has
no strong equilibrium.

Proof Our example game is shown in Fig. 1. It is based on a game pessey Gra-
not and Maschler (1998), which consisted only of the threeeldayers up to node
S. It was shown that this game has an empty coreRdutasses through all vertices
of G. This also implies that there can be no SE.

To obtain our game in Fig. 1, we added the new soa@ed an edge of cost 20 to
the old sources. Then the constraints for the contributions of the coaliiallow a
feasible cost sharing by assigning each player a share ¢gB663.33. This removes
the incentives to deviate on a global scale, which is sufficier non-emptiness of
the core. On a local scale, however, the instable structpite § is still intact. The
additional contributions towards,s) do not change the strategic incentives within
the lower parts of the graph. It can be verified that in this gara SE exists. This
proves the lemma. O

4.2 Terminal Backup Games
In this section we study games based on the terminal baclalggmn (Anshelevich

and Caskurlu, 2011b; Anshelevich and Karagiozova, 20hlhis game there is a
graphG = (V,E), each player is a verteX(C V), and resources are the edges with
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costsc(e) > 0. Each player strives to be connected to at leastl other player
vertices, ford > 2. It has been shown by Anshelevich and Karagiozova (20%#t) th
the terminal backup problem can be solved in polynomial tiored = 2. Here we
show that every core solution can be turned into a SE for thasges. In addition,
we show how to decide if a game has a SE and how to obtain SEyngqmial time

if they exist.

Theorem 7 If a terminal backup gamA with d = 2 has a non-empty core, then the
strategic gamé  has a strong equilibrium.

Proof Suppose there is a core solutiondnbut there is no SE ifi . We first adjust
the graph such th&* is only composed path components with two player vertices at
the ends, or of star components with at most three playeacesnivhich are the leaves
of the star. This adjustment can be achieved as follows.r@|eaery componer®*

is either a path or a star component, and every path end deafas a player vertex.
If there is a star component with a player vertex at the cemtercan introduce an
auxiliary vertex, make this the player vertex, and conngctthe star center with an
edge of cost 0. For stars with more than three leaves, we gdacesthe non-player
center vertex by a clique of sufficiently many vertices arique edges of cost 0.
In this way, we can split the star up into paths and at most tareo$ three player
vertices. Note that these adjustments change the strulstiireot the cost of any
solution to the underlying optimization problem.

We can allocate the cost shares from a core solytias follows. Consider a star
component in the optimum solutid®*, which we can assume to consist of exactly
three player vertices at the leaves. We will see that in a sohgiony, each player
pays a cost of at most the connection to the center. Let thyepleertices in the star
bev,, v andvs and the star centev. We denote by(u;, w) the path betweem and
w in the star and byg(us,w) the cost ofP(u,w) (for players 2 and 3 similarly). For
contradiction, suppose that the core cost share of playegil>t c(ug, w) + € with
€ > 0. Then, as players 1 and 2 could deviate to the péth, w) UP(uz,w), the core
constraints imply + y» < c(ug, w) +c(uz,w). Henceys < c(uz,w) — €. Note that the
same argument holds for player 3,180< c(uz,w) — €. Thus, in totaly;, y» andy; do
not pay completely for the star. The remaining cost @h®ust hence be contributed
by some other player not in the star component. However,dhe nstraints imply
that no subset of players pays more than the cost of their onem inR*. This
implies that wheneveg > 0, the cost oR* cannot be fully paid for, a contradiction.
Thus, the core cost share allows each player to pay complietekevery edge of
P(ui,w) in his star, and this is how we assign players to pay in theategy.

If the component is a path, we allocate the cost shares sattedith playek
considers the edges of the path consecutively starting fisnend vertex. He tries
to pay them completely in this order until his core cost shgiie exhausted. Hence,
there is at most one edge on the path for which the cost isdhgrthe two players.
Because the core constraints forbid any subset of play@atonore than the cost of
their component ifR*, the players pay for the cost of the path exactly if and onjy if
is a core solution.

For the sake of contradiction assume that this allocatioroisa SE. Supposé
is a violating coalition of players. In their improvemengtplayers ofC can improve
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by changing their connections and create a new componethisihew component

is paid for fully by the players i€, this corresponds to a constraint considered for
the core solution. Hence, the players in such a new compaaanibt all profit from
such a deviation.

On the other hand, suppose player€inse edges to create their new component,
for which (part of) the cost is paid for by players notinNote that in our assignment,
the edges that playércontributes to form a consecutive path starting at his teami
He shares the cost of at most one edge with one other player antl of this subpath.
Hence, if in a deviation players & use an edge fully paid for bk ¢ C, we can
includek into the deviating coalition, as sticking to his currenagtgy will guarantee
that his connection requirement will be satisfied in some cemponent created by
C as well. Furthermore, all players from the componenk ¢iiat are not inC can
be included intcC, as they will all remain connected by sticking to their cuatre
strategies. If the deviation & uses an edge for which the cost is shared, we can add
both players that currently pay for the cos@idbecause by sticking to their strategies
they remain connected in the deviation as well.

Finally, we can redistribute the costs among all player$iefanlarged coalition
C such that everybody improves and pays a strictly smallenathan before. This
again results in a set of improving players that pays corafgléor their component.
However, as such deviations are covered by the core comstrHiis is a contradiction
to the cost shares being a core solution. This completestitd pf the theorem. O

The above property allows us to efficiently determine if SH anre solutions
exist and to compute them in polynomial time if they exist.

Corollary 7 There is a polynomial time algorithm to determine if a coatial ter-
minal backup gama with d = 2 has a core solution and if the strategic gaménas
a strong equilibrium. If they exist, a core solution and aaty equilibrium can be
computed in polynomial time.

Proof We can compute an optimal solution in polynomial time. Wentdecide if

a core solution exists as follows. As outlined above, thacstire of the problem
allows to transform optimal solutions into compositionscomponents for two or
three players. Thus, possible deviations from the grantiticoeby coalitions of size

4 or larger can be reduced to collections of deviations byitimas of two or three

players. There are only a polynomial number of such coakti@nd the optimum
solution for each such coalition can be found in polynomiaktfor each of them.
Hence, the set of inequalities necessary to characteheewte is only of polynomial
size and can be obtained in polynomial time. Thus, we cankcingoolynomial time

if this set of inequalities has a solution and in this way obtamember of the core.
Given a core solution, we can use the computed optimum saolaiid our structural
insight about SE to find the appropriate allocation of paytsitnedges in polynomial
time. O

For larger connectivity requirements@f> 4 we construct games where the con-
secutive payment condition of Theorem 7 is violated. In ttase, a core solution
cannot be turned into a SE.



18 Martin Hoefer

Lemma 2 For any d> 4 there is a coalitional terminal backup garfewith a core
solution and a corresponding strategic gamevithout a strong equilibrium.

In fact, our example game can be derived directly with thglsirsource connec-
tion game in Fig. 1 above. We simply replace the sosrbg a clique of 4 or more
terminals and 0-cost edges.

4.3 Network Cutting Games

In this section we briefly discuss a network cutting game, miclv there is a graph
G = (V,E) and each player strives to disconnect a subget V from another subset
Vi C V. Each edge € E has a cost(e) > 0 for disconnection. This approach yields
coalitional and strategic games based on a variety of minirout problems likes-t-
cut, multicut, multiway cut, etc. It was introduced and séawith respect to NE in
the special cases of multiway cut and multicut by Ansheleeical. (2010).

More formally, for each playek denote by, the set of all paths is from a
node inUy to a node invk. When we introduce a variable for each edge € E,
then for each patR € & playerk has the constrairffe.p Xe > 1. Note that these are
simple 0/1-covering constraints, and thus the resultingger program is a special
case of the set cover integer program presented above. tinydar, we can simply
regard paths as elements and edges as sets. This impligsthigintegrality gap is
1, we have existence of core solutions and SE. For instahiseholds on directed
and undirected graphs for single-source games thatbawe{u} for eachk € K.

Theorem 8 If the Covering-LP has an integral optimum solution, thea strategic
network cutting gameé has a strong equilibrium.

Note that there is an important detail in this observatiohilé/in the set cover
game every element (i.e., every path) is a player, in thénguttame players strive to
cover multiple elements (i.e., cut multiple paths). Thevjnes theorem still holds,
because by clustering elements we simply reduce the gnétyubd possible coali-
tions to those, which can be obtained by the union of sétsin fact, by this trans-
formation we increase the set of games that allow a strondil@gum and a core
solution.

Proposition 4 There are network cutting gaméswith strong equilibria, for which
the underlying network cutting problem has an integrali&pgf more than 1.

Proof Consider a network multiway cut game, in which every pladybas a vertex
ux € V and wants to disconnect it from every other player vertex,\, = {u; : k #

j € K}. Consider a star, in which the player vertices are exactyl¢aves and all
edges have cost 1. This class of instances is known to haveakienum integrality
gap of 2— 2/|K| for the covering LP of the network multicut problem. In peutar,
the fractional optimum solution assigns each edge to bedrcth withxe = 1/2,
while the integral optimum fully cuts all but one edge. In a\8& pick one playek
to beuncut Each other playej # k is assigned to purchase the edge inciders to
completely. Note that every coalitidhwithout the uncut playek must pay at least
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100

Uz 3
100

Fig. 2 A multicut game on a directed graph with 2 players and a noptgicore. The game has no NE.

|C| to remain disconnected froka Every other coalitiol® must pay at leagC| — 1.
Hence, no coalition can reduce their payments in sum, aneiiseence of a SE and
a core solution follows. O

A similar observation can be made for multiway cut games, fictv geometric LP
relaxations (Calinescu et al., 2000) have an integralifyafanore than 1. In general
network cutting games, however, the set of strategic ganthsVBE is not equivalent
to the set of cooperative games with a non-empty core.

Lemma 3 There are corresponding coalitional and strategic netwoukting games
A andl” such thatd has a core solution but has no strong equilibrium.

Proof For undirected graphs we consider two players and a stahgvep setU; =
{u1}, Uz = {uz}, Vi = {v1} andV, = {uy,v1}. The edge costs to the center nade
arec(ug,w) = c(v1,w) = 2 andc(up,w) = 3. The set of core solutions jg =2—¢
andy, = 2+ ¢ for € € [0, 1]. Note that the unique optimum solution is to ¢ui,w)
and(vy,w). In such a solution, however,|i§;| > 0, player 1 can unilaterally improve
by removing the larger of his payments. Player 2 does not@aydth edges, because
paying only for(up, w) is cheaper.

For directed graphs we can even ledge= {v»} as a singleton. We transform
the graph to the one shown in Fig. 2. A similar argument shawsexistence of SE.
In particular, none of the edges of cost 100 is cut by the ptayle the optimum,
the two edges of cost 2 are cut. However, player 1 requirgsam of them to cut
his path. Hence, ifs;| > 0, player 1 will unilaterally deviate and drop the larger of
his contributions. Thus, player 2 would have to pay fully both edges, but for him
cutting the edge of cost 3 is cheaper. O

This construction implies that when we relax the assumpgtaneveryelement
or terminal is a player in a set cover or facility location ggraquivalence between
core and SE does not hold anymore. On another note, the groessabsence of NE
in general strategic network cutting games on undirectedega For directed graphs
the absence of NE holds true even for minimum multicut gameshich Uy andV
are singleton sets for all playeks K.
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5 Extensions
5.1 Fractional and Non-Binary Resources

Apart from equivalence of core and SE, a natural question isharacterize cases
when we can derive SE from core solutions using linear pragrang. This was pos-
sible when the integrality gap was 1 in all the cases dest@beve. With exception
of the CCRFL games, all games studied above yield lineartcaings that fall into
one of two classes. One type of constrainfis; > 1, i.e., a simple covering con-
straint with 0/1 coefficients, by which we can express eyabt vertex and set cover
games. The other constraint typgyis- ¥ j xij > 0, i.e., a coordination constraint that
requires a resource to become bought when at least one pisgsiit. This second
type of constraint allows us to treat facility location anetwork design cut games.
What happens if we slightly generalize these constraints?

As an example let us first consider dropping the integrabtyuirement. Using
results on Owen'’s linear production model one can show,fstance, that vertex
cover games always allow a core solution if vertices andcatshe bought ifrac-
tionalamounts. Does a SE also exist for strategic games in thesgxas answer this
guestion we must adjust the strategic game to allow vertiche bought fractionally.
The obvious adjustment is to assign a fraction proportitmtie total payment. In a
states of the strategidractional vertex cover game vertexv is bought to the degree
Xv = Ykek Sk(€)/c(v). For a playeik corresponding to edge= (u,v) the individual
cost is|s| if x,+ X, > 1 and prohibitively large otherwise.

A second, closely related variant is the case when we keeiptigrality condi-
tion, but we increase the covering requirements and alloltipteiunits of a resource
to be bought. In particular, we change the constraints tpeJyx > b, whereb > 0
andx; € N. As for the fractional games the total payments of the pkagletermine the
number of units bought of a resource. We term these gaimesinary vertex cover
gamesMore formally, in a states we havex, = | Skek (U)]. Playerk correspond-
ing to edgg(u,v) has a required coveragelnf € N and individual costy(s) = |s| if
Xu+ Xy > bx and prohibitively large otherwise.

Note that for both of these game classes Propositions 3 aadtihae to hold. In
contrast to our results above, however, we show next thes tingght be no SE — al-
though non-emptiness of the core can be established viathe knear programming
machinery that was used before.

Theorem 9 There are corresponding strategic and coalitional frackb or non-
binary vertex cover game8 and /™ such thatA has a core solution buf has no
strong equilibrium.

Proof For both variants the proof follows with a triangle, verteostsc(u) = 3,
c(v) =5, andc(w) = 7, and players 1 to 3 corresponding to edgesv), (u,v) and
(v,w), respectively.

In the fractional game the unique optimum solution to thearlyihg vertex cover
problem isg, = x§; = X, = 1/2, and the unique core solutionyis= 2.5, y» = 0.5 and
ys = 4.5. Proposition 2 yields that' has to be purchased in every SE, but no player is
willing to contribute tow. We obviously must havey(w) = 0. If s;(w) > 0, player 1
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can deviate unilaterally and achieve the amau (W) /7 of coverage by contribution
to u with less payments. The same holds for player 2 and vertex

For the non-binary version, we set all covering requiremmésid; = b, = bz = 4.
Then the unique optimun* to the underlying vertex cover problem and the unique
core paymenty are the same as before scaled by factor 4. Observe that weahave
integrality gap of 1 in this game. The core solution is uniggeewith Proposition 3
we know that in every SEs;| = 10 and|s;| = 2. This implies 4< s;(w) < 6. By
removing this payment fromw, player 1 reduces the number of units boughtvdfy
exactly 1. However, he can obtain an additional unitiaft a cost of 3. This yields a
profitable unilateral deviation and proves the theorem. O

This shows that in the class of non-binary vertex cover game@her non-empti-
ness of the core nor an integrality gap of 1 can guaranteexibenace of SE.

5.2 Approximate Equilibria

We have presented a method to derive SE in strategic coshglgames via linear
programming. A disadvantage of the concept of SE is that thigyt not exist in a

game. However, our approach proves to be applicable evgptoximate SE. Using
primal-dual algorithms we can compute, 3)-SE with small (constant) ratios in
polynomial time for vertex cover, set cover, and facilitgétion games. The proof
for the following theorem can be derived directly from argants in (Cardinal and
Hoefer, 2010).

Theorem 10 There are efficient primal-dual algorithms to comp(2¢e2)-SE for ver-
tex covery f, f)-SE for set cover (where f is the maximum frequency of anyesiem
in the sets), and3, 3)-SE for metric UFL games in polynomial time.

Proof The proof follows with a close observation of the results Garfdinal and
Hoefer, 2010). In these works, we have observed that thétsestated in the theorem
hold for (a, B)-approximateNashequilibria with the same ratios in vertex cover, set
cover, and metric UFL games, even for games in which a sirlgieephas control of
more than one edge, element or terminal, respectively.

To outline the general idea of the proof, consider the cas@,@)-NE in ver-
tex cover games studied by Cardinal and Hoefer (2010). Tinegdual algorithm
makes a single iteration through all the edges in arbitradgio For a chosen edge, it
raises payments at both endvertices until the total carttab to one the vertices suf-
fices to pay the cost. This is done until all edges are covaratithen the algorithm
terminates. If players own multiple edges, their total payts are made up by the
sum of payments assigned to their single edges. Obviolypayments of single
edges assigned by the algorithm are independent of whigleptavns which edge.
Furthermore, observe that a deviation of a player owningipialedges is equivalent
to a coordinated deviation by the coalition of single edggets. Thus, the proof that
the algorithm computes (2,2)-NE shows that the state cosaday the algorithm is a
(2,2)-NE independent of how the edges are owned by the @alf#ence, no subset
of edges has a deviation that decreases thefments in surby a factor of strictly
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more than 2. In this case we obviously cannot have a deviatiatmich everyplayer
of a coalition reduces his cost by a factor of strictly morat2. These observations
yield the result for vertex cover games.

The main properties are that (1) the result holds for Naslilibtja even when
players can own multiple edges, (2) there is a cost per elearahthe cost for a
player is the sum of his element costs, and (3) the algorisigas the element cost
independently of which player owns the element. These ¢ondihold also for the
algorithms presented for set cover and facility locatiomga (Cardinal and Hoefer,
2010) and hence yield the theorem. O

6 Conclusions and Open Problems

We have studied cost sharing in strategic and cooperatiweegand shown some
interesting connections between coalitional stabilitpaepts. In simple games such
as vertex cover, set cover, facility location, MST, or simf@rminal backup games,
existence of core and SE is equivalent. In these games, &y@ritlams for computa-
tion of core solutions can be used to compute SE. Here it s@mamhthe cooperative
framework is an appropriate abstraction as the considerati strategic incentives
does not lead to significantly different properties. In mgemeral games, however,
the differences between core and SE highlight the fact thategjic incentives have a
non-trivial effect on stability and fairness in a cost shgrscenario. More work needs
to be done to fully understand and distinguish these effects

There are a number of open problems that stem from our wokkirigle-source)
connection, network cutting and fractional and non-bingaynes the use of linear
programming duality does not necessarily yield a complateacterization of the
games that admit SE. In these games and other interestiimyptsaof cost sharing in
network design our work opens up numerous interesting rels@aoblems regarding
the characterization and computation of exact and appraei8E.

More generally, we believe that the linkage between corestmoehg equilibrium
could be present in other cost sharing games, which go beyenclasses of games
treated in this paper. Exploring these classes of gamesiigexesting avenue for fur-
ther research. More concretely, our games have linear @noging formulations that
lie within Owens linear production model. Non-emptinesshaf core, however, can
also be shown within a more general class of problems. Thie general framework,
termed generalized linear production model by Granot ().98&s a non-additive
structure, and it encompasses for instance the cut-basddrirftilation for Steiner
Network problems (Skorin-Karpov, 1995). It is a fascingtopen problem to see if
this framework can also be used to derive exact and appro&iStain strategic cost
sharing games.

Acknowledgements The author would like to thank Elliot Anshelevich and Bugras&urlu for valuable
discussions and feedback about the results in this paper.



Strategic Cooperation in Cost Sharing Games 23

References

Susanne Albers. On the value of coordination in networkgitessIAM J. Comput.
38(6):2273-2302, 2009.

Nir Andelman, Michal Feldman, and Yishay Mansour. Stronggof anarchy.
Games Econom. Beha@5(2):289-317, 2009.

Elliot Anshelevich and Bugra Caskurlu. Price of stabilitysurvivable network de-
sign. Theory Comput. Sys#9(1):98-138, 2011a.

Elliot Anshelevich and Bugra Caskurlu. Exact and approxéeguilibria for optimal
group network formationTheoret. Comput. S¢i412(39):5298-5314, 2011b.
Elliot Anshelevich and Adriana Karagiozova. Terminal bagk3D matching, and

covering cubic graphsSIAM J. Comput.40(3):678—708, 2011.

Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, TirnU@hgardenEva Tar-
dos, and Tom Wexler. The price of stability for network desigith fair cost
allocation.SIAM J. Comput.38(4):1602-1623, 2008a.

Elliot Anshelevich, Anirban Dasguptéva Tardos, and Tom Wexler. Near-optimal
network design with selfish agentsheory of Computingt:77-109, 2008b.

Elliot Anshelevich, Bugra Caskurlu, and Ameya Hate. Sgmtenultiway cut and
multicut games. IiProc. 8th Intl. Workshop Approximation and Online Algonith
(WAOA) pages 1-12, 2010.

Robert Aumann. Acceptable points in general cooperatigenson games. l@on-
tributions to the Theory of Games,IVolume 40 ofAnnals of Mathematics Study
pages 287-324. Princeton University Press, 1959.

C. Bird. On cost allocation for a spanning tree: A game thiéoapproachNetworks
6:335-350, 1976.

Gruia Calinescu, Howard Karloff, and Yuval Rabani. An imyped approximation
algorithm for multiway cutJ. Comput. Syst. Scb0(3):564-574, 2000.

Jean Cardinal and Martin Hoefer. Non-cooperative facilityation and covering
games.Theoret. Comput. S¢i411(16-18):1855-1876, 2010.

Ho-Lin Chen, Tim Roughgarden, and Gregory Valiant. Desigmetwork protocols
for good equilibria.SIAM J. Comput.39(5):1799-1832, 2010.

Xiaotie Deng, Toshihide Ibaraki, and Hiroshi Nagamochi.g@ithmic aspects of
the core of combinatorial optimization gamedath. Oper. Res24(3):751-766,
1999.

Amir Epstein, Michal Feldman, and Yishay Mansour. Strongildorium in cost
sharing connection gameGames Econom. Beha67(1):51-68, 2009.

Ulrich Faigle, Sandor Fekete, Winfried Hochstattlerd aalter Kern. On approxi-
mately fair cost allocation in Euclidean TSP gamé&R Spektrum20(1):29-37,
1998.

Michel Goemans and Martin Skutella. Cooperative faciligdtion gamesJ. Algo-
rithms 50(2):194-214, 2004.

Michel Goemans and David Williamson. A general approxioratiechnique for
constrained forest problemSIAM J. Comput.24(2):296-317, 1995.

Daniel Granot. A generalized linear production model: Afying model. Math.
Prog., 34:212-222, 1986.



24 Martin Hoefer

Daniel Granot and Gur Huberman. On minimum cost spannirggdgeanes.Math.
Prog, 21:1-18, 1981.

Daniel Granot and Michael Maschler. Spanning network garrgk J. Game The-
ory, 27:467-500, 1998.

Martin Hoefer. Non-cooperative tree creatigkigorithmica 53(1):104-131, 2009.

Martin Hoefer. Strategic cooperation in cost sharing gane®roc. 6th Intl. Work-
shop Internet & Network Economics (WINpages 258-269, 2010.

Martin Hoefer. Competitive cost sharing with economiesaafis. Algorithmicg 60
(4):743-765, 2011.

Martin Hoefer and Piotr Krysta. Geometric network designhwselfish agents.
In Proc. 11th Conf. Computing and Combinatorics (COCOQdges 167-178,
2005.

Nicole Immorlica, Mohammad Mahdian, and Vahab Mirroknimiitations of cross-
monotonic cost sharing scheme8CM Trans. Algorithms4(2), 2008. Special
Issue SODA 2005.

Kamal Jain and Mohammad Mahdian. Cost sharing. In Noam NisanTardos, Tim
Roughgarden, and Vijay Vazirani, editofdgorithmic Game Theorychapter 15.
Cambridge University Press, 2007.

Kamal Jain and Vijay Vazirani. Applications of approxinmatialgorithms to cooper-
ative games. liProc. 33rd Symp. Theory of Computing (STO@3ges 364372,
2001.

Jochen Kdnemann, Stefano Leonardi, Guido Schéafer, aethiiSvan Zwam. A
group-strategyproof cost sharing mechanism for the Stdorest game.SIAM
J. Comput.37(5):1319-1341, 2008.

Stefano Leonardi and Piotr Sankowski. Network formatiomga with local coali-
tions. InProc. 26th Symp. Principles of Distributed Computing (PQDg@ages
299-305, 2007.

Nimrod Megiddo. Cost allocation for Steiner tre&&etworks 8(1):1-6, 1978.

Guillermo Owen. On the core of linear production gamégth. Prog, 9:358-370,
1975.

Martin Pal andEva Tardos. Group strategyproof mechanisms via primal-gka
gorithms. InProc. 44th Symp. Foundations of Computer Science (FO@g)es
584-593, 2003.

A. Prodon, T.M. Libeling, and H. Groflin. Steiner’s problem two-trees. Technical
report, Départment de Mathematiques, EPF Lausanne, 18@bking paper RO
850315.

Darko Skorin-Karpov. On the core of the minimum cost Steinee game in net-
works. Annals of Operations Researd$i’:233—-249, 1995.

Arie Tamir. On the core of network synthesis gamdath. Prog, 50:123-135, 1991.

Arie Tamir. On the core of cost allocation games defined omtloo problems.
Transportation Scj.27:81-86, 1993.

Richard Wong. A dual ascent approach for Steiner tree pnobtn a directed graph.
Math. Prog, 28(3):271-287, 1984.

H. Peyton Young. Cost allocation. In Robert Aumann and $ekart, editors,
Handbook of Game Theory with Economic Applicatiomdume 2, chapter 34,
pages 1194-1235. Elsevier/North-Holland Science Puliésii994.



Strategic Cooperation in Cost Sharing Games 25

A Connection-Restricted Facility L ocation

In a CRFL problenthere is a seT of terminals and a sét of facilities. We sety = |T| andns = |F|. In
addition to the UFL problem each facility has a set of allolgagubsets#; C 27. The goal is to open a
subset of facilities and buy a set of connections of minimotal ttost, such that each terminal is connected
to an opened facility, and the set of terminals connectedth ®pened facilityf is in ;. In the CRFL
gameeach player owns a terminal, i.&,= T. The constraint of playeris satisfied if there is a bought
connection(t, f) to some opened facility, and the subset of terminals that have a bought connections t
f is in «7; . We can formalize the CRFL problem by an integer program bsafe:

Min c(f)yr +  clt, f)xs
subject to Z Xf>1 forallteT
eF

(Yf,Xtfs- . X f) €% forall feF
yi, %t € {0,1} forallte T,f €F,

where
ot ={(0,...,00} U{(L xa,) | As C T feasible forf} C {0,1}"+?, and xa, denotes the characteristic
vector of the subsek;.

We here concentrate on a subclassloedgames (denoted CCRFL). In these games thegetare
downward closed, i.e., for eve& C A’ € o7 we haveA € <. Note that this class encompasses a large
variety of facility location problems considered in theetiture, e.g., with capacity or incompatibility
constraints.

Theorem 11 If a CCRFL game) has a non-empty core, then the strategic gdmieas a strong equilib-
rium.

Proof Following the argumentation in (Goemans and Skutella, 280 possible to use the conic hull of
the sets# to derive a linear relaxation:

Min ;FC(f)yf + ZC(Lf)Xn
€ te

subject to (Z:th >1 forallteT
€

(Y, X1f,-.-, X f) € CONgors) forall f eF

For this program a dual can be given by

Max t;yf

subjectto § y <c(f)+ g c(t, f)
teAs teAs
for f € F andAs € &%.

Now we can apply similar arguments as before. An integrahaph solution(x*,y*) to the LP-relaxation
represents a partition of the terminal $einto a collection of feasible sefs;, one for each facilityf. The
constraints corresponding to these sets hold with tightreesd we can assign each playév pay for her
terminal the amourg (t, f) = min{y",c(t, f)} as connection cost tb with t connected td, in which y*
is the optimum solution to the dual. For the opening cagts) = max{min{c(f), " —c(t, f)},0}. Note
that such an assignment is always possible dugftbeing downward closed. In particular, no playés
required to pay for the connection cost of any other playbusT no coalition of players can improve by
simply dropping payments.

In total this pays exactly for all costs of the solution by lityaSuppose there is a violating coalition
C. This coalition must be able to connect their terminalsedéhtly at a cheaper total cost. Consider the
strategy vector after the coalition has changed its styateach membet’ € C must again be part of some
A for some facility f/, for which the total (connection + opening) costs are fulljdpfor. In particular,
the new payments exactly pay foff’) + Sten c(t, f'). Note that no player has increased his payments,

butt’ has strictly decreased his payments. This means that thi@@rpayments coming frorg* violate
the dual constraint corresponding4q:. This is a contradiction t¢* being the optimal dual solution.O
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The recognition of SE can be done similarly as for UFL games.

Corollary 8 Given a strategy vector for a CCRFL garfieve can verify in polynomial time if it is a SE.



