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Abstract. We study economic means to improve network performance
in the well-known game theoretic traffic model due to Wardrop. We in-
troduce two sorts of spam flow - auxiliary and adversarial flow - that
have no intrinsic value. Auxiliary/adversarial flows are a separate com-
modity with the sole objective to minimize/maximize the latency at the
induced Wardrop equilibrium of the selfish flow. By this means a sepa-
rate access to the edges is not necessary and the latency of the regulating
flow does not distort the arising latency cost. We present networks where
auxiliary flow is able to improve the network performance. However, we
show that the optimal auxiliary flow is NP-hard to compute and not ap-
proximable within a factor of less then 4

3
. The minimal amount of aux-

iliary flow needed to induce the best possible equilibrium is even hard
to approximate by any subexponential factor. These hardness results are
complemented by proving NP-hardness for the optimal adversarial flow.
All hardness results hold even for single-commodity networks.

1 Introduction

Wardrop’s traffic model is a well-studied model for routing with important ap-
plications in road traffic and computer networks. In this model, we are given a
network equipped with non-decreasing non-negative latency functions mapping
flow on the edges to latency. For each of several commodities a fixed demand
has to be routed between a source-sink pair. The cost of a flow assignment is the
weighted sum of travel times between the source and target nodes. A flow that
minimizes the total latency is called (socially) optimal. A common interpretation
of the Wardrop model is that flow is controlled by an infinite number of self-
ish users each of which carries an infinitesimal amount of flow. Each user aims
at minimizing its path latency. An allocation in which no user can improve its
situation by unilaterally deviating from its current path is called Wardrop equi-
librium. In general a Wardrop equilibrium is not socially optimal, i.e, it does not
minimize the total latency. The inefficiency of selfish flows has been extensively
studied in previous work [3, 23, 24, 26].

We study a means of reducing the inefficiency of selfish flow applicable in
scenarios with no central control. There have been several approaches to this
problem in the literature, most prominently taxing, Stackelberg routing, and
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network design, but there are some problems with these approaches in large
networks without strong centralized control. Taxing requires to collect possibly
different taxes at each edge, a process that requires an infrastructure that can
be costly or impossible to establish. In addition, a look at classical taxing pro-
cedures from a user perspective reveals that, albeit taxes improve the latency
of the networks, they do not improve the disutility of users for a large set of
networks [7]. In Stackelberg routing the idea is to put a fraction of selfish flow
under centralized control and reroute this flow such that the total latency of all
flow is optimized. Here the underlying assumption that a central control agency
can directly manipulate the selfish demand is quite strong. Finally, network
design requires to manipulate the network structure, which is clearly a strong
assumption of centralized control in a large network.

In this paper, we consider a means of control motivated by the concept of
spam in the Internet. We introduce two sorts of spam flows, which we call auxil-
iary and adversarial flow. The demand value of these flows is given independently
in addition to the given selfish flow demand. Spam flow can be seen as a separate
altruistic or malicious commodity that tries to influence the routing decisions of
selfish players without directly taking control over (parts of) the players or the
network. The goal is to route the spam flow in such a way that the induced equi-
librium minimizes/maximizes the total latency of the selfish flow. The routed
packets solely alter the latency of the used edges. They have no value and are
essentially spam. Therefore we assume that the latency of spam flow does not
contribute to the social cost.

Our results We first present networks where auxiliary flow eradicates the inef-
ficiency of the Wardrop equilibrium (Section 2). However, it turns out that both
the optimal auxiliary flow of given value and the minimal amount of an optimal
auxiliary flow are NP-hard to compute (Subsection 3.1 and 3.2). Further, we
prove that for auxiliary flow there is no polynomial time approximation with a
factor of less than 4

3 . The minimal amount of the optimal auxiliary flow cannot
be approximated by any subexponential factor. These results are complemented
by proving NP-hardness for adversarial flow (Subsection 3.3).

Related Work The game theoretic traffic model considered in this paper was
introduced by Wardrop [29]. Beckmann et al. [2] observe that such an equilibrium
flow is an optimal solution to a related convex program. They give existence and
uniqueness results for traffic equilibria (see also [9] and [24]). Dafermos and
Sparrow [9] show that the equilibrium state can be computed efficiently under
some assumptions on the latency functions.

The inefficiency of Wardrop equilibria is a well-known phenomenon [20],
which is exemplified by Braess paradox [3]. Bounding the inefficiency of equilib-
ria, however, has only recently been considered, initiated by Koutsoupias and
Papadimitriou [18], and for the Wardrop model by Roughgarden and Tardos [24,
26].



One of the most prominent approaches to eradicate the inefficiency of Wardrop
equilibria is taxing. The effectiveness of taxes has been observed by Pigou [20]
and generalized by Beckmann et al. [2]. They show that marginal cost pricing
completely eliminates the inefficiency of selfish routing. Major results for taxes
for heterogeneous users can be found in [8], [10], [11] and [14]. Cole et al. [7]
consider taxes that minimize the total user disutility (latency plus tax) at equi-
librium. They show that for linear latency functions marginal cost pricing does
not improve the cost of Wardrop equilibria and prove tight inapproximability
results for optimal taxes.

Korilis et al. [16] consider the problem of a Stackelberg leader, who in a
first phase can fix the routes for a certain fraction of the demand. In a second
phase, selfish users enter the system and route their own flow on top of the
leader demand. The objective of the leader is to minimize the resulting cost
of the total (both leader and selfish) flow. Roughgarden [22] shows that it is
weakly NP-hard to compute the optimal leader strategy even for parallel links
with linear latency functions. Kaporis and Spirakis [13] show that for single-
commodity networks the minimal fraction of flow needed by the leader to induce
optimal cost, can be computed in polynomial time. Sharma and Williamson [27]
compute the minimum fraction of users that must be centrally routed to improve
the quality of the resulting Wardrop equilibrium. Subsequent papers [28, 15, 4]
consider Stackelberg routing in different variants for more general networks.

Roughgarden [25] studies designing networks that exhibit good performance
when used selfishly and proves tight inapproximability results.

Other approaches for coping with selfishness are, for example, proposed by
Korilis et al. [17] who add capacity to the resources and Cocchi et al. [6] who
study the role of various pricing policies in networks with selfish users.

While the fundamental assumptions is that all agents act selfishly, large sys-
tems often display forms of altruism or spite. In these cases, some agents’ goals
is to improve or to harm the global outcome instead of optimizing their per-
sonal objective function. Babaioff et al. [1] and Roth [21] study the existence of
equilibria for these games, and quantify the impact of malicious players on the
equilibrium. Chen and Kempe [5] proved that equilibria exist for any population
of selfish, altruistic and spiteful agents.

2 Preliminaries and Initial Results

We first define the classical Wardrop model originally introduced in [29] and then
introduce our additional spam flow. We are given a directed graph G = (V,E)
with vertex set V , edge set E, a set of commodities [k] = {1, . . . , k} specified
by source-sink pairs (si, ti) ∈ V × V , and flow demands di > 0. The edges are
equipped with non-decreasing, continuous latency functions `e : R≥0 → R≥0.

Let Pi denote the available paths of commodity i, i. e., all paths connecting
si and ti, and let P =

⋃
i∈[k] Pi. A non-negative path flow vector (fP )P∈P is fea-

sible if it satisfies the flow demands
∑
P∈Pi

fP = di for all i ∈ [k]. Throughout



this paper, we will consider only feasible path flow vectors. For single com-
modity networks we drop the index i and normalize the demand to one. A
path flow vector (fP )P∈P induces an edge flow vector f = (fe)e∈E with fe =∑
i∈[k]

∑
P∈Pi:e∈P fP . The latency of an edge e ∈ E is given by `e(fe) and the la-

tency of a path P is given by the sum of the edge latencies `P (f) =
∑
e∈P `e(fe).

The latency cost of a flow is defined as C(f) =
∑
P∈P `P (f)fP =

∑
e∈E `e(fe)fe.

A flow f of minimal latency cost is called (socially) optimal.
Additionally to the given selfish flow, we introduce two kinds of spam flow

- auxiliary and adversarial flow (δe). Let δ > 0 denote the spam flow and its
demand. The objective of the spam flow is to minimize/maximize the latency
cost of the induced equilibrium of the selfish flow. The routed spam has no
intrinsic value and hence does not contribute to the latency cost. Given the
routes of the spam flow and the selfish flow, the latency cost equals C(f, δ) =∑
e∈E `e(fe + δe)fe. If not specified further, we refer by flow to the selfish flow.

Finally, we call the tuple Γ = (G, (s, t), δ) an instance.
A flow vector is considered stable when no fraction of the flow can improve

its sustained cost by moving unilaterally to another path. Such a stable state is
generally known as Nash equilibrium. In our model a flow is stable if and only
if all used paths within a commodity have the same minimal latency, whereas
unused paths may have larger latency. We call such a flow Wardrop equilibrium.

Definition 1 Given an instance Γ and fixed routes for the spam δ, a feasible
flow vector f is at Wardrop equilibrium if for every commodity i ∈ [k] and paths
P1, P2 ∈ Pi with fP1 > 0 it holds that `P1(f + δ) ≤ `P2(f + δ).

Observation 1 If f is at Wardrop equilibrium then all used paths in commodity
i have equal latency Li(f, δ) and the latency cost can be expressed as C(f, δ) =∑
i∈[k] Li(f, δ) · di ([24, 29]).

Note that the spam commodity δ is not composed of stabilizing selfish users.
Instead, the aim is to allocate this flow in a coordinated way to influence the cost
of the Wardrop equilibrium. Our optimization problem is similar to Stackelberg
routing [16]. In particular, it can be formulated as a bilevel problem, where in a
first phase spam flow is allocated to the routes. In a second phase the selfish flow
stabilizes at Wardrop equilibrium depending on the allocation in the first phase.
The resulting latency of the selfish flow is to be optimized by the allocation of
spam flow in the first place.

Let us note two initial observations about auxiliary flow. Figure 1 yields our
first observation.

Observation 2 There are networks in which auxiliary flow eradicates the inef-
ficiency of selfish routing.

One can easily modify the network in Figure 1, such that even an arbitrary
small amount of auxiliary flow does the job.

Observation 3 Adding auxiliary flow to selfish flow increases the path latency
in series-parallel graphs. Since the cost at equilibrium equals the path latency L,
auxiliary flow of arbitrary value does not improve the latency cost at equilibrium.



s

x

x

t

x

2

1 + ε

1 + ε

εx

x

2

Fig. 1. In absence of spam flow, the selfish flow uses only the zig-zag-path at equilib-
rium. Routing spam over the dashed edges, the selfish flow splits half-half among the
bold edges and reaches the social optimum.

3 Computational Complexity

In this section, we discuss the computational complexity of problems related to
auxiliary and adversarial flow.

In the decision problem Optimal-Flow we are given a single-source selfish
routing instance, an amount of auxiliary flow, and a cost value C. The problem
is to decide if there is a routing of the auxiliary flow such that the latency cost
of the equilibrium is at most C.

In the decision problem Threshold-Flow we are given a single-source self-
ish routing instance and an amount of auxiliary flow δ. The problem is to decide
if there is a routing of the auxiliary flow such that the latency cost of the equi-
librium is less or equal than the latency cost of the equilibrium induce by any
auxiliary flow δ′ > δ.

In the decision problem Worst-Flow we are given a single-source selfish
routing instance, an amount of adversarial flow, and a cost value C. The problem
is to decide if there is a routing of the adversarial flow such that the latency cost
of the equilibrium is at least C.

3.1 Complexity of Optimal-Flow

Observation 2 shows that auxiliary flow can improve the cost of Wardrop equi-
libria. Here, we show that computing the optimal routing for the auxiliary flow
is NP-hard.

Theorem 1. Optimal-Flow is NP-hard.

Proof. Our proof is based on the proof given in [7] to show that taxing to min-
imize total disutility is hard. We reduce from the problem 2 Directed Dis-
joint Path (2DDP) which is known to be NP-hard [12]. An instance I =
(G, (s1, t1), (s2, t2)) is a directed graph G and two pairs of nodes (s1, t1) and
(s1, t2). An instance I belongs to 2DDP, that is I ∈ 2DDP, if and only if there
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Fig. 2. This figure outlines the construction of G′. The dashed edges are the edges of
G and the dotted edges are the edges in P . The edges are labeled with their latency
functions

exist two node disjoint paths in G from s1 to t1 and from s2 to t2, respectively.
Without loss of generality, we assume that there exist paths from s1 to t1 and
from s2 to t2, respectively.

Given an instance I = (G, (s1, t1), (s2, t2)) with G = (V,E) and |E| = m,
we construct a single commodity selfish routing game Γ = (G′, (s, t), δ) with
auxiliary flow of δ = 3m2 that has the following properties: If and only if I ∈
2DDP, optimal auxiliary flow yields a Wardrop equilibrium with social cost of
less than C = 3

2m+ 2.

We construct G′ = (V ′, E′) as follows: V ′ = V ∪ {s, t} and E′ = E ∪
{(s, s1), (s, s2), (t1, t)(t2, t)} ∪ P with P = {(s, u), (v, t) | for all (u, v) ∈ E}.
The latency function of each edge e ∈ E is `e(x) = 1

mx, for the edges e ∈
{(s, s1), (t2, t)} it is `e(x) = mx, for the edges e ∈ {(s, s2), (t1, t)} it is `e(x) =
m + 1, and for all edges e ∈ P it is `e(x) = m42. Note that in equilibrium no
selfish flow is assigned to an edge e ∈ P because latency of m42 is much larger
than the latency of any s-t-path that does not include an edge e ∈ P .

If I ∈ 2DDP, there exist two disjoint paths from s1 to t1 and from s2 to
t2, respectively, in G′. Let D ⊆ E be the set of edges of these two paths. An
auxiliary flow that assigns, for all (u, v) ∈ E \ D, flow of at least 3m to each
of the edges (s, u), (v, t) ∈ P , and (u, v) essentially forces the selfish flow to use
the two disjoint paths only. The latency for flow demand d′ on such a path is at
least md′ + m + 1 and at most md′ + m · 1

m + m + 1. Thus, in equilibrium the
maximal flow demand on each of the two paths is bounded by m+1

2m+1 . Therefore,
the latency of a path in a resulting Wardrop equilibrium is at most 3

2m+ 2 and
the latency cost is at most C.

If I /∈ 2DDP, we show that there is no auxiliary flow that induces an equi-
librium flow with social cost of less than 2m. We distinguish several cases by the



usage of the four edges incident to s and t. It suffices to show that there is an
used path with latency of at least 2m.

1. If a flow uses a path starting with (s, s2) and ending with (t1, t), this path
has latency of at least 2m+ 2.

2. If a flow uses only paths starting with (s, s1) and ending with (t2, t), it has
cost of at least 2m.

3. If a flow uses only paths starting with (s, s1) and ending with (t2, t) or (t1, t),
the latency from s1 to t must be the same on all paths. Therefore every path
has latency of at least 2m+ 1.

4. If a flow uses only paths starting with (s, s1) or (s, s2) and ending with (t2, t),
the same argument holds.

5. If a flow uses at least one path starting with (s, s1) and ending with (t1, t)
and at least one path starting with (s, s2) and ending with (t2, t), there exists
a vertex v∗ that is contained in both paths. All path segments from s to v∗

and from v∗ to t must have the same latency. Thus, every path has latency
of at least 2m+ 2.

Thus, the optimal auxiliary flow induces an equilibrium with social cost less
or equal C in Γ if and only if I ∈ 2DDP. ut

Note that the decision in the previous instances is whether the cost of the
selfish flow can be reduced to a cost of at most C = 3

2m+2. If this is impossible,
for every flow the cost is at least 2m. Now suppose there is a polynomial time ap-
proximation algorithm, which computes a

(
4
3 − ε

)
-approximation for optimizing

the cost of selfish flow. Then, such an algorithm could be used to decide 2DDP
using the previously outlined set of instances. We therefore get the following
corollary. Note that a 4

3 -approximation for linear latencies is trivially obtained
by routing no auxiliary flow at all [24].

Corollary 4 For every ε > 0 it is NP-hard to approximate Optimal-Flow on
instances with linear latency functions to a factor of 4

3 − ε.

In addition, note that in the NP-hardness reduction the auxiliary flow is
much larger than the demand of selfish flow. However, we can show that the
result even holds, if the auxiliary flow is only a (polynomially small) fraction of
the selfish demand.

Theorem 2. Optimal-Flow is NP-hard and even NP-hard to approximate to
a factor of 4

3 − ε for every ε > 0 on instances with linear latency functions and

auxiliary flow δ ∈ O
(

d
poly(m)

)
.

Proof. Again, we reduce from 2DDP. Given an instance I and an ε, we construct
a selfish routing game Γ as described in the proof of Theorem 1. We use k =
3m2 · dε−1e copies Γ1, . . . , Γk of this game to create a new game Γ ′ as follows.
We add a source vertex s∗ and a target vertex t∗. The vertex s∗ is connected to
each source vertex s′i of Γi (for all 1 ≤ i ≤ k) by an edge (s∗, si) with the latency
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Fig. 3. The network contains k = 3m2 · dε−1e copies of the network G′ of the proof of
Theorem 1. Between s∗ and t∗ there is a demand of k.

function `(s∗,si)(x) = 0. Likewise, there is an edge with `(t′i,t∗)(x) = 0 from each
vertex t′i to t∗. Additionally, for every i ∈ {1, . . . , k − 1}, there is an edge from
t′i to s′i+1 with `(t′i,si+1)(x) = k42. The demand of the selfish flow is d = k and
the auxiliary flow is limited to 3m2 and C = d · 3

2m+ 2.
If I ∈ 2DDP, there is an auxiliary flow that yields an equilibrium flow

with social costs of at most d · ( 3
2m + 2): We assign auxiliary flow of at most

3m2 between the vertices s′i and t′i in each copy Γi as described in the proof of
Theorem 1. We assign the same amount of flow to the edges {(s∗, s′1), (t′1, s

′
2), . . . ,

(t′k−1, s
′
k), (t′k, t

∗)} to obtain a flow of at most 3m2 from s∗ to t∗. In the resulting
Wardrop equilibrium, there is a flow of 1 that is assigned to each copy Γi and
the edges that connect it to s∗ and t∗. Each of these flows has cost of at most
3
2m+ 2. Thus the social cost sum up to at most d · ( 3

2m+ 2).
If I /∈ 2DDP, then the latency cost of the selfish flow is more than d · 2m.

Note, that in equilibrium the selfish flow never chooses an edge that connects
two of the copies because it has latency of k42 and there is always a s∗-t∗-path
with lower latency. Therefore, there is at least one copy Γi in which flow of at
least 1 is routed from s′i to t′i. As shown in the proof of Theorem 1, the latency
of the s′i-t

′
i-paths at least 2m. Since the flow is a Wardrop equilibrium, every

path between s′j and t′j for every 1 ≤ j ≤ k has latency of at least 2m. Thus,
the latency cost sums up to more than d · 2m. ut

3.2 Complexity of Threshold-Flow

The previous result showed that it is computationally difficult to compute the
best possible auxiliary flow. In this section we show that it is even hard to
approximate the minimal amount of auxiliary flow that is needed to achieve the
best possible Wardrop equilibrium.
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Fig. 4. This figure outlines the modified construction of G′ for the proof of Theorem 3.

Note that this result strongly contrasts the corresponding result of Kaporis
and Spirakis [13] for Stackelberg routing. In Stackelberg routing the minimal
fraction of flow needed by the Stackelberg leader to induce optimal cost can be
computed in polynomial time for single commodity networks.

Theorem 3. Threshold-Flow is NP-hard.

Proof. Again, we reduce from 2 Directed Disjoint Path (2DDP). Given an
instance I = (G, (s1, t1), (s2, t2)) with G = (V,E) and |E| = m, we construct a
single commodity selfish routing game whose optimal auxiliary flow has demand
of at most 3m3 if and only if I ∈ 2DDP. Construct Γ = (G′, (s, t), δ) as described
in the proof of Theorem 1 and modify it as follows. Remove the edge (t2, t) and
replace it with the following gadget. Add the vertices u and v and the edges
(t2, u), (u, v), (u, t), (t2, v), (v, t). Latency functions are `e(x) = (m2 −

1
2m100 )x

for the edges e ∈ {(t2, u), (v, t)} and `e(x) = m
2 + 1

2m100 for the edges e ∈
{(u, t), (t2, v)} and `(u,v)(x) = 1

m100x. We add additional edges (s, u) and (v, t)
with latency m42 and add them to the set P (cf. proof of Theorem 1).

Observe that for routing flow demand d′ ≤ 2m101+2
3m101+1 from t2 to t, it is optimal

to leave all selfish flow on the zig-zag path, which generates latency md′ and
also yields an equilibrium. Observe that the optimum assignment of selfish flow
that is achievable by (marginal cost) taxing might split the flow along all three
possible paths from t2 to t. However, the resulting latency of such a flow is
larger here, as the auxiliary flow is accounted in the latency of selfish flow. For
more flow than d′, splitting the flow and assigning d′

2 to the edges (t2, u), (t2, v),
(u, t), and (v, t), yields a better latency. This flow and its improved latency can
be achieved using a sufficiently large auxiliary flow along edge (u, v).
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Fig. 5. This figure depicts the corresponding graph G′ for an instance G for the prob-
lem Hamilton. The dashed edges correspond to vertices in G and the dotted edges
correspond to edges in G′.

If I ∈ 2DDP, then optimal auxiliary flow of demand of at most 3m3 is
sufficient to obtain the best possible Wardrop equilibrium. Note that for large m
only close to 1

2 selfish flow is routed through the gadget from t2 to t. Therefore,
it is not necessary to route auxiliary flow over the edge (u, v).

If I /∈ 2DDP, then optimal auxiliary flow yields a Wardrop equilibrium in
which the whole selfish demand is routed from s via s1 and t2 to t. The optimal
auxiliary flow must block edge (u, v). Even to motivate one selfish player to use
(u, t), it needs to route demand of more than m101

2 − 1
2 over the edge (u, v). ut

Note that one can easily replace the term m100 in the latency functions of our
gadget with any arbitrarily large constant that can be represented by a polyno-
mial number of bits in the input size. In particular, assuming that the numbers
in our instance are represented in binary coding, it can be replaced by 2m. Then,
for m ≥ 2, a 2m

6m3 -approximation algorithm of Threshold-Flow in the above
instances can decide 2DDP. Thus, we have the following corollary.

Corollary 5 For any constant ε > 0, it is NP-hard to approximate Threshold-
Flow by a factor of 2m(1−ε).

3.3 Complexity of Worst-Flow

We have seen that the optimal auxiliary flow is NP-hard to compute. We now
turn to the computational complexity of computing the optimal adversarial flow.

Theorem 4. Worst-Flow is NP-hard.

Proof. We reduce from the NP-hard problem Hamilton. A graphG ∈ Hamilton
if and only if G contains a Hamiltonian path. Given a directed graph G = (V,E)
with |V | = n and |E| = m and two vertices x, y ∈ V , we construct a selfish
routing game Γ = (G′, (s, t), δ) that has the property that the cost maximiz-
ing adversarial flow induces social cost of at least C = 1

n + δ if and only if



G ∈ Hamilton. We construct G′ = (V ′, E′) as follows: For every node v in G
there is a a pair of nodes uv, wv in G′ and, additionally we have a source and a
sink node s and t. That is V = {s, t} ∪ {uv, wv | ∀v ∈ V }.

There are edges from s to all u nodes, from each node uv to wv and from all w
nodes to t. The selfish flow will use only these edges. Additionally, we have edges
(with high latency) that connect a node wv with a node uv′ if there is an edge
from v to v′ in the graph G for v ∈ V − {x}. To summarize E′ = S′ ∪ U ′ ∪W ′
with S′ = {(uv, wv) | ∀v ∈ V }, U ′ = {(s, uv), (wv, t) | ∀v ∈ V }, and W ′ =
{wv, uv′ | ∀(v, v′) ∈ E and v′ ∈ V −{x}}. For all edges e ∈ S′ we set `e(x) = x,
for all edges e ∈ U ′ we set `e(x) = 0, and for all edges e ∈W ′ we set `e(x) = 42.
Note that the selfish flow never uses edges e ∈W ′ and therefore, assigns flow to
the n paths s, uv, wv, s (for all v ∈ V ). Without adversarial flow, the equilibrium
flow is equally distributed among these paths and the social costs are n 1

n2 = 1
n .

Assume G ∈ Hamilton and x = vi1 , . . . , vin = y is a Hamiltonian path in G.
Then it is possible to assign adversarial flow of δ to all edges e ∈ S′ by choosing
the path s, uvi1

, wvi1
, uvi2

, wvi2
, . . . , uvin

, wvin ,
, t. Note, that the edges between

the w and u vertices exist by construction. Because all non constant edges carry
the maximal amount of adversarial flow and this flow maximizes the social costs
which are m( 1

n + δ) · 1
n = 1

n + δ.
Consider a graph G /∈Hamilton. Then there is no path in G′ from s to t that

visits all vertices e ∈ U ′. Therefore, there is at least one edge with adversarial
flow less than δ. Thus, the latency cost of the equilibrium flow is strictly less
than 1

n + δ. ut

4 Conclusions

We have initiated the study of spam flow in non-atomic routing games. We
considered the computational complexity of several problems related to auxil-
iary and adversarial flow. Both, Optimal-Flow and Worst-Flow turned out
to be NP-hard. Moreover, Optimal-Flow and Threshold-Flow are hard to
approximate, which strongly contrasts the results for the analogous problem of
the “Price of Optimum” in Stackelberg routing [13]. Further research on algo-
rithms and corresponding complexity issues regarding spam that improves or
deteriorates latency cost may well be worthwhile.
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