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Abstract. Congestion games are a fundamental and widely studied
model for selfish allocation problems like routing and load balancing. An
intrinsic property of these games is that players allocate resources simul-
taneously and instantly. This is particularly unrealistic for many network
routing scenarios, which are one of the prominent application scenarios of
congestion games. In many networks, load travels along routes over time
and allocation of edges happens sequentially. In this paper we consider
two frameworks that enhance network congestion games with a notion
of time. We propose temporal network congestion games that use coordi-
nation mechanisms — local policies that allow to sequentialize traffic on
the edges. In addition, we consider congestion games with time-dependent
costs, in which travel times are fixed but quality of service of transmission
varies with load over time. We study existence and complexity properties
of pure Nash equilibria and best-response strategies in both frameworks.
In some cases our results can be used to characterize convergence for
various distributed dynamics.

1 Introduction

As an intuitive game-theoretic model for competitive resource usage, network
congestion games have recently attracted a great deal of attention [1-3]. These
games are central in modeling routing and scheduling tasks with distributed
control [4]. Such games can be described by a routing network and a set of
players who each have a source and a target node in the network and choose a
path connecting these two nodes. The quality of a player’s choice is evaluated
in terms of the total delay or latency of the chosen path. For this, every edge
e has a latency function that increases with the number of players whose paths
include edge e. Ignoring the inherent delay in transmitting packets in networks
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or routing cars in road networks, this model implicitly assumes that players use
all edges on their paths instantaneously and simultaneously.

Depending on the application, it might not be reasonable to assume that
a player instantaneously allocates all edges on his chosen path. Consider for
instance a road traffic network, in which players route cars to their destinations.
Clearly, a traffic jam that delays people at rush hour might be harmless to a
long distance traveler who reaches the same street hours later. In this case, it
is more natural to assume that edges are allocated consecutively, and players
take some time to pass an edge before they reach the next edge on their path.
In particular, each edge may have a local queueing policy to schedule the players
traversing this edge.

In this paper, we study two different models that extend the standard model
of network congestion games by a temporal component. In our first model, we
incorporate the assumption that on each edge, the traffic over the edge must
be sequentialized which in turn results in a local scheduling problem with release
times on each edge, and requires a formal description of the local scheduling
or queueing policy on each edge. To model these local scheduling policies, we
use the idea of coordination mechanisms [5-8] that have been introduced in
the context of machine scheduling and selfish load balancing [9]. In selfish load
balancing, each player has a task and has to assign it to one of several machines
in order to minimize his completion time. A coordination mechanism is a set
of local scheduling policies that run locally on machines. Given an assignment
of tasks to machines, the coordination mechanism run on a machine e gets as
input the set of tasks assigned to e and their processing times on e. Based on
this information, it decides on a preemptive or non-preemptive schedule of the
tasks on e. The local scheduling policies of the coordination mechanism do not
have access to any global information, like, e.g., the set of all tasks and their
current allocation.

Applying the idea of coordination mechanisms to network congestion games
results in the definition of temporal congestion games, which are studied in Sec-
tion 3. We assume that each edge in a network congestion game is a machine
equipped with a local scheduling policy, and each player has a task and chooses
a path. Starting from their source, tasks travel along their path from one edge to
another until they reach the target. They become available on the next edge of
their path only after they have been processed completely on the previous edges.
The player incurs as latency the total travel time that his task needs to reach the
target. Each player then strives to pick a path that minimizes his travel time.

In our second model, which we term congestion games with time-dependent
costs and study in Section 4, we assume that the travel time along each edge
is a constant independent of the number of players using that edge. This model
captures the property that increased traffic yields decreased quality of service
for transmitting packets. We model this via a time-dependent cost function. We
assume time is discretized into units (e.g., seconds), and the cost of an edge
during a second depends on the number of players currently traveling on the



edge. Each player now strives to pick a path that minimizes the total time-
dependent costs during the travel time along the edges.

Our games extend atomic congestion games, which were initially considered
by Rosenthal [3]. They are a vivid research area in (algorithmic) game theory
and have attracted much research interest, especially over the last decade. A
variety of issues have been addressed, most prominently complexity of comput-
ing equilibria [1-3] and bounding their inefficiency [10-12]. For an overview and
introduction to the topic we refer to the recent expositions by Roughgarden [4]
and Vocking [9]. Addressing the notion of time in congestion games has only
been started very recently in a number of papers [13-15]. Koch and Skutella [15]
present a general model for flows over time using queueing models. Similarly, An-
shelevich and Ukkusuri [13] derive a number of related results for a similar model
of flows over time. In contrast to our work both papers address non-atomic con-
gestion games, in which players are infinitesimally small flow particles. Farzad et
al. [14] consider a priority-based scheme for both, non-atomic and atomic games.
In their model players have priorities, and a resource yields different latencies
depending on the priority of players allocating it. This includes an approach
of Harks et al. [16] as a special case. While there can be different latencies for
different players, this model does not include a more realistic “dynamic” effect
that players delay other players only for a certain period of time. This is the
case in our paper, as well as in [13,15] for the non-atomic case.

1.1 Ouwur Contribution

For temporal congestion games, we study four different (classes of) coordina-
tion mechanisms: (1) FIFO, in which tasks are processed non-preemptively in
order of arrival. (2) Non-preemptive global ranking, in which there is a global
ranking among the tasks that determines in which order tasks are processed
non-preemptively (e.g., Shortest-First or Longest-First). (3) Preemptive global
ranking, in which there is a global ranking that determines in which order tasks
are processed and higher ranked tasks can preempt lower ranked tasks. (4) Fair
Time-Sharing, in which all tasks currently located at an edge get processed si-
multaneously and each of them gets the same share of processing time.

For the FIFO policy (in unweighted symmetric games) and the Shortest-
First policy (in weighted symmetric games) we show an interesting contrast of
positive and negative results: even though computing a best response is NP-hard,
there always exists an equilibrium, which can be computed in polynomial time.
Moreover, the equilibrium is not only efficiently computable, but we present
natural dynamics in which uncoordinated agents are able to find an equilibrium
quickly even without solving computationally hard problems. We then show that
Shortest-First is the only global ranking that guarantees the existence of Nash
equilibria in the non-preemptive setting. That is, for any other global ranking
(e.g., Longest-First) there exist temporal congestion games without equilibria.
In contrast to this, we show that preemptive games are potential games for
every global ranking and that uncoordinated agents reach an equilibrium quickly.
Finally, we show that even though Fair Time-Sharing sounds like an appealing



coordination mechanism it does not guarantee the existence of equilibria, not
even for unweighted symmetric games.

For the second model, congestion games with time-dependent costs, we prove
that these games can be reduced to standard congestion games. Hence, they are
potential games, and in addition the known results on the price of anarchy carry
over. We prove that computing a best response in these games is NP-hard in
general. Even for a very restricted class of games with polynomially bounded
delays and acyclic networks computing an equilibrium is PLS-complete. Due to
space limitations, some proofs are deferred to the full version of this paper.

2 Notation

A network congestion game is described by a directed graph G = (V, E), a set
N = {1,...,n} of players with source nodes si,...,s, € V and target nodes
t1,...,tn € V, and a non-decreasing latency function f.: [n] — Rx>¢ for each
edge e. We will only consider linear latency functions of the form £.(z) = acx
in this paper. For such functions, we call a. the speed of edge e. The strategy
space X; of a player i € N is the set of all simple paths in G from s; to ;.
We call a network congestion game weighted if additionally every player ¢ has
a weight w; > 1, and wnweighted if w; = ... = w, = 1. Given a state P =
(Pr,...,P,) € ¥ =Xy x--- x X, of a network congestion game, we denote
by n.(P) = Zmepi w; the congestion of edge e € E. The individual latency
that a player 7 incurs is £;(P) = ) cp. le(ne(P)), and every player is interested
in choosing a path of minimum individual latency. We call a congestion game
symmetric if every player has the same source node and every player has the
same target node. If not explicitly mentioned otherwise, we consider unweighted
asymmetric congestion games.

We incorporate time into the standard model in two different ways. Formally,
this alters the individual latency functions ¢;. The specific definitions will be
given in the sections below. For our altered games we are interested in stable
states, which are pure strategy Nash equilibria of the games. Such an equilibrium
is given by the condition that each player plays a best response and has no
unilateral incentive to deviate, i.e., P is a pure Nash equilibrium if for every
player i and every state @) that is obtained from P by replacing ¢’s path by
some other path, it holds ¢;(P) < £;(Q), where ¢; denotes the (altered) latency
function of player i. We will not consider mixed Nash equilibria in this paper,
and the term Nash equilibrium will refer to the pure version throughout.

3 Coordination Mechanisms

In this section we consider temporal network congestion games. These games
are described by the same parameters as standard weighted network congestion
games with linear latency functions. However, instead of assuming that a player
allocates all edges on his chosen path instantaneously, we consider a scenario in
which players consecutively allocate the edges on their paths. We assume that



each player has a weighted task that needs to be processed by the edges on his
chosen path.

Formally, at each point in time 7 € Ry, every task ¢ is located at one
edge e;(7) of its chosen path, and a certain fraction f;(7) € [0,1] of it is yet
unprocessed on that edge. The coordination mechanism run on edge e has to
decide in each moment of time which task to process. If it decides to work on
transmitting task i for A7 time units starting at time 7, then the unprocessed
fraction f;(7 + At) of task i at time 7 + At is max(0, f;(t) — A7/(aew;)). In
total, task ¢ needs a.w; time units to finish on edge e. Once f;(7) = 0, task ¢
arrives at the next edge on its path and becomes available for processing. The
coordination mechanism can base the decision on which task to process next
for how long only on local information available at the edge — such as the
weights and arrival times of those tasks that have already arrived at the edge.
The individual latency ¢;(P) of player ¢ in state P is the time at which task 7 is
completely finished on the last edge of P;.

3.1 The FIFO Policy

One of the most natural coordination mechanisms is the FIFO policy. If several
tasks are currently located at the same edge, then the one that has arrived first
is executed non-preemptively until it finishes. In the case of ties, there may be
an arbitrary tie-breaking that is consistent among the edges.

Unweighted and Symmetric Games In this section we treat unweighted
symmetric temporal network congestion games. For these games we obtain an
interesting contrast of positive and negative results: even though computing a
best response is NP-hard, there always exists a Nash equilibrium, which can be
computed in polynomial time. Moreover, the equilibrium is not only efficiently
computable, but uncoordinated agents are able to find it quickly even without
solving computationally hard problems.

Theorem 1. For unweighted symmetric temporal network congestion games with
the FIFO policy a Nash equilibrium always exists. Moreover, a Nash equilibrium
can be computed efficiently.

Proof. Let us assume without loss of generality that players are numbered ac-
cording to their rank in tie-breaking, i.e. 1 is the highest ranked player, and n is
the lowest ranked player. Assume that we start in an arbitrary state of the game
in which the players have chosen arbitrary paths. Below we define a subclass of
best responses, which we call greedy best responses. We claim that we obtain an
equilibrium if we let the players 1,2,...,n play each one greedy best response
in this order. To prove this, assume that the players 1,...,7 are already play-
ing greedy best responses, and now let player ¢ 4+ 1 also change his strategy to a
greedy best response. We show that after this strategy change the players 1, ...,
are still playing greedy best responses, which proves by induction that a Nash
equilibrium is reached once every player has played a greedy best response. We



prove the following invariant: if the players 1, ..., play greedy best responses,
then none of them can be delayed at any node by a lower ranked player j > i.
Furthermore, the current paths of the players 1,. .., i are (greedy) best responses
no matter which paths the other players j > i choose. For the first player, every
best response is defined to be a greedy best response. Given this definition, we
argue that the aforementioned claim is true for ¢ = 1: We consider the network
G = (V, E) as a weighted graph in which every edge e € E has weight a.. Let P;
denote a shortest path in this weighted graph from the source s to the target ¢
and let a* denote its length. If the highest ranked player chooses path Pj, then
he cannot be delayed at any node v by any other player j, as otherwise, j would
have found a shorter path from s to v, contradicting the choice of P; as shortest
path from s to t. Hence, when player 1 chooses path P; his total latency is a* no
matter which paths the other players choose. Clearly, the length a* is also a lower
bound on the time it takes any player to reach the target, and hence, choosing
P is a (greedy) best response for player 1. Moreover, any (greedy) best response
of player 1 corresponds to a shortest path P; in the aforementioned weighted
graph. Now let us recursively define what a greedy best response is for player
i1+ 1 > 1. For this, assume that the players 1,...,¢ play already greedy best
responses. Based on the paths chosen by these players, we construct a distance
function d: V' — R for the network G = (V, E)), which eventually tells us for
every node how long it takes player i + 1 to get there. The construction of this
distance function follows roughly Dijkstra’s algorithm: Let I C V denote the
set of nodes that have already an assigned distance. We start with I = {s} and
d(s) = 0. For extending the set I, we crucially use the fact that the players
1,...,7 cannot be delayed by other players, which means that every edge e € E
has a fixed schedule saying when it is used by the players 1,...,7 and when it is
available for player i+ 1. These fixed schedules imply in particular that for every
node v € V there exists a shortest path s, vy, ..., v, = v for player ¢+ 1 from s to
v such that every subpath s,vq,...,vx is a shortest path from s to vy. Hence,
taking into account the fixed schedules and the possible delays that they induce
on player i+ 1, we can extend the set I as in Dijkstra’s algorithm, that is, we in-
sert the node v € V'\ I into I that minimizes min, ey d(u) 4 £(u, v), where £(u,v)
denotes the time it takes player ¢ + 1 to get from w to v if he arrives at node u
at time d(u). The distance d(v) assigned to node v is minyey d(u) + €(u, v). This
algorithm constructs implicitly a path from s to any other node. Any path from
s to t that can be constructed by this algorithm (the degree of freedom is the
tie-breaking) is called a greedy best response of player ¢ + 1.

It is easy to see that any such greedy best response is really a best response
for player ¢ + 1 if only the players 1,...,7 4+ 1 are present, because there is no
quicker way to reach the target ¢ from the source s given the current paths of
the players 1,...,i. To complete the proof we need to argue that player ¢ + 1
cannot be delayed by players j > i 4+ 1. Assume there is a node v and a player
jJ > 1+ 1 such that j arrives earlier at node v than ¢ 4+ 1. This contradicts the
construction of the path as it implies that there is a faster way to get from the



source s to the node v. Again this argument crucially uses the property that the
players 1,...,¢ cannot be delayed by lower ranked players. O

Let us remark that greedy best responses defined in the previous proof are
the discrete analogon of subpath-optimal flows introduced by Cole et al. [17].
Basically, a path s,v1,...,vg,t is a greedy best response for player i if any
subpath s,v1,...,vr is a shortest path from s to vg,. Note that this is not the
case in arbitrary best responses: it could, for example, be the case that player
1 has to wait at some node vy because he is blocked by a player with a higher
rank. Then, the subpath from s to vy is not necessarily the shortest possible
path in every best response. However, we believe that the restriction to greedy
best responses is a natural assumption on the players’ behavior.

The previous result shows not only that a Nash equilibrium always exists,
but it also shows that players reach it in a distributed fashion using different
forms of dynamics. Consider the following Nash dynamics among the players.
At each point in time, one player is picked and allowed to change his strategy.
We show below that in general it is NP-hard for this player to decide whether
it can decrease his latency by changing his path. In that case, the player might
stick to his current path or make an arbitrary strategy change, following some
heuristic. However, at each point in time there is one player who can easily
find a (greedy) best response, namely the highest ranked player i + 1 that does
not play a greedy best response, but the players 1,...,7 do. We assume that
this player changes to a greedy best response when he becomes activated. We
also assume that a player who is already playing a greedy best response does
not change his strategy when he becomes activated. A round is a sequence of
activations in which every player gets at least once the chance to change his
strategy. From the proof of Theorem 1 it follows easily that a Nash equilibrium
is reached after at most n rounds. We are interested in particular in the random
greedy best response dynamics, in which in each iteration the activated player
is picked uniformly at random, and the concurrent best response dynamics, in
which in each iteration all players are simultaneously allowed to change their
strategy, each one with some constant probability 0 < p; < 1. In both these
dynamics, rounds are polynomially long with high probability. Summarizing, we
obtain the following corollary.

Corollary 2. In every unweighted symmetric temporal network congestion game
with the FIFO policy it takes at most n rounds to reach a Nash equilibrium. In
particular, the random and concurrent greedy best response dynamics reach a
Nash equilibrium in expected polynomial time.

Finally, we turn to the hardness result.

Theorem 3. Computing best responses is NP-hard in unweighted symmetric
temporal network congestion games with the FIFO policy.

Weights and Asymmetric Players Now we show that any relaxation of the
restrictions in the previous sections leads to games without equilibria.



Fig. 1: (a) Asymmetric temporal network congestion game without Nash equi-
librium for FIFO. Edge labels indicate the speeds a.. For all unlabeled edges e,
we have a, = 1. (b) Unweighted symmetric game without Nash equilibrium for
Time-Sharing.

Theorem 4. There exist temporal congestion games with the FIFO policy that
do not possess Nash equilibria and (1) are weighted and symmetric, or (2) are
unweighted and asymmetric.

Proof. The example for the first case is simple; it consists of three edges: there
are three nodes s, v, and ¢t and two parallel edges from s to v (if multi edges are
not allowed, they can be split up into two edges each by inserting intermediate
nodes) and one edge from v to t. All edges have speed 1. Assume that there are
two players with weights 2 and 3, and assume that the player with weight 3 has
higher priority. If both players use the same edge from s to v, then the player
with weight 2 has an incentive to switch to the free edge. If they use different
edges, the player with weight 3 has an incentive to use the same edge as the
other player.

Now let us turn to the second case. We consider the instance shown in Fig-
ure 1 (a). In this game there are three unweighted players, and each player i
has two possible strategies: the vertical three edges (denoted by A;) and an-
other path (denoted by B;). The following sequence of moves constitutes a cycle
in the best response dynamics: (A1, Aa, A3) — (B1, A, As) — (B1, B2, A3) —
(Bl,BQ,Bg) — (Al,BQ,Bg) — (Al,AQ,Bg) — (Al,AQ,Ag). It is easy to ver-
ify that the remaining configurations (A1, Ba, A3) and (B, Aa, B3) are no Nash
equilibria either. a

3.2 Non-preemptive Global Ranking

Another natural approach is to assume that there is a global ranking 7: [n] — [n]
on the set of tasks with 7(1) being the task with the highest priority and so on.
In this case, tasks are scheduled non-preemptively according to this ranking.
When an edge e becomes available, the highest ranked task ¢ that is currently
located at the edge is processed non-preemptively. It exclusively uses e for a.w;



time units. After that, task ¢ moves to the next edge on its path, and e selects
the next task if possible. In this section, we consider mainly weighted games and
assume without loss of generality that w; < wy < -+ < wy,.

Shortest-First Policy In this section we consider the identity ranking 7 (i) = 1,
which corresponds to the Shortest-First policy. It is easy to see that Theorem 1
and Corollary 2 carry over to this case. The proof for FIFO was essentially based
on the observation that once all players 1,...,7 play a (greedy) best response,
they cannot be affected by the lower ranked players. This is even more true for
the Shortest-First policy as the lower ranked players now face the additional
disadvantage of having a longer processing time.

Theorem 5. In every weighted symmetric temporal network congestion game
with the Shortest-First policy a Nash equilibrium exists. Moreover, a Nash equi-
librium can be computed efficiently, and it takes at most n rounds to reach a
Nash equilibrium. In particular, the random and concurrent greedy best response
dynamics reach a Nash equilibrium in expected polynomial time.

Also the hardness result in Theorem 3 carries over easily.

Theorem 6. In (unweighted) symmetric temporal network congestion games
with the Shortest-First policy computing a best response is NP-hard.

Although the previous arguments guarantee existence and convergence to a
Nash equilibrium for the Shortest-First policy, such games are not necessarily
potential games.

Proposition 7. There is a symmetric temporal network congestion game with
the Shortest-First policy that is no potential game.

Other Global Rankings or Asymmetric Players Now we consider the case
of more general rankings.

Theorem 8. For any given set of player task weights wy < --- < w, and any
ranking m other than the identity, there exist a graph and latency functions such
that the resulting symmetric temporal congestion game does not possess a Nash
equilibrium.

The proof is given in the full version of the paper. It relies on the fact that for
rankings other than the identity a larger task can delay smaller tasks near the
source due to the ranking, but smaller tasks can delay larger tasks near the sink
due to faster travel time. The same result holds for asymmetric games with the
Shortest-First policy. We can simply add a separate source for each player and
connect it via a single edge to the original source. By appropriately adjusting the
delays a. on these edges, we can ensure that smaller tasks are suitably delayed
before arriving at the original source. This results in the same incentives.

Corollary 9. For any given set of task weights w1, ..., w, and the Shortest-
First policy, there exist a graph and latency functions such that the resulting
asymmetric temporal congestion game does not have a Nash equilibrium.



3.3 Preemptive Global Ranking

When we assume a global ranking and allow preemptive execution, it is possible
to adapt the arguments of Theorem 1 to weighted asymmetric games. Indeed, all
arguments in this section work for a very general class of preemptive games with
unrelated edges. That is, every player ¢ has its own processing time p;. for every
edge e. These processing times may even depend on the time at which player
1 reaches edge e. The only assumption we need to make is that the processing
times are monotone in the sense that if task i reaches edge e at time ¢, then it
does not finish later than when it reaches edge e at time ¢’ > .

Theorem 10. Every asymmetric temporal congestion game with preemptive pol-
icy 7 is a potential game. A Nash equilibrium ezists and can be computed in
polynomial time. For any state and any player, a best response can be computed
i polynomial time.

Similarly we can adapt the previous observations in Corollary 2 and show
that various improvement dynamics converge in polynomial time.

Corollary 11. In every asymmetric temporal network congestion game with any
preemptive policy m, it takes at most n rounds to reach a Nash equilibrium.
The expected number of iterations to reach a Nash equilibrium for random and
concurrent best response dynamics is bounded by a polynomial.

3.4 Fair Time-Sharing

In this section we consider fair time-sharing, a natural coodination mechanism
based on the classical idea of uniform processor sharing [18]. When multiple
tasks are present at an edge e, they are all processed simultaneously, and each
one of them gets the same share of bandwidth or processing time. As in general-
ized processor sharing [19] we assume round-robin processing with infinitesimal
time slots. Even though such a fairness property is desirable, the following the-
orem shows that Nash equilibria are not even guaranteed to exist for symmetric
unweighted games.

Theorem 12. There is an unweighted symmetric temporal network congestion
game with the Time-Sharing policy that does not have a Nash equilibrium.

Proof. The instance shown in Figure 1 (b) has three players. As the three edges
leaving the source s are very slow, in any Nash equilibrium all three players will
use different edges leaving the source. We assume without loss of generality that
the first player chooses the upper edge, the second player chooses the middle
edge, and the third player chooses the lower edge. Then players 1 and 3 have
still two alternatives how to continue, whereas the path of player 2 is already
determined. The speeds of the edges are chosen such that player 1 wants to use
the edge with speed 5+ ¢ if and only if player 3 does not use the edge with speed
4 —e. On the other hand, player 3 wants to use the edge with speed 4 — ¢ if and
only if player 1 uses the edge with speed 5 + €, which completes the proof. O



Diirr and Nguyen [20] show that Time-Sharing on parallel links always yields
a potential game, even for unrelated machines (edges). That is, for parallel links
Nash equilibria always exist. Their potential function can be rewritten as the
sum of the completion times (individual latencies) of the player. It is known [21]
that a schedule minimizing this sum can be computed in polynomial time. Such
a global minimum of the potential function must obviously be a pure Nash
equilibrium for the Time-Sharing policy, yielding the following corollary.

Corollary 13. For games on parallel links with unrelated tasks and the Time-
Sharing policy a Nash equilibrium can be computed efficiently.

4 Constant Travel Times and Quality of Service

Now let us consider network congestion games with time-dependent costs. Again,
players consecutively allocate the edges on their paths. However, the travel time
along an edge e in the network is fixed to a constant delay d.. If a player chooses a
path along the edges e1, es, .. ., then he arrives at e5 at time d; and at eg at time
d1 + dg2, and so on. This travel time through the network is independent of how
many other players allocate any of the edges. In this section, we only consider
asymmetric games. For the strategic part we assume that each edge generates
a separate usage cost c. per time unit. This could, for instance, measure the
quality of service that is enjoyed by the players during transmission. The cost
depends on the number of players allocating the edge at a given point in time.
In particular, edge e has a cost function ¢.: [n] — N that describes the cost for
allocating it for one second in terms of the current number of players. If for a state
P an edge e is shared at time 7 by n. (7, P) players, all these players get charged

cost ce(ne(r, P)). The cost incurred by player ¢ on a path P, = (e1,...,e;) is
Ti+de. — j—
then £;(P) = Zé‘:l T]:tj it Ce; (e, (1, P)), where 71 = 0 and 7; = St de, -

It turns out that this model is equivalent to a regular congestion game.
For each edge and each time unit we introduce a resource r. and modify the
strategy spaces as follows: For a path P = (eq,...,e;) the new strategy includes
all resources 7, , for 7 =7;,...,7 +de; —1 and j = 1,...,l. This is a regular
congestion game with latencies given by the time costs. Hence, results on the
existence of Nash equilibria and the price of anarchy carry over.

Corollary 14. Network congestion games with time-dependent costs are equiv-
alent to a class of reqular congestion games. In particular, there is a pure Nash
equilibrium in every game, and any better-response dynamics converges.

However, as the standard congestion game obtained by this reduction might
have a large number of resources and as it is not necessarily a network congestion
game, complexity results do not carry over.

Theorem 15. Computing a best response in network congestion games with
time-dependent costs is NP-hard. For games with polynomially bounded delays
and acyclic networks, best responses can be computed efficiently, but computing
a Nash equilibrium is PLS-complete.
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