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Abstract

We consider a general class of non-cooperative buy-at-bulk cost sharing games, in which
k players make investments to purchase a set of resources. Each resource has a certain
cost and must bought to be available to the players. Each player has a certain constraint
on the number and types of resources that she needs to have available, and she can specify
payments to make a resource available to her. She strives to fulfill her constraint with the
smallest investment possible. Our model includes a natural economy of scale: for a subset
of players capacity must be installed at the resources, and the cost increase for a resource
r is composed of a fixed price c(r) and a global concave capacity function g. This cost
can be shared arbitrarily between players.

We consider the existence and total cost of pure-strategy exact and approximate Nash
equilibria. In general, prices of anarchy and stability depend heavily on the economy
of scale and are Θ(k/g(k)). For non-linear functions g pure Nash equilibria might not
exist, and deciding their existence is NP-hard. For subclasses of games corresponding
to covering problems, primal-dual methods can be applied to derive cheap and stable
approximate Nash equilibria in polynomial time. In addition, for singleton games optimal
Nash equilibria exist. In this case expensive exact as well as cheap approximate Nash
equilibria can be computed in polynomial time. Most of these results can be extended to
games based on facility location problems.

1 Introduction

Game-theoretic aspects of large networks are a reseach area that has received much interest
recently. Networks like the Internet, which are subject to the strategic behavior of various
economic agents, play a crucial role in the development of modern societies. It is therefore im-
portant to understand the underlying dynamics that govern their development. In this paper
we consider a general class of non-cooperative cost sharing games. They can for instance serve
as model for crucial investment problems in networks like service installation, facility location
or various network design problems. Our games represent a fundamental model to study the
results of economic competition in a variety of investment tasks, which (telecommunication)
companies and other parties concerned with the development of the Internet face today, such
as topology creation, installation of amplification technology, server placement etc.

In particular, we consider games for k players that strive to obtain a number of resources
with minimum investment. There is a set of resources, and each resource has a cost. Each
player picks as a strategy a function that specifies her offer to each resource. If the sum of
offers made by a set of players exceeds the resource cost, it is considered available for these
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players. For each player there is a constraint on the number and types of resources that must
be available for her. She strives to fulfill this constraint with minimum total investment in
her strategy. This class of games, which is sometimes referred to as arbitrary cost sharing
games [6,19], has been studied intensively recently for a variety of scenarios involving network
design [3,4,6,19,27], facility location [24], and covering problems [9,24]. We will refer to such
games as regular cost sharing games. In this paper, we consider a more realistic formulation
called buy-at-bulk cost sharing games, which incorporates the assumption that for increased
usage of resources players have to install a larger capacity. This aspect is modeled using
resource costs with economies of scale. Formally, a resource becomes more expensive when it
shall be available to a larger set of players. If resource r is available to a set of i players, the
cost is c(r, i) = c(r) · g(i), in which c(r) is a fixed cost and g is a non-decreasing and concave
function, which is used for every resource r. We will restrict our attention to pure states in
which players do not randomize over strategies. We consider existence and cost of pure Nash
equilibria and leave a study of mixed Nash equilibria for future work. In this paper the term
Nash equilibrium refers to pure ones throughout.

Regular cost sharing games have recently attracted significant research interest to model
self-interested agents that have to agree upon a cost sharing of a joint investment in unreg-
ulated settings. This approach is complementary to a number of recent works on designing
cost sharing games to obtain favorable equilibrium properties [15]. In contrast to the design
perspective, we do not assume the existence of a central authority that designs and maintains
the solution and dictates cost shares for each player. Instead we consider a scenario with
payment functions that allows players to freely specify their payment for each resource. On
the one hand, such an assumption is necessary when there is very little control over players
and their bargaining options, e.g., when considering cost sharing of global investments in the
Internet. Our model thus has the advantage of more freedom of choice and less required
control. On the other hand, these advantages come with a cost, which is the fact that Nash
equilibria might not exist (unlike, e.g., for fixed cost sharing mechanisms such as Shapley
value cost sharing [5,15]). Furthermore, prices of anarchy [30] and stability [5], which are the
ratios of the cost of the worst and best Nash equilibrium over the cost of a socially optimum
solution, respectively, can in general be as large as the number of players k. Nevertheless,
in some interesting special cases specified below, we can derive existence of optimal Nash
equilibria, which does not hold for Shapley cost sharing [5], and we show how to obtain an
arbitrary Nash equilibrium in polynomial time.

Our games include a variety of cases, in which computing a best response is NP-hard,
which is the case in many realistic optimization contexts. Then a player must use a heuristic
to find a good strategy, which will only be an approximation to the best response. Hence, we
consider approximate Nash equilibria – pure states that are as cheap and stable as possible
– and assess them with respect to their approximation to the social cost and the incentives
that they give players to deviate. The assumption of using approximation algorithms to find
best responses motivates relative performance ratios, which are standard in approximation
algorithms, rather than the more common notion of additive approximate Nash equilibria
in game theory (see also [14] for a discussion). In this paper an (α, β)-approximate Nash
equilibrium is a state, in which each player can decrease his cost by unilateral deviation by at
most a factor α, and which represents a β-approximation to the socially optimum cost. We
refer to α as the stability ratio and β as the approximation ratio. For classes of set multi-cover
and facility location games we will show the existence of approximate Nash equilibria with
small stability and approximation ratios, which mitigates non-existence of pure exact Nash
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equilibria. Our main interest, however, is to investigate the influence of the function g on the
efficiency and computational complexity of exact and approximate Nash equilibria.

In our games we explicitly incorporate different costs for different coalitions of players
that strive to obtain a resource. This gives rise to slightly subtle and potentially problematic
issues. Given a set of contributions of the players to a resource r, it can happen that the
contributions suffice to pay the cost c(r, i) for several distinct coalitions of players, but not
for their union. Consider for instance one player p that contributes c(r, 2) to a resource r,
whereas all other players do not contribute to r at all. In this case r can be available to one
pair of players (p, q), for another player q 6= p. Every player might now believe that she is
q and the resource is available to her, but clearly the cost for the complete set of players is
not paid for. In general, this issue could be resolved by centralized mechanisms or separate
bargaining between players to determine which coalition gets preferred access. The presence
of such coordination features, however, is unlikely in unregulated settings, and making as-
sumptions about them would crucially limit our model. Instead, note that in our example
the ambiguities arise from the fact that player p is overcontributing to r, she only needs to
pay c(r, 1) to make the resource available for herself. It is easy to observe that when such
irrational overcontribution is absent, the economies of scale guarantee that there is always
a unique maximal set of players to which r is available. Hence, separate conflict resolution
methods are unnecessary, because, as a byproduct, individual rationality resolves all such
ambiguities and conflicts. While we have mentioned above that computing a best response
strategy for obtaining a subset of resources can be NP-hard, our argument here requires only
that a player can determine the minimum contribution necessary to make a single resource
available to her. This can be done efficiently, and a simple procedure is implicitly given below
in Section 2 when we formally discuss availability of resources.

Related Work. In the area of competitive location there has been a high research activity
on game-theoretic models for facility location during the last decades [18,33]. In these models
facility owners are players that decide where to open a facility. Clients are mostly behavioral,
e.g., assumed to connect to the closest facility. A recent example of this kind of location game
is also found in [37]. According to our knowledge, however, none of these models considers a
situation where clients are in charge of independently creating connections and facilities.

Cooperative games have been studied quite intensively in the past (see [16, 21] and the
references therein). In [16] the authors prove that the core of cooperative games based on
covering and packing integer programs is non-empty if and only if the integrality gap is 1.
They also show results on polynomial time computability of core solutions in a number of
special cases. In [21] similar results are shown for class of cooperative facility location games.
Some of these games have also been analyzed with respect to mechanism design. In addition,
cost sharing mechanisms have been considered for games based on set cover and facility
location. Every player corresponds to a single item and has a private utility for being in the
cover. The mechanism asks each player for her utility value. Based on this information its
goal is to pick a subset of items to be covered, to find a minimum cost cover for the subset
and to distribute costs to covered item players such that no coalition can be covered at a
smaller cost. A strategyproof mechanism allows no player to lower her cost by misreporting
her utility value. The authors in [17] presented strategyproof mechanisms for set cover and
facility location games. For set cover games this work was extended [32, 35] to different
fairness aspects and formulations with items or sets being agents, for facility location games
computing cross-monotonic cost sharing schemes was considered in [34], and in [28] lower
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bounds on their budget-balance were provided. In contrast, our approach is an extension of
non-cooperative games, which were first studied in [6] and recently in [3,4,19,27] in a network
design context. Our recent work [9, 24] provided results for exact and approximate Nash
equilibria in covering and facility location games. Prices of anarchy and stability in these
games are generally as large as Θ(k). None of these previous models, however, considers the
influence of different economies of scale.

Buy-at-bulk problems are a vivid recent research area in the analysis of network design
and facility location problems. In particular, starting with [7] network design problems with
economies of scale were considered. Typically, there are a number of source-sink pairs with
demands that must be routed by an unsplittable flow. Edge and/or vertex costs increase
with the demand routed over them. Recently, in [12, 13] polylogarithmic approximation al-
gorithms were given. As a lower bound, logarithmic hardness results for general resource
costs were derived [2]. For special cases, e.g., single-souce or rent-or-buy problems [22] there
exist constant-factor approximation algorithms. This is also the case for unit-demand metric
facility location [23], for which an adjustment of recently proposed greedy algorithms [29]
yields the same approximation guarantees for the buy-at-bulk as for the regular problem.

Our Contribution. Buy-at-bulk cost sharing games studied in this paper are a new
general model to consider cost sharing in optimization problems with economies of scale. In
addition, as an extension they address a frequent criticism to regular cost sharing games. In
regular games there is only a fixed cost for each resource. As soon as this cost is paid for, the
resource is available to every player, no matter whether she contributes or not. Hence, the
game inherently allows free riders who can obtain a resource for free. This problem has been
addressed frequently [1, 5, 8, 10, 11, 14, 20, 31] by fixing a Shapley sharing of resource cost. In
contrast, our model allows smaller groups of players to obtain the resource at cheaper costs.
This ensures that every player is eventually forced to contribute for availability. The severeness
of this force depends on the number of players that request a resource and is dynamically
affected by g. Some undesirable properties of the game like a high price of anarchy are
directly influenced, the price of anarchy is exactly k

g(k) . Other properties are independent
of this adjustment, e.g., for any non-linear g there are games without Nash equilibria. The

price of stability is as large as Θ
(

k
g(k)

)

, and it is NP-hard to decide the existence of Nash

equilibria. Interestingly, some existence and optimality conditions for regular games can be
extended to hold for buy-at-bulk games. If each player wants to cover exactly one element,
optimal Nash equilibria exist, and (1 + ε, β)-approximate Nash equilibria can be obtained
in polynomial time by a local search from any β-approximate starting state. In addition,
we provide a procedure to find an (arbitrary) exact Nash equilibrium in polynomial time,
which was not known before even for regular singleton games. These results are shown for set
multi-cover games, which were not studied before. In general, there are (f, f)-approximate
Nash equilibria even for non-singleton set cover games, where f is the maximum frequency of
any element in the sets. With the exception of the last result, all our proofs translate more
or less canonically to buy-at-bulk cost sharing games for facility location.

2 Model and Basic Properties

In a buy-at-bulk cost sharing game there is a set [k] of k non-cooperative players and a set R
of resources. Each resource r ∈ R has a fixed cost c(r) ≥ 0. In addition, there is a function
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g : N→ R
0
+, which is non-negative, non-decreasing, concave, and has g(0) = 0 and g(1) > 0.

We normalize the function to obey g(1) = 1. For convenience, we use µ(i) = g(i) − g(i − 1),
which is non-increasing and non-negative for all i ≥ 1. The bundle cost of resource r for a
set of i players is c(r, i) = c(r) · g(i). A strategy sp of a player p is a function sp : R→ R

0
+ to

specify her non-negative payment to each resource. A state is a vector s = (s1, . . . , sk) with
a strategy for each player. We denote by s−p the same vector without sp.

A resource r is available to a player p if there exists a subset Q ⊂ [k] of players with p ∈ Q
that pays the corresponding bundle cost, i.e.

∑

p∈Q sp(r) ≥ c(r, |Q|). In particular, a player
can easily determine whether a given contribution sp(r) suffices to make r available given s−p

of other players. Assume players q ∈ [k] − p are numbered in non-increasing order of sq(r).
Then r is available to p if and only if

sp(r) ≥ min
i=0,...k−1

{c(r, i + 1)−
i

∑

q=1

sq(r)} .

Note that when i = 0, player p is assumed to purchase the resource by herself, and we count
only the fixed cost c(r). For p we use ρp(s) to denote the set of her available resources, and
we drop the argument whenever context allows.

Each player p has a player-specific constraint on ρp. In this paper we consider constraints
that inherit a free-disposal property. A constraint can never be violated by having additional
resources available to the ones required. If ρp does not fulfill the constraint, we assume
that the player is penalized with a prohibitively large cost, i.e., for her individual cost cp =
+∞. Otherwise, if her constraint is satisfied, the individual cost is her total investment
cp(sp, s−p) =

∑

r∈R sp(r). A player wants to minimize her individual cost, so she strives to
fulfill her constraint with ρp at the least possible investment. A Nash equilibrium (denoted
NE) is a state, in which no player can reduce her individual cost by changing her strategy.
We restrict our attention to pure states in this paper and leave a deeper study of mixed
NE for future work. As social cost of a state s of the game we use the sum of individual
costs c(s) =

∑

p∈[k] cp(s). A social optimum state minimizing social cost will be denoted
s∗ throughout. A (α, β)-approximate Nash equilibrium (denoted (α, β)-NE) is a state, in
which no player can reduce her individual cost by a factor of more than α, and for which
the social cost is a β-approximation to the minimum social cost over all states of the game.
More formally, for a (α, β)-NE we have cp(s) ≤ αcp(s

′
p, s−p) for every possible strategy s′p and

c(s) ≤ βc(s∗).
Observe that in any NE and any social optimum state s∗ the available resources for each

player satisfy her constraints. Due to concavity of g, in any NE there is a unique maximal set
of players (denoted Qr), for which the resource is available. This set includes as subsets all
other sets of players, for which the resource is available. No subset of i players will contribute
more than c(r, i) to any resource r. The strategies exactly purchase the bundle cost c(r, |Qr|)
of every resource. Thus, a NE s represents a cost sharing of the set of resources. This property
can be assumed for s∗ as well, because in this case the cost distribution is irrelevant. Finding
s∗ is equivalent to finding a solution to the underlying buy-at-bulk minimization problem
given by satisfying all player constraints at minimum total cost. In this problem, a feasible
solution is a vector that indicates for each player, which resources are available to her such
that all constraints are satisfied.

Finally, the function g(i) ∈ [1, i] for all i ≥ 1. Previously considered regular cost sharing
games for covering [9, 24], facility location [24], and network design [3, 4, 6, 27] were buy-
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at-bulk cost sharing games with g(i) = 1 for all i ≥ 1. When speaking of games tied to
optimization problems in this paper – for instance vertex cover games – we generally refer
to the buy-at-bulk version. It is explicitly pointed out when regular cost sharing games are
under consideration.

2.1 Covering and Facility Location

The definition of cost sharing games allows a number of general classes of games to be defined
in this framework. A simple class, which we will repeatedly consider, is a (buy-at-bulk)
vertex cover game on an undirected graph G = (V,E). The resources R = V , and each player
corresponds to a subset of edges Ep ⊂ E. Her constraint is satisfied if for each edge there
is at least one incident vertex available to her. In this way we generalize to set multi-cover
games. There is a set of elements E, and the resources are given by R =M⊆ 2E of subsets
M ∈ M, such that M ⊆ E. Each player corresponds to a subset Ep ⊆ E of elements. In
addition, there is a number b(e) > 0 for each element e ∈ E. A player is satisfied with her
choice if for each element e ∈ Ep there are at least b(e) sets available to her that include e.

Note that for regular set multi-cover games the underlying optimization problem is some-
times termed constrained set multi-cover [36, chapter 13.2] as we do not allow to purchase
multiple copies of a set M . For general functions g we only assume that a set can be used by
multiple players paying the corresponding bundle cost. However, each set can only contribute
1 towards the covering requirement of each of the contained elements.

Facility location games can be obtained as follows. We are given two sets T of terminals
and F of facilities. The resources are facilities and connections, i.e., R = F ∪ (T × F ). A
player p corresponds to a subset of terminals Tp ⊆ T . She strives to connect her terminals
to facilities. As both the connections and the facilities are resources, they both generate a
cost. We will refer to them as connection and opening costs, respectively. The constraint of
a player p is satisfied if for each of her terminals t ∈ Tp at least one connection (t, f) and
the corresponding facility f ∈ F are available to her. If connection costs satisfy the triangle
inequality, we refer to these games as metric facility location games. Furthermore, a large
variety of buy-at-bulk variants of cost minimization problems can be formulated as a game
within this framework.

3 Cost and Complexity of Nash Equilibria

In this section we consider the behavior of prices of anarchy and stability in the game and
the existence of NE. Our first result concerns the price of anarchy.

Theorem 1. The price of anarchy in the buy-at-bulk cost sharing game is exactly k/g(k).

Proof. First, we prove the lower bound. Consider a vertex cover game on a star network, in
which every player owns a single edge and each vertex v has fixed cost c(v) = 1. If every player
contributes exactly the cost of the leaf node incident to her edge, a NE of cost k evolves. The
optimum solution, however, consists of the center vertex v and has bundle cost c(v, k) = g(k).
This proves that the price of anarchy is at least k/g(k).

For the upper bound consider any NE s of any buy-at-bulk cost sharing game with strate-
gies sp. In addition, let ρ−p be a set of resources for player p, which has minimum total fixed
cost. Now consider a social optimum state s∗. Denote by ρ∗p a subset of minimum fixed cost
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of the available resources of player p in s∗, which suffices to satisfy her constraint. As in terms
of fixed cost the set ρ−p is optimal for p, it follows that

∑

r∈ρ−p

c(r) ≤
∑

r∈ρ∗p

c(r) . (1)

The concavity of g ensures that with increasing demands for resources in ρ−p , the cost to be
paid for player p can only decrease. Hence, it becomes ever more attractive for p to deviate
to a strategy, which contributes only to ρ−p . However, as s is a NE, the fixed cost of ρ−p is an
upper bound on current total contribution of p in s, because player p can always deviate and
purchase all resources in ρ−p by herself:

∑

r∈R

sp(r) ≤
∑

r∈ρ−p

c(r) .

Since s is a NE, the cost of the purchased resources must be fully paid for. Using the bound
from (1) we get

∑

p∈[k]

∑

r∈R

sp(r) ≤
∑

p∈[k]

∑

r∈ρ−p

c(r) ≤
∑

p∈[k]

∑

r∈ρ∗p

c(r). (2)

Consider the following procedure of constructing a lower bound on the cost of the social
optimum solution. Iteratively add players and the cost of their available resources ρ∗p to the
solution. The presence of the i-th player on ρ∗i adds at least a cost µ(i)

∑

r∈ρ∗i
c(r) to the cost

of s∗. As µ is monotonic decreasing, we can lower bound c(s∗) by

k
∑

i=1

µ(i)
∑

r∈ρ∗i

c(r) ≤ c(s∗). (3)

Note that the cost of the resources is determined by the final set Qr, and this is independent of
the ordering in which players are considered. Hence, the value of this lower bound is the same
for any ordering of the players chosen. By making k− 1 cyclic rotations of an initial ordering
of players, we ensure that each player appears at each position i exactly once. Adding all
resulting inequalities (3) we get

∑

p∈[k]

k
∑

i=1

µ(i)
∑

r∈ρ∗p

c(r) = g(k)
∑

p∈[k]

∑

r∈ρ∗p

c(r) ≤ kc(s∗).

Together with (2) this yields

c(s) =
∑

p∈[k]

∑

r∈R

sp(r) ≤
∑

p∈[k]

∑

r∈ρ∗p

c(r) ≤
k

g(k)
· c(s∗),

which proves the theorem.

In fact, the lower bound follows similarly for all classes of games that have been considered
in the literature and have the free disposal property. If for a game g(k) = k, the game exhibits
a decomposition property that allows for optimal NE. The previous theorem states that every
NE is a social optimum. In fact, a similar argumentation yields the reverse statement, i.e.,
for linear g an optimum NE is guaranteed to exist.
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Corollary 1. If g(k) = k, then each Nash equilibrium is a social optimum state, and for each
optimum solution to the underlying buy-at-bulk problem there is a Nash equilibrium purchasing
it.

This observation highlights the main effect of g. The price of anarchy quantifies the
severity of coordination failure in a game. Steeper functions g, however, yield smaller savings
for a player from payments made by others. Intuitively, this decouples player incentives and
leads to the extreme case with g(k) = k, in which no player can expect savings through
contributions of others. In this case everyone optimizes “in her own world” and has to pay
fully for every resource obtained. Players do not need to coordinate anymore, and the result is
the absence of coordination failures. On the other hand, if g(k) = 1 for k ≥ 1, the coordination
failure can be severe and the price of anarchy as large as k. The theorem yields an exact
characterization for all intermediate ranges of g.

Once g is sublinear, then players start profiting in larger coalitions. In this case, we show
that for a vertex cover game with sufficiently large number of players there is no NE.

(a) (b)

Figure 1: (a) Vertex cover game without a NE. Edge labels indicate player ownership. Gray
parts are introduced when considering auxiliary players to deal with arbitrary values of k0.
(b) Transformation into a facility location game. Filled vertices are facilities, empty vertices
are terminals. Labels of terminals indicate player ownership. Gray parts are introduced when
considering auxiliary players.

Lemma 1. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for any k > k0 there is a
vertex cover game with k players without a Nash equilibrium.

Proof. Consider the game in Figure 1(a). We first prove the lemma for k0 = 1 and then
describe how to adjust the construction to any k0. Player 1 has a single edge between vertices
v1 and v2, player 2 has two edges connecting u to v1 and v2. The fixed cost c(v1) = c(v2) = 1,
and, with foresight, c(u) = 1 + x for any 1 > x > µ(2). Now consider the possible covers
that players can use to satisfy their covering requirement. Let player 1 use v1 and player 2
use u. In this case player 2 can use v1 and v2 with cheaper payments, because x > µ(2).
Now consider the case player 2 uses v1 and v2. Then she can contribute payments of at most
1 + x. Player 1 could switch to use v2, so she can at most contribute µ(2). Together this
yields 1+x+µ(2) < c(v1)+ c(v2, 2) = 2+µ(2), because x < 1. The case for player 1 choosing
v2 is symmetric, hence there is no NE in this game.

8



Figure 2: Vertex cover game with a price of stability of Θ
(

k
g(k)

)

. Edge labels indicate

player ownership. Gray parts are introduced when considering auxiliary players to deal with
arbitrary values of k0

For a game with k0 > 1 we simply add k0− 1 auxiliary players in the following way. Each
auxiliary player p owns edges of a star with a center wp of cost c(wp) = 5. The leaves are the
vertices v1, v2, and u. Now we set c(v1) = c(v2) = 1 and c(u) = 1+x with 1 > x > µ(k0 +1).
Hence, in a NE every auxiliary player will use all three leaf vertices, in this way “boosting”
the instance into the desired range where g becomes sublinear. Note, however, that the k0−1
players together will never contribute more than g(k0 − 1)c(u) = (k0 − 1)c(u) to vertex u
(similarly for v1 and v2). This allows to rework the analysis above. Let player 1 use v1 and
player 2 use u. Even when joining the k0 − 1 auxiliary players on u, player 2 still has to
contribute c(u) to get availability of u, because g(k0)c(u) = k0c(u) and the other players
pay at most (k0 − 1)c(u). In this case, it is better to join the k0 − 1 auxiliary players and
player 1 on v1 and v2, because x > µ(k0 + 1). Now consider the case player 2 uses v1
and v2. Then she can contribute payments of at most 1 + x. Player 1 could switch to use
v2, where the cheapest way to obtain availability is to join all k0 other players, yielding a
required contribution of at most µ(k0 + 1). Hence, the maximum payment of all players is
(k0 − 1)(c(v1) + c(v2)) + (1 + x) + µ(k0 + 1) = 2k0 − 1 + x+ µ(k0 + 1), whereas the cheapest
way to guarantee all availabilities yields a cost of c(v1, k0) + c(v2, k0 + 1) = 2k0 + µ(k0 + 1).
This is a contradiction, because x < 1. The case for player 1 choosing v2 is symmetric, hence
there is no NE in this game. Finally, note that for a game with k > k0 + 1 players we can
simply add players that posses edges, which do not interfere with the described game.

This game can be embedded into a game that results in a price of stability in Θ
(

k
g(k)

)

.

Theorem 2. For vertex cover games the price of stability is in Θ
(

k
g(k)

)

.

Proof. Consider the game in Figure 2. It is a combination of the triangle game of Figure 1(a)
and the star yielding maximum price of anarchy. Suppose every leaf vertex of the star and
the star center vc have constant fixed cost of 1 + µ(k0 + 1). The fixed costs of v1 and v2 are
1, for u it is 2 > c(u) > 1 + µ(k0 + 1). There are k0 − 1 auxiliary players k − k0 + 2, . . . , k
that strive to cover a star centered at an additional vertex wp. The cost c(wp) is prohibitively
high, say c(wp) = 10. Similar to the previous proof, in any NE the auxiliary players will
choose to make vc, v1, v2, and u available, while their total contribution to each vertex is at
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most k0− 1 times the fixed cost, e.g., for u at most (k0− 1)c(u). So the contribution of these
players boosts the game to a range where g becomes sublinear. Now suppose there is a NE,
in which player 3 does not contribute to u. This leaves players 1, 2 and the auxiliary players
with exactly the same game, for which we showed in the previous lemma that there is no NE.

In particular, the only possibility to stabilize players 1 and 2 is to let player 3 contribute
sufficiently to vertex u such that player 2 can lower his contribution to u, and this becomes a
best response. Hence, in any NE, player 3 contributes to u, which means u must be available
to her, but not vc. Now consider a NE s, in which vc is available to at least one of the
players 1, 2, 4, . . . , k − k0 + 1. Then the total contribution of all players towards vc is at least
∑

p∈[k] sp(vc) ≥ c(vc, k0). As vc is not available to player 3, we have s3(vc) = 0. In turn, this
implies player 3 pays s3(u) ≤ c(vc)µ(k0 + 1) = (1 + µ(k0 + 1))µ(k0 + 1) < c(u)µ(k0 + 1),
because otherwise it would be cheaper to join a coalition purchasing vc. Now consider player
2. Note that in any NE there are at most k0 +1 players that have an incentive to pay for u -
the auxiliary players and players 2 and 3. Given the previous payment restrictions, we have
∑

p∈[k],p 6=2 sp(u) ≤ c(u, k0 +1)− c(u). Thus, player 2 must invest at least c(u) > 1+µ(k0+1)
to make vertex u available. This implies that she still has an incentive to join the auxiliary
players and player 1 on the vertices v1 and v2 for a total cost of 1 + µ(k0 + 1). This is a
contradiction to s being a NE.

Hence, in any NE none of the players 1, 2, 4, . . . , k−k0+1 has the star center vc available,
which in turn means they all purchase their corresponding leaf vertices completely. We show
that in this case a NE s can be obtained. The cheapest way for player 3 to obtain vc would
be to join the auxiliary players (or equivalently purchase vc by herself), which would mean
to pay c(vc). Hence, we can assume s3(u) = c(vc), and the total contribution of the auxiliary
players and player 3 to u is

∑

p∈[k],p 6=2 sp(u) = c(u, k0−1)+c(vc) > c(u, k0+1)−1−µ(k0+1).
Thus, player 2 can contribute s2(u) < 1 + µ(k0 + 1), and the bundle cost c(u, k0 + 1) will
be paid for by auxiliary players and players 2 and 3. Player 1 can join the auxiliary players
and purchase either v1 or v2, e.g., s1(v1) = 1. This gives no player an incentive to switch his
strategy.

The fact that a NE evolves only when the players 1, 2, 4, . . . , k − k0 + 1 purchase their
corresponding leaf vertices implies that every NE has cost of at least (1 + µ(k0 + 1))k +
1 + (µ(k0 + 1))2 + µ(k0 + 1) + 3(k0 − 1). Note that there is at least one such NE. In the
social optimum, however, every incident player is covered by vc yielding a cost of at most
(1 + µ(k0 + 1))g(k) + 2 + µ(k0 + 1) + 4(k0 − 1). For fixed g, parameter k0 is a constant, and
the ratio grows with k/g(k).

The non-existence raises the question about the sets of games with and without NE.
Can the players efficiently determine whether they could possibly agree upon a state or they
are doomed to cycle? We answer this question in the negative. In particular, we derive a
construction to show that given any fixed, non-linear function g, there is a class of games
with sufficiently many players, in which determining existence of a NE is NP-hard.

Theorem 3. Given any non-linear function g, for which g(i) = i for i ≤ k0 and g(i) < i for
k > k0, then for each k > k0 there is a class of vertex cover games with g and k players, for
which it is NP-hard to determine the existence of a Nash equilibrium.

Proof. We again restrict to the case k0 = 1 and then extend it to arbitrary k0. Our construc-
tion reworks a proof for regular vertex cover games [9] and extends it to any sublinear function
g. Consider the extended triangle game in Figure 3. Assign fixed costs of c(u1) = c(u2) = 1,
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Figure 3: Extended triangle gadget, edge labels indicate player ownership. Vertex costs are
defined in a way such that the game allows no NE. If a variable player purchases the fixed
cost of u1, or a clause player contributes a sufficiently large amount to the cost of w, a NE is
possible.

c(v) = 1.5 + (µ(2)/2), and c(w) = 1.25(1 + µ(2)) + (µ(2)2/2). In similar way as for the game
of Figure 1(a) we can argue that the game has no NE. This game is used in a reduction from
3SAT as follows. For each instance of 3SAT we introduce a variable player for each variable
and a clause player for each clause. Each variable player strives to cover two star networks,
a true star and a false star. The true (false) star has a number of leaves that equals the
number of non-negated (negated) appearances of the variable in the clauses. The star centers
are connected by an additional edge. They have a fixed cost that corresponds to the number
of leaves. All leaves have fixed cost 1.

At each leaf of a variable gadget we attach a different extended triangle in the way that
vertex u1 of the triangle becomes the leaf vertex of the star. There are two gadget players
who own the edges of all the extended triangles. Finally, for each clause we introduce a clause
player. She owns a star with center vertex wc. With ν = c(w)(1 + µ(2)) − 1 − c(v)µ(2)
the cost of c(wc) = 2ν. This center is connected by exactly three edges to three different
extended triangles. In particular, we attach the edges at vertex w of the extended triangles.
If a variable occurs non-negated (negated) in the clause, we connect to an extended triangle
attached to the true (false) star of the variable gadget. Note that there are sufficiently many
gadgets installed such that in the final instance each extended triangle is connected to exactly
one variable gadget and one clause gadget.

First suppose the 3SAT instance has a satisfying assignment. If a variable is set to true
(false) in this assignment, we assign the variable player to pay the fixed cost for the center of
the false (true) and all the leaves of the true (false) star. In this way the extended triangles
for the true (false) star allow a stable cost sharing, in which player 1 pays the additional cost
of µ(2)c(u1) and c(u2) to make u1 and u2 available. Player 2 pays c(w) to w. These are both
best responses as 1+µ(2) < c(v) and c(w) < µ(2)+ c(v). Thus, all those triangle gadgets are
stabilized. As the assignment is satisfying, this implies that for each clause there is at least
one stabilized triangle gadget. The remaining gadgets are stabilized as follows. The cost of
the center vertex wc of a clause is large enough to allow each clause player to pay a sufficiently
large share of the cost of the vertices w for two remaining gadgets. In particular, the clause
player can pay ν = c(w)(1+µ(2))−1− c(v)µ(2) for w of each of the remaining gadgets. This
means that player 2 must contribute only a cost of 1+ c(v)µ(2) to w, and then w is available
to both the clause player and player 2. Player 1 can pay c(v) to v. This obviously allows
player 2 to play a best response by contributing the remaining cost to vertex w, which in turn
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allows player 1 to stick to v in these gadgets. A NE evolves.
Now suppose there is a NE. The only way that extended triangles are stabilized is through

contribution of variable players at u or clause players at w. The cost of the center vertex of
a clause gadget allows the clause player to contribute at most 2ν to all vertices w of incident
gadgets. This budget is sufficient to stabilize at most two extended triangles. Stabilization
occurs only when the contribution is at least ν, because in this case the payment of player 2
to w is at most the cost of the optimal deviation to v and u2. Hence, there can be at most
two triangles which are stabilized by payments of the clause player. The remaining triangles
must be stabilized with contributions of the variable players. Observe that a variable player
can either purchase both star centers, or she can contribute to the set of leaves from at most
one, the true or the false star. In a NE for each clause at least one variable player must
stabilize an extended triangle by contributing to the corresponding leaf vertex. This induces
a decision for each variable player and translates directly into a satisfying assignment for the
variables.

To reduce the number of players we can merge the variable players with player 1 from the
extended triangles into one global player. In similar fashion, we can merge the clause players
with player 2 into another global player. This does not alter the incentives, because the edges
owned by these players are in disconnected parts of the graph, respectively. Each global player
will still have the same preferences and payoffs as the set of players she accumulates. This
proves the theorem for the case of k0 = 1.

For larger values of k0 we introduce auxiliary players as before. For each auxiliary player
we attach a vertex wp with a prohibitively large cost such as c(wp) = 100nm, where n and
m denote the number of variables and clauses in the 3SAT instance, respectively. Each of
the k0 − 1 auxiliary players then owns a star with wp as center and all vertices from the
orignal game as leaves. In this way, in every NE all auxiliary players always strive to make
the complete instance available instead of wp. Each such player is willing to contribute the
fixed cost to every vertex from the original gadget. On the basis of this contribution the
arguments for the remaining players can be reworked as above. Note that k0 is considered to
be a fixed constant that does not grow with the 3SAT instance. The cost of wp does grow,
however, only logarithmically in representation. Hence, the reduction is polynomial and the
theorem follows.

3.1 Extension to Facility Location Games

Note that for every vertex cover game there is a metric facility location game that is equivalent
in terms of the structure of NE. We replace each edge e = (u, v) by a terminal te and two
connections (te, u) and (te, v) of connection cost cmax = maxv∈V c(v). This creates the set
of terminals. The former set of vertices becomes the set of facilities. For the remaining
connections between facilities and terminals we assume a cost given by the shortest path
metric, i.e. these costs are at least 3cmax (see Figure 1(b) for an example). In a NE of this
game every player will purchase completely the corresponding connections for her terminals.
In addition, no player will purchase a connection of cost larger than 2cmax, in particular, no
edges with costs determined by the shortest path metric will be bought in a NE. A NE for
the facility location game provides a NE for the corresponding vertex cover game and vice
versa.

Corollary 2. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for any k > k0 there is a
metric facility location game for k players without a Nash equilibrium.
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Figure 4: Metric facility location game with a price of stability of Θ
(

k
g(k)

)

. Terminals

are depicted as empty vertices, facilities are filled vertices. Terminal labels indicate player
ownership, facility labels specify opening costs. In the depicted example k0 = 4, x = µ(5),
and x < y < 1. Gray parts are introduced by 2(k0 − 1) = 6 auxiliary players, and each such
player holds exactly one terminal. Solid black edges have cost 1 + x, dashed black edges cost
ε > 0, and gray edges cost 3. All other connection costs are given by the shortest path metric.

Corollary 3. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for each k > k0 there
is a class of metric facility location games with g and k players, for which it is NP-hard to
determine the existence of a Nash equilibrium.

While these corollaries can be derived directly using the transformation, the next corollary
requires slighlty more careful adjustment.

Corollary 4. For metric facility location games the price of stability is in Θ
(

k
g(k)

)

.

The upper bound follows from Theorem 1. A construction for the lower bound is depicted
in Figure 4. The bound can be established with similar arguments as for Theorem 2. We
assume that 1/k > ε > 0 is a small constant and use two sets consisting of k0 − 1 auxiliary
players that boost the facility costs into the region where g becomes sublinear. If the center
facility of cost 1 + x is unavailable to all regular players, player 3 can contribute sufficiently
to the side gadget such that players 1 and 2 stabilize. In this case a NE of cost in Ω(k)
evolves. If the center facility is available to at least one player, then with µ(k0 + 1) < y < 1
the contribution of player 3 is not sufficient to stabilize players 1 and 2 in the side gadget. In
this case there can be no NE. However, if the center facility is available to all incident regular
players, a solution of cost O(g(k)) can be obtained. This establishes the lower bound.

4 Single Element Players

The previous section clarified that vertex cover games might have no NE if there are players
that own two edges. In this section we consider singleton set multi-cover games in which each
player has only a single element. For these games a NE always exists and can be found in
polynomial time.

Theorem 4. Algorithm 1 returns an exact Nash equilibrium for singleton set multi-cover
games in polynomial time.
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Algorithm 1: Exact NE for singleton set multi-cover games

dM ← 1 for all sets M1

Construct Gs = (M, A) with (M1,M2) ∈ A iff M1 ∩M2 6= ∅ and2

c(M1) · µ(dM1
) < c(M2) · µ(dM2

)
while there are remaining players do3

for every remaining player p do4

if element e of p is included in exactly b(e) sets Me then5

Assign p to contribute sp(M)← c(M) · µ(dM ) to all these sets M ∈ Me6

Increase dM ← dM + 1 and drop p from consideration7

Adjust the arc set of Gs for the new values of dM8

Find a sink in Gs and drop the corresponding set from consideration9

Proof. Clearly, Algorithm 1 can be implemented to run in polynomial time. A set M1 domi-
nates a set M2 iff there is a player who prefers M1 over M2 with the bundle costs given with
dM1

and dM2
. The algorithm constructs and maintains a directed acyclic graph Gs, which

contains a directed edge between sets M1 and M2 iff M1 dominates M2. A set M that is
dropped from consideration represents a sink in Gs. Then for each remaining player with
e ∈M it is dominated by all remaining sets that contain her element. None of these players
will contibute to M , as they have a cheaper alternative to cover their element. As no contri-
bution will be assigned to M after it has been dropped, no player wants to contribute to sets
that were dropped before she was dropped. When player p gets dropped, she is left with the
setMe of exactly b(e) sets to cover e. This reveals that she cannot profit from contributing to
any other sets that contain her element. This is also true for the sets inMe. Consider another
player q, who is assigned to contribute to M ∈Me after p has been dropped. q will only pay
a cost representing the concave increase in bundle cost with p already counted towards dM .
Hence, there is no subset of players whose payments allow p to lower her contribution toMe.
Thus, each player plays a best response. This proves the theorem.

Unfortunately, the proposed algorithm can compute worst-case NE. Reconsider the sin-
gleton vertex cover game with a star network used to obtain a lower bound for the price of
anarchy. Suppose the fixed cost for the leaf vertices is 1, and for the center vertex it is 1 + ε.
Algorithm 1 will assign each player to purchase the leaf vertex incident to her edge. This
obviously yields a NE, whose cost is a factor arbitrarily close to k

g(k) worse than c(s∗). In
contrast, we show that there are optimal NE in every singleton set multi-cover game.

Theorem 5. For singleton set multi-cover games the price of stability is 1.

Proof. Consider an arbitrary feasible solution R for the underlying optimization problem. R
must yield for every player at least b(e) available sets that include her element e. Consider
one of these sets M . For this set consider the player set QM , which includes every player
p whose element e ∈ M and who has exactly b(e) available sets. If QM = ∅, the state
can be improved by dropping all contributions to M without hurting feasibility of the player
constraints. Otherwise, consider each p ∈ QM individually, and suppose thatM is unavailable.
In particular, suppose that all contributions of all players to M are 0. Now player p has only
b(e) − 1 sets available and is willing to make another set available to her. We consider the
cheapest contribution that she needs to do this. The new set could be a different set M ′ 6= M ,
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which she does not yet have available. It could also be the set M , for which she would need
to pay the fixed cost c(M), as we assume that nobody else contributes to it. We name the
minimum contribution the budget of player p, denote it by cM (p), and define formally

cM (p) = min(c(M), min
M ′ 6=M

{c(M ′) · µ(|QM ′ |+ 1)}) . (4)

Note that we might not yet have determined a cost sharing for sets M ′. However, we assume
temporarily that the players in QM ′ will pay for it. Then player p must at most contribute
the cost that is incurred due to his additional availability. In particular, this means cM (p) ≤
c(M ′). If player p 6∈ QM , we set cM (p) = 0. Note that this holds in particular for players
that are overcovered in R.

Intuitively, the budget cM (p) is the maximum a player p is willing to pay for M without
an incentive to deviate. We now strive to determine the coalition of players that is willing
to purchase the largest bundle of M without having an incentive to deviate. For this task
we order the players in non-increasing order of budgets, i.e., we let pi be the player with the
i-th largest budget, for i = 1, . . . , |QM |. We assign a contribution for each pi to M in this
order and ensure that it never exceeds cM (pi). In addition, we strive to obtain a largest set of
players Qmax ⊆ QM that can pay for a bundle cost and has no incentive to remove payments.
More formally, we define a payment maximal set of players Qmax as follows.

Definition 1. The set Qmax ⊆ QM is called payment maximal if it is a largest set of players
such that there exist payments smax with smax

p for each p ∈ Qmax satisfying

• smax
p ≤ cM (p) for each p ∈ Qmax,

•
∑

p∈Q smax
p ≤ c(M, |Q|) for each Q ⊆ Qmax, and

•
∑

p∈Qmax smax
p = c(M, |Qmax|).

We denote kmax = |Qmax|.

To obtain such a set and the corresponding payments, we use an iterative procedure that
considers players in the specified order and assigns

spi(M) = min



cM (pi), c(M, i) −
i−1
∑

j=1

spj(M)



 . (5)

Every player contributes at most the cost cM (pi). In addition, the i-th player contributes
at most the remaining cost share that is needed to purchase the bundle cost c(M, i) using
contributions of all i − 1 previously considered players. The procedure determines exactly
one largest set Q′ of k′ players that achieves to pay for c(M,k′). The players with the largest
possible contributions are considered earliest in the procedure and thus are also assigned to
pay the largest shares. Note that the cost shares assigned are monotonically decreasing with
increasing i. We next show that Q′ represents a payment maximal set.

Lemma 2. Q′ is payment maximal and the payments according to Equation (5) represent a
set of payments smax.
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Proof. Consider a payment maximal set Qmax and contributions smax. Without loss of gen-
erality we can assume that the kmax players in Qmax are the ones with largest budgets
cM (p). Let us order the players pi for i = 1, . . . , kmax with non-increasing budgets. Again,
without loss of generality we can redistribute the assigned cost shares for the players such
that they become non-increasing for non-increaseing budgets, i.e., that smax

pi
≤ smax

pi+1
for any

i ∈ [1, kmax − 1]. In particular, this yields Q′ ⊆ Qmax.
We know that every subset of i players of Qmax contributes at most c(M, i). If this

holds for the players with largest payments p1, . . . , pi, it continues to hold for all players. In
particular, this shows that the property is also satisfied for our payments sp(M). Hence, the
previous observations show that Q′ and sp(M) satisfy all the conditions in the definition of
payment maximal except for the maximality of k′.

Finally, we show that indeed k′ = kmax by induction on the the ordering in the assignment.
In particular, our invariant is that for any i ≤ kmax

i
∑

j=1

spj(M) ≥
i

∑

j=1

smax
pj

,

i.e., our routine extracts the maximum payment possible under the conditions of payment
maximal, which proves the result. Suppose that kmax = 1, then by previous observations
sp1(M) = smax

p1
. Consider iteration i, in which the payment spi(M) is determined and assume

the invariant holds up to i − 1. If both smax
pi

= spi(M) = cM (pi), the invariant is preserved.
Otherwise, if spi(M) < cM (pi), then we know that

i
∑

j=1

spj(M) = c(M, i) ≥
i

∑

j=1

smax
pj

by definition. This proves the lemma.

Hence, our procedure allows us to find Qmax. If QM = Qmax, then we call a set stabilized.
Otherwise, we know

∑

p∈QM−Qmax

cM (p) < c(M, |QM |)− c(M,kmax) , (6)

so the budgets of players of QM − Qmax do not allow them to pay the additional cost that
is generated by availability of M for them. Suppose each of these players switches, i.e., it is
dropped from QM and instead is included in QM ′ for the set M ′ which generated its budget
cM (p). Then a new solution R′ to the underlying covering problem evolves, in which again
all constraints are satisfied. In addition, for the change in cost we derive with Equation (6)
that

c(R′)− c(R) ≤
∑

p∈QM−Qmax

cM (p)− (c(M, |QM |)− c(M,kmax)) < 0 , (7)

the new solution R′ is cheaper. If there is an unstabilized set, then there is another solution
with smaller social cost. Hence, an optimum solution R∗ consists only of stabilized sets.
Finally, for stabilized sets we can use the assignment in Equation (5) to derive a cost shar-
ing. If a player p would in a deviation strive for availability of a different set M , she must
indeed contribute at least the difference in bundle cost that her availability generates. The
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budgets cM (p) for the sets are defined under the assumption, and they are used to bound the
contributions in sp. In addition, by the adaptive assignment of payments for s based on the
ordering, she must pay at least sp(M) for any bundle that makes a set M available to her.
Thus, s is a NE and a cost sharing of R∗. This proves the theorem.

Computing optimal Nash equilibria is clearly NP-hard. However, the improvement step by
removal of players from unstabilized sets allows to construct a local search procedure to obtain
(α, β)-approximate NE that are near-stable and near-optimal. Recall that the stability ratio
α specifies the relative incentive to deviate and β the approximation factor of the resulting
solution. Using an efficient approximation algorithm [36, chapter 13.2] to compute a starting
solution and the fact that each player holds exactly one element, the next theorem shows that
we can obtain (1 + ε,O(log k))-NE in polynomial time.

Theorem 6. For any constant ε > 0, a (1 + ε, β)-approximate Nash equilibrium in singleton
set multi-cover games can be obtained in polynomial time from any state representing a β-
approximation to the optimum social cost.

Proof. The proof relies on the local improvement step outlined before. We use a technique
from [6] for a minimum cost improvement to bound the number of improvement steps by a
polynomial in n, k and ε−1. In particular, we again start with a solution R to the underlying
covering problem, which represents a β-approximation of the optimum social cost. We denote
the cost of this solution by c(R). For every set that is in the cover, we reduce the cost of the

respective bundle that is to be bought by κ = εc(R)
(1+ε)nβ . We appropriately adjust the cost of

smaller bundles for this set in order to keep the ordering of bundle cost increasing with the
size. In particular, we derive an adjusted bundle cost, which is

c′(M, i) = min(c(M, i), c(M, |QM |)− κ) for i = 1, . . . , |QM | .

Hence, when considering paying for the current bundle QM of M the players must pay for all
but a cost of κ. For computing the budgets cM (p), however, we stick to the original definition
in Equation (4) with cost function c. In this way a set is stabilized even if a cost of κ of the
set remains unpaid. In addition, if a set is not stabilized, the budgets guarantee a minimum
improvement, i.e., Equation (7) now reads

c(R′)− c(R) ≤
∑

p∈QM−Qmax

cM (p)− (c′(M, |QM |)− c(M,kmax)) ≤ −κ < 0 .

The solution cost decreases by at least κ. This yields a maximum of at most (1+ε)nβ
ε

improve-
ment steps and proves polynomial running time.

Now suppose the algorithm has run to completion. We denote by n′ the number of
sets in the final solution R∗. There remains an unpaid cost of κ for each set. These costs
of n′κ are collectively paid for. Each player p contributes a share that corresponds to the
relative amount of investment that she was assigned in sp. Thus, we simply scale up the
assigned total contributions of players until the extra cost of at most n′κ is paid for. Using
|sp| =

∑

M∈M sp(M) the additional payment of player p is δp = (n′κ) · (|sp|/
∑

q |sq|). This
extra contribution of all the players is allocated arbitrarily to pay for κ at each of the n′ sets.
A player p might contribute δp to sets that are not needed to cover her elements. However,
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even if p removes this payment, the ratio of improvement for her is still small enough. We
denote by c(R′) the cost of the final solution and derive

δp = |sp|
κn′

c(R′)− κ
≤

εc(R)|sp|

β(1 + ε)(1− ε)c(R′)
≤ ε|sp| .

This resembles an argument in [6] and establishes that the amount added by scaling of pay-
ments allows a player to reduce her contribution by at most a factor of (1 + ε). This proves
the theorem.

The arguments in the proofs of Theorems 5 and 6 require only straightforward modifi-
cations for the case of metric and non-metric facility location games. For instance, we can
efficiently obtain (1+ ε, 1.861)-NE in metric facility location games [23]. We leave the details
as an exercise for the interested reader.

Corollary 5. For singleton facility location games the price of stability is 1. For any constant
ε > 0, a (1+ ε, β)-approximate Nash equilibrium can be obtained in polynomial time from any
state representing a β-approximation to the social cost.

5 Approximate Nash Equilibria

In this section we consider set cover games, which are set multi-cover games with b(e) = 1 for
all elements e ∈ E. While the lower bounds shown for vertex cover games extend to this case,
it is possible to obtain (f, f)-NE in polynomial time, in which f = maxe∈E |{M ∈ M, e ∈M}|
denotes the maximum frequency of any element in the sets.

Algorithm 2: (f, f)-NE for set cover games

sp(M)← 0 for all players p and sets M1

γp(e)← 0 for all players p and elements e2

for every player p = 1, . . . , k do3

Set cp(M) = minQ{c(M, |Q| + 1)−
∑

q∈Q sq(M)} for Q ⊆ [p− 1] and all M4

while there is an uncovered element e ∈ Ep do5

Let γp(e)← mine∈M cp(M)6

Increase payments: sp(M)← sp(M) + γp(e) for all M with e ∈M7

Add all purchased sets to the cover8

Reduce set costs: cp(M)← cp(M)− γp(e) for all M with e ∈M9

Theorem 7. Algorithm 2 returns a (f, f)-approximate Nash equilibrium for set cover games
in polynomial time.

The algorithm is an adjustment of the primal-dual algorithm for minimum set cover (see
for instance [36, chapter 15]). It can be implemented to run in polynomial time. In line 4
it determines the minimum cost player p has to contribute in order to make set M available
for her. In particular, we take all previous contributions into account and determine a set of
players Q ∪ p, for which the missing contribution to the bundle cost is minimal. The set Q
can naturally be restricted to subsets of [p− 1] = 1, . . . , p− 1 of previouly considered players,
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because for all other players all contributions are still 0. We can start with Q = ∅ and add
players q < p in non-increasing order of the contributions sq(M). In this process the desired
set Q with minimal missing contributions for the bundle cost will be found.

In Lemma 3 we show that the approximation ratio obtained by the algorithm is bounded
by f . This has most likely been observed before, for completeness a proof can be found in
the Appendix.

Lemma 3. Algorithm 2 returns a state with approximation ratio f .

Finally, we prove the bound on the stability ratio, and Theorem 7 follows.

Lemma 4. Algorithm 2 returns a state with stability ratio f .

Proof. We consider the p-th player after the execution of the algorithm and her best move
taking into account the payments of all other players q 6= p. For that purpose, we consider
for each set M the cost c′(M) = minQ⊂[k],p 6∈Q c(M, |Q|+ 1)−

∑

q∈Q sq(M). We have to show
that the sum of the payments of player p is not greater than f times the cost of the cheapest
set cover of Ep with respect to the costs c′. From the algorithm and the fact that bundle
costs are concave we know that sp(M) ≤ c′(M). Also from the algorithm, we know that for
any set M that includes one or more elements of Ep, we have sp(M) =

∑

e∈M∩Ep
γp(e), so for

any such M we have
∑

e∈M∩Ep
γp(e) ≤ c′(M). Now let us consider a minimum cost set cover

R∗
p of Ep with respect to c′. We have:

∑

M∈R∗
p

∑

e∈M∩Ep

γp(e) ≤
∑

M∈R∗
p

c′(M) = c′(R∗
p).

Since R∗
p is a set cover of Ep, the charge γp(e) of each element e in Ep is counted at least once

in the left-hand side above. Hence

∑

e∈Ep

γp(e) ≤
∑

M∈R∗
p

∑

e∈M∩Ep

γp(e) ≤ c′(R∗
p).

Now we can conclude
∑

M∈M

sp(M) ≤ f
∑

e∈Ep

γp(e) ≤ fc′(R∗
p),

which proves the lemma and Theorem 7.

In the special case of vertex cover ratios of f = 2 are tight even on regular vertex cover
games [9]. In contrast to the analysis for prices of anarchy and stability the analysis of the
algorithm cannot be strengthened to a ratio depending on g. The ratio can be as large as f
for any function g in games without sets that contain elements of more than one player.

For linear g the well-known greedy algorithm [36, chapter 2] achieves logarithmic stability
and approximation ratio simply by optimizing the cover independently for each player. In
contrast, for regular set cover games with g(i) = 1 for all i ≥ 1, the greedy algorithm yields
an unbounded stability ratio [25, Lemma 4.5]. It is an interesting open problem to obtain a
procedure with improved bounds for intermediate functions g.
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Appendix

Proof of Lemma 3

Proof. We consider for each set M the number kM of players that have some of their elements
in M . If an element e is owned by more than one player, we introduce a separate copy of
e for each player. Now we turn the orignal instance of the buy-at-bulk set cover problem
into a bundle instance, in which we replace each set M by the set of all possible bundles,
i.e., all possible 2kM subsets that are obtained by deleting a subset of the players and their
elements. For each such bundle we set the corresponding bundle cost. The bundle instance is
an instance of the regular set cover problem. Algorithm 2 is an adjustment of the primal-dual
f -approximation algorithm for minimum set cover. If this algorithm is run directly on the
bundle instance, we get a factor as large as f · 2k−1 as the dual payment for each element is
offered towards all (now potentially exponentially many) bundles. However, if two bundles
introduced by a single set M are bought, we can always feasibly lower the solution cost by
purchasing the bundle corresponding to the union of the two. Hence, the optimum solution
purchases at most one bundle for each set M . Thus, the bundle instance has the same
optimum solution as the original instance. The payments γp(e) computed by Algorithm 2
compose a feasible dual solution for the bundle instance, hence

∑

p∈[k]

∑

e∈Ep
γp(e) is a lower

bound on the optimum solution for both the bundle and the orignal instance.
The property that for each set there is only one purchased bundle is also used by Algo-

rithm 2. It restricts the attention only to one bundle using cp(M). In this way, it guarantees
that the dual feasible payment γp(e) is invested only at most f times for each player p and
each element e. This allows to rework the analysis of Algorithm 2 on the regular set cover
problem and to derive f as the approximation ratio.
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