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Abstract

We consider a general class of non-cooperative buy-at-bulk cost sharing games, in which
k players make investments to purchase a set of resources. Each resource has a certain
cost and must bought to be available to the players. Each player has a certain constraint
on the number and types of resources that she needs to have available, and she can specify
payments to make a resource available to her. She strives to fulfill her constraint with the
smallest investment possible. Our model includes a natural economy of scale: for a subset
of players capacity must be installed at the resources, and the cost increase for a resource
r is composed of a fixed price ¢(r) and a global concave capacity function g. This cost
can be shared arbitrarily between players.

We consider the existence and total cost of pure-strategy exact and approximate Nash
equilibria. In general, prices of anarchy and stability depend heavily on the economy
of scale and are O(k/g(k)). For non-linear functions g pure Nash equilibria might not
exist, and deciding their existence is NP-hard. For subclasses of games corresponding
to covering problems, primal-dual methods can be applied to derive cheap and stable
approximate Nash equilibria in polynomial time. In addition, for singleton games optimal
Nash equilibria exist. In this case expensive exact as well as cheap approximate Nash
equilibria can be computed in polynomial time. Most of these results can be extended to
games based on facility location problems.

1 Introduction

Game-theoretic aspects of large networks are a reseach area that has received much interest
recently. Networks like the Internet, which are subject to the strategic behavior of various
economic agents, play a crucial role in the development of modern societies. It is therefore im-
portant to understand the underlying dynamics that govern their development. In this paper
we consider a general class of non-cooperative cost sharing games. They can for instance serve
as model for crucial investment problems in networks like service installation, facility location
or various network design problems. Our games represent a fundamental model to study the
results of economic competition in a variety of investment tasks, which (telecommunication)
companies and other parties concerned with the development of the Internet face today, such
as topology creation, installation of amplification technology, server placement etc.

In particular, we consider games for k players that strive to obtain a number of resources
with minimum investment. There is a set of resources, and each resource has a cost. Each
player picks as a strategy a function that specifies her offer to each resource. If the sum of
offers made by a set of players exceeds the resource cost, it is considered available for these
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players. For each player there is a constraint on the number and types of resources that must
be available for her. She strives to fulfill this constraint with minimum total investment in
her strategy. This class of games, which is sometimes referred to as arbitrary cost sharing
games [6,19], has been studied intensively recently for a variety of scenarios involving network
design [3,4,6,19,27], facility location [24], and covering problems [9,24]. We will refer to such
games as reqular cost sharing games. In this paper, we consider a more realistic formulation
called buy-at-bulk cost sharing games, which incorporates the assumption that for increased
usage of resources players have to install a larger capacity. This aspect is modeled using
resource costs with economies of scale. Formally, a resource becomes more expensive when it
shall be available to a larger set of players. If resource r is available to a set of ¢ players, the
cost is ¢(r,i) = ¢(r) - g(i), in which ¢(r) is a fixed cost and ¢ is a non-decreasing and concave
function, which is used for every resource r. We will restrict our attention to pure states in
which players do not randomize over strategies. We consider existence and cost of pure Nash
equilibria and leave a study of mixed Nash equilibria for future work. In this paper the term
Nash equilibrium refers to pure ones throughout.

Regular cost sharing games have recently attracted significant research interest to model
self-interested agents that have to agree upon a cost sharing of a joint investment in unreg-
ulated settings. This approach is complementary to a number of recent works on designing
cost sharing games to obtain favorable equilibrium properties [15]. In contrast to the design
perspective, we do not assume the existence of a central authority that designs and maintains
the solution and dictates cost shares for each player. Instead we consider a scenario with
payment functions that allows players to freely specify their payment for each resource. On
the one hand, such an assumption is necessary when there is very little control over players
and their bargaining options, e.g., when considering cost sharing of global investments in the
Internet. Our model thus has the advantage of more freedom of choice and less required
control. On the other hand, these advantages come with a cost, which is the fact that Nash
equilibria might not exist (unlike, e.g., for fixed cost sharing mechanisms such as Shapley
value cost sharing [5,15]). Furthermore, prices of anarchy [30] and stability [5], which are the
ratios of the cost of the worst and best Nash equilibrium over the cost of a socially optimum
solution, respectively, can in general be as large as the number of players k. Nevertheless,
in some interesting special cases specified below, we can derive existence of optimal Nash
equilibria, which does not hold for Shapley cost sharing [5], and we show how to obtain an
arbitrary Nash equilibrium in polynomial time.

Our games include a variety of cases, in which computing a best response is NP-hard,
which is the case in many realistic optimization contexts. Then a player must use a heuristic
to find a good strategy, which will only be an approximation to the best response. Hence, we
consider approxrimate Nash equilibria — pure states that are as cheap and stable as possible
— and assess them with respect to their approximation to the social cost and the incentives
that they give players to deviate. The assumption of using approximation algorithms to find
best responses motivates relative performance ratios, which are standard in approximation
algorithms, rather than the more common notion of additive approximate Nash equilibria
in game theory (see also [14] for a discussion). In this paper an (a, 8)-approximate Nash
equilibrium is a state, in which each player can decrease his cost by unilateral deviation by at
most a factor «, and which represents a S-approximation to the socially optimum cost. We
refer to « as the stability ratio and S5 as the approximation ratio. For classes of set multi-cover
and facility location games we will show the existence of approximate Nash equilibria with
small stability and approximation ratios, which mitigates non-existence of pure exact Nash



equilibria. Our main interest, however, is to investigate the influence of the function g on the
efficiency and computational complexity of exact and approximate Nash equilibria.

In our games we explicitly incorporate different costs for different coalitions of players
that strive to obtain a resource. This gives rise to slightly subtle and potentially problematic
issues. Given a set of contributions of the players to a resource r, it can happen that the
contributions suffice to pay the cost ¢(r,i) for several distinct coalitions of players, but not
for their union. Consider for instance one player p that contributes c¢(r,2) to a resource r,
whereas all other players do not contribute to r at all. In this case r can be available to one
pair of players (p,q), for another player g # p. Every player might now believe that she is
q and the resource is available to her, but clearly the cost for the complete set of players is
not paid for. In general, this issue could be resolved by centralized mechanisms or separate
bargaining between players to determine which coalition gets preferred access. The presence
of such coordination features, however, is unlikely in unregulated settings, and making as-
sumptions about them would crucially limit our model. Instead, note that in our example
the ambiguities arise from the fact that player p is overcontributing to r, she only needs to
pay ¢(r,1) to make the resource available for herself. It is easy to observe that when such
irrational overcontribution is absent, the economies of scale guarantee that there is always
a unique maximal set of players to which r is available. Hence, separate conflict resolution
methods are unnecessary, because, as a byproduct, individual rationality resolves all such
ambiguities and conflicts. While we have mentioned above that computing a best response
strategy for obtaining a subset of resources can be NP-hard, our argument here requires only
that a player can determine the minimum contribution necessary to make a single resource
available to her. This can be done efficiently, and a simple procedure is implicitly given below
in Section 2 when we formally discuss availability of resources.

Related Work. In the area of competitive location there has been a high research activity
on game-theoretic models for facility location during the last decades [18,33]. In these models
facility owners are players that decide where to open a facility. Clients are mostly behavioral,
e.g., assumed to connect to the closest facility. A recent example of this kind of location game
is also found in [37]. According to our knowledge, however, none of these models considers a
situation where clients are in charge of independently creating connections and facilities.
Cooperative games have been studied quite intensively in the past (see [16,21] and the
references therein). In [16] the authors prove that the core of cooperative games based on
covering and packing integer programs is non-empty if and only if the integrality gap is 1.
They also show results on polynomial time computability of core solutions in a number of
special cases. In [21] similar results are shown for class of cooperative facility location games.
Some of these games have also been analyzed with respect to mechanism design. In addition,
cost sharing mechanisms have been considered for games based on set cover and facility
location. Every player corresponds to a single item and has a private utility for being in the
cover. The mechanism asks each player for her utility value. Based on this information its
goal is to pick a subset of items to be covered, to find a minimum cost cover for the subset
and to distribute costs to covered item players such that no coalition can be covered at a
smaller cost. A strategyproof mechanism allows no player to lower her cost by misreporting
her utility value. The authors in [17] presented strategyproof mechanisms for set cover and
facility location games. For set cover games this work was extended [32,35] to different
fairness aspects and formulations with items or sets being agents, for facility location games
computing cross-monotonic cost sharing schemes was considered in [34], and in [28] lower



bounds on their budget-balance were provided. In contrast, our approach is an extension of
non-cooperative games, which were first studied in [6] and recently in [3,4,19,27] in a network
design context. Our recent work [9,24] provided results for exact and approximate Nash
equilibria in covering and facility location games. Prices of anarchy and stability in these
games are generally as large as ©(k). None of these previous models, however, considers the
influence of different economies of scale.

Buy-at-bulk problems are a vivid recent research area in the analysis of network design
and facility location problems. In particular, starting with [7] network design problems with
economies of scale were considered. Typically, there are a number of source-sink pairs with
demands that must be routed by an unsplittable flow. Edge and/or vertex costs increase
with the demand routed over them. Recently, in [12,13] polylogarithmic approximation al-
gorithms were given. As a lower bound, logarithmic hardness results for general resource
costs were derived [2]. For special cases, e.g., single-souce or rent-or-buy problems [22] there
exist constant-factor approximation algorithms. This is also the case for unit-demand metric
facility location [23], for which an adjustment of recently proposed greedy algorithms [29]
yields the same approximation guarantees for the buy-at-bulk as for the regular problem.

Our Contribution. Buy-at-bulk cost sharing games studied in this paper are a new
general model to consider cost sharing in optimization problems with economies of scale. In
addition, as an extension they address a frequent criticism to regular cost sharing games. In
regular games there is only a fixed cost for each resource. As soon as this cost is paid for, the
resource is available to every player, no matter whether she contributes or not. Hence, the
game inherently allows free riders who can obtain a resource for free. This problem has been
addressed frequently [1,5,8,10,11,14,20,31] by fixing a Shapley sharing of resource cost. In
contrast, our model allows smaller groups of players to obtain the resource at cheaper costs.
This ensures that every player is eventually forced to contribute for availability. The severeness
of this force depends on the number of players that request a resource and is dynamically
affected by g. Some undesirable properties of the game like a high price of anarchy are
directly influenced, the price of anarchy is exactly ﬁ. Other properties are independent
of this adjustment, e.g., for any non-linear g there are games without Nash equilibria. The

price of stability is as large as © (ﬁ), and it is NP-hard to decide the existence of Nash
equilibria. Interestingly, some existence and optimality conditions for regular games can be
extended to hold for buy-at-bulk games. If each player wants to cover exactly one element,
optimal Nash equilibria exist, and (1 + €, §)-approximate Nash equilibria can be obtained
in polynomial time by a local search from any S-approximate starting state. In addition,
we provide a procedure to find an (arbitrary) exact Nash equilibrium in polynomial time,
which was not known before even for regular singleton games. These results are shown for set
multi-cover games, which were not studied before. In general, there are (f, f)-approximate
Nash equilibria even for non-singleton set cover games, where f is the maximum frequency of
any element in the sets. With the exception of the last result, all our proofs translate more
or less canonically to buy-at-bulk cost sharing games for facility location.

2 Model and Basic Properties

In a buy-at-bulk cost sharing game there is a set [k] of £ non-cooperative players and a set R
of resources. Each resource r € R has a fized cost ¢(r) > 0. In addition, there is a function



g : N — RY, which is non-negative, non-decreasing, concave, and has g(0) = 0 and g(1) > 0.
We normalize the function to obey g(1) = 1. For convenience, we use u(i) = g(i) — g(i — 1),
which is non-increasing and non-negative for all ¢ > 1. The bundle cost of resource r for a
set of ¢ players is c(r, i) = c(r) - g(i). A strategy s, of a player p is a function s, : R — RY. to
specify her non-negative payment to each resource. A state is a vector s = (sy,...,s;) with
a strategy for each player. We denote by s_, the same vector without s,,.

A resource r is available to a player p if there exists a subset @@ C [k] of players with p € @
that pays the corresponding bundle cost, i.e. > o sp(r) > c(r,|Q|). In particular, a player
can easily determine whether a given contribution s,(r) suffices to make r available given s_,,
of other players. Assume players ¢ € [k] — p are numbered in non-increasing order of s,(r).
Then r is available to p if and only if

(2

sp(r) = _min_ {e(ri+1) - D s} -
qg=1

Note that when ¢ = 0, player p is assumed to purchase the resource by herself, and we count

only the fixed cost ¢(r). For p we use p,(s) to denote the set of her available resources, and

we drop the argument whenever context allows.

Each player p has a player-specific constraint on p,. In this paper we consider constraints
that inherit a free-disposal property. A constraint can never be violated by having additional
resources available to the ones required. If p, does not fulfill the constraint, we assume
that the player is penalized with a prohibitively large cost, i.e., for her individual cost ¢, =
+00. Otherwise, if her constraint is satisfied, the individual cost is her total investment
cp(8p,5-p) = D ,crSp(r). A player wants to minimize her individual cost, so she strives to
fulfill her constraint with p, at the least possible investment. A Nash equilibrium (denoted
NE) is a state, in which no player can reduce her individual cost by changing her strategy.
We restrict our attention to pure states in this paper and leave a deeper study of mixed
NE for future work. As social cost of a state s of the game we use the sum of individual
costs ¢(s) = > cp Cp(s). A social optimum state minimizing social cost will be denoted
s* throughout. A («, 8)-approximate Nash equilibrium (denoted (a,3)-NE) is a state, in
which no player can reduce her individual cost by a factor of more than «, and for which
the social cost is a S-approximation to the minimum social cost over all states of the game.
More formally, for a (o, 3)-NE we have ¢,(s) < acy(sy, s—p) for every possible strategy s, and
c(s) < Be(s™).

Observe that in any NE and any social optimum state s* the available resources for each
player satisfy her constraints. Due to concavity of g, in any NE there is a unique maximal set
of players (denoted @, ), for which the resource is available. This set includes as subsets all
other sets of players, for which the resource is available. No subset of 7 players will contribute
more than ¢(r,7) to any resource r. The strategies exactly purchase the bundle cost ¢(r, |Q,|)
of every resource. Thus, a NE s represents a cost sharing of the set of resources. This property
can be assumed for s* as well, because in this case the cost distribution is irrelevant. Finding
s* is equivalent to finding a solution to the underlying buy-at-bulk minimization problem
given by satisfying all player constraints at minimum total cost. In this problem, a feasible
solution is a vector that indicates for each player, which resources are available to her such
that all constraints are satisfied.

Finally, the function g(i) € [1,4] for all ¢ > 1. Previously considered regular cost sharing
games for covering [9, 24], facility location [24], and network design [3, 4, 6, 27] were buy-



at-bulk cost sharing games with g(i) = 1 for all ¢ > 1. When speaking of games tied to
optimization problems in this paper — for instance vertex cover games — we generally refer
to the buy-at-bulk version. It is explicitly pointed out when regular cost sharing games are
under consideration.

2.1 Covering and Facility Location

The definition of cost sharing games allows a number of general classes of games to be defined
in this framework. A simple class, which we will repeatedly consider, is a (buy-at-bulk)
vertex cover game on an undirected graph G = (V, E'). The resources R = V, and each player
corresponds to a subset of edges E, C E. Her constraint is satisfied if for each edge there
is at least one incident vertex available to her. In this way we generalize to set multi-cover
games. There is a set of elements F, and the resources are given by R = M C 2F of subsets
M € M, such that M C E. Each player corresponds to a subset £, C E of elements. In
addition, there is a number b(e) > 0 for each element e € E. A player is satisfied with her
choice if for each element e € E, there are at least b(e) sets available to her that include e.

Note that for regular set multi-cover games the underlying optimization problem is some-
times termed constrained set multi-cover [36, chapter 13.2] as we do not allow to purchase
multiple copies of a set M. For general functions g we only assume that a set can be used by
multiple players paying the corresponding bundle cost. However, each set can only contribute
1 towards the covering requirement of each of the contained elements.

Facility location games can be obtained as follows. We are given two sets T' of terminals
and F' of facilities. The resources are facilities and connections, i.e., R = FU (T x F). A
player p corresponds to a subset of terminals 7), C T'. She strives to connect her terminals
to facilities. As both the connections and the facilities are resources, they both generate a
cost. We will refer to them as connection and opening costs, respectively. The constraint of
a player p is satisfied if for each of her terminals ¢ € T}, at least one connection (¢, f) and
the corresponding facility f € F' are available to her. If connection costs satisfy the triangle
inequality, we refer to these games as metric facility location games. Furthermore, a large
variety of buy-at-bulk variants of cost minimization problems can be formulated as a game
within this framework.

3 Cost and Complexity of Nash Equilibria

In this section we consider the behavior of prices of anarchy and stability in the game and
the existence of NE. Our first result concerns the price of anarchy.

Theorem 1. The price of anarchy in the buy-at-bulk cost sharing game is exactly k/g(k).

Proof. First, we prove the lower bound. Consider a vertex cover game on a star network, in
which every player owns a single edge and each vertex v has fixed cost c¢(v) = 1. If every player
contributes exactly the cost of the leaf node incident to her edge, a NE of cost k evolves. The
optimum solution, however, consists of the center vertex v and has bundle cost ¢(v, k) = g(k).
This proves that the price of anarchy is at least k/g(k).

For the upper bound consider any NE s of any buy-at-bulk cost sharing game with strate-
gies sp. In addition, let p, be a set of resources for player p, which has minimum total fixed
cost. Now consider a social optimum state s*. Denote by p; a subset of minimum fixed cost



of the available resources of player p in s*, which suffices to satisfy her constraint. As in terms
of fixed cost the set p,, is optimal for p, it follows that

Do) <Y elr) (1)

r€pp repy

The concavity of g ensures that with increasing demands for resources in p,, the cost to be
paid for player p can only decrease. Hence, it becomes ever more attractive for p to deviate
to a strategy, which contributes only to p,. However, as s is a NE, the fixed cost of p, is an
upper bound on current total contribution of p in s, because player p can always deviate and
purchase all resources in p, by herself:

Zsp(r) < Z e(r) .

reR r€pp

Since s is a NE, the cost of the purchased resources must be fully paid for. Using the bound

from (1) we get
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Consider the following procedure of constructing a lower bound on the cost of the social
optimum solution. Iteratively add players and the cost of their available resources p;, to the
solution. The presence of the i-th player on p; adds at least a cost (i) >, p ¢(r) to the cost
of s*. As p is monotonic decreasing, we can lower bound c¢(s*) by

k
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Note that the cost of the resources is determined by the final set @, and this is independent of
the ordering in which players are considered. Hence, the value of this lower bound is the same
for any ordering of the players chosen. By making k — 1 cyclic rotations of an initial ordering
of players, we ensure that each player appears at each position ¢ exactly once. Adding all
resulting inequalities (3) we get

S w0 Y elr) =tk 3 3 ete) < et
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Together with (2) this yields
k .
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which proves the theorem. O

In fact, the lower bound follows similarly for all classes of games that have been considered
in the literature and have the free disposal property. If for a game g(k) = k, the game exhibits
a decomposition property that allows for optimal NE. The previous theorem states that every
NE is a social optimum. In fact, a similar argumentation yields the reverse statement, i.e.,
for linear g an optimum NE is guaranteed to exist.



Corollary 1. If g(k) = k, then each Nash equilibrium is a social optimum state, and for each
optimum solution to the underlying buy-at-bulk problem there is a Nash equilibrium purchasing
it.

This observation highlights the main effect of g. The price of anarchy quantifies the
severity of coordination failure in a game. Steeper functions g, however, yield smaller savings
for a player from payments made by others. Intuitively, this decouples player incentives and
leads to the extreme case with g(k) = k, in which no player can expect savings through
contributions of others. In this case everyone optimizes “in her own world” and has to pay
fully for every resource obtained. Players do not need to coordinate anymore, and the result is
the absence of coordination failures. On the other hand, if g(k) = 1 for k£ > 1, the coordination
failure can be severe and the price of anarchy as large as k. The theorem yields an exact
characterization for all intermediate ranges of g.

Once g is sublinear, then players start profiting in larger coalitions. In this case, we show
that for a vertex cover game with sufficiently large number of players there is no NE.

V2

(a) (b)

Figure 1: (a) Vertex cover game without a NE. Edge labels indicate player ownership. Gray
parts are introduced when considering auxiliary players to deal with arbitrary values of k.
(b) Transformation into a facility location game. Filled vertices are facilities, empty vertices
are terminals. Labels of terminals indicate player ownership. Gray parts are introduced when
considering auxiliary players.

Lemma 1. If g(i) =i for i < ko and g(i) < i for i > ko, then for any k > ko there is a
vertex cover game with k players without a Nash equilibrium.

Proof. Consider the game in Figure 1(a). We first prove the lemma for kg = 1 and then
describe how to adjust the construction to any ky. Player 1 has a single edge between vertices
vy and vy, player 2 has two edges connecting u to v; and vy. The fixed cost ¢(vy) = ¢(v2) = 1,
and, with foresight, c(u) = 1 + x for any 1 > = > p(2). Now consider the possible covers
that players can use to satisfy their covering requirement. Let player 1 use v; and player 2
use u. In this case player 2 can use v; and ve with cheaper payments, because © > u(2).
Now consider the case player 2 uses v; and vo. Then she can contribute payments of at most
1+ z. Player 1 could switch to use vy, so she can at most contribute u(2). Together this
yields 14+ 2+ pu(2) < ¢(v1) + ¢(v2, 2) = 2+ u(2), because = < 1. The case for player 1 choosing
v9 is symmetric, hence there is no NE in this game.



Figure 2: Vertex cover game with a price of stability of © (ﬁ) Edge labels indicate

player ownership. Gray parts are introduced when considering auxiliary players to deal with
arbitrary values of kg

For a game with kg > 1 we simply add kg — 1 auxiliary players in the following way. Each
auxiliary player p owns edges of a star with a center w, of cost c(wp,) = 5. The leaves are the
vertices vy, ve, and u. Now we set c(vy) = ¢(ve) =1 and ¢(u) = 1+ with 1 > x > u(ko+1).
Hence, in a NE every auxiliary player will use all three leaf vertices, in this way “boosting”
the instance into the desired range where g becomes sublinear. Note, however, that the ky — 1
players together will never contribute more than g(kg — 1)c(u) = (kg — 1)c(u) to vertex u
(similarly for v; and vy). This allows to rework the analysis above. Let player 1 use v; and
player 2 use u. Even when joining the ky — 1 auxiliary players on u, player 2 still has to
contribute c(u) to get availability of u, because g(kg)c(u) = koc(u) and the other players
pay at most (kg — 1)c(u). In this case, it is better to join the ky — 1 auxiliary players and
player 1 on v; and vy, because x > pu(ko + 1). Now consider the case player 2 uses v;
and vy. Then she can contribute payments of at most 1 + x. Player 1 could switch to use
ve, where the cheapest way to obtain availability is to join all kg other players, yielding a
required contribution of at most u(ko + 1). Hence, the maximum payment of all players is
(ko — 1)(c(v1) + c(v2)) + (1 + ) + p(ko + 1) = 2kg — 1 + = + p(ko + 1), whereas the cheapest
way to guarantee all availabilities yields a cost of ¢(v1, ko) + c(va, ko + 1) = 2ko + (ko + 1).
This is a contradiction, because x < 1. The case for player 1 choosing v is symmetric, hence
there is no NE in this game. Finally, note that for a game with k > ky + 1 players we can
simply add players that posses edges, which do not interfere with the described game. ]

This game can be embedded into a game that results in a price of stability in © (ﬁ)

Theorem 2. For vertex cover games the price of stability is in © (ﬁ)

Proof. Consider the game in Figure 2. It is a combination of the triangle game of Figure 1(a)
and the star yielding maximum price of anarchy. Suppose every leaf vertex of the star and
the star center v, have constant fixed cost of 1 + (ko + 1). The fixed costs of v; and vy are
1, for w it is 2 > ¢(u) > 1 4+ p(ko + 1). There are ky — 1 auxiliary players k — ko + 2,...,k
that strive to cover a star centered at an additional vertex wy,. The cost c(w)) is prohibitively
high, say c(w,) = 10. Similar to the previous proof, in any NE the auxiliary players will
choose to make v., v1, v2, and u available, while their total contribution to each vertex is at



most ko — 1 times the fixed cost, e.g., for u at most (kg — 1)c(u). So the contribution of these
players boosts the game to a range where g becomes sublinear. Now suppose there is a NE,
in which player 3 does not contribute to w. This leaves players 1, 2 and the auxiliary players
with exactly the same game, for which we showed in the previous lemma that there is no NE.

In particular, the only possibility to stabilize players 1 and 2 is to let player 3 contribute
sufficiently to vertex u such that player 2 can lower his contribution to u, and this becomes a
best response. Hence, in any NE, player 3 contributes to u, which means v must be available
to her, but not v.. Now consider a NE s, in which v, is available to at least one of the
players 1,2,4,... , k — kg + 1. Then the total contribution of all players towards v, is at least
> pefk] Sp(ve) = c(ve, ko). As v is not available to player 3, we have s3(vc) = 0. In turn, this
implies player 3 pays s3(u) < c(ve)p(ko +1) = (1 + p(ko + 1))p(ko + 1) < c(u)pu(ko + 1),
because otherwise it would be cheaper to join a coalition purchasing v.. Now consider player
2. Note that in any NE there are at most kg + 1 players that have an incentive to pay for u -
the auxiliary players and players 2 and 3. Given the previous payment restrictions, we have
2 pelk]pe2 Sp(t) < c(u, ko +1) — c(u). Thus, player 2 must invest at least c(u) > 14 (ko +1)
to make vertex u available. This implies that she still has an incentive to join the auxiliary
players and player 1 on the vertices v; and vy for a total cost of 1+ u(kg + 1). This is a
contradiction to s being a NE.

Hence, in any NE none of the players 1,2,4, ...,k —ko+ 1 has the star center v, available,
which in turn means they all purchase their corresponding leaf vertices completely. We show
that in this case a NE s can be obtained. The cheapest way for player 3 to obtain v, would
be to join the auxiliary players (or equivalently purchase v, by herself), which would mean
to pay ¢(v.). Hence, we can assume s3(u) = ¢(v.), and the total contribution of the auxiliary
players and player 3 to wis 3 ¢y 0 Sp(u) = c(u, ko —1) +c(ve) > c(u, ko +1) —1—p(ko+1).
Thus, player 2 can contribute sa(u) < 1+ pu(ko + 1), and the bundle cost c(u, kg + 1) will
be paid for by auxiliary players and players 2 and 3. Player 1 can join the auxiliary players
and purchase either v; or vy, e.g., sj(v;) = 1. This gives no player an incentive to switch his
strategy.

The fact that a NE evolves only when the players 1,2,4,...,k — kg + 1 purchase their
corresponding leaf vertices implies that every NE has cost of at least (1 + u(ko + 1))k +
1+ (u(ko + 1))2 + (ko + 1) + 3(ko — 1). Note that there is at least one such NE. In the
social optimum, however, every incident player is covered by v. yielding a cost of at most
(T4 p(ko+1))g(k) +2+ pu(ko+ 1) +4(ko — 1). For fixed g, parameter kg is a constant, and
the ratio grows with k/g(k). O

The non-existence raises the question about the sets of games with and without NE.
Can the players efficiently determine whether they could possibly agree upon a state or they
are doomed to cycle? We answer this question in the negative. In particular, we derive a
construction to show that given any fixed, non-linear function g, there is a class of games
with sufficiently many players, in which determining existence of a NE is NP-hard.

Theorem 3. Given any non-linear function g, for which g(i) =i for i < ko and g(i) < i for
k > kg, then for each k > kg there is a class of vertex cover games with g and k players, for
which it is NP-hard to determine the existence of a Nash equilibrium.

Proof. We again restrict to the case kg = 1 and then extend it to arbitrary kg. Our construc-
tion reworks a proof for regular vertex cover games [9] and extends it to any sublinear function
g. Consider the extended triangle game in Figure 3. Assign fixed costs of ¢(u1) = c(ug2) = 1,
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Figure 3: Extended triangle gadget, edge labels indicate player ownership. Vertex costs are
defined in a way such that the game allows no NE. If a variable player purchases the fixed
cost of u, or a clause player contributes a sufficiently large amount to the cost of w, a NE is
possible.

c(v) = 1.5+ (1(2)/2), and c(w) = 1.25(1 + u(2)) + (©(2)?/2). In similar way as for the game
of Figure 1(a) we can argue that the game has no NE. This game is used in a reduction from
3SAT as follows. For each instance of 3SAT we introduce a wvariable player for each variable
and a clause player for each clause. Each variable player strives to cover two star networks,
a true star and a false star. The true (false) star has a number of leaves that equals the
number of non-negated (negated) appearances of the variable in the clauses. The star centers
are connected by an additional edge. They have a fixed cost that corresponds to the number
of leaves. All leaves have fixed cost 1.

At each leaf of a variable gadget we attach a different extended triangle in the way that
vertex uy of the triangle becomes the leaf vertex of the star. There are two gadget players
who own the edges of all the extended triangles. Finally, for each clause we introduce a clause
player. She owns a star with center vertex w.. With v = c(w)(1 + u(2)) — 1 — ¢(v)u(2)
the cost of c(w.) = 2v. This center is connected by exactly three edges to three different
extended triangles. In particular, we attach the edges at vertex w of the extended triangles.
If a variable occurs non-negated (negated) in the clause, we connect to an extended triangle
attached to the true (false) star of the variable gadget. Note that there are sufficiently many
gadgets installed such that in the final instance each extended triangle is connected to exactly
one variable gadget and one clause gadget.

First suppose the 3SAT instance has a satisfying assignment. If a variable is set to true
(false) in this assignment, we assign the variable player to pay the fixed cost for the center of
the false (true) and all the leaves of the true (false) star. In this way the extended triangles
for the true (false) star allow a stable cost sharing, in which player 1 pays the additional cost
of 11(2)c(u1) and c(uz) to make u; and wug available. Player 2 pays ¢(w) to w. These are both
best responses as 1+ 1(2) < ¢(v) and ¢(w) < p(2) + ¢(v). Thus, all those triangle gadgets are
stabilized. As the assignment is satisfying, this implies that for each clause there is at least
one stabilized triangle gadget. The remaining gadgets are stabilized as follows. The cost of
the center vertex w, of a clause is large enough to allow each clause player to pay a sufficiently
large share of the cost of the vertices w for two remaining gadgets. In particular, the clause
player can pay v = c(w)(1+ u(2)) — 1 —c(v)u(2) for w of each of the remaining gadgets. This
means that player 2 must contribute only a cost of 1+ ¢(v)u(2) to w, and then w is available
to both the clause player and player 2. Player 1 can pay c(v) to v. This obviously allows
player 2 to play a best response by contributing the remaining cost to vertex w, which in turn
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allows player 1 to stick to v in these gadgets. A NE evolves.

Now suppose there is a NE. The only way that extended triangles are stabilized is through
contribution of variable players at u or clause players at w. The cost of the center vertex of
a clause gadget allows the clause player to contribute at most 2v to all vertices w of incident
gadgets. This budget is sufficient to stabilize at most two extended triangles. Stabilization
occurs only when the contribution is at least v, because in this case the payment of player 2
to w is at most the cost of the optimal deviation to v and uy. Hence, there can be at most
two triangles which are stabilized by payments of the clause player. The remaining triangles
must be stabilized with contributions of the variable players. Observe that a variable player
can either purchase both star centers, or she can contribute to the set of leaves from at most
one, the true or the false star. In a NE for each clause at least one variable player must
stabilize an extended triangle by contributing to the corresponding leaf vertex. This induces
a decision for each variable player and translates directly into a satisfying assignment for the
variables.

To reduce the number of players we can merge the variable players with player 1 from the
extended triangles into one global player. In similar fashion, we can merge the clause players
with player 2 into another global player. This does not alter the incentives, because the edges
owned by these players are in disconnected parts of the graph, respectively. Each global player
will still have the same preferences and payoffs as the set of players she accumulates. This
proves the theorem for the case of ky = 1.

For larger values of kg we introduce auxiliary players as before. For each auxiliary player
we attach a vertex w, with a prohibitively large cost such as c(w,) = 100nm, where n and
m denote the number of variables and clauses in the 3SAT instance, respectively. Each of
the kg — 1 auxiliary players then owns a star with w, as center and all vertices from the
orignal game as leaves. In this way, in every NE all auxiliary players always strive to make
the complete instance available instead of w,. Each such player is willing to contribute the
fixed cost to every vertex from the original gadget. On the basis of this contribution the
arguments for the remaining players can be reworked as above. Note that kg is considered to
be a fixed constant that does not grow with the 3SAT instance. The cost of w, does grow,
however, only logarithmically in representation. Hence, the reduction is polynomial and the
theorem follows. O

3.1 Extension to Facility Location Games

Note that for every vertex cover game there is a metric facility location game that is equivalent
in terms of the structure of NE. We replace each edge e = (u,v) by a terminal ¢, and two
connections (t.,u) and (te,v) of connection cost ¢pq: = max,cy ¢(v). This creates the set
of terminals. The former set of vertices becomes the set of facilities. For the remaining
connections between facilities and terminals we assume a cost given by the shortest path
metric, i.e. these costs are at least 3¢,q, (see Figure 1(b) for an example). In a NE of this
game every player will purchase completely the corresponding connections for her terminals.
In addition, no player will purchase a connection of cost larger th