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Abstract. We study taxes in the well-known game theoretic traffic model due to
Wardrop. Given a network and a subset of edges, on which we can impose taxes,
the problem is to find taxes inducing an equilibrium flow of minimal network-
wide latency cost. If all edges are taxable, then marginal cost pricing is known to
induce the socially optimal flow for arbitrary multi-commodity networks. In con-
trast, if only a strict subset of edges is taxable, we show NP-hardness of finding
optimal taxes for general networks with linear latency functions and two com-
modities. On the positive side, for single-commodity networks with parallel links
and linear latency function, we provide a polynomial time algorithm for finding
optimal taxes.

1 Introduction

An important problem in traffic management is to set incentives for rational users to
act in a favorable manner. An effective means to achieve this is to set appropriate taxes.
In this paper, we study the problem of computing optimal taxes in the Wardrop model,
a well-studied model for traffic routing with important applications in road networks
and computer networks. In this model, we are given a network equipped with non-
decreasing non-negative latency functions mapping flow on the edges to latency. For
each of several commodities a fixed demand has to be routed between a source-sink
pair. The cost of a flow assignment is the weighted sum of travel times between the
source and target nodes. A flow that minimizes the total latency is called (socially)
optimal. A common interpretation of the Wardrop model is that flow is controlled by
an infinite number of selfish users each of which carries an infinitesimal amount of
flow. Each user aims at minimizing its path latency. An allocation, in which no user can
improve its situation by unilaterally deviating from its current path is called Wardrop
equilibrium. In general a Wardrop equilibrium is not socially optimal, i.e, it does not
minimize the total latency. The inefficiency of selfish flows has been extensively studied
in previous work [2, 19, 20, 22].

Taxing can be successful in improving total latency of equilibria. In this case users
are assumed to minimize the sum of their latencies and taxes. A fundamental result is
that using marginal cost pricing to tax every edge results in equilibrium flows that are
optimal with respect to total latency [1]. A serious drawback of marginal cost pricing is
that it requires every edge of the network to be taxable. In many situations there might
be technical or legal restrictions that prevent an operator from imposing a tax on all
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edges. Therefore, we adjust the model to a more realistic case in which only a subset of
edges can be taxed. The problem is to find a set of taxes for the subset of taxable edges
that minimizes the total latency of the resulting Wardrop equilibrium. To the best of our
knowledge, this generalization has not been considered before.

Taxing subnetworks can be more difficult and non-trivial. Consider a parallel link
network of two links and linear latency functions. If one can tax only one edge, the la-
tency cost is generally not monotone in the imposed tax. Using this insight, we carefully
construct networks with one taxable edge and several distinct optimal taxes. A combi-
nation of these networks establishes NP-hardness of the problem for two commodities
and linear latency functions in Sect. 3. On the other hand, for parallel link networks
with linear latency functions, we derive a precise structural analysis of optimally taxed
equilibrium flows in Sect. 4. This allows to construct a polynomial-time algorithm to
find optimal taxes. Most proof details are omitted and will be given in the full version
of the paper.

Related Work There is a huge amount of work addressing the inefficiency of equilib-
ria in the Wardrop model. Therefore, we only give a rough overview and concentrate
on the classical results and recent developments. The game theoretic traffic model con-
sidered in this paper was introduced by Wardrop [25]. Beckmann et al. [1] observe that
such an equilibrium flow is an optimal solution to a related convex program. They give
existence and uniqueness results for traffic equilibria (see also [7] and [20]). Dafermos
and Sparrow [7] show that the equilibrium state can be computed efficiently under some
assumptions on the latency functions.

The inefficiency of Wardrop equilibria is a well-known phenomenon [17], which
is exemplified by Braess paradox [2]. Bounding the inefficiency of equilibria, however,
has only recently been considered, initiated by Koutsoupias and Papadimitriou [15], and
for the Wardrop model by Roughgarden and Tardos [20]. Roughgarden [22] provides a
cumulative overview of the most important results that have been obtained.

There are several approaches that have been proposed to address the inefficiency of
equilibria. The effectiveness of taxes has been observed by Pigou [17] and generalized
by Beckmann et al. [1]. They show that marginal cost pricing completely eliminates
the inefficiency of selfish routing. Cole et al. [6] show existence of taxes inducing the
optimal flow for single-commodity networks and heterogeneous users that value tax
versus latency in an individual way. Fleischer [8] reduces the required taxes to linear
functions. In the more general setting of multi-commodities, Fleischer et al. [9] and
Karakostas and Kolliopoulos [11] independently prove the existence of optimal taxes.

Other approaches for coping with selfishness are, for example, proposed by Korilis
et al. [14], who give methods for improving system performance by adding additional
capacity to system resources. Cocchi et al. [4] study the role of various pricing policies
in networks with selfish users. Roughgarden [21] studies designing networks that ex-
hibit good performance when used selfishly and proves tight inapproximability results.
Cole et al. [5] show hardness of computing taxes minimizing the total user disutility
(latency plus tax) at equilibrium.

Korilis et al. [13] consider the problem of a Stackelberg leader, who in a first phase
can fix the routes for a certain fraction of the demand. In a second phase, selfish users



enter the system and route their own flow on top of the leader demand. The objective
of the leader is to minimize the resulting total cost of the total (both leader and selfish)
flow. Roughgarden [18] shows that it is weakly NP-hard to compute the optimal leader
strategy even for parallel links with linear latency functions. Kumar and Marathe [16]
give a FPAS for this problem. Kaporis and Spirakis [10] show that for single-commodity
networks the minimal fraction of flow needed by the leader to induce optimal cost can
be computed in polynomial time. Subsequent papers [24,23, 12] consider Stackelberg
routing in different variants for more general networks.

2 Preliminaries

We consider Wardrop’s traffic model originally introduced in [25]. We are given a di-
rected graph G = (V, E) with vertex set V, edge set E, a set of commodities [k] =
{1,...,k} specified by source-sink pairs (s;,¢;) € V x V, and flow demands d; > 0.
For single-commodity networks we normalize the demand to one. Considering only
parallel edges, we speak of parallel link networks and denote the set of links by [n] =
{1,...,n}. The edges are equipped with non-decreasing, continuous latency functions
le : R>g — R>o. We allow a set of non-negative taxes {7 }ccr to be imposed on a
subset of edges T' C E. We call edges in T taxable and edges in N = E \ T non-
taxable.

Let P; denote the admissible paths of commodity %, i. e., all paths connecting s; and
ti,andlet P = J,. (k] P;. A non-negative path flow vector (fp) pcp is feasible if it sat-
isfies the flow demands ) p.p. fp = d; for all i € [k]. Throughout this paper, we will
consider only feasible path flow vectors. A path flow vector (fp)pep induces an edge
flow vector f = (fe)ecr With fe = 3,41 2 pep,.ccp [P For single-commodity net-
works, we drop the index . The latency of an edge e € F is given by £.(f.) and the
latency of a path P is given by the sum of the edge latencies (p(f) = > cp Le(fe).
The latency cost of a flow is defined as C(f) = > pcp Cp(f)fp = D ccp le(fe)fe. A
flow f of minimal latency cost is called (socially) optimal. The cost of a path is defined
as latency plus tax, i.e., p(f)+ ), p Te. Finally, we call the quadruple (V, T, N, (d;))
an instance.

A flow vector is considered stable when no fraction of the flow can improve its
sustained cost by moving unilaterally to another path. Such a stable state is generally
known as Nash equilibrium. In our model a flow is stable if and only if all used paths
within a commodity have the same minimal cost, whereas unused paths may have larger
cost. We call such a flow Wardrop equilibrium.

Definition 1 A feasible flow vector f is at Wardrop equilibrium if for every commodity
i € [k] and paths Py, P, € P; with fp, > 0 it holds that {p,(f) + > .cp Te <

ZPZ (f) + ZeGPg Te-

In particular, without taxes, if f is at Wardrop equilibrium then all used paths in
commodity ¢ have equal latency L;(f) and the latency cost can be expressed as C(f) =
> €lk] L;(f)-d; (see [20, 25]). A classical result on taxing selfish flow, called marginal
cost pricing, is that with taxes 7, = . - £, (z.) for all e € E the resulting equilibrium



flow minimizes the latency cost. With £X(z) = (z-f.(x)) = L.(z) + - £, (x) denoting
the marginal cost of increasing flow in edge e we have the following lemma.

Lemma 1 ([1,7,20]) Let (V,T,0, (d;)) denote an instance in which x - £.(x) is a con-
vex function for each edge e. Then a flow f minimizes the latency cost w.r.t. (bc)ccr if
and only if it is at Wardrop equilibrium w.r.t. (€%)ccT.

In the restricted case with only a subset of edges being taxable such a result is
obviously out of reach. This directly leads us to the following definition.

Definition 2 Given an instance (V,T, N, (d;)), a set of taxes {T.}ccT is called opti-
mal, if there is an equilibrium flow f; w.rt. £ + T with C(f;) < C(f;) for all equilib-
rium flows fr w.rt. £+ 7' for any {7’ }ccr.

3 NP-Hardness for Multi-Commodity Networks

In this section we study the optimization problem of computing an optimal set of taxes.
We show that this turns out to be NP-hard even for the two-commodity case with lin-
ear latency functions. We start with an observation which allows us to discretise the
problem and enables us to prove the main result of this section.

Lemma 2 There is a family of instances (V,T, N 4, d a) acn with parallel link networks
allowing for two separated optimal tax values.

Proof. Consider a parallel link network, in which two nodes s and ¢ are connected via
three links with ¢1(z) = = + A and ¢2(x) = ¢3(x) = x. Suppose we can only tax the
third link. Set d4 = A(1 + @) Fortax 0 <7 < A(1 — @), the total demand is split
among links two and three at equilibrium. Since both used links are identical, 7 = 0 is
optimal with an induced cost of (£ + @)AQ. For A(1 — @) <T<AQ+ @) all

links are used and the corresponding cost function %7'2 - %AT + (% + @)A2 yields

an optimal tax of A/4 with cost (L + @)A2 as well. For 7 > A(1 + %) the latency
cost at equilibrium is (4 4 2¥2) A% Thus, both 7 = 0 and 7 = A/4 are optimal. O

Theorem 3 Given an instance (V, T, N, (d;)), the problem of computing optimal taxes
is NP-hard, even for only two commodities and linear latency functions.

Proof. We reduce from the PARTITION problem: given n positive integers aq, . . . , Gy,
is there a subset S C {1,2,...,n} satisfying > ,cga; = 3 >.r, a;? We will show
that deciding the PARTITION problem reduces to deciding if a given 2-commodity in-
stance (V, T, N, (d;)) with latency functions admits taxes inducing a Wardrop equilib-
rium with a given cost. Given an arbitrary instance of PARTITION specified by positive
integers ay, . . ., a,, we define an instance (Vi4,y, T7a,}, Nia,}; (dfa,})) as depicted in
Fig. 1. Let the set of taxable edges 7" consist of the bold edges. Commodity one has a
demand of A = H?:l a; toroute between s; = v; and t; = v, 41, the second commod-
ity has to route a demand of ) . a; between s, and t,. For i € [n] define the following
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Fig. 1. The network of an instance (Via,}, T{a;}s NVia;}s (d{a;})). The edges are labeled with the
latency functions. Unlabeled edges have latency 0. Taxes can be imposed on the set of bold edges
only.

2—4A_;+A?, ;
constants: A_; = H;L;m a; ,D; = ﬁ and E; = 2a;(D; + 1) = Qﬁff_*l.
We show that {a1,...,a,} is a YES instance if and only if there are taxes for in-

stance (Via,}, T{a;}s Nia}» (d{a,})) inducing a Wardrop equilibrium with cost of at
most C' = 2 A%+ 2(3", a;). The idea is that the minimal latency cost is reached if and
only if the tax between v; and v; 1 is 0 or a; (inducing a latency cost of A% /2 for this
set of edges) and the sum of all taxes is exactly >, a;/2. O

4 Parallel Links with Linear Latency Functions

We have seen that the latency cost is generally not monotone in the imposed tax even
in case of linear latency functions and one taxable link. Further, such instances do not
necessarily admit a unique optimal tax. These observations indicate that studying op-
timal taxes in parallel link networks might be intriguing. Our main goal in this sec-
tion is to provide an algorithm for finding optimal taxes in single-commodity parallel
link networks (V,T, N,1) in which every link ¢ € [n] has a linear latency function
l;(z) = a;x + b;. This setting has been of special interest in the related problem of
computing a Stackelberg leader strategy [18] described in the introduction. While this
problem is already NP-hard in this setting, it may be surprising that we will be able to
formulate a polynomial time algorithm for computing optimal taxes. Suppose the links
are numbered by N = {1,...,k}and T = {k+ 1,...,n},such that b; < ... < by
and bi+1 < ... < b,. We use this labelling for convenience, but note that the ordering
conditions apply only within N and I". We do not require b; < b; for all 7 € N and
j € T or any other restriction or relation between the links of NV and 7. W.l.o.g. we
assume at most one constant latency link in N U T".



4.1 Candidate Supports Sets

A flow f is at Wardrop equilibrium if and only if there is a constant L > 0, s.t. all used
links ¢ € [n] have the same latency L = ¢;(f;), whereas L < £;/(0) = b;s for unused
links ¢/ € [n]. Lemma 1 shows that a flow f is socially optimal if and only if there is
a constant C' > 0, s.t. C = £3(f;) = 2a;f; + b; for all used links j € [n], whereas
C < £%,(0) = bj: for unused links j* € [n].

Now consider an instance and increase the demand. The characterization yields that
in equilibrium and in optimum links j will be filled with flow in order of increasing
b;. Regarding cost the set of taxes will induce an equilibrium assigning flow to some
link set S C N UT. All used non-taxable links have the same latency L. Since we
allow for non-negative taxes only, the used taxable links will not have higher latency.
This property allows us to parametrize the problem by the set of taxable and non-taxable
links filled with flow. These sets turn out to be candidate support sets defined as follows.

Definition 3 Every set of the form S = {1,..., 1} U{k+1,..., b} withl1 <[ <k
and k + 1 <ls < nis called a candidate support set.

Note that there are at most n? /4 candidate support sets for any instance.

Lemma 4 Let f denote a socially optimal flow for a parallel link network in which
every edge is taxable. Then {1(f1) < l3(f2) < ... < L(fn)-

Proof. The set of used links is of the form {1,...,l} for some I < n. Since f is a
minimal latency flow, all links j € {1,...,[} have equal marginal cost, and there is a
constant C' > 0 with 2a; f; + b; = C. Thus, ¢;(f;) = a;f; +b; =C/2+b;/2. O

Let us first argue that the consideration of candidate support sets is indeed sufficient
to find optimal taxes. Imagine two separate commodities, routing demands d and 1 —
dn exclusively over N and T, resp. In such an instance, it would be optimal to set
marginal cost taxes on 7', and the set of used links form a candidate support set.

The difference to our setting is that demand can change between /N and 7', and thus
we also need to ensure that latency and taxes create an equilibrium. If the optimal flow
in T yields latencies smaller than L, then we can satisfy the latency constraint by setting
appropriate non-negative taxes. Otherwise, the latency restriction reduces the flow on
some used links. However, if the flow on a link is smaller than in the optimum due to
the latency constraint, the marginal cost on this link is also smaller. Therefore, it is still
optimal to fill the link with flow to the maximal possible extent (see Lemma 5). For
all links not affected by the latency restriction, however, it is optimal to equalize the
marginal costs, and the allocation of flow follows the ordering of offsets. In conclusion,
the set of links allocated with flow remains a candidate support set.

4.2 Problem Parametrization

Fixing numbers ng and tg yields a candidate support set S = Ng U Ts with Ng =
{1,...,ng}and Tg = {k+1,...,tg}. For S denote by dn, and 1 — d, the demand
routed over Ng and T, respectively. Cn, (dn) is the latency cost for an equilibrium
flow (fi)ieng of demand d . Denote by Cr, (1 — dy) the latency cost for an optimal



flow (f;)jery of demand 1 —d, additionally fulfilling the latency restriction £;( f;) <
L(dny), where L(dy ) denotes the unique latency of all used links in Ng for a demand
of dng.Let C(dng) = Cng(dng) + Crg (1 — dng ) denote the latency cost of the flow.

The problem of finding a set of optimal taxes for a fixed set S can be formulated
as follows: Minimize the cost function C, s.t. the flow for IV is at equilibrium and the
remaining flow on T is optimal subject to the additional constraint ¢;(f;) < L(dny).

We will show that, if this minimization problem has a solution, the cost function
C(dn) is piecewise quadratic with at most n breakpoints and the optimal demand
distribution (d%, o+ 1 —dy,) for Ng and Ty is efficiently computable. Iterating this for
all possible sets S enables us to find optimal taxes.

We call a link j € T full wrt. some L > 0if f; > 0 and its latency equals
the constraint value, i.e., if £;(f;) = L orif f; = 0 and ¢;(0) = b; > L. We call
a link relaxed if f; > 0 and ¢;(f;) < L. When shifting demand from N to T, the
common latency L of used links in N decreases, while the demand on 7T increases. In
the corresponding optimal flow on T respecting the constraint value, however, a full
link never becomes relaxed. More formally, consider an instance (V, T, 0, d) and let f
denote the optimal flow respecting ¢;(f;) < L for all <. With Lemma 4 we can assume
the full links to form a set {p,...,n} for some p > 1. Furthermore, assume there are
L’ < L and d’ > d such that there is a flow of demand d’ to T" such that all used links
have latency at most L’. For all non-constant links, we define ¢; (L) to be the flow f;
such that a; f; + b; = L if b; < L, and 0 otherwise.

Lemma 5 The optimal flow f' respecting £;(f!) < L' for all i assigns ¢; (L") flow to
all non-constant links i € {p1,...,n} for some uniquely defined p; < p.

4.3 A Polynomial-Time Algorithm for Computing Optimal Taxes

Considering an optimal flow for an increasing demand, the links become used in order
of their offsets. Lemmata 4 and 5 show that the links become full w.r.t. some bound in
reverse order. Thus, we can determine the lower and the upper bound d%is’“ and dy*
for dng such that the following holds: There is an equilibrium flow of demand dx on
N using exactly the links Ng and there is an optimal flow of demand 1 — dy, on T’
respecting the bound L(dy ) using exactly the links 7.

Given a candidate support set S, we compute the optimal demand distribution (dy, 1 —
dng). If such a distribution exists, we call S feasible. The corresponding demand in-
terval [d%isn, d%gx] can be computed in polynomial time by solving systems of linear
equations.

Lemma 6 The cost function C(dyy) is piecewise quadratic for dyg € [N, dy>]
with at most n breakpoints for every feasible candidate support set S. The breakpoints
can be computed in polynomial time.

Proof. We show that while C'w is a quadratic function, C'r, and therefore C is piece-
wise quadratic with at most n breakpoints.

Suppose f is an equilibrium flow for Ng of demand d . There is some L(dy,) > 0
with L(dng) = a; f; +b; forevery i € Ng. With ENS fi = dng, we infer that L(dy, )



Algorithm 1 OPTTAX (V, T, N, 1)

: for every candidate support set S do

if S feasible then
compute the breakpoints dNg = dNgpi1s- > ANgy, ANg,
dig + argming; ., MiNgy efdn,, C(dng)

1
2
3
4
5: end if
6
7
8

__ gmax
Ng

ANg;pq]

: end for
0 8%« argming C(dy )
: compute optimal flow on T's« respecting L(dx . ) with ZTS* f; = 1 —dx,. and set
fi=0forjeT\Tsx.
9: settaxes 7; « L(dyg, ) — 4;(ff) forj €T

is linear and C'vg(dng) = L(dng) - dng is quadratic. Considering Crg, we need to
respect the latency constraint for increasing 1 — d . The cost function C'r; turns out
to be quadratic with at most n breakpoints. These breakpoints, i.e., the demand values
for which the number of full links increases, can be calculated by solving systems of
linear equations. a

Given that restricting to candidate support sets is sufficient for finding optimal taxes,
the following result holds.

Theorem 7 Given an instance (V, T, N, 1) with parallel links and linear latency func-
tions, Algorithm OptTax(V,T,N,1) computes a set of optimal taxes (7;)jer in polyno-
mial time.
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