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Abstract. In this paper we consider the influence of link restrictions
on the price of anarchy for several social cost functions in the following
model of selfish routing. Each of n players in a network game seeks
to send a message with a certain length by choosing one of m parallel
links. Each player is restricted to transmit over a certain subset of links
and desires to minimize his own transmission-time (latency). We study
Nash equilibria of the game, in which no player can decrease his latency
by unilaterally changing his link. Our analysis of this game captures
two important aspects of network traffic: the dependency of the overall
network performance on the total traffic t and fluctuations in the length
of the respective message-lengths. For the latter we use a probabilistic
model in which message lengths are random variables.
We evaluate the (expected) price of anarchy of the game for two social
cost functions. For total latency cost, we show the tight result that the
price of anarchy is essentially Θ (n

√
m/t). Hence, even for congested net-

works, when the traffic is linear in the number of players, Nash equilibria
approximate the social optimum only by a factor of Θ (

√
m). This effi-

ciency loss is caused by link restrictions and remains stable even under
message fluctuations, which contrasts the unrestricted case where Nash
equilibria achieve a constant factor approximation. For maximum latency
the price of anarchy is at most 1+m2/t. In this case Nash equilibria can
be (almost) optimal solutions for congested networks depending on the
values for m and t. In addition, our analyses yield average-case analyses
of a polynomial time algorithm for computing Nash equilibria in this
model.

1 Introduction

Recently, there has been a lot of interest in considering network users
as non-cooperative selfish players that unilaterally seek to optimize their
experienced network latency. This serves to quantify the deterioration
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of the total system performance, and it builds a foundation to derive
protocols taking possible selfish defection into account. In their seminal
work [13], Koutsoupias and Papadimitriou initiated this research direction
by introducing the KP-model for selfish routing. Each of n players seeks
to send a message with respective length tj across a network consisting of
m parallel capacitated links. The cost of a player j, called his latency `j , is
the total length of messages on his chosen link i, scaled with the respective
capacity. The latency corresponds to the duration of the transmission
when the channel is shared by a set of players. Now each player strives to
optimize his personally experienced latency by changing the chosen link
for his message. He is satisfied with his link choice (also referred to as his
strategy) if by unilaterally changing his link he cannot decrease his cost.
If all players are satisfied, then the system is said to be in a stable state,
called a Nash equilibrium.

In order to relate selfishly obtained stable solutions with those of
an (imaginary) central authority, it is necessary to distinguish between
the cost of the individual players and the social cost of the whole sys-
tem caused by the community of all players. Naturally, depending on the
choice of a social cost function selfish behavior is not always optimal. Con-
sequently, the question arises how much worse a Nash equilibrium can be
than the optimum. Koutsoupias and Papadimitriou [13] introduced the
price of anarchy which is the ratio of the social cost of the worst Nash
equilibrium and the optimum social cost, and proved initial bounds for
special cases of the KP-model with maximum latency cost. Subsequently,
generalized models with different latency functions, social cost functions
and network topologies were considered for instance in [6, 5, 8, 9, 1, 4]. For
a recent survey on results related to network congestion games see [12].

In this paper we treat a generalization of the KP-model in which
the link set a player i can choose from is a restricted subset of all links
available. This model was treated before with maximum latency and poly-
nomial load social cost. For maximum latency computing the social op-
timum solution is a special case of generalized assignment problems and
the single source unsplittable flow problem [14, 11]. Gairing et al. [7] gave
a (2 − 1/tmax)-approximation algorithm for optimizing the social cost.
They also showed how to compute in polynomial time a Nash equilib-
rium from any given starting solution without deteriorating the social
cost, so the price of stability is 1. In [2] the price of anarchy for maxi-
mum latency was shown to be O(log m/ log log m) and to decrease with
the ratio r = cost(s∗)/tmax. In particular, for r = Ω(log m/ε2) it is 1 + ε.
Quadratic load social cost was recently studied in [3, 18]. Suri et al. [18]



show that the price of anarchy for identical machines is at least 2.012067,
and Caragiannis et al. [3] provide a matching upper bound.

In contrast to previous work, we capture two important aspects of
network traffic: the dependency of the overall network performance on
the total traffic t =

∑
j tj and fluctuations in the length of the respec-

tive message-lengths tj . In our model of fluctuation, the message-lengths
are random variables Tj and the quality of equilibria is judged with the
expected value of the price of anarchy, respectively stability. This idea
of an expected price of anarchy was recently introduced by Mavronicolas
et al. [15] (under the name diffuse price of anarchy) in the context the
unrestricted KP-model with a cost-sharing mechanism. We considered
the expected price of anarchy in [10], in which we were mostly concerned
with the pure Nash equilibria of the unrestricted KP-model and the to-
tal latency

∑
j `j of all players. One main conclusion therein was that

for highly congested networks, i.e., t being linear in n, Nash equilibria
approximate the optimum solution within a constant factor.

In this paper, we characterize the loss of performance of Nash equi-
libria due to the presence of link restrictions. We show that the prices of
stability and anarchy are essentially Θ (n

√
m/t) for total latency. Perhaps

surprisingly this behaviour remains stable even in the stochastic counter-
part. This means that – in contrast to other related average-case analyses,
e.g., [17, 16] – the averaging effects of fluctuations do not necessarily yield
improved expected prices of the game.

Our results foster an interesting new research direction connecting
game theory and average-case analysis in the context of traffic allocation
and scheduling. We consider efficiency measures including randomness by
presenting tight bounds on the (expected) price of anarchy. By captur-
ing a notion of fluctuation, we bring a network game closer to practice.
Secondly, our analysis yields an average-case analysis on the expected
performance of a generic approximation algorithm for various scheduling
problems. Most notably, our analysis holds under weak probabilistic as-
sumptions. This extends previous work, e.g. [10, 17, 16] on average-case
analyses of scheduling on identical unrestricted machines.

1.1 Model and Notation

We formulate the KP-model with scheduling terminology, where each
link corresponds to one of m identical parallel machines. There are n
players in the game, and each player seeks to assign a task to one of
the machines. Each task j has a certain finite length tj . We scale all
task lengths by a positive factor without changing the approximation



factors, i.e., we assume normalization tj ∈ [0, 1], and w.l.o.g. n ≥ m
throughout. With each player j we associate a set Aj 6= ∅ of allowed
machines, and each player is restricted to assignment only to machines
in the set Aj . The strategy of a player is the choice of one of the allowed
machines. A schedule is a function s that maps each task j to a machine
i obeying the restrictions Aj . The total length on machine i is its load
wi =

∑
k on i tk. Each machine i executes its assigned tasks in parallel and

hence the finishing-time of a task j is proportional to the total length on
the chosen link i, i.e., its latency is `j =

∑
k on i tk = wi. The disutility

of each player is the latency of its task, i.e., the selfish incentive of every
player is to minimize the individual latency.

A schedule s is said to be in a (pure) Nash equilibrium if no player
can decrease his latency by unilaterally changing the machine his task
is processed on. More formally, the schedule s has the property that for
each task j

wi + tj ≥ ws(j) holds for every i ∈ Aj . (1)

This game is known to always admit pure Nash equilibria, see e.g. [7].
Schedules are valued with a certain (social) cost function cost : Σ →

R+, where Σ denotes the set of all schedules. A Nash equilibrium is
simply a schedule that satisfies the stability criterion (1), whereas an
optimum schedule minimizes the cost function over all possible schedules.
Hence, it is natural to consider how much worse Nash equilibria can be
compared to the optimum. The price of anarchy [13] relates the Nash
equilibrium with highest social cost to the optimum, i.e, it compares the
“worst” Nash equilibrium with the best possible solution. In contrast, the
price of stability relates the Nash equilibrium with lowest social cost to
the optimum, i.e, it compares the “best” Nash equilibrium with the best
possible solution.

1.2 Our Concepts and Results

The main matter of this paper is to investigate the influence of link restric-
tions on Nash equilibria. We consider two different social cost functions:
total latency

∑
j∈J `j and maximum latency maxj∈J `j .

Our focus lies on two important aspects of network traffic: the in-
fluence of the total traffic upon the quality of Nash equilibria and the
question if fluctuations in the task-lengths have an positive averaging ef-
fect. In terms of fluctuations, we consider the following natural stochastic
model. Throughout, upper-case letters denote random variables, lower-
case letters their realisations, respectively constants.



Let the task-length Tj of a task j be a random variable over a bounded
interval with expectation E [Tj ]. As before, a schedule is a Nash equilib-
rium if (1) holds, i.e., if the concrete realisations tj of the random variables
Tj satisfy the stability criterion. Consequently, the set of schedules that
are Nash equilibria is a random variable itself. We define the expected
price of anarchy

EPoA(Σ) = E
[
max

{
cost(S)
cost(S∗)

: S ∈ Σ is a Nash equilibrium
}]

.

The expected price of stability is obtained by replacing the maximum by
the minimum in straightforward manner. Notice that each expected value
is taken with respect to the random task-lengths Tj . This means that the
expectation is accumulated by evaluating the prices for each outcome tj
of the random variables Tj and weighting with the respective probability.

In Section 2 we consider total latency
∑

j `j , for which [10] shows that
prices of stability and anarchy are Θ (n/t), i.e., they are both decreasing
with t. Theorem 1, respectively Theorem 2, provide tight lower and upper
bounds for the case with link restrictions: we show that the prices of an-
archy, respectively stability are Θ (n

√
m/t). The question arises whether

fluctuations in task-lengths help reducing this bound. Unfortunately, we
show that the bounds remains stable. The expected prices of anarchy and
stability are Θ (n

√
m/E [T ]) under relatively weak assumptions on the

probability distributions of the Tj .
For maximum latency maxj `j , it is already known (see [2]) that the

price of stability is 1 and that the price of anarchy follows a tradeoff
depending on the largest task length and the cost of the social optimum.
We show a similar tradeoff in Theorem 4: the price of anarchy is at most
1 + m2/t and even in expectation it is at most 1 + m2/E [T ]. Hence,
Nash equilibria are almost optimal for congested networks even with link
restrictions.

Moreover, there is an algorithm due to Gairing et al. [7] which com-
putes pure Nash equilibria for our game in polynomial time. Our analyses
of the expected prices of anarchy of these social cost functions provide
average-case analyses of that algorithm, see, e.g. Theorem 3.

2 Total Latency Cost

In this section, we consider the social cost function total latency cost(s) =∑
j `j . Throughout, let pi denote the number of players that use machine

i, let wi =
∑

j on i tj be the load of machine i. Observe that we have the



equality cost(s) =
∑

j `j =
∑

i piwi for every feasible solution s. It will be
convenient to denote t =

∑
j tj and n =

∑
i pi throughout. Recall that we

normalize to tj ∈ [0, 1]. Before considering the general case, we restrict
ourselves to games with so-called clustered restrictions.

Clustered Restrictions. We speak of clustered restrictions in the game
if the set A of allowed machines can is characterized as follows. Let J
denote the set of tasks and let J1, . . . , Jk be a disjoint partition of the tasks
in non-empty sets. Let M denote the set of machines and let M1, . . . ,Mk

be a disjoint partition of the machines in non-empty sets. Let j ∈ Ji

for some i ∈ {1, . . . , k} then, the set of allowed machines for task j is
Aj = Mi. This means that j is allowed to use exactly those machines in
the class Mi, but no others.

Theorem 1. For clustered restrictions A = {A1, A2, . . . , An} with task-
partition J1, . . . , Jk and machine-partition M1, . . . , Mk we have:

(1) Define ε1 = ε1(n,m, t) = 2nm/t2. The prices of stability and anarchy
of the game are

n
√

m

4t
(1− o (1)) ≤ PoS(Σ) ≤ PoA(Σ) ≤ n

√
m

t
+ ε1. (2)

The lower bound holds for t ≥ m; the upper for t ≥ 2.
(2) Define ε2 = ε2(n, m,E [T ]) = 2nm/E [T ]2. Suppose T =

∑
j Tj with

E [T ] = ω
(√

n log n
)
, where the Tj are independent. Then the expected

prices of stabilty and anarchy of the game are

n
√

m

4E [T ]
(1−o (1)) ≤ EPoS(Σ) ≤ EPoA(Σ) ≤

(
n
√

m

E [T ]
+ ε2

)
(1+o (1)).

(3)
The lower bound holds with the additional assumption that E [T ] ≥ m.

For the proof of an upper bound notice that the clustered restrictions
divide the problem into a set of unrestricted problems corresponding to
the aforementioned partition into task sets J1, . . . , Jk and the machine
sets M1, . . . , Mk. Define ci =

∑
j∈Ji

tj as the load of a cluster. Further
let mi = |Mi| and ni = |Ji|. For the next lemma define the vectors
n = (n1, . . . , nk), c = (c1, . . . , ck) and m = (m1, . . . ,mk). Furthermore,
let F(n, t, m) ⊂ Nk × Rk × Nk denote the subspace of feasible (n, c, m),
which simultaneously satisfy all the following constraints:

ni ≥ ci ci > 0 mi ≥ 1
∑

i ni = n
∑

i ci = t
∑

i mi = m.



Lemma 1. Define the function f(n, c, m) = (
∑k

i=1
nici
mi

)/(
∑k

i=1
c2i
mi

). We
have that f(n, c, m) ≤ n

√
m/t for (n, c, m) ∈ F(n, t, m).

Proof. For a geometric interpretation and intuition of the function f no-
tice that for fixed ni, the numerator is a hyperplane and the denominator
is an elliptic paraboloid in the ci. Therefore, f has a unique maximum,
which can not be “very far” from the extremum of the elliptic paraboloid.

Without loss of generality, let c1
m1

≥ ci
mi

. Then for the numerator it

is easy to see
∑k

i=1
nici
mi

≤ n c1
m1

. This gives f(n, c, m) ≤ (nc1
m1

)/(
∑

i
c2i
mi

).
We strive to find the maximum value that this upper bound can attain.
Hence, we try to maximize f1(c,m) = ( c1

m1
)/(

∑
i

c2i
mi

) subject to c1
m1

≥ ci
mi

,
ci > 0, t =

∑
i ci, mi ≥ 1 and m =

∑
i mi for all i ≤ k.

How large can f1 be? Let us fix values for m1 and c1. Then the de-
nominator is minimized with the choice of ci = mi(t− c1)/(

∑
`≥2 m`) for

the variables c2, . . . , ck. Thus, we incorporate this assumption and get the
remaining problem depending only on c1 and m1, which is to maximize
f2(c1,m1) = ( c1

m1
)/( c21

m1
+ (t−c1)2

m−m1
) subject to 0 ≤ c1 ≤ t and 1 ≤ m1 < m

Now assuming a fixed value for m1, the best choice for c1 is c1 =
t
√

m1
m . Substitution and simplification reduces the problem to optimize

only w.r.t. m1, i.e. to maximize f3(m1) = ( 1√
mm1

)/( t
m + (1−

√
m1/m)2t

m−m1
)

subject to 1 ≤ m1 < m. It is a technical, but straightforward, exercise to
show that for the first derivative f ′3(m1) ≤ 0 for all 1 ≤ m1 < m. Hence,
f3(m1) is monotonic decreasing and the maximum obtained with m1 = 1:

f3(m1) ≤ 1/
√

m

t/m + (1−
√

1/m)2t/(m− 1)
≤ 1/

√
m

t/m
=
√

m

t
.

We independently reduced the number of variables and finally derived
m1 = 1. A retrospective inspection shows that with our choices the con-
straints for f1(c, m) and c1

m1
≥ ci

mi
are satisfied. Thus, the upper bound for

f3 results in an upper bound for f1, and finally in f(n, c, m) ≤ n
√

m/t.
This proves the lemma. ut

Finally, we need the following simple lemma, which is an adjustment
from [10] to identical machines.

Lemma 2. For every Nash equilibrium s for the selfish scheduling game
without restrictions on identical machines cost(s) ≤ n(t+2m)/m. For an
optimum schedule s∗ for such a game we have that cost(s∗) ≥ t2/m.



Proof (Proof of Theorem 1.). For the upper bound in (2) we may apply
Lemma 2 to the unrestricted problems given by task sets J1, . . . , Jk and
the machine sets M1, . . . ,Mk. With Lemma 1 we obtain

cost(s)
cost(s∗)

≤
∑k

i=1
ni(ci+2mi)

mi∑k
i=1

c2i
mi

≤ n
√

m

t
+

2n
∑k

i=1
c2i
mi

≤ n
√

m

t
+

2mn

t2

To prove (3) we consider the probability that T deviates “much” from
its expected value. Recall that T =

∑
j Tj is a random variable. Let the

random variables S0 = E [T1]+· · ·+E [Tn] and Si = T1+· · ·+Ti+E [Ti+1]+
· · ·+ E [Tn] for i = 1, . . . , n. The sequence S0, S1, . . . , Sn is a martingale,
and differences are bounded by one: |Si−Si−1| ≤ 1. Therefore we may ap-
ply the Azuma-Hoeffding inequality: Pr [|Sn − S0| ≥ λ] ≤ 2 exp(−λ2/2n).
With the choice λ =

√
4n log n we have Pr

[|T − E [T ] | ≥ √
4n log n

] ≤
2/n2. Clearly PoA(Σ) ≤ n always holds because each task is counted at
least once but at most n times. With E [T ] = ω

(√
n log n

)
we find

EPoA(Σ) ≤ E
[
min

{
n,

n
√

m

T
+

nm

T 2

}]

≤ n
√

m

E [T ]−√4n log n
+

nm

(E [T ]−√4n log n)2
+ n

2
n2

=
(

n
√

m

E [T ]
+

nm

E [T ]2

)
(1 + o (1)).

This proves the upper bounds. For the lower bounds we construct a deter-
ministic task distribution and restrict the tasks to two sets of machines.
We restrict the majority of tasks to a set of 2 machines, which creates a
high price of stability similarly to the unrestricted case [10]. The remain-
ing tasks on the remaining m − 2 machines are used to account for the
total load, and their presence reduces the price of stability to essentially
Θ (n

√
m/t). Details appear in the full version. ut

General Restrictions. We continue with general restrictions, i.e., the
sets Aj 6= ∅ are not constrained in any further way. Our main result states
that the price of anarchy for general restrictions behaves similarly as for
clustered restrictions.

Theorem 2. Under the assumptions of Theorem 1, the bounds stated
therein remain valid if ε1 and ε2 are replaced by ε1 = 2nm2

t2
and ε2 = 2nm2

E[T ]2
.



We relate the price of anarchy with clustered restrictions to general
restrictions. This requires an additional concept, which is closely related
to clusters. Thus we use similar notation.

Definition 1. For a Nash equilibrium, label machines in order of their
loads w1 ≥ w2 ≥ · · · ≥ wm. A partition of the set of machines into groups
M1, . . . , Mk has the property that for every group Mi = {ri−1 + 1, . . . , ri}
the loads of machines wri − wri+1 > tmax and w` − w`+1 ≤ tmax for all
` ∈ {ri−1 + 1, . . . , ri − 1}.

We denote by Ji the set of tasks that are on any of the machines in
Mi, and by ci =

∑
`∈Mi

w` =
∑

j∈Ji
tj the load of group Mi. Intuitively,

the groups have the shape of stairs. The load difference between two
consecutive steps is at most tmax, but the step between two consecutive
groups is more than tmax high. In the chosen Nash equilibrium every task
in a group would like to switch to a group with lower load. The reason it
does not do so must be that the restrictions forbid the change.

Now consider the machines with their optimum loads w∗1, . . . , w
∗
m. Let

M1, . . . , Mk be the groups induced by any chosen Nash equilibrium. The
above observation implies that also in the optimum solution no task on
any of the machines Mi can be on any of the machines in Mi+1, . . . ,Mk,
because the restrictions forbid it. However, it is possible that certain tasks
of Mi change to the groups M1, . . . , Mi−1. The following lemma quantifies
the effect of such changes.

Lemma 3. Let s∗ be an optimum schedule for an instance of the re-
stricted selfish scheduling game with arbitrary restrictions. Let s be a
Nash equilibrium that induces groups M1, . . . ,Mk with m1, . . . , mk ma-
chines and loads c1, . . . , ck. Then cost(s∗) ≥ ∑

i c
2
i /mi.

Proof. Consider the optimum solution s∗ with p∗i players and w∗i load on
machine i = 1, . . . , m. Group the machines into M1, . . . , Mk as in the Nash
equilibrium s. Define c∗i =

∑
`∈Mi

w∗` as the optimum load of the group
Mi. Notice that p∗i ≥ w∗i because tj ≤ 1 for every task j. Clearly, the
optimum cost of the group Mi is

∑
`∈Mi

p∗`w
∗
` ≥

∑
`∈Mi

(w∗` )
2 ≥ (c∗i )

2/mi.
In order to prove the lower bound cost(s∗) ≥ ∑

i c
2
i /mi, we transform

the profile of the Nash equilibrium c1, . . . , ck into the optimum profile
c∗1, . . . , c

∗
k without decreasing its cost. Let x1, . . . , xk denote the current

load, which is initially x1 = c1, . . . , xk = ck and finally x∗1 = c∗1, . . . , x
∗
k =

c∗k. We say that a group i is currently underloaded if xi < c∗i , overloaded
if xi > c∗i , and saturated if xi = c∗i .



Observe that – by the restrictions – load is only allowed to move from
a group M` with index ` to a group Mj with smaller index j. Hence, if
there is an overloaded group (at all), then there must be an underloaded
group with smaller index. Conversely, if there is an underloaded group
(at all), there must be an overloaded group with larger index, due to the
same reason. This property suggests an intuitive algorithm to transform
the load profiles with the invariant that whenever there is an overloaded
group, there is also an underloaded group with smaller index (and vice
versa).

We repeatedly find the overloaded group with largest index (denoted
`) and the underloaded group with largest index (denoted j). Due to
the invariant we know that j < `, i.e., there is an overloaded machine
with larger index than any underloaded machine. We decrease x` and
increase xj by the same amount until one of the groups becomes saturated.
This transformation preserves the invariant. The procedure eventually
terminates, since we saturate at least one group in each iteration.

We determine the change in cost in one iteration as follows. Consider
the initial situation, i.e., the Nash equilibrium with machine-loads w1 ≥
· · · ≥ wm and group-loads c1 ≥ · · · ≥ ck. Let wmin

i , respectively wmax
i

denote the minimum, respectively maximum load of any machine in group
Mi. Let j < `, note that wmin

j > wmax
` , and observe that

cj

mj
≥ mjw

min
j

mj
= wmin

j > wmax
` =

m`w
max
`

m`
≥ c`

m`
.

Thus, initially, not only the group-loads ci are in decreasing order, but
also the relative loads ci/mi. Now consider a transformation in which
load is moved from group M` to Mj . As every iteration increases xj over
cj and decreases x` under c`, the inequality continues to hold for the
values of x during the execution of our algorithm: xj

mj
≥ cj

mj
> c`

m`
≥ x`

m`
.

Now suppose that Mj receives load δ > 0 from M`. The change of the
cost is δ2( 1

mj
+ 1

m`
) + 2δ( xj

mj
− x`

m`
). Since xj

mj
> x`

m`
, in every iteration

our algorithm increases the cost. Hence, it transforms the Nash profile
c1, . . . , ck into the optimum profile c∗1, . . . , c

∗
k without decreasing the cost.

This yields cost(s∗) ≥ ∑
i

c2i
mi

and the proof is complete. ut

For the proof of Theorem 2 we assemble the lower bound for s∗ and
a simple upper bound for any Nash equilibrium s. Then with a simi-
lar Azuma-Hoeffding argument as in the proof of Theorem 1 the result
follows.



2.1 Average-Case Analysis of an Optimization Algorithm

In this short section, we point out that Theorem 2 also has an algorithmic
perspective. By proving upper bounds on the expected price of anarchy
of restricted selfish scheduling, we obtain an average-case analysis for an
algorithm for the non-economical latency optimization problem (e.g. the
standard scheduling variant of the game) as a byproduct. We consider the
algorithm, which we call Nashify, due to Gairing et al. [7] introduced
for maximum latency social cost. The algorithm begins with an arbitrary
assignment and uses the idea of blocking flows to compute a Nash equi-
librium. It has running time O

(
nmA(log t + m2)

)
with A =

∑
i |Ai|. It is

remarkable that the algorithm also performs well for total latency mini-
mization for restricted scheduling, see Theorem 3 below. In the scheduling
problem, the objective is to minimize

∑
j `j , regardless if it is a Nash equi-

librium or not. Let cost(s) and cost(s∗) denote the objective values of a
schedule obtained by Nashify and by an (potentially exponential time)
optimum algorithm Opt. While cost(s)/cost(s∗) is called the performance
ratio, for random task-lengths Tj the expectation E [cost(S)/cost(S∗)] is
called the expected performance ratio of the algorithm Nashify. Here S
and S∗ are the associated random variables of s and s∗. The result below
follows directly from [7] and Theorem 2.

Theorem 3. Under the assumptions of Theorem 2, the bounds stated
therein are upper bounds for the expected performance ratio of the algo-
rithm Nashify.

3 Maximum Latency Cost

Here we consider the social cost function cost(s) = `max = maxj `j . Define
the parameter r = cost(s∗)/tmax of the game. Awerbuch et al. [2] showed a
bound of Θ

(
log m/(r log(1 + log m

r ))
)

on the price of anarchy. This gives

1 + ε price of anarchy for r = Ω(log m/ε2). We contribute the following
alternative bound, where the total traffic t is the parameter.

Theorem 4. For our game with general restrictions and maximum la-
tency social cost, we have the following:

(1) For every t =
∑

j tj > 0, it holds that PoA(Σ) ≤ 1 + m2

t .
(2) For T =

∑
j Tj with E [T ] = ω

(√
n log n

)
and independent Tj we

have EPoA(Σ) ≤ 1 + m2

E[T ](1 + o (1)).

Both bounds also hold for the (expected) performance of the algorithm
Nashify.
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