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Abstract. We consider a general class of non-cooperative buy-at-bulk cost shar-
ing games, in which k players must contribute to purchase a number of resources.
The resources have costs and must be paid for to be available to players. Each
player can specify payments and has a certain constraint on the number and types
of resources that she needs to have available. She strives to fulfill this constraint
with the smallest investment possible. Our model includes a natural economy of
scale: for a subset of players, capacity must be installed at the resources. The
cost increase for larger sets of players is composed of a fixed price c(r) for each
resource r and a global concave capacity function g. This cost can be shared ar-
bitrarily between players. We consider the quality and existence of pure-strategy
exact and approximate Nash equilibria. In general, prices of anarchy and stability
depend heavily on the economy of scale and are Θ(k/g(k)). For non-linear func-
tions g pure Nash equilibria might not exist and deciding their existence is NP-
hard. For subclasses of games corresponding to covering problems, primal-dual
methods can be applied to derive cheap and stable approximate Nash equilibria in
polynomial time. In addition, for singleton games optimal Nash equilibria exist.
In this case expensive exact as well as cheap approximate Nash equilibria can
be computed in polynomial time. Some of our results can be extended to games
based on facility location problems.

1 Introduction

In this paper we consider a general class of non-cooperative buy-at-bulk cost
sharing games, which can for instance be used to model crucial competitive cost
sharing aspects of networks like the Internet, e.g. service installation, facility lo-
cation or various network design problems. The formulation captures a realistic
aspect of networks by including costs with economies of scale. In particular, we
consider a game for k players that strive to obtain a number of resources with
minimum investment. There is a set of resources, and each resource has a cer-
tain cost. Each player picks as a strategy a function that specifies their offer to
each resource. If the sum of offers made by a set of players exceeds the resource
cost, it is considered available for these players. For each player there is a con-
straint on the number and types of resources that must be available for her. She
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strives to fulfill this constraint with minimum total investment in her strategy.
A resource becomes more expensive when it shall be available to a larger set of
players. In particular, if resource r is available to a set of i players, the cost is
c(r, i) = c(r)g(i), in which c(r) is a fixed cost and g is a non-decreasing and
concave function, which is used for every resource r. A variety of problems,
e.g. buy-at-bulk variants of set cover, facility location, and network design, can
be turned into a game with the help of this model.

We first study our games with respect to the existence of pure-strategy exact
Nash equilibria. We characterize prices of anarchy [17] and stability [2], which
measure the cost of the worst and best Nash equilibria in terms of the cost of a
socially optimum solution, respectively. We also consider a situation, in which
a central institution with some means to influence agent behavior tries to induce
a state that is as cheap and stable as possible. This poses a two-parameter opti-
mization problem captured by the notion of (relative) (α, β)-approximate Nash
equilibria. These are states, in which the equilibrium condition is relaxed by a
factor of α and that represent a β-approximation to the socially optimum cost.
We refer to α as the stability ratio and β as the approximation ratio. In accor-
dance with previous work we consider properties of games, in which player con-
straints are equivalent to well-known covering and facility location problems.
Our interest is to investigate the influence of the function g on the efficiency and
computational complexity of exact and approximate Nash equilibria.

Related Work. There are a number of related game-theoretic models. Cooper-
ative games have been studied quite intensively in the past (see [9, 11] and the
references therein). In [9] the authors prove that the core of cooperative games
based on covering and packing integer programs is non-empty if and only if the
integrality gap is 1. They also show results on polynomial time computability of
core solutions in a number of special cases. In [11] similar results are shown for
class of cooperative facility location games. Some of these games have also been
analyzed with respect to mechanism design. In addition, cost sharing mecha-
nisms have been considered for games based on set cover and facility loca-
tion. The authors in [10] presented strategyproof mechanisms for set cover and
facility location games. For set cover games this work was extended [18, 20]
to different fairness aspects and formulations with items or sets being agents,
for facility location games computing cross-monotonic cost sharing schemes
was considered in [19], and in [16] lower bounds on their budget-balance were
provided. In contrast, our approach is an extension of non-cooperative games,
which were first studied in [3] in a Steiner forest network design context. Recent
work [5,14,15] presented extended results for exact and approximate Nash equi-
libria in covering and facility location games. Prices of anarchy and stability in
these games are generally as large as Θ(k). For singleton games, in which each



player is interested only in a single element, however, optimal Nash equilibria
exist. In [5, 14] we proved the applicability of primal-dual methods to derive
cheap and stable approximate Nash equilibria. None of these previous models,
however, considers the influence of different economies of scale.

Starting with [4] network design problems with economies of scale became
a vivid area of research. Typically, there are a number of source-sink pairs with
demands that must be routed by an unsplittable flow. Edge and/or vertex costs
increase with the demand routed over them. Recently, polylogarithmic approx-
imation algorithms [6, 7] and logarithmic hardness results for general resource
costs [1] were derived. For special cases, e.g. single-souce or rent-or-buy prob-
lems [12] there exist constant-factor approximation algorithms. This is also the
case for unit-demand metric facility location [13].

Our Contribution. Buy-at-bulk investment games studied in this paper are
a new general model to consider cost sharing in optimization problems with
economies of scale. In addition, as an extension they address a frequent criticism
to previous cost sharing games [3,5,14,15], which in the following we will call
regular cost sharing games. In regular games, only a fixed cost for each resource
must be paid for to make it available to every player, no matter whether she
contributes or not. Hence, the game inherently allows free riders who can obtain
a resource for free. This problem has been addressed e.g. in [2, 8] by fixing
a Shapley-value cost sharing. In contrast, our model allows smaller groups of
players to obtain the resource at cheaper costs. This creates a force on every
player to contribute for availability. The severeness of this force depends on
the number of players that request a resource and is dynamically adjusted by
g. Some undesirable properties of the game like a high price of anarchy are
directly affected by this, the price of anarchy is exactly k

g(k) . Other properties
are independent of this adjustment, e.g. for any non-linear g there are games
without Nash equilibria. The price of stability is as large as Θ

(
k

g(k)

)
, and it is

NP-hard to decide the existence of Nash equilibria. Interestingly, some upper
bounds on approximate Nash equilibria for regular games can be extended to
hold for buy-at-bulk games. There are (f, f)-approximate Nash equilibria for
set cover games, where f is the maximum frequency of any element in the sets.
If each player wants to cover exactly one element, optimal Nash equilibria exist,
and (1 + ε, β)-approximate Nash equilibria can be obtained in polynomial time
by a local search from any β-approximate starting state. In addition, we provide
a procedure to find an exact Nash equilibrium in polynomial time, which was
not known before even for regular singleton games. A number of these results
directly translate to a class of buy-at-bulk investment games for facility location.
Due to space limitations some of the proofs are shortened or omitted.



2 Model and Basic Properties

In a buy-at-bulk cost sharing game there is a set [k] of k non-cooperative play-
ers and a set R of resources. Each resource r ∈ R has a fixed cost c(r) ≥ 0.
In addition, there is a function g : N → R0

+, which is non-negative, non-
decreasing, concave, and has g(0) = 0 and g(1) > 0. We normalize the func-
tion to obey g(1) = 1. For convenience, we use µ(i) = g(i) − g(i − 1),
which is non-increasing and non-negative for all i ≥ 1. The bundle cost of
resource r is c(r, i) = c(r) g(i). A strategy sp of a player p is a function
sp : R → R0

+ to specify her non-negative payment to each resource. A state
is a vector s = (s1, . . . , sk) with a strategy for each player. We denote by s−p

the same vector without sp. A resource r is available to a player p if there is a
subset p ∈ Q ⊂ [k] of players such that they purchase the corresponding bundle
cost, i.e.

∑
q∈Q sq(r) ≥ c(r, |Q|). For a player p we use ρp(s) to denote the set

of her available resources, and we drop the argument whenever context allows.
Each player p has a player-specific constraint on ρp, which has a covering aspect
in the sense that it can never be violated by having additional resources available
to the ones required. If ρp in the current state s does not fulfill the constraint, we
assume that the player is penalized with a prohibitively large cost, i.e. for her
individual cost cp(s) = +∞. Otherwise, if her constraint is satisfied, the indi-
vidual cost is her total investment cp(sp, s−p) =

∑
r∈R sp(r). A player wants

to minimize her individual cost, so she strives to fulfill her constraint with ρp

at the least possible investment. A Nash equilibrium (denoted NE) is a state, in
which no player can reduce her individual cost by changing her strategy. We re-
strict our attention to pure states in this paper and leave a deeper study of mixed
NE for future work. As social cost of a state s of the game we use the sum of
individual costs c(s) =

∑
p∈[k] cp(s). A (α, β)-approximate Nash equilibrium

(denoted (α, β)-NE) is a state, in which no player can reduce her individual cost
by a factor of more than α, and for which the social cost is a β-approximation
to the minimum social cost over all states of the game. A social optimum state
minimizing social cost will be denoted s∗ throughout.

In a NE and in a social optimum state s∗ the available resources for each
player satisfy her constraints. Also, in NE and s∗ due to concavity of g, there is
a unique maximal set of players (denoted Qr), for which the resource is avail-
able. This set includes as subsets all other sets of players, for which the resource
is available. In NE no subset of i players will contribute more than c(r, i) to
any resource r. The strategies exactly purchase the bundle cost c(r, |Q|) of ev-
ery resource. Thus, a NE s represents a cost sharing of the set of resources.
This property can be assumed for s∗ as well, because here the cost distribu-
tion is irrelevant. Finding s∗ is equivalent to finding a solution to the underlying



buy-at-bulk minimization problem given by satisfying all player constraints at
minimum total cost. In this problem, a feasible solution is a vector that indicates
for each player, which resources are available to him, such that all constraints
are satisfied.

Finally, the function g(i) ∈ [1, i] for all i ≥ 1. Previously considered regular
cost sharing games were buy-at-bulk games with g(i) = 1 for all i ≥ 1 [3, 5,
14, 15]. When referring to games in this paper - e.g. vertex cover games - we
generally mean the buy-at-bulk version. It is explicitly mentioned when regular
games are under consideration.

2.1 Covering and Facility Location

The definition allows a variety of games to be defined in this framework. A
simple class is a (buy-at-bulk) vertex cover game on an undirected graph G =
(V, E). The resources R = V , and each player corresponds to a subset of edges
Ep ⊂ E. Her constraint is satisfied, if for each edge there is at least one incident
vertex available to her. In this way we generalize to set multi-cover games. There
is a set of elements E, and the resources are given by R = M⊆ 2E of subsets
M ∈ M, such that M ⊆ E. Each player corresponds to a subset Ep ⊆ E of
elements, and there is a number b(e) > 0 for each e ∈ E. Player p is satisfied if
for each e ∈ Ep there are at least b(e) sets available to her that include e.

Facility location games can be obtained as follows. We are given two sets
T of terminals and F of facilities. The resources are facilities and connections,
i.e., R = F ∪ (T ×F ). A player p corresponds to a subset of terminals Tp ⊆ T .
She strives to connect her terminals to facilities. As both the connections and the
facilities are resources, they both generate a cost. We will refer to them as con-
nection and opening costs, respectively. The constraint of a player p is satisfied
if for each of her terminals t ∈ Tp at least one connection (t, f) and the cor-
responding facility f ∈ F are available to her. In metric games the connection
costs satisfy the triangle inequality.

3 Cost and Complexity of Nash Equilibria

In this section we consider the behavior of prices of anarchy and stability in
the game and the hardness of finding NE. Our first result concerns the price of
anarchy.

Theorem 1. The price of anarchy in the buy-at-bulk cost sharing game is ex-
actly k/g(k).

Proof. First, we prove the lower bound. Consider a vertex cover game on a
star network, in which every player owns a single edge and each vertex v has



fixed cost c(v) = 1. If every player contributes exactly the cost of the leaf node
incident to her edge, a NE of cost k evolves. The optimum solution, however,
consists of the center vertex v and has bundle cost c(v, k) = g(k). This proves
that the price of anarchy is at least k/g(k).

For the upper bound consider any NE s of any buy-at-bulk cost sharing game
with strategies sp. In addition, let ρ−p be a set of resources for player p, which
has minimum total fixed cost. Now consider a social optimum state s∗. Denote
by ρ∗p a subset of minimum cost of the available resources of player p in s∗,
which suffices to satisfy her constraint. It is obvious that for the fixed cost

∑

r∈ρ−p

c(r) ≤
∑

r∈ρ∗p

c(r). (1)

The concavity of g ensures that with increasing demands for resources in ρ−p , the
cost to be paid for by player p can only decrease. Hence, it becomes ever more
attractive for p to deviate to a strategy, which contributes only to ρ−p . However,
as s is a NE, the fixed cost of ρ−p is an upper bound on current total contribution
of p in s, i.e.

∑
r∈R sp(r) ≤

∑
r∈ρ−p c(r). Since s is a NE, the cost of the

purchased resources must be fully paid for. Using the bound from (1) we get
∑

p∈[k]

∑

r∈R

sp(r) ≤
∑

p∈[k]

∑

r∈ρ−p

c(r) ≤
∑

p∈[k]

∑

r∈ρ∗p

c(r). (2)

Consider the following procedure of constructing a lower bound on the cost of
the social optimum solution. Iteratively add players and the cost of their avail-
able resources ρ∗p to the solution. The presence of the i-th player on ρ∗i adds at
least a cost µ(i)

∑
r∈ρ∗i

c(r) to the cost of s∗. As µ is monotonic decreasing, we
can lower bound c(s∗) by

k∑

i=1

µ(i)
∑

r∈ρ∗i

c(r) ≤ c(s∗). (3)

Note that the cost of the resources is determined by the final set Qr, and this is
independent of the ordering in which players are considered. Hence, the value of
this lower bound is the same for any ordering of the players chosen. By making
k−1 cyclic rotations of an initial ordering of players, we ensure that each player
appears at each position i exactly once. Adding all resulting inequalities (3) we
get

∑
p∈[k]

∑k
i=1 µ(i)

∑
r∈ρ∗p

c(r) = g(k)
∑

p∈[k]

∑
r∈ρ∗p

c(r) ≤ kc(s∗), and
together with (2) this proves the theorem:

c(s) =
∑

p∈[k]

∑

r∈R

sp(r) ≤
∑

p∈[k]

∑

r∈ρ∗p

c(r) ≤ k

g(k)
c(s∗). ut



In fact, our proof bounds the price of anarchy for both, pure and mixed
NE. If for a game g(k) = k, the game exhibits a decomposition property that
allows for optimal NE. The previous theorem states that every NE is a social
optimum. The reverse is also true, i.e. in this case there is always an optimum
NE. However, once g is sublinear, then for a vertex cover game with sufficiently
large number of players, there is no NE.

(a) (b)

Fig. 1. (a) Vertex cover game without a NE. Edge labels indicate player ownership. Grey parts
are introduced when considering auxiliary players to deal with arbitrary values of k0. (b) Trans-
formation into a facility location game. Filled vertices are facilities, empty vertices are terminals.
Labels of terminals indicate player ownership.

Lemma 1. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for any k > k0

there is a vertex cover game with k players without a Nash equilibrium.

Consider the game in Figure 1(a) and k0 = 1. Intuitively, whenever player 1 con-
tributes the fixed cost to some vertex v1 or v2, player 2 is motivated to contribute
to bundles of v1 and v2. In particular, she will purchase the fixed cost of the other
vertex. This gives player 1 an incentive to remove payments, which gives player
2 an incentive to purchase vertex u. While this is not a formal argument, it can
be verified that for each possible feasible solution no stable cost-sharing can be
obtained. The transition to arbitrary k0 uses additional k0− 1 auxiliary players.
These players own a star with an expensive center and u, v1, v2 as leaves. They
never contribute to the center and simply serve to “boost” the dynamics on the
original game into the region, where the drop in function g occurs. Hence, as
soon as players can profit from the investment of other players, they might not
be able to agree upon a set of resources to purchase. Based on this observa-
tion we can show that given any fixed, non-linear function g, there is a class of



games with sufficiently many players, in which determining existence of a NE
is NP-hard. In addition, the price of stability can be as high as Θ

(
k

g(k)

)
.

Theorem 2. Given any non-linear function g, for which g(i) = i for i ≤ k0

and g(i) < i for k > k0, then for each k > k0 there is a class of vertex cover
games with g and k players, for which it is NP-hard to determine the existence
of a Nash equilibrium.

Theorem 3. For vertex cover games the price of stability is in Θ
(

k
g(k)

)
.

Fig. 2. Vertex cover game, in which the price of stability is Θ
(

k
g(k)

)
. Edge labels indicate player

ownership. Grey parts are introduced when considering auxiliary players to deal with arbitrary
values of k0

Proof. Consider the game in Figure 2. Suppose every leaf vertex of the star and
the star center vc have constant fixed cost of 1 + µ(k0 + 1). The fixed cost of v1

and v2 are 1, for u it is 2 > c(u) > 1 + µ(k0 + 1). There are k0 − 1 auxiliary
players k − k0 + 2, . . . , k, and each has a star centered at an additional vertex
wp. The cost c(wp) is prohibitively high, so these players will boost the game
to a range where g becomes sublinear. Now suppose there is at least one of the
players 1, 2, 4, . . . , k − k0 + 1, who strives to make vc available to her. Then
there are at least k0 players, who pay a cost of c(vc, k0) for vc. Player 3 will
contribute at most c(vc)µ(k0 +1) = (1+µ(k0 +1))µ(k0 +1) < c(u)µ(k0 +1)
to u. Thus, player 2 has to invest at least c(u) to make vertex u available. As
previously noted there can be no NE in this case. Thus, none of the players
1, 2, 4, . . . , k0 + 1 shall make star center vc available to her. Then player 3 can
contribute c(vc) to a bundle cost of vertex u. Player 2 can add less than 1 +
µ(k0 +1) to u, and together with the auxiliary players this purchases the bundle
cost of c(u, k0+1). Note that player 1 sticks to purchasing one of v1 and v2, and



the remaining edges of the star can be covered by purchasing the leaf vertices.
A NE of cost at least (1+µ(k0+1))k+1+(µ(k0+1))2+µ(k0+1)+3(k0−1)
evolves. In the social optimum, however, all players 1, . . . , k0 + 1 contribute to
vc yielding a state of cost at most (1+µ(k0+1))g(k)+2+µ(k0+1)+4(k0−1).
For fixed g, parameter k0 is a constant, and the ratio grows with k/g(k). ut
Note that any vertex cover game can be translated easily to a metric facility lo-
cation game, which is equivalent in terms of the structure of NE. We replace
each edge e = (u, v) by a terminal te and two connections (te, u) and (te, v) of
connection cost cmax = maxv∈V c(v). This creates the set of terminals. The for-
mer set of vertices becomes the set of facilities. For the remaining connections
between facilities and terminals we assume a cost given by the shortest path
metric, i.e. they are at least 3cmax (see Figure 1(b) for an example). Observe
that a NE for the facility location game provides a NE for the corresponding
vertex cover game and vice versa.

Corollary 1. If g(i) = i for i ≤ k0 and g(i) < i for i > k0, then for any k > k0

there is a class of metric facility location games with g and k players, for which
it is NP-hard to determine the existence of a Nash equilibrium.

4 Approximate Nash Equilibria

In this section we consider set cover games with b(e) = 1 for all elements e ∈
E. While the lower bounds shown for vertex cover games extend to this case, it
is possible to obtain (f, f)-NE in polynomial time, in which f = maxe∈E |{M ∈
M, e ∈ M}| denotes the maximum frequency of any element in the sets.

Algorithm 1: (f, f)-NE for set cover games
sp(M) ← 0 for all players p and sets M1
γp(e) ← 0 for all players p and elements e2
for every player p = 1, . . . , k do3

Set cp(M) = minQ{c(M, |Q|+ 1)−∑
q∈Q sq(M)} for Q ⊆ [p− 1] and all M4

while there is an uncovered element e ∈ Ep do5
Let γp(e) ← mine∈M cp(M)6
Increase payments: sp(M) ← sp(M) + γp(e) for all M with e ∈ M7
Add all purchased sets to the cover8
Reduce set costs: cp(M) ← cp(M)− γp(e) for all M with e ∈ M9

Theorem 4. Algorithm 1 returns a (f, f)-approximate Nash equilibrium for set
cover games in polynomial time.



Proof. The algorithm can be implemented to run in polynomial time. In line 4
we take all previous contributions into account and determine a set of players
Q ∪ p, for which the missing contribution to the bundle cost is minimal. The
set Q is a subset of [p − 1] = 1, . . . , p − 1, because for all other players all
contributions are still 0. We start with Q = ∅ and add players q < p in non-
increasing order of the contributions sq(M). This yields the desired set Q.

Our algorithm represents an adjustment of the primal-dual algorithm for
minimum set cover (see for instance [21, chapter 15]). An approximation guar-
antee of f for the buy-at-bulk set cover problem has most likely been observed
before, so a proof is omitted. For the stability ratio, we consider the p-th player
after the execution of the algorithm and her best move taking into account the
payments of all other players q 6= p. For that purpose, we consider for each set
M the cost c′(M) = minQ⊂[k],p6=Q c(M, |Q|+ 1)−∑

q∈Q sq(M). We have to
show that the sum of the payments of player p is not greater than f times the
cost of the cheapest set cover of Ep with respect to the costs c′. From the algo-
rithm and the fact that bundle costs are concave we know that sp(M) ≤ c′(M).
Also from the algorithm, we know that for any set M that includes one or
more elements of Ep, we have sp(M) =

∑
e∈M∩Ep

γp(e), so for any such
M we have

∑
e∈M∩Ep

γp(e) ≤ c′(M). Now let us consider a minimum cost
set cover R∗p of Ep with respect to c′. We have:

∑
M∈R∗p

∑
e∈M∩Ep

γp(e) ≤∑
M∈R∗p c′(M) = c′(R∗p). Since R∗p is a set cover of Ep, the charge γp(e) of

each element e in Ep is counted at least once in the left-hand side above. Hence∑
e∈Ep

γp(e) ≤
∑

M∈R∗p
∑

e∈M∩Ep
γp(e) ≤ c′(R∗p). Now we can conclude∑

M∈M sp(M) ≤ f
∑

e∈Ep
γp(e) ≤ fc′(R∗p), which proves the theorem. ut

In the special case of vertex cover ratios of f = 2 is tight even for regular
vertex cover games [5]. The analysis cannot be strengthened to a ratio depending
on g, because stability and approximation ratio coincide for single player games.
For linear g the greedy algorithm achieves logarithmic stability and approxi-
mation ratio, but for regular set cover games this algorithm has an unbounded
stability ratio [14]. It is an interesting open problem to obtain a procedure with
improved bounds for intermediate functions g.

5 Single Element Players

In the previous section we showed that vertex cover games, in which each player
owns at most two edges, might have no NE. Now we consider singleton set
multi-cover games, in which each player has only a single element. For these
games a NE always exists and can be found in polynomial time.



Theorem 5. Algorithm 2 returns an exact Nash equilibrium for singleton set
multi-cover games in polynomial time.

Algorithm 2: Exact NE for singleton set multi-cover games
dM ← 1 for all sets M1
Construct Gs = (M, A) with (M1, M2) ∈ A iff M1 ∩M2 6= ∅ and2
c(M1) · µ(dM1) < c(M2) · µ(M2, dM2)
while there are remaining players do3

for every remaining player p do4
if element e of p is included in exactly b(e) sets Me then5

Assign p to contribute sp(M) = c(M) · µ(dM ) to all these sets M ∈Me6
Increase dM ← dM + 1 and drop p from consideration7
Adjust the arc set of Gs for the new values of dM8

Find a sink in Gs and drop the corresponding set from consideration9

Proof. Clearly, Algorithm 2 can be implemented to run in polynomial time. A
set M1 dominates a set M2 iff there is a player who prefers M1 over M2 with
the bundle costs given with dM1 and dM2 . The algorithm constructs and main-
tains a directed acyclic graph Gs, which contains a directed edge between sets
M1 and M2 iff M1 dominates M2. A set M that is dropped from consideration
represents a sink in Gs. Then for each remaining player with e ∈ M it is domi-
nated by all remaining sets that contain her element. None of these players will
contibute to M , as they have a cheaper alternative to cover their element. As no
contribution will be assigned to M after it has been dropped, no player wants
to contribute to sets that were dropped before she was dropped. When player p
gets dropped, she is left with the setMe of exactly b(e) sets to cover e. The pre-
vious arguments show that she cannot profit from contributing to any other sets
that contain her element. This is also true for the sets in Me. Consider another
player q, who is assigned to contribute to M ∈ Me after p has been dropped.
q will only pay a cost representing the concave increase in bundle cost with p
already counted towards dM . Hence, there is no subset of players whose pay-
ments allow p to lower her contribution to Me. Thus, each player plays a best
repsonse. This proves the theorem. ut
Unfortunately, the proposed algorithm can compute worst-case NE, whose cost
is a factor arbitrarily close to k

g(k) worse than c(s∗). In contrast, there are social
optimal NE in every singleton set multi-cover game. Computing them is NP-
hard, but with a local search procedure we can obtain near-stable and near-
optimal approximate NE. The arguments can transfered to buy-at-bulk versions
of connection-restricted facility location (CRFL) games [14]. Proofs are omitted
due to space limitations.



Theorem 6. For singleton set multi-cover and singleton CRFL games the price
of stability is 1. For any constant ε > 0, a (1 + ε, β)-approximate Nash equi-
librium can be obtained in polynomial time from any state representing a β-
approximation to the optimum social cost.
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