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Abstract

In this paper we consider the connection game, a simple network design game with in-
dependent selfish agents that was introduced by Anshelevich et al. [4]. Our study concerns
an important subclass of tree games, in which every feasible network is guaranteed to be
connected. It generalizes the class of single-source games considered in [4]. We focus on the
existence, quality, and computability of pure-strategy exact and approximate Nash equilibria.
For tree connection games, in which every player holds two terminals, we show that there is a
Nash equilibrium as cheap as the optimum network. In contrast, for single-source games, in
which every player has at most three terminals, the price of stability is at least k − 2, and it
is NP-complete to decide the existence of a Nash equilibrium. Hence, we propose polynomial
time algorithms for computing approximate Nash equilibria, which provide relaxed stability
and cost efficiency guarantees. For the case of two terminals per player, there is an algorithm
to find a (2+ε, 1.55)-approximate Nash equilibrium. It can be generalized to an algorithm to
find a (3.1 + ε, 1.55)-approximate Nash equilibrium for general tree connection games. This
improves the guarantee of the only previous algorithm for the problem [4], which returns a
(4.65 + ε, 1.55)-approximate Nash equilibrium. Tightness results for the analysis of all algo-
rithms are derived. Our algorithms use a novel iteration technique for trees that might be of
independent interest.

1 Introduction

Analyzing networks like the Internet, which is created and maintained by independent selfish
agents with relatively limited goals, has become a research area in game theory and computer
science attracting a lot of interest. In particular, there have been many approaches to characterize
computational networking aspects using game-theoretic considerations. Naturally, in such games
the existence, cost and computation of stable solutions are most important. Stable networks are
not necessarily cheap or optimized. In many situations, however, a central institution interested
in optimizing social desiderata has some means of controlling agent behavior. Hence, for such an
institution it is of interest to know the boundary between efficiency and stability of the outcomes of
the game. This trade-off is characterized by the price of stability [3], which is the ratio of the cost
of the best Nash equilibrium over the cost of a social optimum solution. It captures how efficient
stability can get, and has been studied in routing and network creation games [3, 4, 15, 20]. The
more prominent measure is the price of anarchy [17] describing the cost of the worst instead of the
best Nash equilibrium. It has received attention in networking problems, for instance routing [19],
facility location [21] and load balancing [8, 17]. In this paper we consider these measures for the
connection game, a game-theoretic model for network topology creation introduced by Anshelevich
et al. [4]. In a connection game each of the k selfish agents has a connectivity requirement in a
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graph G = (V, E), i.e. she holds a number of terminals at some nodes and wants to connect these
nodes into a component. Each edge e has a non-negative edge cost c(e), and each agent p picks as
a strategy a payment function sp that specifies for each edge e her money offer to the purchase of
e. If the sum of all agent offers for an edge exceeds its cost, it is considered bought. Bought edges
can be used by all agents to establish their connection, no matter whether they contribute to the
cost or not. Each agent tries to fulfill her connection requirement at the least possible cost. A state
in this game is a collection of strategies, one for each player, and a Nash equilibrium is a state such
that no player has an incentive to unilaterally deviate from her strategy. An (α,β)-approximate
Nash equilibrium is a state, such that each player can reduce her total payments by switching to
another strategy by at most a factor of α, and which represents a β-approximation to the social
optimum network. We refer to α as the stability ratio and to β as the approximation ratio.
In the connection game it might be optimal for the agents to create disconnected local subnetworks.
The Internet, however, receives its power as a platform for information sharing and electronic trade
from the fact that it is globally connected. Hence, it is reasonable to assume that agents to some
extent have an interest in being connected to the network of other agents. We incorporate this
idea by focusing on tree connection games - connection games, in which every feasible solution is
connected.

1.1 Related Work

The connection game was introduced and studied in [4], where a variety of results were presented.
The price of anarchy was shown to be precisely k and the price of stability at least k − 2. It
is NP-hard to determine, whether a given game has a pure-strategy Nash equilibrium or not.
There is a polynomial time algorithm that finds (4.65+ε, 2)-approximate Nash equilibria. For the
single-source case, in which each player needs to connect a single terminal to a common source,
a polynomial time algorithm finds (1 + ε, 1.55)-approximate Nash equilibria. We denote these
algorithms by ADTW-SS for the single source and ADTW for the general case. In [3] adjusted
connection games were used to study the performance of the Shapley value cost sharing protocol.
Each edge is bought in equal shares by each player using it to connect its terminals. The price of
stability in this game is O(log k). Furthermore, extended results were presented in [3, 7], e.g. on
delays, weighted games and best-response dynamics.
Recently, connection games have been studied in a geometric setting in [15], which provided bounds
on the price of anarchy and the minimum incentives to deviate from an assignment purchasing the
social optimum network. The case of two players and two terminals per player was characterized
in terms of prices of anarchy and stability, approximate equilibria and best-response dynamics.
More recently the mechanism of cost sharing considered for connection games in this paper was
extended to resource sharing games in the context of facility location and integer covering problems
[5, 13]. Some similar lower bounds in these games are NP-hardness of determining pure Nash
equilibrium existence and prices of anarchy and stability of Θ(k). In these games, however, primal-
dual approximation algorithms can be adjusted to find cheap approximate Nash equilibria in
polynomial time.
A network creation game of different type was considered in [2, 6, 9, 11]. Here each agent corre-
sponds to a node and can only create edges that are incident to her node. Similar settings are
recently receiving increased attention in the area of social network analysis. See [16] for a recent
overview of developments in the area of social network design games. In the context of large-scale
computational networks, however, a lot of these models lack properties like arbitrary cost sharing
of edges and complex connectivity requirements.

1.2 Our Results

In this paper we will consider tree connection games (TCG). The games exhibit connection require-
ments such that every feasible solution network is connected. We analyze them with respect to
exact and approximate pure-strategy Nash equilibria. We are especially interested in deterministic
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polynomial time algorithms for deriving (α,β)-approximate Nash equilibria. This poses a two-
parameter optimization problem: Try to assign payments to the players such that the purchased
feasible network is cheap and the incentives to deviate are low. We will not consider mixed-strategy
equilibria in this paper, as they seem an unsuitable concept for a setting of network creation that
requires concrete investments rather than randomized actions.
In Section 2 we show that for any tree connection game with two terminals per player the price of
stability is 1. We outline an algorithm that allocates edge costs of a social optimum network to
players such that no player has an incentive to deviate. This algorithm has exponential running
time in general. However, it has polynomial running time if the social optimum network can be
found efficiently. In particular, this is the case for any game with a constant number of players [10].
We show that our result is essentially tight by arguing that for games with at most three terminals
per player it is NP-complete to decide if a game has a Nash equilibrium. The price of stability
in these games increases to at least k − 2. These lower bounds are derived for the special case of
single-source games, in which there is a source vertex to which every player wants to be connected.
In Section 3 we show how to distribute the cost of a social optimum network to get a (2, 1)-
approximate Nash equilibrium for TCGs with any number of terminals per player. It can be
translated into a polynomial time algorithm for (2+ε, 1.55)-approximate Nash equilibria for TCGs
with two terminals per player, and (3.1+ε, 1.55)-approximate Nash equilibria for TCGs with any
number of terminals per player. The algorithm uses a recent 1.55-approximation algorithm for the
Steiner Tree problem [18] as a subroutine, and the ratios improve if algorithms for Steiner
Tree with better performance guarantees are found. Our algorithm improves over ADTW that
provides (4.65 + ε, 1.55)-approximate Nash equilibria.
In addition, we derive a tightness argument for the cost distribution technique used by our al-
gorithm and ADTW. Both algorithms consider only the optimum network and use connection
sets as building blocks for deriving approximate Nash equilibria. This construction allows a sim-
ple translation into polynomial time algorithms. We show that both our algorithm and ADTW
are optimal with respect to the class of deterministic algorithms working only on the optimum
network. This implies that methods with better performance guarantees must use ideas beyond
connection sets and explicitly employ cost and structure of possible deviations. This significantly
complicates their design and analysis. Nevertheless, finding improved algorithms seems possible
and represents a challenging direction for future work. Finally, Section 4 concludes and presents
furhter open problems and ideas for future research.

1.3 The Model

The connection game for k players is formally defined as follows. For each game there is an
undirected graph G = (V, E), and a nonnegative cost c(e) associated with each edge e ∈ E. Each
player p has a set Vp ⊂ V of vertices that she strives to connect with a network. The sets Vp

and Vq can overlap for different players p and q. We will call a vertex v ∈ V a terminal or
terminal vertex iff v ∈ Vp for some player p, and a non-terminal or Steiner vertex otherwise. For
terminals we frequently use the notation t ∈ V . A strategy for a player p is a function sp, which
specifies for each edge e the amount sp(e) that p offers for the purchase of e. If

∑k
p=1 sp(e) ≥ c(e)

for an edge e, it is considered bought. Bought edges can be used by all players to connect their
terminals, no matter whether they contribute to the edge costs or not. A strategy profile or state
s is a vector of strategies, which specifies for each player one strategy. The individual cost of a
player is up(s) = |sp| =

∑
e∈E sp(e) if s yields a network of bought edges between the terminals

of p. Otherwise, we assume up(s) = +∞, a prohibitively large cost. Thus, each player insists on
connecting her terminals, because she rather purchases the social optimum network completely
than accepts that her vertices are unconnected. A Nash equilibrium is a state such that no
player can reduce up(s) by unilaterally choosing a different strategy. A (α,β)-approximate Nash
equilibrium is a state, in which each player can reduce up(s) by at most a factor of α by switching
to another strategy, and for which the purchased network represents a β-approximation to the
social optimum network. We will use NE and (α,β)-NE as shorthands to refer to these concepts.
The problem of finding a social optimum network for all players and an optimum strategy for a

3



single player are the classic network design problems of Steiner Forest [1, 12] and Steiner
Tree [18], respectively. For the rest of this paper we will denote a social optimum network by T∗.
The subtree of T∗ that player p uses to connect her terminals is denoted by Tp.
We will deal with an interesting class of connection games, the tree connection games (TCG),
which are games with tree connection requirements.

Definition 1 In a connection game there are tree connection requirements if for any two terminals
t1 and tl+1, there is a sequence of players p1, . . . , pl and terminals t2, . . . tl such that player pj

the terminals tj, tj+1 ∈ Vpj
for j = 1, . . . , l.

Tree connection requirements ensure that every possible solution network which satisfies all con-
nection requirements is guaranteed to be connected.1 A TCG can be thought of as a splitting of
a single global player into k players, which preserves the overall connection requirements. For the
subclass of TCG with two terminals per player we will use the term path tree connection game
(PTCG). A different subclass are single-source games (SSG), in which there is one source terminal
s ∈ Vp for every player p

1.4 Initial Observations

Recall from [4] that a NE of the connection game has the following properties.

• The network of bought edges is a tree.

• For each edge e the total amount offered for its purchase is either c(e) or 0.

• Each player contributes only to the subtree of bought edges that she needs to satisfy her
connection requirement.

Our algorithms rely on a player-based assignment technique which might be of independent in-
terest. It is presented in the following framework. In each iteration it picks a player, assigns
payments, removes the player, and reduces the edge costs by the amount she paid. The frame-
work terminates if there is no player left. As candidates for this elimination process it considers
leaf players.

Definition 2 A player owns a lonely terminal t ∈ Vp if t 6∈ Vq for any other player q 6= p.
A player p in a TCG is a leaf player if she owns at least one lonely terminal and at most one
non-lonely terminal.

Algorithm 1: Algorithmic Framework
Input: A feasible tree T

Output: State s = (s1, . . . , sk) distributing the cost of T

c1(e) = c(e) for all e ∈ E1

for iter ← 1 to k do2

p is a leaf player if possible; otherwise an arbitrary player3

Call a procedure, which either determines sp or improves T4

if procedure returns a new tree then5

restart the framework with new tree6

Set citer+1(e) ← citer(e) − sp(e) for all e ∈ E7

Remove p, contract edges e of cost citer+1(e) = 08

To provide some intuition how leaf players correspond to leaves, we consider the case of PTCG with
two terminals per player. Consider a connection requirement graph Gcrg constructed as follows.

1Clearly, there are games without tree connection requirements in which every feasible network is connected. In
these games the structure of G forces players to build a connected network. For such games the results presented
here do not necessarily hold.
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The node set of Gcrg contains all terminals from G. The edge set is created by introducing a
single edge for each player between her terminals. Note that Gcrg must be connected due to the
presence of tree connection requirements. Suppose we run Algorithm 1 and apply the removal of
players by removing the corresponding edge in Gcrg. Whenever a non-leaf player is encountered
and removed by Algorithm 1, we break a cycle in Gcrg. Consider this set of edges corresponding
to non-leaf players removed by Algorithm 1. This set of edges breaks all cycles in Gcrg. Instead,
we can remove this set of edges and corresponding players upfront and afterwards run Algorithm 1
on the resulting tree Gcrg. This yields the same output of the algorithm. Then, in every iteration
the algorithm is guaranteed to find a leaf player, which corresponds to an edge connecting a leaf
node in Gcrg. Note that in this case picking leaf players results in an order similar to an inverse
BFS in Gcrg.

2 Exact Nash Equilibria

In this section we examine cost and complexity properties of exact NE in TCGs. We first observe
that the price of anarchy is as large as k, even in the PTCG. Consider a graph with two vertices
and two parallel edges e1 and e2, in which each player wants to connect both vertices. Edge e1

has cost k, e2 cost 1. If each player is assigned to purchase a share of 1 of e1, the state is a NE
and the price of anarchy becomes k. Note that k is also an upper bound as was noted in [4]. In
contrast, the price of stability for the PTCG is 1 as every such game has a NE purchasing T∗.

Theorem 1 For any social optimum tree T∗ in a PTCG there exists a Nash equilibrium exactly
purchasing T∗. The price of stability in the PTCG is 1.

Proof. We use Algorithm 1 with the optimum tree T∗ as input to construct an optimal NE. In
line 4 we use the following Procedure 2. As the optimum T∗ is provided as input, the procedure
only outputs a strategy sp for each player p. The resulting algorithm is similar to ADTW-SS [4]
for SSGs.

Procedure ExactNash(T∗, c, p) for computing a NE cost distribution of T∗ for PTCGs
Input: The social optimum tree T∗, a cost function c and a selected player p

Output: A strategy sp for p

Create global player h accumulating all players except p1

Set sp(e) = sh(e) = 0 for all e ∈ E2

if p has no lonely terminal then3

return sp4

if p has no non-lonely terminal then5

Set sp(e) = c(e) for all e ∈ Tp and return sp6

Let s be the vertex with the non-lonely terminal of p7

for each edge e ∈ T∗ in reverse BFS order from s do8

if e is a bridge then9

Assign sq(e) = c(e) to some player q, for which e ∈ Tq10

else11

if e ∈ Tp then12

Find the cheapest path Ap excluding e for player p under ce
p13

Assign sp(e) = min(c(e), ce
p(Ap) − sp(Te))14

if e ∈ Th then15

Find the cheapest tree Ah excluding e for player h under ce
h16

Assign sh(e) = min(c(e) − sp(e), ce
h(Ah) − sh(Te))17

return sp18
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In the description Te denotes the part of T∗ rooted at s, which is located below edge e. When
assigning the cost of e to player p the procedure uses cost functions ce

p for G with ce
p(e ′) = sp(e ′)

for e ′ ∈ Te, ce
p(e ′) = 0 for e ′ ∈ T∗\Te and ce

p(e ′) = c(e ′) otherwise. ce
h is defined similarly. Note

that the creation of player h (line 1) and building her function sh (lines 15-17) have no influence
on the output and can be dropped from the procedure. The consideration of player h, however,
is useful for proving correctness of the algorithm.
We must show that Algorithm 1 using Procedure 2 yields a NE purchasing T∗. As a first observa-
tion, it is possible to create an equivalent game as follows. For the task of distributing the cost of
T∗ we can drop all vertices outside of T∗ from consideration. Instead, we can consider the complete
graph GT∗ on the vertices of T∗. Edge costs csp are determined by the cost of shortest paths in G

with respect to c. Note that each player considers only paths as deviations. Furthermore, as no
player is assigned a contribution to an edge outside T∗, a player has to purchase the full cost of
every such edge she uses in a deviation. Hence, replacing G and c by GT∗ and csp does not alter
the cost of best deviations at any point in the algorithm. Thus, in the following we assume that
c satisfies the triangle inequality and that T∗ is a minimum spanning tree of G.
Trivially, the algorithm works correctly for every PTCG with only one player. Hence, we assume
as our induction hypothesis that the algorithm works correctly for every PTCG with k−1 players.
Then consider a PTCG with k players. Our induction step is represented by the first iteration of
the framework. We must show that the result of this iteration is a PTCG with k − 1 players such
that T∗ is an optimum solution under the resulting cost function c2. The induction hypothesis
can then be used to argue that it allows a NE cost distribution for the remaining k − 1 players.
If player p has no incentive to deviate from sp, a NE purchasing T∗ evolves. Thus, it remains to
show the following two properties for the induction step:

1. Strategy sp assigned to player p allows her no cheaper deviation.

2. T∗ is optimal for the remaining k − 1 players under cost function c2.

We attack the proof by further adjusting the game. All costs of edges in T∗ not purchased by p

must be purchased by some of the other players. Thus, we suppose that all players except p are
represented by the global player h, who accumulates all terminals except those of p. Procedure
2 assigns costs to both players p and h. Naturally, if at the end of the procedure player h has
no incentive to deviate from sh, then property 2 is fulfilled. Hence, both properties are fulfilled if
there is a NE purchasing T∗ in the game for players h and p. It remains to prove the following
lemma.

Lemma 1 For the reduced game with two players p and h Procedure 2 computes a Nash equilib-
rium purchasing T∗.

Proof. We show that at the end of the procedure no player has a possibility to lower her
contributions by changing her strategy, and that the calculated strategies yield connections of
bought edges - i.e. T∗ is fully paid for. Note that the game actually represents a single source
game for players p and h with a single source terminal s. For the rest of the proof we consider T∗

rooted at s and use terms higher and lower to refer to edges and vertices at a closer and further
distance from s in T∗, respectively.
We first focus on the question if a player can lower her contributions.

Lemma 2 The payments computed by Procedure 2 allow no cheaper feasible deviation for players
p and h.

Proof. With the similarity of Procedure 2 to ADTW-SS the lemma follows directly from [4,
Theorem 3.2] for player p. For player h, however, the argument is more complicated.
Recall that Te denotes the part of T∗ below edge e. We denote by Tu the part of T∗ below a
vertex u. Note that we assume e 6∈ Te, but u ∈ Tu. Consider sp and sh at the end of an iteration,
in which Procedure 2 has assigned the cost of some edge e = (u, v) for which we assume u is
higher than v. It is not obvious that the construction of ce

h leads to an equilibrium strategy for
player h. Consider a vertex u where multiple subtrees join. We assume that for each edge ej
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below u the contribution of h to Tej + ej is small enough, i.e. Tej + ej is the cheapest way under
ce

h to connect the terminals of h in Tej to T∗\Tej . But player h owns terminals in possibly all
subtrees Tej , and when constructing the payments for edges of a single Tej + ej the contribution
to the respective other subtrees was considered to be 0. Can h pick a different, cheaper tree to
connect her terminals in Tu to T∗\Tu that improves upon her calculated contribution? We give
a negative answer to this question as follows. Assume the procedure assigned payments for each
Tej +ej, and that u is the first vertex at which sh(Tu) is not optimal for h. Cost function cu

h with
cu

h(e ′) = sh(e ′) for e ′ ∈ T∗ and cu
h(e ′) = c(e ′) for e ′ ∈ E\T∗ captures the optimization problem

faced by player h. In fact, we will see that T∗ is indeed the optimum network under cu
h, hence

player h sticks to her contribution.
Suppose u is the first vertex, at which player h can lower her contribution. Then there is a
deviation network Ah, which is cheaper than T∗ under cu

h (i.e. the current contribution of h to
T∗). W.l.o.g. Ah includes all edges of cost 0, in particular all edges purchased completely by p

and all edges of T∗ outside Tu. Let Tej be a tree that is not completely part of Ah. Consider for
each terminal t of h located in Tej the path from t to u in Ah. We denote this set of paths by
Pej . Let P

ej

1 be the set of subpaths from Pej containing for every P ∈ Pej the first part between
the terminal of h and the first vertex w 6∈ Tej . This vertex always exists because u 6∈ Tej . It is
in T∗ because in our adjusted game T∗ covers all vertices in G. The network A

ej

h =
⋃

P∈Pr
1ej

P

was considered as a feasible deviation when constructing the payments for Tej + ej, as it connects
every terminal in Tej to a vertex of T∗\Tej . Furthermore, the payments of p were the same, hence
the cost of A

ej

h was the same. Using the assumption that u is the first vertex for which Tu is
not optimal for h, we know that cu

h(A
ej

h ) ≥ cu
h(Tej + ej). After substituting A

ej

h by Tej + ej in
Ah, the new network is not more costly than Tej + ej. To show that this new network is also
feasible, suppose we iteratively remove a path P ∈ P

ej

1 . Then there might other terminals whose
connections to u use parts of P. The last vertex w of P is the first vertex of P outside of Tej , and it
stays connected to u as P is the first part of a path to u. All other vertices of P are in Tej and are
connected by Tej and ej. Hence, all terminals affected by the removal of P are finally reconnected
to u. In this way Ah can be transformed into T∗ without cost increase. This contradicts our
assumption that Ah is cheaper than T∗ and proves that T∗ is optimal under cu

h. Thus, player h

cannot lower her contribution, which proves the lemma. ¤

Figure 1 depicts the argument for player h. Vertex u has two subtrees for which the payments
were assigned independently. The subtree Ae1

h of Ah, which is assumed to be cheaper than Te1 ,
is drawn in bold. A vertex w represents the first vertex outside Te1 on a path in Ah, and it can
be either completely outside Tu (like w1 for t1) or in another Tej (like w2 for t2). Replacing Ae1

h

by Te1 and e1 yields a feasible network that is not more expensive.
We have shown that the players have no incentive to move away from their assigned payments
due to cost improvement. In addition, we need to show that the payments suffice to pay for the
cost of T∗.

Lemma 3 The payments computed by Procedure 2 purchase T∗.

First, consider the structure of Ah in an iteration when assigning costs of edge e. Consider a
terminal tj of player h, and let Tj and Aj be the paths between s and tj in T∗ and Ah, respectively.
The following lemma about the structure of Ah generalizes [4, Lemma 3.4] to player h with more
than two terminals. It similarly holds for player p and her minimum cost deviation Ap.

Lemma 4 Suppose edge e is the first edge that cannot be paid for using the assignment procedure
of the algorithm. Then there is a minimum cost alternative tree Ah for player h with the following
property. For any tj there are two vertices vj and wj on Aj such that all edges on Aj from tj to
vj are in Tj ∩ Te, all edges between vj and wj are in E\(Tj ∩ Te), and all edges between wj and s
are in T∗\Te.

Proof. The proof is by contradiction. If Ah violates this lemma, it can be transformed into a
tree for player h that satisfies the properties of the lemma and is not more expensive. Suppose
edge e is the first edge that cannot be paid for. Consider the path Aj from a terminal tj to s.
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Figure 1: Transformation of Ae1

h into Te1 . Solid edges in the marked area belong to Te1 , bold
edges to Ae1

h . Replacing Ae1

h in Ah by Te1 and e1 yields a feasible network for player h that is
not more expensive than Ah under cu

h.

Once it reaches a vertex outside Te, there is a connection of cost 0 to s, because all vertices from
the graph are in T∗. In this case we can adjust Ah to satisfy the lemma without cost increase.
Now suppose Aj leaves Tj to Te\Tj and re-enters Tj below e at another vertex. Consider the edges
e ′ ∈ Tj∩Aj of Te such that Aj excludes edges from Te ′ . Let e ′low be the lowest of these edges. We
denote by f 6∈ Aj the edge directly below e ′low on Tj (see Figure 2(a)). Recall our assumption that
e was the first edge that could not be paid for. By the time the algorithm was trying to purchase
Tf + f, it found that the contribution of player h to Tf was optimal to connect all terminals of h

in Tf to T∗\Tf. As the payment functions and the adjusted cost function ce
h are built adaptively,

we know that this is still true in the present iteration. We can use the repairing construction from
Lemma 2 to replace the respective parts of Ah with Tf + f. This yields a new feasible network
that is not more expensive and uses all edges of Tj from tj to e ′low. Hence, in the new network
e ′low is not considered anymore as one of the edges e ′ ∈ Tj ∩Aj, for which Aj excludes edges from
Te ′ . Thus, iteratively Ah can be transformed without cost increase into a network obeying the
lemma. ¤

Note that the argument can be extended to see that the vertices vj build a frontier in Te in the
sense that Ah does not use any edge of Te above any of the vertices vj. The vertices vj are similar
to the deviation points used in the proof for SSGs in [4].
Proof. (of Lemma 3) Now we prove that the payments assigned by Procedure 2 pay for e.
Denote by Te

p the part of the path between s and the lonely terminal tp, which is located in Te.
We consider two cases and show in each case how to build a better network than T∗ if Lemma 3
is violated.

Case 1: Suppose there is an edge f ∈ Ah ∩ Te
p . Then for a vertex v incident to f, Ah includes

all edges from Th ∩ Tv, in particular the vertex where Te
p joins Th. If player h deviates to

Ah and player p sticks to her payments, this yields a feasible network with cost less than or
equal c(Ah) + c(Ap) < c(T∗).

Case 2: Assume that Ah excludes all edges from Te
p . Then Ap departs from Te

p at some vertex
d. However, as e is the first edge, which cannot be paid for, it is optimal for player h use the
contribution to Td to connect all her terminals located in Td to d. Ah can be transformed
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(a) (b)

Figure 2: (a) A violation of the structure of Lemma 4, as Aj leaves and returns to Te below e. As
Tf + f is the cheapest way to connect the terminals of h in Tf to T∗\Tf, it is possible to replace Aj

by Tj for every terminal tj ∈ Tf of h. This generates a feasible network that is not more expensive
than Ah under ch

e . (b) Improvement step for T∗ if it cannot be paid for. Td is optimal for h to
connect all her terminals of Td to d. Player p also sticks to her contributions in Td and establishes
a connection to s with Ap, which ensures feasibility.

into a network including Td without cost increase. By assumption d is not part of Ah, so
the repaired network Td might be (part of) a component, which is not connected to the
source s anymore. This connection is then established by Ap. Figure 2(b) depicts this
constellation. The structure of Ah ensures that the other terminals of h outside Td are still
connected either to s or to Td. Note that if Ap uses other edges of Te outside Ah, we must
ensure that h makes her contribution to these edges, because otherwise the cost for p is
increased. However, we can again apply the same arguments to transform Ah such that a
feasible network without cost increase is created.

Hence, if the costs ce
p(Ap) and ce

h(Ah) do not allow to pay for Te + e, there is a cheaper network
than T∗ that can be constructed in one of the two ways described. This is a contradiction and
proves Lemma 3. ¤

The previous lemmas show that no player has a possibility to lower her contributions and that
the cost of T∗ is paid for. This proves Lemma 1. ¤

As Lemma 1 captures the crucial part of our induction, Theorem 1 follows. This proves that the
price of stability in the PTCG is 1. ¤

If the Algorithm 1 uses Procedure 2 with T∗, then it computes an optimum NE. For classes of
PTCGs posing efficiently solvable subclasses of Steiner Tree (e.g. for constant k [10]), a NE
purchasing T∗ can be computed in polynomial time. Unfortunately, these advantageous properties
are restricted to the PTCG. In a SSG with at most three terminals per player it is NP-hard to
decide, whether the game has a NE or not. Furthermore, the price of stability is at least k−2. We
first show that there is a SSG in which for every (α,β)-NE α > 1.0719. This means that in every
state there is a player who can reduce her contribution by at least a factor of 1.0719. In particular,
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Figure 3: A SSG without a NE. Vertex labels indicate player ownership, edge labels are used for
identification in the analysis given in the text.

this game has no exact NE. In addition, we provide an initial lower bound for the stability ratio
of approximate NE purchasing T∗. Our bound of α > 1.1835 is, however, significantly lower than
the bound of α ≥ 1.5 shown in [4] for general connection games.

Lemma 5 There is a SSG in which for every (α,β)-approximate Nash equilibrium α > 1.0719.
For (α, 1)-approximate Nash equilibria the bound increases to α > 1.1835.

Proof. Consider the game in Figure 3. We suppose that c(ej) = 1 for j = 3, . . . , 9. Furthermore,
we set c(e1) = c(e2) = x and try to adjust the value x such that the minimum achievable stability
ratio is maximized.
Consider any (α,β)-NE. Clearly, the network purchased must be connected and include all ter-
minals and the source s. Once players purchase a network with cycles, they can drop edges until
the network becomes a tree. In addition, they only need edges on paths between s and a terminal
t. Dropping unnecessary edges from the network only decreases the payments of players and in-
creases the cost of possible deviations. Such a transformation decreases the stability ratio. Thus,
the minimum stability ratio is obtained for a state purchasing a tree network in which every leaf is
a terminal. The following case analysis derives bound for the stability ratio in each class of trees
including some subset of the edges {e1, e2, e3}.

Case 1.1 : Suppose only e1 is included in the tree (the case with only e2 is symmetric). We
set up inequalities to place a general upper bound on certain deviation possibilities. These
upper bounds can only be strengthened if certain parts of the network are purchased and
the player has to contribute less to the respective edges. sp(e) denotes the contribution of
player p to edge e.

|s1| ≤ α(s1(e2) + s1(e7) + s1(e1) + s1(e4)) ≤ α(2 + x + s1(e1))
|s2| ≤ α(s2(e1) + s2(e9)) ≤ α(1 + s2(e1))

The cheapest tree in this case has cost 4 + x, hence adding the inequalities yields the best
possible bound of 4 + x ≤ α(3 + 2x), and thus α ≥ 1 + 1−x

3+2x .

Case 1.2: Suppose only edge e3 is bought. Any such network has cost at least 5. In this case

|s1| ≤ α(s1(e2) + s1(e5) + s1(e6)) ≤ 3α

|s2| ≤ α(s2(e1) + s2(e9)) ≤ α(1 + x),

so the stability ratio in these networks is at least α ≥ 1 + 1
4+x . This is dominated by the

bound of Case 2.2.
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Case 2.1: Suppose e1 and e3 are purchased (the case with e2 and e3 is symmetric). It is possible
to set up inequalities representing meaningful deviations as in Case 1.1 and to get a lower
bound of α ≥ 1 + 1−x

3+2x .

Case 2.2: Suppose e1 and e2 are purchased. We bound some deviations by

|s1| ≤ 3α

|s2| ≤ α(1 + s2(e1))

|s2| ≤ α(1 + s2(e2))

It is easy to see that the minimum case is achieved by setting y := s2(e1) = s2(e2). This
yields

2 + 2x − 2y ≤ 3α

1 + 2y ≤ α(1 + y)

For a stability ratio α > 1 we need x > 0.5. Then the bound of Case 1.2 is dominated by
the one of Case 2.1. Hence, finding the optimum x poses the optimization problem

max
x∈(0.5,1)

max
y∈[0,x]

min
(

4 + x

3 + 2x
,
2 + 2x − 2y

3
,
1 + 2y

1 + y

)
.

In the optimum case all inner terms are equal. This results in an optimum

y∗ =
x − 3 +

√
x2 − 2x + 7

2
.

Substitution yields the problem

max
x∈(0.5,1)

min

(
4 + x

3 + 2x
,
5 + x −

√
x2 − 2x + 7

3

)
.

Again, the inner bounds must be equal to yield the optimum. It gives x ≈ 0.68548 and a
lower bound on α > 1.07195.

Case 3: Finally, suppose all three e1, e2 and e3 are purchased. Then the network includes three
additional edges. In this case the network allows the same deviation bounds as the network
of Case 2.2, but it is more costly. The minimum stability ratio is not obtained in this case.

Finally, for the case, in which T∗ must be bought, let x be arbitrarily close to 1. Then T∗ includes
both edges e1 and e2 of cost x, and the corresponding bound of Case 2.2 approaches

lim
x→1

5 + x −
√

x2 − 2x + 7

3
= 2 −

√
2

3
> 1.1835

This proves the lemma. ¤

We can embed the game of Figure 3 into the construction for the price of anarchy. The resulting
game does not have a cheap NE.

Theorem 2 The price of stability in the SSG is at least k − 2.

Proof. We combine the game of Figure 3 with the game that maximizes the price of anarchy. We
use c(e1) = c(e2) = 0.75 for simplicity and note that the analysis of Lemma 5 can be repeated to
see that the corresponding game has no NE. Consider the resulting game depicted in Figure 4.
Suppose there is a NE without the edge of cost k−2−ε. Then players 3, . . . , k must be connected
with the edge of cost 1, so they all have a direct connection to the source. They do not contribute
anything to the cost of the remaining edges of cost O(ε). Thus, the game for players 1 and 2
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Figure 4: A SSG with price of stability arbitrarily close to k − 2. Vertex labels indicate player
ownership, edge labels indicate cost.

reduces to the one of Figure 3. Lemma 5 shows, however, that in this case there can be no NE.
Hence, in any NE the players must purchase the edge of cost k − 2 − ε. Consider the following
strategies: Players 3, . . . , k purchase the costly edge and the additional edge of cost ε to s in equal
shares; player 1 purchases two edges of cost ε; player 2 purchases one edge of cost ε and one of
cost 0.75ε. There is such a strategy combination that forms a NE. Hence, as ε tends to 0, the
price of stability becomes arbitrarily close to k − 2. ¤

Theorem 3 In the SSG it is NP-hard to decide if a game has a Nash equilibrium.

Proof. We briefly outline the proof, which uses a reduction from 3SAT. For an instance of 3SAT a
SSG is constructed as follows. For each variable xp we introduce a variable player p and a gadget
depicted in Figure 5(a). It consists of a single terminal of p and two connections to the source s.
A player has a true path to s including an edge epT and a false path including an edge epF. For
each clause Cq we introduce two clause players q1 and q2 and a gadget depicted in Figure 5(b).
It consists of a game of Figure 3 and an alternative connection to the source by a side gadget.
This side gadget includes three edges epT or epF. These edges are the ones from the true or false
path of the corresponding gadgets for the variables appearing in Cq. For example, the gadget for
a clause (x1 ∨ x2 ∨ x3) includes edges e1F, e2F and e3T from the variable gadgets of variables x1,
x2 and x3 (c.f. Figure 5(b)). There is only one edge epT and one edge epF for each variable xp in
the whole graph.
Suppose the 3SAT instance has a satisfying assignment. Then we assign the variable players to
purchase the edges of the true or false path corresponding to their assignment. This results in a
total cost of 2 for each of them. Then, in each clause gadget one of the epT or epF edges is bought.
For a clause Cq we assign player q1 to purchase the three edges of cost 1 directly connecting her
terminals to s. Player q2 is assigned to purchase two edges of the side gadget of total cost 1.75,
which connect her terminal to one edge bought by a variable player. It is easy to note that in this
case no player has a possibility to connect her terminals with a lower cost by choosing a different
strategy.
On the other hand suppose there is a NE. If for a clause gadget player q2 does not use edges of
the side gadget to connect her terminal, an analysis similar to the proof of Lemma 5 tells us that
q1 and q2 do not agree upon a set of edges to purchase. Hence, player q2 does contribute only
to edges of her side gadget. In addition, this implies that no clause player contributes to the cost
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(a) Gadget for a variable. (b) Gadget for a clause (x1 ∨ x2 ∨ x3).

Figure 5: Variable and clause gadgets. Vertex labels indicate player ownership. Numeric edge
labels indicate cost, all unlabeled edges have cost 1.

of edges epT or epF. Thus, these edges must be fully bought by the variable players. However,
to ensure a connection through the side gadgets for each clause player q2, there must be for each
clause gadget at least one edge epT or epF purchased by the variable players. As each variable
player purchases exactly one of her true or false paths, this directly yields the desired satisfying
assignment for the 3SAT instance.
This proves that in general deciding the existence of a NE is NP-hard. Our constructed games,
however, involve only players with at most three terminals each. For such a player the optimum
Steiner tree can be found in polynomial time [10], and thus it is possible to recognize a NE in
polynomial time. Hence, for this special case the problem is NP-complete. ¤

3 Approximate Nash Equilibria

For TCGs exact NE can be hard to find or very expensive. This section studies the existence and
computability of cheap approximate NE providing a trade-off between efficiency and stability. We
use the concept of connection sets [4], which are special sets of edges of T∗.

Definition 3 A connection set S of player p is a subset of edges of Tp, such that for each connected
component C in T∗ \ S either

1. there is a terminal of p in C, or

2. any player that has a terminal in C has all of her terminals in C.

For any Steiner vertex of degree 2 in T∗ the incident edges belong to the same connection sets, so
for convenience we assume that T∗ has no such vertices. Suppose we assign a player to purchase
exactly a single connection set. If she switches to a cheaper set of edges connecting her terminals,
this keeps the purchased network feasible and improves upon the cost of T∗. Hence, the cost of
a connection set for a player lower bounds any of her deviation cost. Thus, if T∗ is purchased by
assigning every player to pay for at most α connection sets, the state forms an (α, 1)-NE. Note
that a subset of a connection set also is a connection set.
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3.1 An Algorithm for PTCGs

In connection games with two terminals per player the edges of T∗ can be partitioned into equiva-
lence classes SQ such that e and e ′ belong to the same class iff Q = {q : e ∈ Tq} = {q : e ′ ∈ Tq}.

Lemma 6 In connection games with two terminals per player each SQ forms a connection set for
all players q ∈ Q which is maximal under the subset relation. In the PTCG connection sets SQ

form a contiguous path.

The lemma can be proven rather easily by assuming the contrary and deriving contradictions to
the definition of connection sets and tree connection requirements.
We call a connection set SQ needed by Q. For the rest of this section we consider only maximal
connection sets and not explicitly mention a player, as this information is given implicitly by the
player subtrees the set is located in. For deriving approximate NE we again use Algorithm 1. In
line 4 of Algorithm 1, however, we use a different procedure to assign the costs. For a leaf player
p we pick two connection sets and assign p to purchase them. If p is not a leaf player, sp = 0.
We must carefully choose the connection sets that are assigned to a leaf player p. For instance,
there might be two connection sets, which are needed by player sets differing only by p. If p is
assigned to purchase none of these sets, then after the player is removed in line 7 of Algorithm 1, the
two connection sets will be needed by the same player set. As aruged above, however, this identifies
them as one connection set. Hence, in this case two distinct connection sets would be considered
as one connection set after removal of p. Naturally, this would destroy our argumentation if this
connection set is assigned to another player considered in later iterations. In addition, a connection
set needed only by p must be assigned to p, because otherwise it will remain unpurchased. Avoiding
these problems provides candidate connection sets for the assignment to p.

Definition 4 A connection set is called an endangered set for player p if

1. it is needed only by p. We call such a connection set a personal set.

2. it is needed by the set of players Q∪ {p}, and there is another connection set (called a forcing
set) needed by the set Q, with Q 6= ∅ and p 6∈ Q. We call such a connection set a community
set.

Indeed, for any leaf player there are at most two endangered sets.

Lemma 7 For any leaf player in a PTCG there are at most two endangered sets.

Proof. As there is only one personal set, we must show that there is at most one community set.
Assume for contradiction that for a leaf player p there are several community sets. Arbitrarily pick
two distinct forcing sets S ′1 and S ′2 with player sets Q1 and Q2, respectively. The corresponding
community sets are denoted S1 and S2. We denote Q = Q1 ∪Q2.
Consider the tree T∗. Upon removal of S1 and S2 three components evolve. Two of them (denoted
C1 and C2) each contain one terminal of p. As the subtree Tp for each player is a path, the third
component (denoted C3) contains a terminal of each player in (Q1 ∪ Q2) − (Q1 ∩ Q2). For the
first two cases we suppose there is no forcing set in C3.

Case (a): S ′1 and S ′2 are located in C1 and C2, each in a different component. Hence, after
removal of S ′1 and S ′2 components C4 and C5 evolve (see Figure 6(a)). Now all terminals of
players in Q are distributed to C3, C4 and C5. If the underlying graph structure allows it, we
can reconnect these components into a component and C1 and C2 into a second component.
This would yield a disconnected graph that satisfies the connection requirements. This is
a contradiction to the presence of tree connection requirements, no matter whether such a
connection is actually possible with the edges from the underlying graph or not.

Case (b): S ′1 and S ′2 are located in C1 and C2, both in the same component. Hence the other
component holds a terminal of each of the players in one set, w.l.o.g. we assume C1 a terminal
from each player in Q1. As S ′1 is in C2, all players of Q1 need both S1 and S2, so Q1 ⊂ Q2.
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(a)

(b)

Figure 6: Component structures in the presence of more than two community sets for player p.
Replacing connection sets S1, S2, S ′1, and S ′2 with dashed edges creates feasible, unconnected
networks. Filled vertices are terminals of p.

Hence, in C3 there is one terminal of each player of Q2 − Q1. In C2 there is only one
terminal of each player in Q1. If we remove S ′2, we split off a new component C4 containing
one terminal of each of the players in Q2. S ′1 is, of course, located in C4, because it is needed
by a subset of the players. If we remove S ′1, we get a new component C5 with a terminal
of each of the players in Q1 (see Figure 6(b)). In C4 one terminal of each of the players
in Q2 − Q1 remains. So if we connect C4 and C3 into a component, there is no need to
connect this new component to the rest of the tree. This again violates the tree connection
requirements.

Case (c): Suppose one forcing set (w.l.o.g. S ′1) is located in C3. This means that Q1 ∩Q2 = ∅.
The tree requirements ensure, however, that for each pair of players q1 ∈ Q1 and q2 ∈ Q2

there is a sequence of players that transitively require a connection between q1 and q2. Note
that p cannot be part of this sequence as she is a leaf player. In particular, this means there
is at least one player whose path includes either S1 or S ′1. This is a contradiction to the
definition of community and forcing sets.

This proves that there is only one community set, which yields at most two endangered sets for a
leaf player. ¤

In line 4 of Algorithm 1 we thus simply assign a leaf player to purchase the endangered sets. This
ensures that all connection sets of T∗ are assigned, and the connection sets considered and assigned
in later iterations correspond to original connection sets. Then the algorithm works correctly. It
can be combined with recent approximation algorithms to yield the following theorem.

Theorem 4 For any social optimum solution T∗ in a PTCG there exists a (2, 1)-approximate
Nash equilibrium such that the purchased edges are exactly T∗. A (2 + ε, 1.55)-approximate Nash
equilibrium can be computed in polynomial time, for any constant ε > 0.

Proof. The algorithm assigning endangered connection sets is still inefficient, because it requires
T∗ as input. For the translation into a polynomial time algorithm we use the idea presented in [4].
It is possible to use a β-approximation algorithm for Steiner Tree to get an initial approx-
imation T . Assume this tree is optimal and assign connection sets to a leaf player. After the
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(a) (b)

Figure 7: Schematic illustration of child player distribution for a parent player p. (a) Distribution
of hierarchical players 1-4. Gray trapezoids indicate contracted subtrees that are needed only by
player p. (b) Detailed view of the distribution of personal players I-VI in the subtree labeled Tmc

in (a). Bold edges indicate personal sets of personal players after the assignment of the algorithm

assignment consider each of her sets independently. In particular, for a connection set SQ assume
a cost of 0 for all e ∈ T\SQ and calculate the shortest path in G between the terminals of p. If
SQ is not optimal, then replace it with the cheapest path and output the improved network. In
this way the network T can feasibly be improved, which yields a restart of Algorithm 1 on the
improved network. To ensure a polynomial number of restarts, fix parameter γ =

εc(T)
(1+ε)nβ in

the beginning (with ε small enough to ensure γ < mine∈E c(e)). For checking optimality of a
connection set SQ, temporarily reduce the cost of each edge in SQ by γ. Then a cheaper path
improves the cost of the tree by at least an amount of γ. This yields at most (1+ε)nβ

ε restarts of
the framework. After the algorithm has run to completion, a last post-processing step is needed
to restore the original costs of the edges. Each player is assigned to pay only c(e) − γ of the cost
of each of her edges. The remaining cost of at most γ is split between all players proportionally
to the total contribution of each player to the cost of the tree. By repeating the analysis of [4]
this yields at most an ε-factor deterioration in the stability ratio. The theorem follows with the
recent 1.55-approximation algorithm for Steiner Tree [18]. ¤

3.2 An Algorithm for TCGs

In this section we adjust the idea of assigning connection sets to get (2, 1)-NE purchasing T∗ for
TCGs with any number of terminals per player. Each player (denoted as parent player) is divided
into a set of child players with two terminals per player. The child players have the same terminals
as the parent player, and they are distributed such that the child player game is a PTCG. Then, the
algorithm assigning endangered sets can be used to assign T∗ such that each child player purchases
at most two connection sets. The union of these connection sets yields only two connection sets
for the parent player.

Theorem 5 For any social optimum tree T∗ in a TCG there exists a (2, 1)-approximate Nash
equilibrium exactly purchasing T∗.
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Proof. The following pattern is used to divide a leaf parent player p into hierarchical and personal
child players. Then we process these child players such that the union of assigned connection sets
forms two connection sets for p. This suffices to prove the theorem. For our division of player p

it is possible to disregard all non-lonely terminals of p but one, as the corresponding connection
requirements can be left for other players to satisfy. Denote this last remaining non-lonely terminal
by troot. If the player has only lonely terminals, we pick troot arbitrarily. Then consider T∗ rooted
at troot in BFS-order. For an edge e needed only by p, the tree connection requirements guarantee
that the subtree below e is also needed only by p. Contract all such edges that are needed only by
p. Denote this adjusted tree by Tadj and consider it again in BFS-order rooted at troot. For each
vertex t ∈ Vp we introduce a new child player. She gets assigned t and the nearest ancestor vertex
that is a terminal of p (see Figure 7(a)). These child players are termed hierarchical players.
Consider the portions of the tree that were contracted to form Tadj. For each maximal connected
subtree Tmc ⊂ Tp that is needed only by p, let vmc be the root vertex that represents Tmc in
Tadj. Let player q be the first hierarchical child player, who got assigned the root vertex vmc.
This player strives to connect upwards in Tadj. Now we consider Tmc in DFS-order and consider
the first encountered terminal of p. If this is not the root vmc, we relocate child player q to this
terminal. For each new terminal tx encountered in the DFS order, we introduce a new child player
and assign her terminals tx−1 and tx. Except for the remaining hierarchical players at vmc there
is only one child player with a lonely terminal in Tmc at all times during this assignment. Finally,
consider the last terminal t in the DFS-scan of Tmc. We assign all hierarchical players connecting
downward in Tadj to t instead of the root vmc. Child players introduced in the DFS-scan of
the components Tmc are called personal players, because they divide parts needed only by p (see
Figure 7(b)).
After the division of a parent player the algorithm for PTCGs is used to assign connection sets. In
any iteration a leaf child player is picked and assigned to purchase her endangered sets, however, we
prefer to pick personal over hierarchical leaf players. Thus, the procedure works roughly bottom
up to troot. Finally, one connection set for the parent player p is formed by the union of all
personal sets for the child players. The other connection set is the union of the community sets.
Actually, a slightly stronger statement holds.

Lemma 8 If the child players of a parent player p are created and eliminated in the described
way, the removal of the child players’ personal and community sets creates only components that
contain terminals of p, respectively.

To see the argument, we first have a closer look at the structure of endangered and forcing sets.

Lemma 9 For any leaf player in a PTCG the personal, community, and forcing sets share a
common vertex if they exist.

Proof. If there is no forcing set, there is no community set and the lemma follows trivially. So
let there be a forcing set SQ needed by player set Q. Suppose for a leaf player p the sets do not
share a vertex. Remove the community set, and let C1, C2 be the components with and without
the lonely terminal of p, respectively.

Case (a): Suppose SQ is in C2 and remove it. This splits C2 into two components. We denote by
C ′

2 the remaining component including the terminal of p. The other component is denoted
by C3, and it contains one terminal of each player in Q. Now remove all edges that connect
to the lonely terminal tp of p in C1. Connect all resulting components except for t to C3.
Then connect the vertex v to C ′

2 (see Figure 8(a)). All connection requirements are met, but
there is a solution with two components. This contradicts the presence of tree connection
requirements. Hence, SQ must be in C1.

Case (b): Suppose SQ is in C1 and remove it. Similar to Case 1 we refer to C ′
1 and C3 as resulting

components after removal of SQ. Now suppose there is another player q with a terminal
located in C ′

1. Tq can only include one of SQ and SQ+p, so q 6∈ Q, and she must have both her
terminals in C ′

1. Again isolate the lonely terminal tp. Then construct two components, one
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consisting of t, C2 and C3; the other one consisting of all other components (see Figure 8(b)).
This generates a feasible solution with two components, which is a contradiction of tree
connection requirements. Once there are no terminals in C ′

1, there can be no connection sets
in C ′

1, except for the personal set Sp needed only by p. It remains to show is that Sp must
be located in C ′

1.

Case (c): Suppose Sp is in C2 and remove it. Again we denote by C ′
2 the component with the

terminal of p and by C3 the other one. Observe that C3 must contain all terminals of Q.
Then remove SQ from C1 generating C ′

1 and C ′
3. We can isolate the components containing

terminals of Q from the rest of the components (see Figure 8(c)). A feasible network with
two components is possible, which contradicts the presence of tree connection requirements.

(a) (b) (c)

Figure 8: Component structures when endangered sets do not share a vertex. Replacing solid with
dashed edges creates feasible, unconnected networks. Filled vertices are terminals of p.

If Sp exists, it is in C ′
1, and the three connection sets share a Steiner vertex. Otherwise, the two

connection sets meet at the lonely terminal of p. This concludes the proof of Lemma 9. ¤

Proof. (of Lemma 8) We use an inverse induction to show the lemma. Suppose the algorithm has
assigned all edges to child players. We reverse the elimination order of child players and consider
player and edge additions instead of player removals and edge contractions. The child player that
was eliminated last is now the one that is inserted first. It is obvious that for the first inserted
(i.e. last eliminated) child player the lemma holds. This is the base case of our induction. Now
suppose the property holds after we have inserted in the reverse order a given number of child
players from one or more parent players and their assigned edges. Then consider the insertion of
an additional child player q of a parent player p. This can be either a hierarchical or personal child
player. Recall the elimination order outlined above. Player q can have a personal set. Consider
the union of all personal sets of child players of p eliminated later (i.e. inserted already). By the
induction hypothesis after removal of this union every evolving component contains a terminal of
p. If in addition to that the personal set of q is removed, the only additional component that
evolves is the lonely terminal of q. This proves the induction for the personal sets.
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For the community sets the case is more complicated. Consider the hierarchical players. Their
community sets are always needed by at least one additional player, which is not a child player of
p. If the inserted player q is a hierarchical player, consider her terminal in the lower of the two
subtrees Tmc containing her terminals. This lower terminal is in the component newly created by
the removal of her community set. This is ensured by the hierarchical structuring and the fact
that other players are also present on the community set.
If q is a personal player, we consider the subtree Tmc that she is located in. Recall that Tmc is
needed only by p, and note that the root vertex vmc of Tmc does not have to be a terminal of p. In
addition, vmc might be incident to community sets of hierarchical players. The complete subtree
Tmc must be purchased by p, hence it consists completely of personal and community sets of child
players of p. The lemma is proven if we can show that every vertex in Tmc is either a terminal of p

or connected by personal sets to a terminal of p. In addition, the root vmc must be connected by
personal sets to the terminal of the hierarchical players connecting downward in the tree (if any).
This serves to keep the above given argument for hierarchical players feasible. Now consider as
an additional invariant that for every connected subtree T ′ ⊆ Tmc the vertex v ′ closest to troot is
connected by personal sets to the terminal considered last during the DFS-scan of T ′. Due to the
DFS-based construction of personal players we always eliminate first the player constructed last
in Tmc. Consider the subtrees q is located in. At the current time she is inserted last, so in turn
of the players present she was eliminated first. Therefore, we know she was constructed last, and
because of that she cannot have only a community set. So if q has a community set, she also has
a personal set. Then, due to the properties shown in Lemma 2, there is a Steiner vertex v between
these sets. Suppose now the endangered sets of q are contracted, then by construction the lonely
terminal of the second-last introduced child player or a hierarchical player is joined with v. Using
the induction hypothesis and the fact that v is connected with a personal set to the lonely terminal
of q, we see that the invariant holds in Tmc. In particular, every vertex stays connected by a path
of personal sets to a terminal of p, and hence no component without a terminal of p can evolve
once all community sets of p are removed from T∗. For illustration see Figure 7(b), in which the
bold lines indicate the personal sets of the child players I-VI. This proves the induction hypothesis
for community sets of hierarchical and personal players, and Lemma 8 follows. ¤

The splitting for a leaf parent player p creates two edge sets, which upon removal yield only
components including terminals of p. If such a set is removed, all resulting components must
be reconnected to form a feasible network. Hence, these edge sets are connection sets for p. It
also ensures that in our induction we can add the community (personal) sets of q to the sets of
community (personal) sets of other child players of p. This completes the proof of Theorem 5. ¤

The next lemma ensures that the assignment of personal and community sets for a leaf parent
player p does not depend on the splitting of the other parent players. In an iteration of our
framework we can thus assign edge costs to a parent player p assuming an arbitrary splitting of
other parent players. This ensures that the algorithm can find the correct personal and community
sets for child players in polynomial time.

Lemma 10 The endangered sets of child players of a leaf parent player p are independent of the
division of other parent players.

Proof. Again we use an inductive argument based on a single child player. Suppose we have a
child player q of parent player p, who is removed from the game. Consider an arbitrary splitting of
the other parent players into child players obeying the tree connection requirements. The personal
set of q is independent of the splitting of the other parent players, which proves the lemma for
the personal set.
Suppose q has a community Sc set needed by Q∪ {q} and a forcing set Sf needed by Q. We denote
by v the vertex that both sets connect to. Consider a different player p ′ with a child player in Q

and Q ∪ {q}. p ′ cannot have a terminal at v and Tp ′ must not include any other edges incident
at v than the two edges in Sc and Sf. Otherwise the tree connection requirements would require
a different set of child players of p ′ on Sc and Sf, which would contradict the assumption that a
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community set for q is present. Now consider a different splitting of p ′, which results in different
player sets needing Sc and Sf. There must be at least one child player of p ′ needing each of these
sets, because they are both in Tp ′ . However, as there is no terminal or alternate connection at v

that is in Tp ′ , any child player of p ′ needing Sc also needs Sf. Hence, Sc remains the community
set for q. This argument can easily be adjusted for more players. ¤

Procedure ApproxNash(T, c, p, γ) for computing (3.1 + ε, 1.55)-NE for TCGs
Input: A feasible tree T , a cost function c, a selected player p, a constant γ

Output: A payment function sp or a tree T+

Pick a non-lonely terminal as troot1

Disregard all non-lonely terminals of p except for troot from her set Vp2

Generate Tadj by contracting subtrees Tmc only needed by p3

Create hierarchical players on Tadj4

Expand Tadj and create child players on each Tmc5

Run algorithm for child players of p; prefer choice of personal over hierarchical leaf players6

Assign p to purchase connection sets assigned to her child players7

for each of the two connection sets S do8

Create cS by cS(e) = c(e) − γ for e ∈ S and cS(e) = c(e) otherwise9

Create GS by contracting all edges of T\S.10

Run 1.55-approximation algorithm on GS and cS for terminals of p11

if returned solution S ′ is cheaper than S under cS then12

return T+ = T − S + S ′13

return sp14

Theorem 6 For a TCG a (3.1 + ε, 1.55)-approximate Nash equilibrium can be computed in poly-
nomial time, for any constant ε > 0.

Proof. Procedure 3 sketches and summarizes the described steps to compute approximate NE for
general TCGs. The complete algorithm again uses Algorithm 1, and in line 4 it calls Procedure 3
to assign some cost of T∗ to the parent player p. Note that for TCGs we can use the improvement
steps on connection sets to obtain a polynomial time algorithm using the same scaling ideas as in
Theorem 4. As each connection set is now a tree, we use the 1.55-approximation algorithm [18]
for Steiner Tree not only to compute a starting solution, but also to compute improvements
for connection sets. This yields a stability ratio of 3.1 + ε. The theorem follows. ¤

3.3 A Tightness Argument

Our Procedure 3 and ADTW proposed in [4] both rely on the concept of connection sets. In this
section we will argue that with respect to connection games the analytic power of connection sets
is limited. In particular, algorithms that approach the problem of finding good approximate NE
relying on connection sets cannot achieve a significantly lower stability ratio.
The difference between our algorithm and ADTW is that the assignment procedure used by ADTW
does not employ the structural information of our child player splitting. With the structure of
TCGs a splitting of parent players and a hierarchical elimination order are possible. This avoids
the matching step ADTW uses to assign edge costs to players. This is crucial for achieving a
guarantee of two connection sets.
Similar to our algorithm ADTW does not employ cost sharing of edges. The next theorem shows
that no deterministic algorithm using only T∗ as input can improve the guarantees even if it
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(a) (b)

Figure 9: Optimal trees T∗ for games yielding tightness of the analysis of the algorithms. One
player can have a cheap additional edge of cost 1 + ε connecting her terminals. This is unknown
to the algorithms and thus gives a lower bound on the stability ratio of (a) 3 − ε for general
connection games and (b) 2 − ε for TCGs.

uses cost sharing. Thus, ADTW for general connection games and our algorithm for TCGs yield
optimal stability ratios with respect to this class of algorithms. Our algorithm provides a better
guarantee on TCGs, because ADTW can assign three connection sets to a player of a TCG with
a cheap alternate path.

Theorem 7 For any ε > 0 there is a connection game such that any deterministic algorithm
using only T∗ as input constructs a state purchasing T∗ with stability ratio at least 3 − ε.

Proof. Consider a game with two terminals per player and an optimal solution T∗ of cost 3k − 3

shown in Figure 9(a). All edges of T∗ have cost 1. There is at least one player that pays a cost
of 3 − 3

k . One player can have an alternative path of cost (1 + ε) outside T∗. As this path is not
known to the algorithm, the best approach is to equilibrate payments between players. It assigns
each player p to pay a cost of 3 − 3

k for parts inside her path Tp. As k approaches infinity, the
stability ratio becomes arbitrarily close to 3. ¤

Theorem 8 For any ε > 0 there is a PTCG such that any deterministic algorithm using only the
optimum solution T∗ as input constructs a state purchasing T∗ with stability ratio at least 2 − ε.

Proof. An argument similar to the proof of the previous theorem for the game in Figure 9(b)
shows that it is optimal to assign each player to contribute a cost of 2 − 1

k within her subtree. So
as a deterministic algorithm working only with T∗ our algorithm delivers the optimum worst-case
guarantee. ¤

Theorem 9 For any ε > 0 there is a PTCG for which ADTW constructs a (3−ε, 1)-approximate
Nash equilibrium.

Proof. Consider the game in Figure 9(b). ADTW proceeds as follows. At first each player is
assigned to purchase her personal set. Afterwards, it picks two terminals of a player and assigns
the path to be purchased by players that include parts of the path in their subtree. In particular,
the terminals are assigned to purchase edges of the path. In the following iterations the paths to
the purchasing terminals are assigned to other terminals and so on. Finally, a player is assigned
to purchase all edges that were assigned to her terminals. The distribution of edges to terminals
is done in a matching step. This suffices to provide a bound of 3 for the general case, and the
previous Theorem 7 showed that this is optimal for an algorithm using only T∗ in general con-
nection games. For TCGs, however, it might yield an unlucky assignment. If in our example the
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assignment starts by picking player 2, the matching can assign player 1 to purchase two connection
sets. With the personal set this results in three connection sets. If all edges have cost 1 and there
is an alternative path of cost arbitrarily close to 1, player 1 yields a stability ratio of arbitrarily
close to 3. ¤

These tightness results cannot be easily strengthened for the polynomial time variants of the algo-
rithms, because they heavily depend on tightness results and solution properties of the underlying
approximation algorithms for Steiner Tree and Steiner Forest. It is, for instance, not known,
whether the performance ratio of the recent 1.55-approximation algorithm [18] is tight.

4 Conclusion

In this work we have considered a non-cooperative game for network creation, in which selfish
agents strive to build globally connected networks. Our characterization of the hardness and
quality of exact Nash equilibria is reasonably tight. There is, however, potential for efficient
algorithms to compute approximate NE with improved stability ratios. The concept of connection
sets is a handy tool when constructing and analyzing algorithms. We have shown the boundaries of
this concept by showing that using connection sets alone it is not possible to significantly improve
the stability ratio over the guarantees presented for our algorithms. Nevertheless, we believe
that with a different, deeper structural analysis improved ratios are possible. Additionally, the
consideration of extended games based on other network design problems should lead to results
with more predictive value for reality. Towards this end we proposed the backbone game [14], which
is based on the Group Steiner tree problem. We were able to show that the price of stability is 1
in a single source scenario and to provide an algorithm for (1 + ε, β)-NE, in which β is bounded
by a polylogarithmic function of the input size. These results, however, extensively use techniques
presented here and in [4]. Further work needs to be done towards a deeper understanding of the
stability properties in these scenarios.
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