
Tradeoffs and Average-Case Equilibria in Selfish Routing

Martin Hoefer ∗ Alexander Souza †

June 23, 2007

Abstract

We consider the price of selfish routing in terms of tradeoffs and from an average-case
perspective. Each player in a network game seeks to send a message with a certain length
by choosing one of several parallel links that have transmission speeds. A player desires to
minimize his own transmission time (latency). We study the quality of Nash equilibria
of the game, in which no player can decrease his latency by unilaterally changing his
link. In this paper we treat two important aspects of network-traffic management: the
influence of the total traffic upon network performance and fluctuations in the lengths
of the messages. We introduce a probabilistic model where message lengths are random
variables and evaluate the expected price of anarchy of the game for various social cost
functions.

For total latency social cost, which was only scarcely considered in previous work so
far, we show that the price of anarchy is Θ

(
n
t

)
, where n is the number of players and t

the total message-length. The bound states that the relative quality of Nash equilibria
in comparison with the social optimum increase with increasing traffic. This result also
transfers to the situation when fluctuations are present, as the expected price of anarchy
is O

(
n

E[T ]

)
, where E [T ] is the expected traffic. For maximum latency the expected price

of anarchy is even 1 + o (1) for sufficiently large traffic.
Our results also have algorithmic implications. For the special case of identical links,

we give an algorithm for computing the social optimum for total latency cost in polyno-
mial time. Furthermore, our analyses of the expected prices are average-case analyses of
a local search algorithm that computes Nash equilibria in polynomial time.

1 Introduction

Large-scale networks, e.g., the Internet, usually lack a central authority to coordinate the
network-traffic. Instead, users that seek to send messages behave selfishly in order to max-
imize their own welfare. This selfish behaviour of network users motivates the use of game
theory for the analysis of network-traffic. In standard non-cooperative games, each user,
referred to as a player, is aware of the behavior of other players, and seeks to minimize his
own cost. A player is considered to be satisfied with his behaviour (also referred to as his
strategy) if he can not decrease his cost by unilaterally changing his strategy. If all players
are satisfied, then the system is said to be in a Nash equilibrium.

In order to relate selfishly obtained solutions with those of an (imaginary) central au-
thority, it is necessary to distinguish between the cost of the individual players and the cost
of the whole system. The latter is also referred to as social cost. Depending on the choice

∗Supported by DFG Research Training Group “Explorative Analysis and Visualization of Large In-
formation Spaces”. Department of Computer & Information Science, Konstanz University, Germany.
hoefer@inf.uni-konstanz.de

†Department of Computer Science, University of Freiburg, souza@informatik.uni-freiburg.de

1



of a social cost function selfish behaviour of the players might not optimize the social cost.
Consequently, the question arises how bad the social cost of a Nash equilibrium can be in
comparison to the optimum. In a seminal work, Koutsoupias and Papadimitriou [17] formu-
lated the concept of the price of anarchy (originally referred to as coordination ratio) as the
maximum ratio of the social cost of a Nash equilibrium and the optimum social cost, taken
with respect to all Nash equilibria of the game. In other words, the worst selfish solution in
comparison with the optimum.

Specifically, in [17], the KP-model for selfish routing was introduced: each of n players
seeks to send a message with respective length tj across a network consisting of m parallel
links having respective transmission speed si. The cost of a player j, called his latency
`j , is the total length of messages on his chosen link i scaled with the speed, i.e., `j =
1
si

∑
k on i tk. The latency corresponds to the duration of the transmission when the channel

is shared by a certain set of players. The social cost of an assignment was assumed to be
the maximum duration on any channel, i.e., the social cost is `max = maxj `j . Koutsoupias
and Papadimitriou [17] proved initial bounds on the price of anarchy for special cases of this
game, but Czumaj and Vöcking [8] were the first ones to give tight bounds for the general
case: Θ

(
log m

log log log m

)
for mixed and Θ

(
log m

log log m

)
for pure Nash equilibria.

In this paper, we mainly concentrate on total latency social cost
∑

j `j , but also apply our
techniques to maximum latency and polynomial load. The KP-model is usually associated
with maximum latency. Other latency functions were considered in [7, 11, 12], specifically
total latency was included in [12], but there was no treatment of the price of anarchy. The
price of anarchy in more general atomic and non-atomic congestion games was considered
e.g. by [1, 3, 5, 20, 21]. For a recent survey on results related to atomic congestion games we
defer the reader to [16].

We consider two important aspects of network-management: the influence of the total
traffic t =

∑
j tj upon the overall system performance and fluctuations in the length of

the respective message-lengths tj . We model the first aspect as follows: an adversary is
allowed to specify the task-lengths tj subject to the constraint that

∑
j tj = t, where t is a

parameter specified in advance. We consider the price of anarchy and stability of the game
with a malicous adversary explicitly restricted in this way. This model is closely related
to the work of Awerbuch et al. [4], which treats the KP-model with link restrictions and
unrelated machines, i.e., each task j has an arbitrary length ti,j on machine i. They proved
tight bounds on the price of anarchy in both models that depend on the tradeoff-ratio of the
longest task with the optimum value. However, their results are only for maximum latency.

For the second aspect – fluctuations – consider a sequence of such network games all with
the same set of players and the same network topology, but where the message-lengths of the
players might differ from game to game. This corresponds to the natural situation that users
often want to transmit messages with different lengths. The main question addressed in this
respect is how the price of anarchy behaves in a “typical” game. To formalize the notion
of fluctuation, we consider a probabilistic model in which the message-lengths are random
variables Tj . We evaluate the quality of Nash equilibria in this probabilistic KP-model with
the expected value of the price of anarchy of the game. The notion of an expected price of
anarchy was, to our knowledge, considered before only by Mavronicolas et al. [18] in the
context of a cost sharing mechanism, who referred to it as diffuse price of anarchy. Different
forms of randomization in the KP-model were either subject to machine assignment in mixed
Nash equilibria [17] or subject to incomplete information [13].

This new measure is interesting by itself, however, it also captures the performance of
a polynomial time algorithm proposed by Feldmann et al. [9]. This algorithm calculates
for any given initial assignment a pure Nash equilibrium – and for maximum latency this

2



equilibrium is of smaller or equal cost. This shows that for maximum latency the price of
stability is 1; and using a PTAS for makespan scheduling [14], a Nash equilibrium which is
a (1 + ε)-approximation to the optimum social cost can be found in polynomial time. This
is an interesting fact as iterative myopic best-response of players can take Ω(2

√
n) steps to

converge to a pure Nash equilibrium. Our results deliver an average-case analysis of this
algorithm for total and maximum latency and polynomial load.

An interesting adjustment, which we will also analyze in terms of traffic and fluctuations,
concerns coordination mechanisms, see [6,15]: instead of processing all tasks in parallel each
machine has a deterministic scheduling rule to sequence the tasks assigned to it. A player
then tries to minimize the completion time of his job by switching to the machine where it
is processed earliest.

1.1 Model and Notation

We consider the following network model: m parallel links with speeds s1 ≥ · · · ≥ sm ≥ 1
connect a source s with a target t. We note that the assumption of sm ≥ 1 is without loss
of generality, as speeds can be normalized without changing the results. There are n players
in the game, and each player seeks to send a message from s to t, where each message j has
length tj .

This model can naturally be described with scheduling terminology, and we refer to it
as selfish scheduling. Each of the m links is a machine with speed si and each message j is
a task with task-length tj . The strategy of a player is to choose of one of the machines to
execute its task. The total length on machine i is its load wi =

∑
k on i tk. We assume that

each machine executes its tasks in parallel, i.e., the resource is shared among the players that
have chosen it. Hence, the duration of a task j is proportional to the total length on the
chosen link i and its speed si, i.e., its latency is `j = 1

si

∑
k on i tk = wi

si
.

A schedule is any function s : J −→ M that maps any element of the set J = {1, 2, . . . , n}
of tasks to an element in the set of machines M = {1, 2, . . . ,m}. Each machine i executes
the tasks assigned to it in parallel, which yields that each task j is finished at time `j . The
finishing time of a machine i is hence given by fi = 1

si

∑
k on i tk = wi

si
. The disutility of each

player is the latency of its task, i.e., the selfish incentive of every player is to minimize the
individual latency.

A schedule is said to be in a (pure) Nash equilibrium if no player can decrease his latency
by unilaterally changing the machine his task is processed on. More formally, the schedule s
has the property that for each task j

fi +
tj
si
≥ fs(j) holds for every i. (1)

In this paper, we restrict our attention to pure Nash equilibria, i.e., the strategy of each
player is to choose one machine rather than a probability distribution over machines. It
is known that any selfish scheduling game admits at least one pure Nash equilibrium, see,
e.g., [10, 24].

Schedules are valued with a certain (social) cost function cost : Σ −→ R+, where Σ
denotes the set of all schedules. Notice that each Nash equilibrium is simply a schedule
that satisfies the stability criterion (1). In contrast, an optimum schedule s∗ is one which
minimizes the cost function over all schedules, regardless if it is a Nash equilibrium or not.
These differences in mind, it is natural to ask how much worse Nash equilibria can be
compared to the optimum. The price of anarchy [17] relates the Nash equilibrium with
highest social cost to the optimum, i.e, it denotes the fraction of the of the cost of the
worst Nash equilibrium over the cost of the best possible solution. In contrast, the price of

3



stability [2] relates the Nash equilibrium with lowest social cost to the optimum, i.e, it denotes
the fraction of the cost of the best Nash equilibrium over the cost of the best possible solution.
One might wonder about a reasonable choice for a social cost function. Arguably, it depends
on the application at hand which social cost function is advisable. Clearly, depending on the
game, the prices of anarchy and stability behave quite differently.

1.2 Results and Contributions

We characterize two important aspects of network-traffic management in the KP-setting:
the influence of total traffic and fluctuations in message-lengths on the performance of Nash
equilibria. Throughout the paper upper-case letters denote random variables and lower-case
letters their outcomes, respectively constants.

Traffic and Fluctuations Model

We first concentrate on the influence of the system load upon Nash equilibrium performance.
In the traffic model, an adversary is free to specify task-lengths t = (t1, . . . , tn) subject to
the constraints that tj ∈ [0, 1] and

∑
j tj = t, where 0 < t ≤ n is a parameter specified in

advance. We evaluate the quality of Nash equilibria with prices of anarchy and stability on
the induced set of possible inputs.

Then we formulate an extension to message fluctuations. The standard KP-game is
deterministic, i.e., the task-lengths are fixed in advance. What happens if the task-lengths
are subject to (random) fluctuations? What are prices of anarchy and stability in a “typical”
instance? We capture these notions with the fluctuations model. Let the task-length Tj of a
task j be a random variable with finite expectation E [Tj ] = µj . As before, a schedule is a
Nash equilibrium if (1) holds, i.e., if the concrete realisations tj of the random variables Tj

satisfy the stability criterion. Consequently, the set of schedules that are Nash equilibria is
a random variable itself.

We define the expected price of anarchy by

EPoA(Σ) = E
[
max

{
cost(S)
cost(S∗)

: S ∈ Σ is a Nash equilibrium
}]

and the expected price of stability

EPoS(Σ) = E
[
min

{
cost(S)
cost(S∗)

: S ∈ Σ is a Nash equilibrium
}]

in straightforward manner. Notice that each expected value is taken with respect to the
random task-lengths Tj . This means that the expectation is accumulated by evaluating the
price of anarchy (respectively stability) for each outcome tj of the random variables Tj which
is then weighted with the respective probability.

Social Cost Functions

We consider three different social cost functions: total latency
∑

j∈J `j , maximum latency
maxj∈J `j , and total polynomial load

∑
i∈M wd

i , where d ∈ N is constant. The machines have
possibly different speeds in the first two cases; identical machines in the third.

Our main results for total latency
∑

j `j in Section 2 are as follows. Theorem 2.1 for
the traffic model states that the (worst-case) prices of stability, respectively anarchy are
essentially Θ

(
n
t

)
. This means that in the worst-case, for small values for t, a Nash equilibrium

judged with total latency social cost can be up to a factor Θ (n) larger than the optimum

4



solution. However, as the total traffic t grows, the performance loss of Nash equilibria
becomes less severe. For highly congested networks, i.e., for t being linear in n, Nash equilibria
approximate the optimum solution within a constant factor.

It turns out that this behavior is stable also under the presence of fluctuations in message-
lengths. Theorem 2.4 states an analogous result for the stochastic setting: the expected price
of anarchy of this game is O

(
n

E[T ]

)
, where T =

∑
j Tj is the total random traffic and E [T ] =

ω
(√

n log n
)
. The result holds under relatively weak assumptions on the distributions of the

Tj ; even limited dependence among them is allowed. The assumption E [T ] = ω
(√

n log n
)

is
already satisfied if, for example, there is a constant lower bound on the task length of every
player. Intuitively, it requires that on average there are not too many too small tasks in the
game. In our opinion, it is a reasonable assumption when analyzing practical systems.

The results for maximum latency and total polynomial load fall into a similar regime.
For maximum latency maxj `j , it is already known (see [8]) that the price of stability is

1 and that the price of anarchy is Θ
(
min

{
log m

log log m , log s1
sm

})
. However, in Theorem 3.2,

we establish that the expected price of anarchy is 1 + m2

E[T ] , i.e., Nash equilibria are almost
optimal solutions for sufficiently large traffic. This result is related to Awerbuch et al. [4]
since their bounds also depend on a tradeoff between the largest task and the optimum
solution. However, our results translate to selfish scheduling with coordination mechanisms;
see Corollary 3.5.

The treatment of total polynomial load
∑

i w
d
i is deferred to Appendix 4 due to space

limitations. It is known that the price of anarchy is at most (2d−1)d

(d−1)(2d−2)d−1

(
d−1

d

)d
for iden-

tical machines, see [11]. Theorem 4.2 shows that the expected price of anarchy is even
(1 + m2

E[T ](1 + o (1)))d for identical machines.

Algorithmic Perspective

Our analyses of the expected prices of anarchy of the social cost functions provide average-
case analyses of the algorithm by Feldmann et al. [9] which computes pure Nash equilibria
for the KP-model in polynomial time (see e.g. Observation 2.5). Note that this algorithm
can be used for classical scheduling, instead of only computing Nash equilibria. Our analysis
hence gives bounds on the (expected) performance of that algorithm, which is of independent
interest. Remarkably, the analysis holds for machines with (possibly) different speeds, which
is a novelty over previous average-case analyses, e.g., [22,23], where only identical machines
were considered.

In addition, we show that – for the case of total latency and identical machines – the
social optimum solution can be computed in polynomial time; see Theorem 2.6.

2 Total Latency Cost

In this section, we consider the social cost function total latency cost(s) =
∑

j `j . Let
pi = pi(s) be the number of players assigned to machine i and let fi = fi(s) = 1

si

∑
k on i in s tk

denote the finishing time of machine i in the schedule s. Observe that we can rewrite the
social cost to cost(s) =

∑
j `j =

∑
i pifi.

2.1 Traffic Model

In this model, an adversary is free to specify task-lengths t = (t1, . . . , tn) subject to the
constraints that tj ∈ [0, 1] and

∑
j tj = t, where 0 < t ≤ n is a parameter specified in

5



advance.

Theorem 2.1. Consider the selfish scheduling game on m machines with speeds s1 ≥ · · · ≥
sm ≥ 1, total task length t =

∑
j tj > 0, where tj ∈ [0, 1], and cost(s) =

∑
j `j. Then we

have the bounds

n

2t
≤ PoS(Σ) ≤ PoA(Σ) ≤ n

t
+

m2 + m

t2
, for t ≥ 2 and (2)

PoA(Σ) ≤ n for general t ≥ 0. (3)

The proof of the theorem relies on Lemma 2.2 and Lemma 2.3, in which a lower bound
on the optimum cost and an upper bound on the cost of any Nash equilibrium are derived.

Lemma 2.2. Let s∗ be an optimum schedule for the instance t = (t1, t2, . . . , tn) with speeds
s1 ≥ · · · ≥ sm ≥ 1. Let t =

∑
j tj, where tj ∈ [0, 1]. Then we have that cost(s∗) ≥ t2P

k sk
.

Proof. First observe that tj ≤ 1 implies cost(s∗) =
∑

i p
∗
i f

∗
i ≥

∑
i(f

∗
i )2. In order prove a

lower bound we seek to minimize the function
∑

i
x2

i
si

subject to the constraint that
∑

i xi = t.
It is easily observed that this function is minimized for the choice xi = tsiPm

k=1 sk
. Hence,

cost(s∗) =
∑

i p
∗
i f

∗
i ≥

∑
i(f

∗
i )2 ≥

∑
i x

2
i =

∑
i

(
siP
k sk

t
)2

= t2P
k sk

as claimed.

Lemma 2.3. For every Nash equilibrium s for the selfish scheduling game on m machines
with speeds s1 ≥ · · · ≥ sm ≥ 1, tj ∈ [0, 1], and t =

∑
j tj we have that cost(s) ≤ n(t+m2+m)P

i si
.

Proof. Recall that the cost of any schedule s can be written as cost(s) =
∑

j `j =
∑

i pifi,
where `j denotes the latency of task j, pi the number of players on machine i, and fi its
finishing time.

It turns out that it is useful to distinguish between fast and slow machines. A machine is
fast if si ≥ 1

m

∑
k sk; otherwise slow. Notice that this definition implies that there is always

at least one fast machine.
Recall that the load of a machine i is defined by wi =

∑
j on i tj . We rewrite the load wi in

terms of deviation from the respective ideally balanced load. Let wi = siP
k sk

∑
j tj = siP

k sk
t

and define the variables yi by wi = wi + yi. Observe that fi = 1
si

(wi + yi) = tP
k sk

+ yi

si
. We

use the notation xi = yi

si
as a shorthand.

Let s be any schedule for which the conditions (1) of a Nash equilibrium hold. Let us
assume for the moment that we can prove the upper bound |xi| ≤ m

si
for those schedules.

Further notice that the Nash conditions (1) imply that fi ≤ f1 + tj
s1
≤ f1 + 1

s1
, where tj

is the task length of any task j on machine i. Notice that machine 1 is fast, i.e., we have
1
s1
≤ mP

k sk
. Now we calculate and find

cost(s) =
∑

i

pifi ≤
∑

i

pi

(
f1 +

1
s1

)
= n

(
f1 +

1
s1

)
≤ n

( ∑
j tj∑
k sk

+ |x1|+
m∑
k sk

)
≤ n

(
t∑
k sk

+
m

s1
+

m∑
k sk

)
≤ n(t + m2 + m)∑

k sk
.

It only remains to prove that the upper bound |xi| ≤ m
si

holds.
A machine i is overloaded if yi > 0 (and hence also xi > 0), underloaded if yi < 0 (and

hence also xi < 0), and balanced otherwise, i.e., yi = xi = 0. Notice that
∑

i wi =
∑

j tj = t
and that

∑
i wi =

∑
i(wi + yi) =

∑
i

siP
k sk

t+
∑

i yi = t+
∑

i yi. This implies that
∑

i yi = 0.
Hence if there is an overloaded machine, there must also be an underloaded machine.

6



If all machines are balanced, then there is nothing to prove because |xi| = 0 and the
claimed bound holds. So let k be an underloaded machine and let i be an overloaded machine.
Suppose that k receives an arbitrary task j from machine i, then its resulting finishing time
equals fk + tj

sk
. The Nash conditions (1) state that fk + tj

sk
≥ fi. The simple but important

observation is that moving one task to an underloaded machine k turns it into an overloaded
one. As tj

sk
≤ 1

sk
we have |xk| ≤ 1

sk
for any underloaded machine k.

Finally, to prove |xi| ≤ m
si

we show a bound on the number of tasks whose removal is
sufficient to turn an overloaded machine into an underloaded or balanced one. Let i be
an overloaded machine and let there be u underloaded machines. Migrating (at most) u
tasks from i to underloaded machines suffices to turn i into an underloaded or balanced
machine. Suppose that there are at least u tasks on i, because otherwise moving the tasks
on it to underloaded machines yields that i executes no task at all, and is hence clearly
underloaded. Move u arbitrary tasks to the u underloaded machines by assigning one task to
one underloaded machine, each. Now assume that i is still overloaded. This is a contradiction
to

∑
i yi = 0, because there are no underloaded machines in the system any more. Therefore

i must be underloaded or balanced. As xi equals the difference of fi and
P

j tjP
k sk

, we have that

|xi| ≤ u
si
≤ m

si
as each task contributes at most 1

si
to the finishing time of machine i. The

proof of the upper bound therefore proves the lemma.

Proof of Theorem 2.1. The upper bound PoA(Σ) ≤ n
t + m2+m

t2
stated in (2) follows from

Lemma 2.2 and Lemma 2.3. For the lower bound PoS(Σ) ≥ n
2t we give the following instance.

Let there be two unit-speed machines and an even number n of tasks. Let t be an even positive
integer and define the task-lengths as follows: t1 = t2 = · · · = tt = 1 and tt+1 = · · · = tn = 0.
In the (unique) optimum schedule s∗ the t 1-tasks are scheduled on machine 1. All the other
0-tasks are assigned to machine 2. The value of that solution is cost(s∗) = t2, but we still
have to prove that it is the unique optimum.

Assume that x 1-tasks and y 0-tasks are assigned to machine 1. The cost of such an
assignment is given by f(x, y) = (x + y)x + (n − x − y)(t − x). We are interested in the
extrema of f subject to the constraints that 0 ≤ x ≤ t and 0 ≤ y ≤ n− t. It is standard to
prove that f is maximized for x = t

2 and y = n−t
2 . Considering the gradient of the function

f( t
2 + a, n−t

2 + b) = nt
2 + 2a2 + 2ab in the variables a and b yields that the global minimum

is attained at the boundary of the feasible region; in specific for x = t and y = 0. The value
of the minimum is cost(s∗) = f(t, 0) = t2.

For every Nash equilibrium of the game assigning t
2 1-tasks to each machine is necessary:

If there are x > t
2 1-tasks e.g. on machine 1, then there is a task that can improve its latency

by changing the machine. Hence x = t
2 for every Nash equilibrium. It turns out that each

feasible value for y gives f( t
2 , y) = nt

2 . Thus, cost(s) = nt
2 and the lower bound PoS(Σ) ≥ n

2t .
Now we prove the upper bound PoA(Σ) ≤ n stated in (3). Consider an arbitrary Nash

equilibrium s for an instance of the game with task-lengths t1, . . . , tn. In the sequel we will
convert s into the solution s′ in which all tasks are assigned to machine 1 and we will prove
that cost(s) ≤ cost(s′). (The solution s′ need not be a Nash equilibrium.) Notice that
cost(s′) = nt

s1
. Further we use the trivial lower bound cost(s) ≥ t

s1
which holds because each

task contributes to the total cost possibly on the fastest machine 1. Both bounds imply
PoS(Σ) ≤ n.

It remains to prove that cost(s) ≤ cost(s′). We construct a series of solutions s =
σ1, σ2, . . . , σm = s′, where σi+1 is obtained from σi by moving all tasks on machine i + 1 to
machine 1. Recall that wi =

∑
j on i tj and notice that w1 is monotone increasing. Therefore,

the Nash conditions wi
si
≤ w1

s1
+ tj

s1
for all tasks j on machine i continue to hold until i loses

all its tasks. Since tj ≤ wi, this condition implies w1+wi
s1

− wi
si
≥ 0, which will be important

7



for the argument below. Now we consider the change of cost when obtaining σi from σi−1 for
i ≥ 2. For ease of notation let p1 and pi, w1 and wi denote the number of players, respectively
the load of machines 1 and i of the solution σi−1. We find

cost(σi)−cost(σi−1) = (p1+pi)
(

w1

s1
+

wi

s1

)
−p1

w1

s1
−pi

wi

si
= p1

wi

s1
+pi

(
w1 + wi

s1
− wi

si

)
≥ 0

since w1+wi
s1

− wi
si
≥ 0 as shown above. This completes the proof of the theorem.

2.2 Fluctuations Model

Suppose that the Tj are random variables that take values in the interval [0, 1] and that the
Tj have respective expectations E [Tj ]. Notice that the Tj need not be identically distributed;
even the following limited dependence is allowed.

We say that we deal with martingale Tj if the sequence Si = T1 + · · · + Ti + E [Ti+1] +
· · ·+ E [Tn] satisfies E [Si | T1, . . . , Ti−1] = Si−1 for i = 1, . . . , n.

Theorem 2.4. Let T =
∑

j Tj with E [T ] = ω
(√

n log n
)

with martingale Tj ∈ [0, 1]. Then
the expected price of anarchy of the selfish scheduling game with m machines and speeds
s1 ≥ · · · ≥ sm ≥ 1 is bounded by:

EPoA(Σ) ≤
(

n

E [T ]
+

m2

E [T ]2

)
(1 + o (1)).

The asymptotics in o (1) is in n. This bound does not only hold in expectation but also with
probability 1− o (1).

Proof. First notice that for every outcome t =
∑

j tj of the random variable T =
∑

j Tj we
have

PoA(Σ) ≤ min
{

n,
n

t
+

m2 + m

t2

}
,

by Theorem 2.1.
How large is the probability that T deviates “much” from its expected value? The

differences of the martingale are bounded by one: |Si − Si−1| ≤ 1. Therefore we may apply
the following Azuma-Hoeffding inequality (e.g. [19] for an introduction):

Pr [|Sn − S0| ≥ λ] ≤ 2e−
λ2

2n . (4)

With the choice λ =
√

4n log n we have Pr
[
|T − E [T ] | ≥

√
4n log n

]
≤ 2

n2 .
Now we remember the assumption E [T ] = ω

(√
n log n

)
, and find

EPoA(Σ) ≤ E
[
min

{
n,

n

T
+

m2 + m

T 2

}]
= E

[
min

{
n,

n

T
+

m2 + m

T 2

} ∣∣∣∣ |T − E [T ] | <
√

4n log n

]
Pr

[
|T − E [T ] | <

√
4n log n

]
+ E

[
min

{
n,

n

T
+

m2 + m

T 2

} ∣∣∣∣ |T − E [T ] | ≥
√

4n log n

]
Pr

[
|T − E [T ] | ≥

√
4n log n

]
≤ n

E [T ]−
√

4n log n
+

m2 + m

(E [T ]−
√

4n log n)2
+ n

2
n2

=
(

n

E [T ]
+

m2

E [T ]2

)
(1 + o (1))

and the proof is complete
8



2.3 Algorithmic Perspectives

2.3.1 The Average-Case of a Generic Scheduling Algorithm

In this short section, we point out that Theorem 2.1 and Theorem 2.4 also have algorithmic
implications. In specific, by proving upper bounds on the expected price of anarchy of
selfish scheduling, we obtain an (average-case) analysis for a generic algorithm for classical
scheduling.

We consider the natural scheduling algorithm Nashify due to Feldmann et al. [9] intro-
duced for maximum latency social cost and related machines. The algorithm works as follows:
starting with an arbitrary schedule, it performs an initial sorting of tasks followed by greedly
changing machines until a Nash equilibrium is obtained. It has running time O

(
nm2

)
. It is

remarkable that the algorithm also performs well for total latency minimization for classical
scheduling, see Observation 2.5 below.

In the classical scheduling problem, we are given m related machines with speeds s1 ≥
· · · ≥ sm ≥ 1 and n tasks with respective task-length tj . The objective is to minimize the
objective function

∑
j `j , regardless if it is a Nash equilibrium or not. Let cost(s) and cost(s∗)

denote the objective values of a schedule obtained by Nashify and by an (not necessarily
polynomial time) optimum algorithm Opt. The quantity cost(s)

cost(s∗) is called the performance

ratio of the schedule s. For random task-lengths Tj the quantity E
[

cost(S)
cost(S∗)

]
is called the

expected performance ratio. The result below follows directly from [9], Theorem 2.1 and
Theorem 2.4.

Observation 2.5. Under the respective assumptions of Theorem 2.1 and Theorem 2.4, the
bounds stated therein are upper bounds for the (expected) performance ratio of the algorithm
Nashify with the objective to minimize total latency.

2.3.2 Computing the Social Optimum

Here we consider the complexity of finding Nash equilibria and solutions with optimum social
cost for identical machines. Gairing et al. [12] showed that computing the best and the worst
Nash equilibrium is NP-hard. We show that, for identical machines, the social optimum can
be computed in polynomial time.

Theorem 2.6. For identical machines there is an algorithm to compute the social optimum
solution for total latency scheduling in polynomial time.

Proof. Consider any solution for the total latency scheduling problem, and suppose on ma-
chine i a number of pi players are scheduled. It is possible to improve the solution by
exchanging tasks such that tasks with small length reside on machines with large number of
players.

Suppose there are tasks j and k on machines i and h, respectively, with ph ≤ pi and tk ≤
tj . Then exchanging j and k results in a difference in the total latency of (pi−ph)(tk−tj) ≤ 0.
But notice that the pi, i.e., the number of players on each machine did not change.

Now consider the tasks numbered in non-increasing order of their length. The previous
property shows that in at least one optimum solution tasks are scheduled consecutively, i.e.,
there is an optimum solution in which each machine i gets assigned tasks j from an interval
j ∈ {jl

i, . . . , j
r
i }.

The remaining open problem is to find the respective values of the pi. The above property
allows us to precompute for each possible interval the corresponding latency cost and to find
the best combination of intervals by a shortest path computation.

9



For an instance of the total latency scheduling problem we assume w.l.o.g. that there
are m ≤ n machines. We consider them increasingly with the intervals they get assigned. A
machine i gets assigned tasks from the interval {ji−1 + 1, . . . , ji}. This allows us to create a
graph G, which contains nodes (i, j) for i = 1, . . . ,m and j = 1, . . . , n. Node (i, j) represents
the fact that the interval for machine i goes up to task j. For node (i, j) we include a directed
edge to each node (i + 1, v) for v ∈ {i + 1, . . . , n − m + i}. The cost (v − i)

∑v
j=i+1 tj of

such an edge corresponds to the assigned interval of tasks that is implicit in the incident
nodes. Finally, we add two special nodes s and t, where s is connected with directed edges
to all nodes (1, v) for v ∈ {1, . . . , n−m + 1} of cost v

∑v
j=1 tj . Node (n, m) is connected to

t with an edge of cost 0. Now it can be verified that each feasible s-t-path corresponds to
a feasible split of the ordered task sequence into m intervals and hence a feasible schedule.
In particular, as we argued above at least one optimum solution can be represented as a
shortest s-t-path in G. Hence, with a shortest path calculation in G we can find a schedule
of minimum total latency in polynomial time.

3 Maximum Latency Cost

This section is concerned with the social cost function cost(s) = `max = maxj `j . Both, the
traffic and the fluctuations model, are considered in Section 3.1. Section 3.2 outlines how
the results extend to a KP-model with coordination mechanisms.

3.1 Traffic and Fluctuations Model

Worst-case prices of stability and anarchy are already known [8] and only summarized here;
see below for a further discussion.

Theorem 3.1. In the selfish scheduling game on m machines with speeds s1 ≥ · · · ≥ sm ≥ 1
and cost(s) = `max we have that PoS(Σ) = 1 and PoA(Σ) = Θ

(
min

{
log m

log log m , log s1
sm

})
.

Algorithm Nashify considered in Section 2.3.1 transforms any non-equilibrium schedule
into a Nash equilibrium without increasing the social cost. This proves PoS(Σ) = 1. The tight
bounds on the price of anarchy for pure Nash equilibria are due to Czumaj and Vöcking [8].
For the special case of identical machines different bounds for the price of anarchy hold.
An upper bound PoA(Σ) ≤ 2 − 2

m+1 follows from Finn and Horowitz [10] and Nashify.
Vredeveld [24] gave a schedule which is a Nash equilibrium where 2− 2

m+1 is tight.

Theorem 3.2. Consider the selfish scheduling game on m machines with speeds s1 ≥ · · · ≥
sm ≥ 1, total task length t =

∑
j tj > 0, where tj ∈ [0, 1], and cost(s) = maxj `j. Then we

have the bound
PoA(Σ) ≤ 1 +

m(m + 1)
t

.

Let T =
∑

j Tj and E [T ] = ω
(√

n log n
)

with martingale Tj ∈ [0, 1]. Then the expected price
of anarchy is bounded by

EPoA(Σ) ≤ 1 +
m2

E [T ]
(1 + o (1)).

The asymptotics in o (1) is in n. This bound not only holds in expectation but also with prob-
ability 1 − o (1). Furthermore, these are bounds on the (expected) performance of algorithm
Nashify.

Proof. The result for the traffic model follows from the following Lemma 3.3.

10



Lemma 3.3. Let s∗ be an optimum schedule and s be a Nash equilibrium of the instance
t = (t1, t2, . . . , tn) with speeds s1 ≥ · · · ≥ sm ≥ 1. Let tj ∈ [0, 1] and t =

∑
j tj. Then it holds

that tP
i si

≤ cost(s∗) ≤ cost(s) ≤ tP
i si

+ m+1
s1

tmax.

Proof. We first prove the bound for cost(s∗). If each machine i receives load siP
k sk

t, then
all finishing times are equal and the schedule hence optimal. Then, the finishing time of
machine 1, say, with speed s1 is 1

s1

s1P
i si

t = tP
i si

, as claimed.
Now we prove the upper bound for cost(s). Let k be the machine where the maximum is

attained. The Nash conditions (1) imply that fk ≤ f1 + tmax
s1

.

Define the variable xi by fi =
P

j tjP
i si

+ xi. Analogously to the proof of Lemma 2.3 we find
|xi| ≤ m

si
tmax. Therefore we have

fk ≤ f1 +
tmax

s1
≤

∑
j tj∑
i si

+ |x1|+
tmax

s1
≤

∑
j tj∑
i si

+
m + 1

s1
tmax

and the proof is complete.

For the fluctuations model we use Lemma 3.3 and cost(s∗) ≥ tmax
s1

. This immediately
yields

cost(s∗)
cost(s)

≤ min

{
1 +

m+1
s1

tmax

tmax
s1

, 1 +
m+1
s1

tmax

tP
i si

}
≤ min

{
m + 2, 1 +

m(m + 1)
t

}
where we have used s1 ≥ 1

m

∑
i si, i.e., machine 1 is fast and tmax ≤ 1.

As in the proof of Theorem 2.4 we use the martingale and apply the Azuma-Hoeffding
inequality (4). With the choice λ =

√
4n log n we have Pr

[
|T − E [T ] | ≥

√
4n log n

]
≤ 2

n2 .
We deduce

EPoA(Σ) ≤ 1 +
m(m + 1)

E [T ]−
√

4n log n
+ 2

m + 2
n2

= 1 +
m2

E [T ]
(1 + o (1))

and the proof is complete.

3.2 Coordination Mechanisms

We observe that the results of Theorem 3.2 translate to selfish scheduling with coordination
mechanisms as considered by Immorlica et al. [15]. In this scenario, the machines do not
process the tasks in parallel, but instead, every machine i has a (possibly different) local
sequencing policy. For instance, with the Shortest-First policy, a machine considers the
tasks in order of non-decreasing length. Machine i uses its policy to order the tasks that
have chosen i. This yields a completion time cj , which is different for every task processed
on i. The cost for a player is now the completion time of its task on the chosen machine.
Naturally, a schedule is in a Nash equilibrium if no player can reduce his completion time
by switching machines. Immorlica et al. [15] showed the following worst-case bounds on the
price of anarchy.

Theorem 3.4. The price of anarchy of a deterministic policy for scheduling on machines
with speeds s1 ≥ · · · ≥ sm ≥ 1 and social cost makespan cost(s) = cmax = maxj cj is
O(log m). The price of anarchy of the Shortest-First policy is Θ(log m).

The proof of Theorem 3.2 can be adjusted to deliver the following direct corollary.

Corollary 3.5. Under the respective assumptions of Theorem 3.2 the bounds stated therein
are upper bounds for the (expected) price of anarchy for selfish scheduling with coordination
mechanisms, arbitrary deterministic and social cost makespan cost(s) = cmax = maxj cj.

11



4 Total Polynomial Load Cost

In this section, we consider the social cost function total polynomial load cost(s) =
∑

i w
d
i

with constant d ∈ N for the special case of identical machines. Recall that the load of a
machine i is defined by wi =

∑
j on i tj . Gairing et al. [11] proved the following worst-case

result.

Theorem 4.1. In the selfish scheduling game on m identical machines and cost(s) =
∑

i w
d
i

we have that PoA(Σ) = (2d−1)d

(d−1)(2d−2)d−1

(
d−1

d

)d
.

However, on average, the Nash equilibria of the game can yield almost optimal solutions
for this social cost function.

Theorem 4.2. Consider the selfish scheduling game on m identical machines, total task
length t =

∑
j tj > 0, where tj ∈ [0, 1], and cost(s) =

∑
i w

d
i . Then we have the bound

PoA(Σ) ≤
(

1 +
m(m + 1)

t

)d

.

Let T =
∑

j Tj and E [T ] = ω
(√

n log n
)

with martingale Tj ∈ [0, 1]. Then the expected price
of anarchy is bounded by

EPoA(Σ) = (1 +
m2

E [T ]
(1 + o (1)))d.

The asymptotics in o (1) is in n. This bound not only holds in expectation but also with prob-
ability 1 − o (1). Furthermore, these are bounds on the (expected) performance of algorithm
Nashify.

Proof. First we consider the traffic model and prove an upper bound on the cost of any
Nash equilibrium. For machine i define xi by fi =

P
j tj
m + xi. Without loss of generality

s1 = · · · = sm = 1 holds, i.e., the identical machines have unit speed. With the same load
balancing argument as in the proof of Lemma 2.3 we find x1 ≤ m and

cost(s) =
∑

i

wd
i ≤

∑
i

(f1 + 1)d ≤ m

(
t

m
+ |x1|+ 1

)d

≤ m

(
t

m
+ m + 1

)d

.

For a lower bound we use wi = t
m as the minimizer of

∑
i w

d
i subject to. Thus,

cost(s∗) =
∑

i

(w∗
i )

d ≥ m

(
t

m

)d

The upper bound for the traffic model follows.
For the fluctuations model we proceed as in the proof of Theorem 2.4. We use the

martingale and apply the Azuma-Hoeffding inequality (4). Then we calculate

E
[

cost(s)
cost(s∗)

]
= E

[
min

{
(2d − 1)d

(d− 1)(2d − 2)d−1

(
d− 1

d

)d

,

(
T + m2 + m

T

)d
}]

≤ E

[(
T + m2 + m

T

)d
∣∣∣∣∣ |T − E [T ] | ≥

√
4n log n

]
+ O

(
1
n2

)

=
(

1 +
m2

E [T ]
(1 + o (1))

)d

and the proof is complete.
12



5 Conclusion

In this paper we provided an initial systematic study of tradeoffs and average-case perfor-
mance of Nash equilibria. Our approach is to consider total traffic as a parameter which
restricts an adversary in his ability to construct (worst-case) instances. This allows to prove
matching upper and lower bounds on the price of anarchy and stability of the game depend-
ing on this parameter. Then, with the expected price of anarchy the results of fluctuation are
characterized. We identified conditions under which selfish behaviour is capable of producing
small expected social cost. Furthermore, as a byproduct this yields an average-case analy-
sis on the expected performance of a generic local search algorithm for various scheduling
problems. Most notably, the analysis holds for machines with different speeds and relatively
weak probabilistic assumptions.

Naturally, a lot of open problems remain. An immediate question is the applicability
of the obtained results to the average-case performance of Nash equilibria in more general
(network) congestion games. Furthermore, the characterization of average-case performance
for mixed or correlated equilibria – especially for total latency – represents an interesting
direction. The total latency social cost function has not been explored in a similar way as
polynomial load or maximum latency, although in our opinion it has an appealing intuitive
motivation as a social cost function. This might be due to the tight linear worst-case bounds,
which can be obtained quite directly. However, our approach to a more detailed description
offers an interesting perspective to study total latency in more general settings. In particular,
the obvious similarities to polynomial load suggest that some techniques developed for the
characterization of the price of anarchy in general congestion games might be applicable.

References

[1] Aland, S., Dumrauf, D., Gairing, M., Monien, B., and Schoppmann, F. Exact
price of anarchy for polynomial congestion games. Proc 23th STACS (2006), 218–229.

[2] Anshelevich, E., Dasgupta, A., Tardos, E., and Wexler, T. Near-optimal
network design with selfish agents. Proc 35th STOC (2003), 511 – 520.

[3] Awerbuch, B., Azar, Y., and Epstein, A. The price of routing unsplittable flow.
Proc 37th STOC (2005), 57 – 66.

[4] Awerbuch, B., Azar, Y., Richter, Y., and Tsur, D. Tradeoffs in worst-case
equilibria. Proc 1st WAOA (2003), 41 – 52.

[5] Christodoulou, G., and Koutsoupias, E. The price of anarchy of finite congestion
games. Proc 37th STOC (2005), 67 – 73.

[6] Christodoulou, G., Koutsoupias, E., and Nanavati, A. Coordination mecha-
nisms. Proc 31st ICALP (2004), 345 – 357.

[7] Czumaj, A., Krysta, P., and Vöcking, B. Selfish traffic allocation for server farms.
Proc 34th STOC (2002), 287 – 296.

[8] Czumaj, A., and Vöcking, B. Tight bounds for worst-case equilibria. Proc 13th
SODA (2002), 413 – 420.

[9] Feldmann, R., Gairing, M., Lücking, T., Monien, B., and Rode, M. Nashifi-
cation and the coordination ratio for a selfish routing game. Proc 30th ICALP (2003),
514 – 526.

13



[10] Finn, G., and Horowitz, E. A linear time approximation algorithm for multiproces-
sor scheduling. BIT 19 (1979), 312 – 320.

[11] Gairing, M., Lücking, T., Mavronicolas, M., and Monien, B. The price of
anarchy for polynomial social cost. Proc 29th MFCS (2004), 574 – 585.

[12] Gairing, M., Lücking, T., Mavronicolas, M., Monien, B., and Rode, M. Nash
equilibria in discrete routing games with convex latency functions. Proc 31st ICALP
(2004), 645 – 657.

[13] Gairing, M., Monien, B., and Tiemann, K. Selfish routing with incomplete infor-
mation. Proc 17th SPAA (2005), 203 – 212.

[14] Hochbaum, D., and Shmoys, D. A polynomial approximation scheme for scheduling
on uniform processors: Using the dual approximation approach. SIAM Journal on
Computing 17, 3 (1988), 539 – 551.

[15] Immorlica, N., Li, L., Mirrokni, V., and Schulz, A. Coordination mechanisms
for selfish scheduling. Proc 1st WINE (2005), 55 – 69.

[16] Kontogiannis, S., and Spirakis, P. Atomic selfish routing in networks: A survey.
Proc 1st WINE (2005), 989 – 1002.

[17] Koutsoupias, E., and Papadimitriou, C. Worst-case equilibria. Proc 17th STACS
(1999), 404 – 413.

[18] Mavronicolas, M., Panagopoulou, P., and Spirakis, P. A cost mechanism for
fair pricing of resource usage. Proc 1st WINE (2005), 210–224.

[19] Mitzenmacher, M., and Upfal, E. Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis. Cambridge University Press, 2005.

[20] Roughgarden, T. The price of anarchy is independent of the network topology.
Journal of Computer and System Sciences 67, 2 (2003), 341–364.

[21] Roughgarden, T., and Tardos, E. How bad is selfish routing? Journal of the ACM
49, 2 (2002), 236 – 259.

[22] Scharbrodt, M., Schickinger, T., and Steger, A. A new average case analysis
for completion time scheduling. Proc 34th STOC (2002), 170 – 178.

[23] Souza, A., and Steger, A. The expected competitive ratio for weighted completion
time scheduling. In Proc 21st STACS (2004), Springer Verlag, pp. 620 – 631.

[24] Vredeveld, T. Combinatorial approximation algorithms. Guaranteed versus experi-
mental performance. PhD thesis, Technische Universiteit Eindhoven, 2002.

14


