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Abstract. In this paper we consider theconnection game, a simple network design
game with independent selfish agents that was introduced by Anshelevich et al [4].
In addition we present a generalization calledbackbone gameto model hierarchical
network and backbone link creation between existing network structures. In contrast to
the connection game each player considers a number of groupsof terminals and wants
to connect at least one terminal from each group into a network. In both games we focus
on an important subclass oftree games, in which every feasible network is guaranteed
to be connected.
For tree connection games, in which every player holds 2 terminals, we show that there
is a Nash equilibrium as cheap as the optimum network. We givea polynomial time
algorithm to find a cheap(2 + ǫ)-approximate Nash equilibrium. It can be generalized
to find a cheap(3.1+ ǫ)-approximate Nash equilibrium for tree connection games with
any number of terminals per player in polynomial time. This improves the guarantee of
the only previous algorithm for the problem [4], which returns a(4.65+ǫ)-approximate
Nash equilibrium. Tightness results for the analysis of allalgorithms are derived.
For single source backbone games, in which each player wantsto connect one group to
a common source, there is a Nash equilibrium as cheap as the optimum network and a
polynomial time algorithm to find a cheap(1 + ǫ)-approximate Nash equilibrium.

1 Introduction

Analyzing networks like the Internet, which is created and maintained by indepen-
dent selfish agents with relatively limited goals, has become a research area attract-
ing a lot of interest. In particular, there have been many approaches to characterize
computational networking aspects using game-theoretic considerations. Naturally, in
such games the existence, cost and computation ofstablesolutions are most impor-
tant. Stable networks are not necessarily cheap or optimized, yet in many situations a
central institution interested in optimizing social desiderata has some means of con-
trolling agent behavior. In these cases it is important to understand the dynamics in
influencing agents and to explore the boundary between stability and social welfare.
Hence, it is of interest to characterize the price of stability [3], which is the ratio of
the cost of the best Nash equilibrium over the cost of a socially optimum solution.
This captureshow good stability can get. Recently this measure has been studied in
routing and network creation games [3,4,14,20]. The more prominent measure is the
price of anarchy [16] describing the cost of the worst instead of the best Nash equi-
librium. It has received attention in networking problems,for instance routing [19],
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facility location [21] and load balancing [8,16].
An important aspect of networks is their topology. In this paper we consider and
extend theconnection game, a game-theoretic model for network topology creation
introduced by Anshelevich et al [4]. In a connection game each of thek selfish agents
has a connectivity requirement, i.e. she holds a number of terminals at some nodes
in a given graph and wants to connect these nodes into a component. Possible edges
have costs, and agents offer money to purchase them. Once thesum of all agents of-
fers for an edge exceeds its cost, it is consideredbought. Bought edges can be used
by all agents to establish their connection, no matter whether they contribute to the
cost. Each agent tries to fulfill her connection requirementat the least possible cost.
In the connection game it might be optimal for the agents to create disconnected local
subnetworks. The Internet, however, receives its power as aplatform for information
sharing and electronic trade from the fact that it isglobally connected - and not only
a collection of disconnected, distributed subnetworks. Hence, it is reasonable to as-
sume that agents to some extent have an interest in being connected to the network of
other agents. We incorporate this idea by focusing ontree connection games- con-
nection games, in which every feasible solution is connected. Furthermore we study
the interest in globally connected networks in an extended model, which we call the
backbone game. It serves to analyze the creation of hierarchical networks. We as-
sume a scenario with existing, globally unconnected subnetworks of small capacity.
Each agent wants to connect a set of subnetworks with a connected network of high
performance backbone links. Backbone links can start and end at any terminal in the
subnetworks, so we can consider subnetworks as groups of terminals in the graph
and adjust the connectivity requirements to be present between certain groups. Each
player must connect at least one terminal of each of her groups into a connected net-
work at the least cost. Purchasing and using edges works similar to the connection
game.

Related Work The connection game was introduced and studied in [4], wherea
variety of results were presented. Both prices of anarchy and stability areΘ(k). It is
NP-complete to determine, whether a given game has a Nash equilibrium at all. A
polynomial time algorithm was presented that finds a(4.65 + ǫ)-approximate Nash
equilibrium on a 2-approximate network. For the single-source case, in which each
player needs to connect a single terminal to a common source,a polynomial time
algorithm was given that finds a(1 + ǫ)-approximate Nash equilibrium on a 1.55-
approximate solution. We denote these algorithms by ADTW-SS for the single source
and ADTW for the general case. In [3] the authors used adjusted connection games
to study the performance of the Shapley value cost sharing protocol. Each edge is
bought in equal shares by each player using it to connect its terminals. The price of
stability in this game isO(log k). Furthermore extended results were presented, e.g.
on delays, weighted games and best-response dynamics. Recently, connection games
have been studied in a geometric setting. In [14] bounds wereshown on the price
of anarchy and the minimum incentives to deviate from an assignment purchasing
the socially optimum network. The case of 2 players and 2 terminals per player was
characterized in terms of prices of anarchy and stability, approximate equilibria and
best-response dynamics.
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A network creation game of different type was considered in [2,7,9]. Here each agent
corresponds to a node and can only create edges that are incident to her node. Sim-
ilar settings are recently receiving increased attention in the area of social network
analysis [5,13]. An overview over recent developments in the area of social network
design games is given e.g. in [15]. In the context of large-scale computational net-
works, however, a lot of these models lack properties like arbitrary cost sharing of
edges and complex connectivity requirements.

Our Results In this paper we will consider tree connection games (TCG) and sin-
gle source backbone games (SBG). The games exhibit connection requirements such
that every feasible solution network is connected. Both aredifferent generalizations
of single source games studied in [4], and we analyze them in asimilar fashion with
respect to strict and approximate deterministic pure-strategy Nash equilibria. We are
especially interested in polynomial time algorithms for a two-parameter optimization
problem: Try to assign payments to the players such that the purchased feasible net-
work is cheap and the incentives to deviate are low. In Section 2 we show that for any
path tree connection game - a TCG with two terminals per player - the price of sta-
bility is 1. We outline an algorithm that allocates edge costs of a centralized optimum
solution to players such that no player has an incentive to deviate. As this algorithm
is not efficient, we show in Section 3 how to find a 2-approximate Nash equilibrium
purchasing the optimum network for TCGs with any number of terminals per player.
It can be translated into a polynomial time algorithm for(3.1 + ǫ)-approximate Nash
equilibria purchasing a network of cost at most 1.55 times the optimum network cost.
This improves over ADTW that provides(4.65 + ǫ)-approximate Nash equilibria.
In addition we derive a tightness argument for the design technique of our algo-
rithm and ADTW. Both algorithms consider only the optimum network and to use
a bounding argument for deriving approximate Nash equilibria. We show that both
are optimal with respect to the class of deterministic algorithms working only on the
optimum network. Hence, methods with better performance guarantees can still be
found, however, they must explicitly incorporate the cost and structure of possible
deviations. This significantly complicates their design and analysis.
In Section 4 we introduce the backbone game. Some results from the connection
game translate directly: (1) both prices of anarchy and stability are in Θ(k), (2) it
is NP-complete to determine, whether a given game has a Nash equilibrium and (3)
there is a lower bound of

(

3
2 − ǫ

)

on approximate Nash equilibria purchasing the
optimum network. Here we show that for SBGs the price of stability is 1. A (1 + ǫ)-
approximate Nash equilibrium can be found in polynomial time. We outline three
extensions, for which the procedure delivers the same results: (1) games with a single
source group, (2) games with a directed graph, in which players need a direct connec-
tion to the single source and (3) games, in which each playeri has a threshold max(i)
and would like to stay unconnected if the assigned cost exceeds max(i).
All our results extend to games, in which the centralized optimum forest is composed
of trees representing TCGs or SBGs, resp. It is, however,NP -hard to decide, whether
a connection or backbone game has such a property.
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2 The Price of Stability

Connection Games The connection game fork players is defined as follows. For
each game there is an undirected graphG = (V,E), and a nonnegative costc(e)
associated with each edgee ∈ E. Each player owns a set of terminals located at
nodes of the graph that she wants to connect. A strategy for a player i is a function
pi, which specifies for each edge the amountpi(e) thati offers for the purchase ofe.
If the sum of the offers of all players to an edgee exceedsc(e), the edge is bought.
Bought edges can be used by all players to connect their terminals, no matter whether
they contribute to the edge costs or not. An (a-approximate) Nash equilibrium is a
payment scheme such that no player can reduce

∑

e∈E pi(e) (by more than a factor
of a) by unilaterally choosing a different strategy. Note that each player insists on
connecting her terminals, and hence considers only such strategies as alternatives.
The problem of finding an optimum centralized network for allplayers and an op-
timum strategy for a single player are the classic network design problems of the
Steiner network [1,12] and the Steiner tree [18], respectively. For the rest of this pa-
per we will denote an optimum centralized network byT ∗. The subtree ofT ∗ that
playeri uses to connect her terminals is denoted byT i.

Tree Connection Games We will deal with an interesting class of connection
games, the tree connection games (TCG). TCGs are connectiongames with tree con-
nection requirements.

Definition 1. In a connection game there are tree connection requirementsif for any
two nodesv1 and vl+1 carrying terminals, there is a sequence of playersi1, . . . , il
and nodesv2, . . . vl such that playerij has terminals at nodesvj andvj+1 for j =
1, . . . , l.

Note that if a single playerh would own all terminals of thek players in a TCG,
her optimum network would be the same as in the distributed case. Hence, with tree
connection requirements thek players imitate the behavior of a global player with
respect to feasible solutions. A TCG can be cast as a splitting of a single global
player intok players, which preserves the connection requirements.
For the subclass of TCG with 2 terminals per player we will usethe term path tree
connection game (PTCG). A first observation is that the priceof anarchy of the PTCG
is k. This is straightforward with an instance consisting of twonodes and two parallel
edges, where each node holds a terminal of each player. One edgee1 has costk, the
other edgee2 a cost of1. If each player is assigned to purchase a share of 1 ofe1, the
solution forms a Nash equilibrium.
Throughout the paper we will use an elimination order of players, who get assigned
payments and are removed. As candidates for elimination we consider leaf players.

Definition 2. A player owns alonely terminalt, if t is located at a node, where no
terminal of another player is located. A playeri in a TCG is aleaf player, if she owns
a lonely terminal, and there is at most one node with a non-lonely terminal ofi.

Our general algorithmic framework for deriving exact and approximate Nash equi-
libria is as follows. In each iteration we pick a player, assign payments, remove the
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player and reduce the edge costs by the amount she paid. The algorithm continues
until no player is left. In the following outline we assumec1(e) = c(e) for all e ∈ E.

Algorithmic Framework

1. Foriter ← 1 to k
2. i is a leaf player if possible; otherwise an arbitrary player
3. Determinepi usingciter

4. Setciter+1(e)← citer(e)− pi(e) for all e ∈ E
5. Removei, contract edges of cost 0

Theorem 1. The price of stability in the PTCG is 1.

Proof. To prove our theorem we need the following technical lemma. Consider a
game in whichT ∗ contains all nodes from the graphG. There are two playersh andi
and a single source terminal at a nodes shared by both players. Playeri holds exactly
one additional terminal.

Lemma 1. In the described game there is a Nash equilibrium as cheap asT ∗.

Algorithm 1

1. For each edgee in reverse BFS order
2. Find cheapest deviationsAh andAi for playersh andi underc′ and

givenph andpi onTe.
3. Assignpi(e) = min(c(e), c′(Ai)− pi(Te)).
4. Assignph(e) = min(c(e) − pi(e), c′(Ah)− ph(Te)).

Proof. Algorithm 1 is used to construct a Nash equilibrium purchasingT ∗ for a game
as described in the lemma. It considers edges in reverse BFS order froms with ad-
justed edge costs. LetTe denote the part ofT ∗ below an edgee andTu the part below
a nodeu, wheree 6∈ Te but u ∈ Tu. When assigning the cost ofe we use a cost
function c′ with c′(e′) = 0 for e′ ∈ T ∗\Te andc′(e′) = c(e′) otherwise.Ai andAh

are the cheapest feasible deviation trees excludinge for playersi andh, resp. We first
focus on the question, whetherph allows a cheaper deviation forh. In opposite to
playeri it is not trivial for playerh to assume that all edges outside ofTe have cost 0.
Consider a nodeu where multiple subtrees join. We know for each edgee1, e2, e3, . . .
belowu that the treeTej

+ ej is the optimum forest to connect the terminals ofTej
to

T ∗\Tej
. But playerh owns terminals in possiblyall subtreesTej

. Is there a cheaper
forest forh to connect her terminals inTu to T ∗\Tu than her calculated contribution?

Lemma 2. The payment functionph constructed by Algorithm 1 allows no cheaper
deviation for playerh.

Proof. Let the edgese1, . . . , el be the edges directly below a nodeu in Tu. Assume
the algorithm was able to assign payments that cover the costs of eachTej

+ ej , and
thatu is the first node, at whichph(Tu) is not optimal forh.
We create a new cost functionc′h with c′h(e′) = 0 for e′ ∈ T ∗\Tu andc′h(e′) = c(e′)−
pi(e

′) otherwise. We will see thatT ∗ is the optimum network underc′h. Suppose
the cheapest deviation treeAh is cheaper thanT ∗ under c′h (i.e. the contribution
of h to T ∗). W.l.o.g.Ah includes all edges of cost 0, especially all edges purchased
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Fig. 1. (a), (b) Alternate trees and paths in PTCGs; (c) Distribution of hierarchical players for a parent
playeri, (d) distribution of personalized players in the componentT needed only byi

completely byi and all edges ofT ∗ outsideTu. LetTej
be a tree that is not completely

part ofAh. Consider for each terminalt of h located inTej
the path fromt to u in Ah.

We denote this set of paths byPej
. LetP ′

ej
be the set of subpaths fromPej

containing
for everyP ∈ Pej

the first part between the terminal ofh and the first nodew 6∈ Tej
.

This node always exists becauseu 6∈ Tej
, and it is inT ∗, becauseT ∗ covers all nodes

in G. The networkAej
=

⋃

P∈P ′

ej

P was considered as a feasible deviation when

constructing the payments forTej
+ ej , as it connects every terminal inTej

to a node
of T ∗\Tej

. Furthermore, the payments ofi were the same, hence the cost ofAej
was

equal. Using the assumption thatu is the first node, for whichTu is not optimal,
we know thatc(Aej

) ≥ c(Tej
+ ej). So after substitutingAej

by Tej
andej in Ah,

the new network is at least as cheap asTej
+ ej . To show that this new network is

also feasible, suppose we iteratively remove a pathP ∈ P ′
ej

. Now there might other
terminals, whose connections tou use parts ofP . The last nodew of P is the first
node ofP outside ofTej

, and it stays connected tou asP is the first part of a path
to u. All other nodes ofP are inTej

and will be connected byTej
andej. Hence, all

terminals affected by the removal ofP will finally be reconnected tou. In this way
Ah can be transformed intoT ∗ without cost increase. This proves thatT ∗ is optimal
underc′h, so Algorithm 1 finds Nash equilibria. ⊓⊔

Figure 1a depicts the argument. Paths from the setPe1
are indicated by dashed lines.

The subgraphAe1
of Ah is drawn bold. A nodew can be either completely outside

Tu (like w1 for t1) or in anotherTej
(like w2 for t2). ReplacingAe1

by Te1
yields a

feasible network that is not more expensive.

Lemma 3. The payments calculated by Algorithm 1 purchaseT ∗.
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The proof of this lemma can be found in Appendix A. Together with Lemma 2 this
proves Lemma 1. ⊓⊔

Finally, we show how to use Lemma 1 to prove Theorem 1. Supposewe are given
a PTCG withk players. At first we simplify the graph by constructing an equivalent
metric-closure gamewith the same players, terminals and a complete graphG′ on the
nodes ofT ∗. Edge costs are equal to the cost of the shortest path inG. Then we use
the algorithmic framework and argue by induction on the number of players. Assume
that the theorem holds for any PTCG withk − 1 players. Now consider step 3 for a
game withk players. If there is no leaf player, we can feasibly pick any playeri and let
pi = 0. Otherwise, ifi is a leaf player, we assign her to pay as much as possible onT i

such that she has no incentive to deviate. If the reduced network after the framework
iteration is optimal under the reduced cost for the remaining k−1 players, the theorem
follows with the induction hypothesis. Here we use Lemma 1 and Algorithm 1 to
make the argument. Introduce a global playerh, who accumulates all players except
i. Playersh andi share a single source at a nodes, and an equilibrium assignment for
h represents an optimal solution for the remaining players after removal ofi. Hence,
our inductive step is proven by Lemma 1. In fact we do not even have to care about
playerh, but instead we use Algorithm 1 only to determinepi. Naturally, when used
in step 3 we must employ cost functionciter for Algorithm 1. ⊓⊔

3 Approximation of Nash Equilibria

In this section we present an algorithm to calculate cheap approximate Nash equilib-
ria in polynomial time. The algorithm sketched in proof of Theorem 1 is not efficient.
Either we must provide the socially optimum network as inputor we must construct
the optimum deviation for the collective playerh to improve the solution network.
In any case this requires to solve an instance of the Steiner tree problem. Instead,
in this section we useconnection setsto construct polynomial time approximation
algorithms.

Definition 3. [4] A connection setS of playeri is a subset of edges ofT i, such that
for each connected componentC in T ∗ \ S either (1) there is a terminal ofi in C, or
(2) any player that has a terminal inC has all of its terminals inC.

For any node without a terminal and degree 2 inT ∗ incident edges belong to the
same connection sets. So for convenience we assume thatT ∗ has no Steiner nodes
of degree 2. If every player purchases at mostα connection sets, the payments will
form anα-approximate Nash equilibrium. Note that a subset of a connection set also
is a connection set.

An algorithm for PTCGs In connection games with 2 terminals per player the
edges ofT ∗ can be partitioned into equivalence classesSJ , wheree andf belong to
the same class iffJ = {j : e ∈ T j} = {j : f ∈ T j}. EachSJ forms a connection
set for all playersj ∈ J , which is maximal under the subset relation. We will say
that connection setSJ is neededby J . In the following PTCGs we will only consider
maximal connection sets and not explicitly mention a player. This information is
given by the subtrees, in which the set is located. Furthermore, when tree connection
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requirements are present, connection sets are contiguous.For a proof of this statement
see Lemma 8 in Appendix B.
Our algorithm uses the framework. In step 3 it assigns a leaf player i to purchase 2
connection sets. Ifi is no leaf player,pi = 0. If a leaf playeri is removed in step 4,
distinct connection sets might join and subsequently be wrongly regarded as a single
connection set. This happens when they are needed by player sets differing only by
i. We will use the notion of endangered sets to refer to these problematic sets.

Definition 4. A connection set is calledendangered setfor playeri if it is needed by
the set of playersJ ∪ {i}, and there is another connection set (calledforcing set)
needed by the setJ , with i 6∈ J .

Lemma 4. For any leaf player in a PTCG there are at most two endangered sets.

A proof of this Lemma is found in Appendix B. We will denote theendangered set
with empty forcing set as thepersonalized set, the endangered set with nonempty
forcing set as thecommunity set. In step 3 we simply assign a leaf player to purchase
these sets. It requires an easy inductive argument to show that the algorithm then
works correctly. This yields the following theorem.

Theorem 2. For any optimum centralized solutionT ∗ in a PTCG, there exists a 2-
approximate Nash equilibrium such that the purchased edgesare exactlyT ∗.

For PTCGs we know thatT ∗ is connected, hence we can use a 1.55-approximation
algorithm for the Steiner tree problem [18] to get an initialapproximationT . Fur-
thermore, we can use polynomial time shortest-path algorithms to find deviations
and connection sets of optimum cost. Using a trick of Anshelevich et al [4] we can it-
eratively improveT by exchanging connection sets with better paths. For polynomial
running time we must ensure substantial cost reduction for each exchange, which can
be done by an adjustment of the edge cost. The details are deferred to the full version
of this paper.
Thus, for PTCGs there is an algorithm that finds a(2+ ǫ)-approximate Nash equilib-
rium on a 1.55-approximate network in time polynomial inn andǫ−1, for anyǫ > 0.

An algorithm for TCGs Next we adjust our algorithm to deliver 2-approximate
Nash equilibria puchasingT ∗ for TCGs with any number of terminals per player.
Each player (denoted as parent player) is divided into a set of child players with 2
terminals per player. Terminals of the child players are located at the same nodes as
the ones of the parent player. In addition terminals of childplayers are distributed
such that they create a PTCG. Hence, the set of all child players can purchaseT ∗

with 2 connection sets per player.
The algorithm again uses the framework, and in step 3 a special procedure to assign
the cost ofT ∗ to the parent playeri. First playeri is divided into child players. Then
child players ofi are iteratively assigned to purchase endangered sets and removed.
In the endi has to purchase all edges assigned to her child players. To identify per-
sonalized and community sets for the child players ofi, one might first create a PTCG
by splitting all other parent players. However, the next lemma ensures that the assign-
ment of personalized and community sets for a leaf parent player i does not depend
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on the splitting of the other parent players. Hence, in step 3we assign the edges
without explicitly splitting other players thani. Details can be found in Appendix C.

Lemma 5. The endangered sets of child players of a leaf parent playeri are inde-
pendent of the division of other parent players.

In the remainder of the section we show how to divide a parent playeri such that the
union of connection sets purchased by her child players forms 2 connection sets. We
get a 2-approximate Nash equilibrium purchasing the optimum networkT ∗ by using
a special splitting inhierarchical, personalizedandsuperfluouschild players.
At first we disregard all non-lonely terminals but one. Let the node carrying the last
remaining non-lonely terminalt be nodev1. If the player has only lonely terminals,
we pick an arbitrary terminal ast. Then considerT ∗ rooted atv1. Once we arrive
at an edgee that is needed only byi, the tree connection requirements allow us to
argue that the whole subtree belowe is also needed only byi. Here we insert child
players in a hierarchical fashion. We contract all edges that are needed only byi. Let
this adjusted tree be denotedT ′ and consider it in BFS-order rooted atv1. For each
nodev carrying a terminal ofi, we introduce a new child player. She has a terminal
at v and the nearest ancestor ofv in the tree carrying a terminal ofi (see Figure 1c).
These child players will be termedhierarchical players.
Second, we consider the portions of the tree that were contracted to formT ′. For
each maximal connected subtreeT ⊂ T i that is needed only byi, let wT be the root
node thatT shares withT ′. Let playerj be the first hierarchical child player, whose
terminal tj was placed atwT . This player connects upwards in the tree. Now we
considerT in DFS-order and locatetj at the first node carrying a terminal ofi. For
each new nodewz carrying a terminal encountered in the DFS order, we introduce a
new child player and locate her terminals at the nodeswz−1 andwz. At any time there
is only one lonely terminal inT . Finally, when the last nodewl carrying a terminal
of i is reached, we move all remaining terminals atwT to wl. They belong to the
hierarchical players connecting downwards in the tree. Child players introduced in
the DFS-scan of the componentsT are calledpersonalized players, because they
divide parts needed only byi (see Figure 1d).
Third, for every non-lonely terminal ofi disregarded in the beginning, we introduce
a superfluouschild player connecting the terminal tov1. They will not be assigned
any payments.

Theorem 3. For any optimum centralized solutionT ∗ in a TCG, there exists a 2-
approximate Nash equilibrium such that the purchased edgesare exactlyT ∗.

Proof. A certain elimination order of child players is used. In any iteration a leaf
player is picked, first pick the superfluous players and then in a bottom-up fashion to
v1 the personalized and hierarchical players. One connectionset for the parent player
is formed by the union of all personalized sets for the child players. The other con-
nection set is the union of the community sets. Actually, a slightly stronger statement
holds.

Lemma 6. If the child players of a parent playeri are created and eliminated in the
described way, the removal of the personalized and community sets will only create
components carrying terminals ofi, respectively.
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The proof of this lemma can be found in Appendix C. The removalof any one of
the connection sets creates only components with terminalsof i. Consider single
connection sets assigned for players in later iterations ofthe algorithmic framework
on a reduced network. With the property of Lemma 6 we know thatsingle connection
sets for the reduced network are also single connection setsfor the original network.
This completes the proof of Theorem 3. ⊓⊔

In the full version of this paper we will show how to combine polynomial time ap-
proximation algorithms with our scheme to derive a(3.1+ǫ)-approximate Nash equi-
librium on a 1.55-approximate network. The assignment procedure used by ADTW
is also analyzed by connection sets, however, it does not employ so much structural
information as our child player splitting. The tree connection requirements allow us
to use a splitting of parent players and proceed in a hierarchical elimination order.
This avoids a matching step employed by ADTW to generate the assignment of edge
costs to players. This is crucial for achieving a guarantee of 2 connection sets.

A tightness argument For every connection game ADTW finds 3-approximate
Nash equilibria purchasingT ∗ given only the optimum networkT ∗ as input. Like
our algorithm it uses connection sets and does not employ cost sharing of edges.
Unfortunately, any deterministic algorithm using onlyT ∗ as input cannot improve
upon these algorithms even if it uses cost sharing. In this way ADTW for general
connection games and our algorithm for TCGs represent optimal algorithms. Our al-
gorithm, however, provides better worst-case performanceon TCGs, because ADTW
eventually assigns 3 connection sets to one player of a TCG with a cheap alternative
strategy. Proofs of the following three theorems are presented in Appendix D.

Theorem 4. For any ǫ > 0 there is a connection game such that any deterministic
algorithm using only the optimum solutionT ∗ as input constructs a payment function,
which is at least a(3− ǫ)-approximate Nash equilibrium.

Theorem 5. For any ǫ > 0 there is a TCG such that any deterministic algorithm
using only the optimum solutionT ∗ as input constructs a payment function, which is
at least a(2− ǫ)-approximate Nash equilibrium.

Theorem 6. For any ǫ > 0 there is a TCG such that ADTW constructs a(3 − ǫ)-
approximate Nash equilibrium.

4 Backbone Games

In this section we present thebackbone game, an extension of the connection game
to groups of terminals. Each of thek players has a set of groups of terminals. Each
terminal may be located at a different node. The player strives to connect at least
one terminal from each of her groups into a connected network. Different terminals
may be located at the same nodes. Some important results from[4] translate directly
to the backbone game by restriction to the connection game. The price of anarchy
is k, and the price of stabilityk − 2. It is NP-complete to decide, whether a given
game has a Nash equilibrium, and there is a lower bound of

(

3
2 − ǫ

)

on approximate
Nash equilibria purchasingT ∗. Finding the optimum network for a single player is
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the network design problem of the Group Steiner Tree (GSTP) [11, 17]. The prob-
lem of finding a centralized optimum solution networkT ∗ generalizes the GSTP in
terms of forest connection requirements, so we term this theGroup Steiner Network
Problem (GSNP). There are polylogarithmic approximation algorithms for the GSTP,
but we are not aware of any such results for the GSNP. Hence, wewill concentrate
on algorithms for games, in which the solution is guaranteedto be connected. The
general case is left as an interesting direction for future work.

Single Source Backbones In a SBG each playeri has a groupGi of gi terminals
and must connect at least one terminal to a given source nodes. Note that the price
of anarchy is stillk as the example establishing the bound is a single source game.
The price of stability, however, is 1, and cheap approximateequilibria can be found
in polynomial time. Proofs of the following theorems can be found in Appendix E.

Theorem 7. The price of stability in the SBG is 1.

Theorem 8. For the SBG there is a polynomial time algorithm to find a(1 + ǫ)-
approximate Nash equilibrium purchasing a networkT with c(T )/c(T ∗) ∈
O(log n log k log(maxi gi)).

Surprisingly the deviation factor from the connection gametranslates to the back-
bone game – in contrast to approximation factors of the Steiner tree problem. The
construction and the derived results extend to SBGs on directed graphs and games,
in which each player has a threshold on her maximum contribution and rather stays
unconnected if her assigned share exceeds this threshold. These results translate from
ADTW-SS and connection games. In a backbone game with a single source groupS
consider edges between the terminals ofS. No player will include them into her best
deviations. Furthermore, they will not appear in the optimum forestT ∗. Hence, we
can construct an equivalent single source game with a sourcenodes by introducing
and contracting edges between all nodes with terminals fromS.

5 Conclusion

In this paper we presented existence proofs and algorithmicresults for finding ex-
act and approximate pure strategy Nash equilibria in a network creation game. Our
tree connection game is a variant of the connection game [4],in which every feasible
solution network is guaranteed to be globally connected. For the special case of 2 ter-
minals per player the price of stability is 1, i.e. there is a Nash equilibrium as cheap
as the optimum network. Unfortunately, the algorithm constructing this equilibrium
has exponential running time. Instead we derived a polynomial time algorithm to find
(3.1 + ǫ)-approximate Nash equilibria on a 1.55-approximate network, even for tree
connection games with any number of terminals per player. These quality guaran-
tees improve significantly over ADTW, the only previous algorithm for this problem.
Finally, we extended the connection game to the backbone game, in which players
need to connect groups of terminals. For the single source case the price of stabil-
ity is 1, and(1 + ǫ)-approximate Nash equilibria can be found in polynomial time.
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Future work includes finding algorithms for approximate equilibria in general back-
bone games. Furthermore, there still is the potential for algorithms for approximate
equilibria in TCGs and general games with improved approximation guarantees.
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Appendix

A Price of Stability for PTCGs

A.1 Proof of Lemma 3

Supposee is the first edge, which cannot be paid for. Then there exists an alternative
pathAi for player i and an alternative treeAh for playerh whose cost bounds the
contributions. Consider any terminaltj of playerh, and letT j andAj be the paths
betweens andtj in T ∗ andAh, respectively. The following lemma about the structure
of Ah is a generalization of [4, Lemma3.4], which holds directly for the pathAi for
playeri.

Lemma 7. There is a minimum cost alternative treeAh for playerh with the follow-
ing property. For anytj there are two nodesvj andwj on Aj such that all edges on
Aj from tj to vj are in T j , all edges betweenvj andwj are in E\T j , and all edges
betweenwj ands are inT ∗\Te.

e

A j

f

e’’

T

tj

T j

f

Fig. 2. A violation of Lemma 7

Proof. We will see that onceAh violates this lemma, it can be changed into a tree
for playerh that satisfies the properties of the lemma and is not more expensive. The
proof follows closely the ideas of the proof of Lemma 2.
OnceAj reaches a node outsideTe, there is a connection of cost 0 tos, because all
nodes from the graph are inT ∗. Hence, in this case we can adjustAh to satisfy the
lemma without cost increase.
Now supposeAj leavesT j to Te\T j and re-entersT j belowe at another node. Con-
sider the set of edgese′ ∈ T j∩Aj of Te such thatAj excludes edges fromTe′ . Lete′′

be the deepest edge of this set in the BFS-traversal ofT ∗ from s. Consider the edge
f 6∈ Aj directly belowe′′ onT j (see Figure 2). Recall our assumption thate was the
first edge that could not be paid for. By the time the algorithmwas trying to purchase
Tf + f , it found that the contribution of playerh to Tf was optimal to connect all
terminals ofh in Tf to T ∗\Tf . As the payment functions and the adjusted cost func-
tion c′h are built adaptively, we know that this is still true in the present iteration. We
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can use the repairing construction from Lemma 2 to replace the respective parts of
Ah with Tf + f . This yields a new feasible network that is not more expensive and
uses all edges ofT j from tj to e′′. Hence, in the new networke′′ is not considered
anymore, and we move up to the next violating constellation.In this wayAh can be
transformed without cost increase into a network obeying the lemma. ⊓⊔

Now we can argue that the payments assigned by Algorithm 1 payfor e. LetT i
e be the

part inTe of the path betweens andti. First suppose there is an edgef ∈ Ah ∩ T i
e .

Then for a nodev incident tof , Ah includes all edges fromT h ∩ Tv, especially
the node whereT i

e joins T h. If player h deviates toAh and playeri sticks to her
payments, this yields a feasible network with cost less thanor equalc(Ah) + c(Ai).
Otherwise, assume thatAh totally excludes edges fromT i

e . Ai deviates fromT i
e at

the deviation pointd. However, ase is the first edge, which cannot be paid for, it
is optimal forh use the contribution toTd to connect all her terminals located in
Td to d. Ah can be transformed into a network includingTd without cost increase.
By assumptiond is not part ofAh, so the repaired networkTd might be (part of) a
component, which is not connected tos anymore. This connection is then established
by Ai. Figure 1b depicts this constellation. The structure ofAh ensures that the other
terminals ofh outsideTd will still be connected either tos or to Td. Hence, if the
contributions ofi to Ai andh to Ah are not enough to pay forTe + e, there is a
cheaper network thanT ∗ that can be constructed in one of the two ways described -
a contradiction. This proves Lemma 3. ⊓⊔

B Approximate equilibria for PTCGs

B.1 Proof of Lemma 4

We will show that there is at most one endangered set withJ 6= ∅. At first, we will
see that in a PTCG all connection sets are contiguous. Note that we are considering
only connection sets that are maximal w.r.t. the subset relation.

Lemma 8. In a PTCG all edges of the same connection set form a contiguous path
in T ∗.

Proof. Recall that in a PTCG every edge in such a connection set belongs to the same
player subtrees. Suppose there is a connection setS, whose edges are not contiguous.
Consider the path between two edgese, f ∈ S. There are edges from another con-
nection setS′ on the path betweene andf . So the subtreeT j for a playerj must be
present to ensureS′ is different fromS. Suppose we removee andf , thenj remains
connected. Then there are three components and one of them (denotedCj) contains
the terminals of playerj. There is no playerj′ that establishes a connection require-
ment betweenCj and the other components. As she had only 2 terminals, there can
only be eithere or f in T j′ but not both. This, however, is not possible, becausee
andf are present in the same set of player subtrees by assumption.Hence, there is
no tree connection requirement to connectCj and the other components. This is a
contradiction, because tree connection requirements wereassumed. Note that in the
assumed absence of non-terminal nodes of degree 2 each connection set is a single
edge. ⊓⊔
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We now assume for contradiction that for a leaf playeri there are more connection
sets with the stated property in Lemma 4 and pick arbitrarilytwo setsS′

1 andS′
2 with

player setsJ1 andJ2, resp. The corresponding sets includingi are denotedS1 and
S2. We denote byJ = J1 ∪ J2 and assumeJ1 6= ∅ andJ2 6= ∅.
Upon removal ofS1 andS2 three components evolve. Two of them (denotedC1 and
C2) each contain one terminal ofi. As the subtreeT j for each player is a path, the
third component (denotedC3) contains a terminal of each player in(J1∪J2)− (J1 ∩
J2). NeitherS′

1 norS′
2 can be located inC3, so they must be located inC1 or C2.

Case 1:S′
1 andS′

2 are located in different components. Hence, after removal of S′
1

andS′
2 componentsC4 andC5 evolve (see Figure 3a). Now all terminals of players

in J are distributed onC3, C4 andC5. Hence, when connecting these into a new
component andC1, C2 into a second component we get a feasible forest. This is a
contradiction to the presence of tree connection requirements.

Case 2:Now bothS′
1 andS′

2 are located in the same component. Hence the other
component holds a terminal of each of the players in one set, w.l.o.g. we assumeC1

a terminal from each player inJ1. Then, asS′
1 is in C2 all players ofJ1 need bothS1

andS2, soJ1 ⊂ J2. Hence, inC3 there is one terminal of each player ofJ2 − J1. In
C2 there is only one terminal of each player inJ1. When we removeS′

2, we split off
a new componentC4 containing one terminal of each of the players inJ2. S′

1 is, of
course, located inC4, because it is needed by a subset of the players. If we remove
S′

1, we get a new componentC5 with a terminal of each of the players inJ1 (see
Figure 3b). InC4 one terminal of each of the players inJ2 − J1 remains. So if we
connectC4 andC3 into a component, there is no need to connect this new component
to the rest of the tree and the presence of tree connection requirements is violated.
Hence, it is shown that there is only one endangered set withJ 6= ∅. In addition for
J = ∅ there is also just one connection set. This yields at most twoendangered sets
for a leaf player and the lemma is proven. ⊓⊔

C3
1S S2

i
C1

(b)

C
2 i

CC 45

S’2

1S’

S’

C

1

(a)

4

S’

C

2

1S S2

5

C3C1 C2i i

Fig. 3. Different cases with components violating tree connectionrequirements
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C Approximate equilibria for TCGs

C.1 Proof of Lemma 6

To see the argument, we first have a closer look at the structure of endangered and
forcing sets.

Lemma 9. For any leaf player in a PTCG the personalized, community andthe non-
empty forcing sets share a common node if they exist.

Proof. Suppose for a leaf playeri the sets do not share a node. If there is no nonempty
forcing set, there is only the personalized setSi and the lemma follows trivially. So
let there be a nonempty forcing setSJ needed by player setJ . Remove the commu-
nity set, and letC1, C2 be the components with and without the lonely terminal ofi,
resp.

Case 1:Let SJ be in C2 and remove it. This splitsC2 into two components. We
will denote byC ′

2 the remaining component including the terminal ofi. The other
component is denoted byC3, and it carries one terminal of each player inJ . Now
remove all edges that connect to the nodev carrying the lonely terminal ofi in C1.
Connect all resulting components except forv to C3. Then connect the nodev to C ′

2.
All connection requirements will be met, but there is a solution with two components.
This violates the tree connection requirements. Hence, we know thatSJ must be in
C1.

Case 2:Let SJ be inC1 and remove it. Similar to Case 1 we will speak ofC ′
1 andC3

as resulting components after removal ofSJ . Now suppose there is another playerj
with a terminal located inC ′

1. T j can only include one ofSJ andSJ∪{i}, soj 6∈ J ,
and she must have both her terminals inC ′

1. Now isolate the lonely terminal ofi on
nodev again. Then construct two components, one consisting ofv, C2 andC3; the
other consisting of all other components. This will generate a feasible solution with
two components, which is a violation of tree connection requirements. It is easy to
observe that once there are no terminals inC ′

1, there can be no connection sets inC ′
1,

except for the personalized setSi needed only byi. The only thing left to show is that
Si must be located inC ′

1.

Case 3:SupposeSi is in C2 and remove it. Again we denoteC ′
2 the component

with the terminal ofi andC3 the other one. Observe thatC3 must carry all terminals
of J . Then removeSJ from C1 generatingC ′

1 andC ′
3. We can isolate the compo-

nents carrying terminals ofJ from the rest of the components. Hence, ifC3 andC ′
3

are combined andC ′
1 andC ′

2 are combined, a solution with 2 components is possible.
This again violates the tree connection requirements.

Hence, ifSi is present inC ′
1, the three connection sets share a Steiner node. Oth-

erwise, the two connection sets meet at the node carrying thelonely terminal ofi.
This concludes the proof of Lemma 9. ⊓⊔
Now, to make our inductive argument, we will reverse the sequence of player and
edge removals and instead consider player, edge and node insertions. We only present
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the inductive argument. Suppose we have already created a network with players, for
which the assumption holds. Now we are processing parent player i and enter one of
her child playersj. This player can have a personalized set. For the union of allper-
sonalized sets of previous child players ofi the assumption holds that after removal
every component contains a terminal ofi. If in addition the newly added personalized
set is removed, the only additional component that evolves is the node carrying the
lonely terminal ofj. Hence, the lemma is proven for the personalized sets.
For the community sets, the case is more complicated. At firstwe add the class of su-
perfluous child players, but they do not purchase anything and thus do not violate the
argument. Next, consider the hierarchical players. Their community sets are always
needed by at least one additional player, which is not a childplayer ofi. Consider
only these community sets, then after removal every component has a terminal ofi.
This is ensured by the hierarchical structuring and the point that other players are
also present on the sets. Now we also remove the community sets introduced by the
personalized players. Consider a subtreeT described in the creation of personalized
players, which is needed only byi. Note that the root vertexwT of T does not have
to carry any terminals ofi. In addition it might be adjacent to a couple of community
sets of hierarchical players. Note that the whole subtreeT must be purchased byi,
hence it consists completely of personalized and communitysets of child players ofi.
To satisfy the lemma every node inT must be connected by a (possibly empty) path
of personalized sets to a node with a terminal ofi. In addition, the rootwT must be
connected by personalized sets to the node carrying the terminals of the hierarchical
players connecting downward in the tree. This serves to keepthe previous argument
for hierarchical players feasible. Due to the structure shown in Lemma 2 for the per-
sonalized and community sets a new community set is only introduced when a node
without a terminal is created. In this case, however, the lonely terminal of the corre-
sponding personalized player is to the lower right of the node, because the players
were created with a DFS-order. Hence, the root of any subtreeof T is connected by
personalized sets to the rightmost terminal of the subtree,which is the last one from
the subtree in the DFS-order. For illustration see Figure 1d, in which the bold lines
indicate the personalized sets of the child players I-V. This proves the case for com-
munity sets.
The splitting for a leaf parent playeri creates connection sets, that upon removal yield
only components with terminals ofi in it. Hence, if a connection set is removed, all
resulting components must be reconnected to form a feasiblenetwork. This is the key
property that keeps the connection sets valid, even when thenetwork is perturbed by
adding other players. This proves Lemma 6. ⊓⊔

C.2 Proof of Lemma 5

Again we use the reversal of the induction by considering player, edge and node in-
sertions. Suppose we have a child playerj of parent playeri, who is entered into
the network. Let there be an arbitrary splitting of the otherparent players into child
players obeying the tree connection requirements. The personalized set ofj is inde-
pendent of the splitting of the other parent players. So suppose she has a community
Sc set needed byJ∪{j} and a forcing setSf needed byJ . Consider a different player



18

i′ with a child player inJ andJ ∪ {j}. T i′ cannot have a terminal atv and must not
include any other edges incident atv than the two edges inSc andSf . Otherwise the
tree connection requirements would require a different setof child players ofi′ onSc

andSf , which would contradict the assumption that a community setfor j is present.
So let us now assume a different splitting ofi′. We get different player sets needing
Sc andSf . There must be at least one child player ofi′ needing the sets, because they
are both inT i. However, as there is no terminal or alternate connection atv, any child
player ofi′ needingSc will also needSf . Hence,Sc remains the community set for
j. This argument can easily be adjusted for more players. ⊓⊔

D Tightness Results

1,2 3 4 k−1 k

k

k−1 k−2 2 1

1 k

k−1,k2,31,2

(a) (b)

Fig. 4. Tightness example games for the algorithms

D.1 Proof of Theorem 4

Consider a game with 2 terminals per player and an optimal solutionT ∗ of cost3k−3
shown in Figure 4a. All edges ofT ∗ have cost 1. There is at least one player that pays
a cost of3 − 3

k
. Each edge is a distinct maximal connection set, because it is shared

by a distinct set of player subtreesT i. One player can have an alternative path of cost
(1 + ǫ) outsideT ∗. As this path is not known to the algorithm, the best strategyis to
equilibrate payments between players. It assigns each player i to pay a cost of3− 3

k

for parts inside her pathT i. As k approaches infinity, the worst-case deviation factor
becomes at least(3− ǫ). ⊓⊔

D.2 Proof of Theorem 5

For the game in Figure 4b there are exactly2k − 1 connection sets of cost 1. It is
optimal to let each player pay a cost of2− 1

k
inside her subtree. So as a deterministic

algorithm working only withT ∗ our algorithm delivers the optimum asymptotical
worst-case guarantee. ⊓⊔
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D.3 Proof of Theorem 6

Consider the game in Figure 4b. The algorithm proceeds as follows. At first each
player purchases her personalized set. Then in the first step, it picks two terminals of a
player and assigns the path to be purchased by terminals connecting to it. Afterwards
the paths to the purchasing terminals are assigned and so on until T ∗ is purchased.
The distribution of edges to terminals is done in a matching step. This is optimal for
the general case, for TCGs however, it might yield an unluckyassignment. In our
example it is possible, if the assignment starts by picking player 2, matching might
assign the terminals of player 1 to purchase 2 connection sets. With the personalized
set this results in 3 connection sets. If all edges have cost 1and there is an alternative
path of cost(1 + ǫ), player 1 has a deviation of factor at least(3− ǫ). ⊓⊔

E Single Source Backbones

E.1 Proof of Theorem 7

ConsiderT ∗ in BFS order from the sources. The algorithm constructing the pay-
ments considers edges in reverse order and with an adjusted cost function similar to
the procedure for connection games. It assigns each player at most the cost of her
cheapest deviation path – in this case between any of her group terminals ands. To
show that this algorithm yields a Nash equilibrium purchasingT ∗, we use a reduction
to connection games. Construct a new graphG′ = (V ′, E′) by adding an artificial
nodeui for each playeri. Let U = {u1, . . . , uk} and V ′ = V ∪ U . Connectui

to all nodes carrying terminals of playeri with an artificial edge of costc(G). Let
the set of artificial edges for playeri be Ei and letE′ = E ∪ (

⋃

i Ei). The single
source game inG′, in which each player strives to connectui to s, is called thecor-
responding connection game (CCG). The centralized optimum networkT ∗ for the
backbone game corresponds to a centralized optimum networkT ∗

c for the CCG and
vice versa, as the degree of everyui is 1 in T ∗

c . Note that a cheapest deviation for
a player in both games consists of a path. Applying ADTW-SS inthe CCG every
playeri will get assigned exactly one artificial edge, and every reasonable deviation
for playeri in G′ will also include only one such edge incident toui. Hence, there
is a correspondence of deviation paths and the calculated Nash equilibrium for the
CCG is also a Nash equilibrium for the backbone game. Furthermore, there is also
a network improvement step possible, as in each improved network of the CCG all
nodesui have degree 1. Hence, such a network yields a better feasiblenetwork in the
backbone game. Finally, observe that our algorithm is equivalent to ADTW-SS in the
CCG. ⊓⊔

E.2 Proof of Theorem 8

Suppose we are given anα-approximate networkT . We employ the adjustment pre-
sented for ADTW-SS and first reduce the cost of every edge by a cost ofγ = ǫc(T ∗)

(1+ǫ)αn

with ǫ > 0. For the procedure constructing a Nash equilibrium onT ∗ there is also a
repairing step similar to ADTW-SS. Hence, we can improve thesolution until we find
a network that can be assigned without incentives to deviate. With at most(1+ǫ)αn

ǫ
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repairing steps, the algorithm runs in time polynomial inn, α andǫ−1. Following the
analysis in [4] we can argue that the algorithm determines a(1+ǫ)-approximate Nash
equilibrium. However, to ensure the constant1 + ǫ and polynomial running time, we
need for each game anon-asymptoticalupper bound onα that is polynomial inn
andk. We cannot hope for a constant, as GSTP generalizes set cover. Using an al-
gorithm [6] to solve the GSTP withα = (1 + ln k

2 )
√

k we can compare its solution
against more recent efficient methods for the GSTP with asymptotical polylogarith-
mic performance guarantees [10, 11]. In this way the solution network will be an
O(log n log k log(maxi gi))-approximation, but never more than a((1 + ln k

2 )
√

k)-
approximation ofT ∗. ⊓⊔


