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Abstract. In this paper we consider theonnection gamea simple network design
game with independent selfish agents that was introducednshelevich et al [4].
In addition we present a generalization calleatkbone gaméo model hierarchical
network and backbone link creation between existing nekwbuctures. In contrast to
the connection game each player considers a number of goftesninals and wants
to connect at least one terminal from each group into a nétvimboth games we focus
on an important subclass tEe gamesin which every feasible network is guaranteed
to be connected.

For tree connection games, in which every player holds 2itexisy we show that there
is a Nash equilibrium as cheap as the optimum network. We gigelynomial time
algorithm to find a cheaf® + ¢)-approximate Nash equilibrium. It can be generalized
to find a cheaf§3.1 + ¢)-approximate Nash equilibrium for tree connection gameh wi
any number of terminals per player in polynomial time. Thipioves the guarantee of
the only previous algorithm for the problem [4], which retsia(4.65+ ¢)-approximate
Nash equilibrium. Tightness results for the analysis o&kgbrithms are derived.

For single source backbone games, in which each player waotsnect one group to
a common source, there is a Nash equilibrium as cheap as tineuop network and a
polynomial time algorithm to find a chedp + ¢)-approximate Nash equilibrium.

1 Introduction

Analyzing networks like the Internet, which is created anaintained by indepen-
dent selfish agents with relatively limited goals, has bezamesearch area attract-
ing a lot of interest. In particular, there have been manyr@gghes to characterize
computational networking aspects using game-theoretisiderations. Naturally, in
such games the existence, cost and computatiatatliesolutions are most impor-
tant. Stable networks are not necessarily cheap or optimyzd in many situations a
central institution interested in optimizing social des@ta has some means of con-
trolling agent behavior. In these cases it is important tdemstand the dynamics in
influencing agents and to explore the boundary betweenlistadoid social welfare.
Hence, it is of interest to characterize the price of stgbjB], which is the ratio of
the cost of the best Nash equilibrium over the cost of a dgomdtimum solution.
This captureow good stability can geRecently this measure has been studied in
routing and network creation games [3, 4, 14, 20]. The mavenprent measure is the
price of anarchy [16] describing the cost of the worst indtefithe best Nash equi-
librium. It has received attention in networking problerfws, instance routing [19],
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facility location [21] and load balancing [8, 16].

An important aspect of networks is their topology. In thigp@awe consider and
extend theconnection gamea game-theoretic model for network topology creation
introduced by Anshelevich et al [4]. In a connection gaméedchek selfish agents
has a connectivity requirement, i.e. she holds a numberrofitals at some nodes
in a given graph and wants to connect these nodes into a canpdPossible edges
have costs, and agents offer money to purchase them. Onsarthef all agents of-
fers for an edge exceeds its cost, it is considdredght Bought edges can be used
by all agents to establish their connection, no matter whethgrabetribute to the
cost. Each agent tries to fulfill her connection requirenatribe least possible cost.
In the connection game it might be optimal for the agentseater disconnected local
subnetworks. The Internet, however, receives its powendatirm for information
sharing and electronic trade from the fact that iglisbally connected - and not only
a collection of disconnected, distributed subnetworksndéeit is reasonable to as-
sume that agents to some extent have an interest in beingceuito the network of
other agents. We incorporate this idea by focusingrea connection gamescon-
nection games, in which every feasible solution is conmedterthermore we study
the interest in globally connected networks in an extendedet) which we call the
backbone gamdt serves to analyze the creation of hierarchical netwovis as-
sume a scenario with existing, globally unconnected swumrits of small capacity.
Each agent wants to connect a set of subnetworks with a ctatheetwork of high
performance backbone links. Backbone links can start addieany terminal in the
subnetworks, so we can consider subnetworks as groupsmointds in the graph
and adjust the connectivity requirements to be presentdmtwertain groups. Each
player must connect at least one terminal of each of her graup a connected net-
work at the least cost. Purchasing and using edges workfasitaithe connection
game.

Related Work The connection game was introduced and studied in [4], where
variety of results were presented. Both prices of anarchlystability are© (k). It is
NP-complete to determine, whether a given game has a Naglibggm at all. A
polynomial time algorithm was presented that findsl&5 + ¢)-approximate Nash
equilibrium on a 2-approximate network. For the singlerseLcase, in which each
player needs to connect a single terminal to a common soarpelynomial time
algorithm was given that finds @ + ¢)-approximate Nash equilibrium on a 1.55-
approximate solution. We denote these algorithms by ADTS\ef8 the single source
and ADTW for the general case. In [3] the authors used adjustenection games
to study the performance of the Shapley value cost shariagpgul. Each edge is
bought in equal shares by each player using it to connectritsinals. The price of
stability in this game i$)(log k). Furthermore extended results were presented, e.qg.
on delays, weighted games and best-response dynamicsitiRecennection games
have been studied in a geometric setting. In [14] bounds wieog/n on the price
of anarchy and the minimum incentives to deviate from angassent purchasing
the socially optimum network. The case of 2 players and 2itels per player was
characterized in terms of prices of anarchy and stabilgpreximate equilibria and
best-response dynamics.



A network creation game of different type was considere@ji,[9]. Here each agent
corresponds to a node and can only create edges that arerintidher node. Sim-
ilar settings are recently receiving increased attentiothé area of social network
analysis [5, 13]. An overview over recent developments énatea of social network
design games is given e.g. in [15]. In the context of largdescomputational net-
works, however, a lot of these models lack properties lik®tiary cost sharing of
edges and complex connectivity requirements.

Our Results In this paper we will consider tree connection games (TC@E)sin-
gle source backbone games (SBG). The games exhibit cooneetjuirements such
that every feasible solution network is connected. Bothd#fferent generalizations
of single source games studied in [4], and we analyze thensim#ar fashion with
respect to strict and approximate deterministic pureteggsaNash equilibria. We are
especially interested in polynomial time algorithms fowaparameter optimization
problem: Try to assign payments to the players such thatuhzhpsed feasible net-
work is cheap and the incentives to deviate are low. In Se&@iwe show that for any
path tree connection game - a TCG with two terminals per playee price of sta-
bility is 1. We outline an algorithm that allocates edge sasdta centralized optimum
solution to players such that no player has an incentive ¥@te As this algorithm
is not efficient, we show in Section 3 how to find a 2-approxemdash equilibrium
purchasing the optimum network for TCGs with any number ohirals per player.
It can be translated into a polynomial time algorithm {8r1 + ¢)-approximate Nash
equilibria purchasing a network of cost at most 1.55 timesojtimum network cost.
This improves over ADTW that provided.65 + ¢)-approximate Nash equilibria.

In addition we derive a tightness argument for the desighriiggie of our algo-
rithm and ADTW. Both algorithms consider only the optimunmwerk and to use
a bounding argument for deriving approximate Nash eqialibNe show that both
are optimal with respect to the class of deterministic atyors working only on the
optimum network. Hence, methods with better performan@rantees can still be
found, however, they must explicitly incorporate the cosd atructure of possible
deviations. This significantly complicates their desigd analysis.

In Section 4 we introduce the backbone game. Some results thie connection
game translate directly: (1) both prices of anarchy andilgtabre in ©(k), (2) it
is NP-complete to determine, whether a given game has a Npslibdéum and (3)
there is a lower bound o@ — €) on approximate Nash equilibria purchasing the
optimum network. Here we show that for SBGs the price of 8tglis 1. A (1 + ¢)-
approximate Nash equilibrium can be found in polynomialetiVe outline three
extensions, for which the procedure delivers the sametgegll) games with a single
source group, (2) games with a directed graph, in which ptayeed a direct connec-
tion to the single source and (3) games, in which each plalyas a threshold mai(
and would like to stay unconnected if the assigned cost escamx().

All our results extend to games, in which the centralizednoptn forest is composed
of trees representing TCGs or SBGs, resp. Itis, howeévét;hard to decide, whether
a connection or backbone game has such a property.
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2 The Price of Stability

Connection Games The connection game fdr players is defined as follows. For
each game there is an undirected gréph= (V, E), and a nonnegative coste)
associated with each edgee E. Each player owns a set of terminals located at
nodes of the graph that she wants to connect. A strategy ftayamp is a function
pi, Which specifies for each edge the amopiit) that: offers for the purchase ef

If the sum of the offers of all players to an edgexceeds:(e), the edge is bought.
Bought edges can be used by all players to connect theirriatsnino matter whether
they contribute to the edge costs or not. Arapproximate) Nash equilibrium is a
payment scheme such that no player can redugey, p;(e) (by more than a factor
of a) by unilaterally choosing a different strategy. Note thatte player insists on
connecting her terminals, and hence considers only suategies as alternatives.
The problem of finding an optimum centralized network forpdlyers and an op-
timum strategy for a single player are the classic netwodigieproblems of the
Steiner network [1,12] and the Steiner tree [18], respebtivFor the rest of this pa-
per we will denote an optimum centralized network’BY. The subtree of ™ that
playeri uses to connect her terminals is denoted by

Tree Connection Games We will deal with an interesting class of connection
games, the tree connection games (TCG). TCGs are connegetinas with tree con-
nection requirements.

Definition 1. In a connection game there are tree connection requireniéfdsany
two nodesv; andwv;,; carrying terminals, there is a sequence of playérs . .,
and nodesy, ... v; such that playeii; has terminals at nodes; andv;, for j =
1,...,1L

Note that if a single playeh would own all terminals of the& players in a TCG,
her optimum network would be the same as in the distributed.ddence, with tree
connection requirements thieplayers imitate the behavior of a global player with
respect to feasible solutions. A TCG can be cast as a sglitifna single global
player intok players, which preserves the connection requirements.

For the subclass of TCG with 2 terminals per player we will tieeterm path tree
connection game (PTCG). A first observation is that the mf@narchy of the PTCG
is k. This is straightforward with an instance consisting of tveales and two parallel
edges, where each node holds a terminal of each player. @eegtas cost, the
other edges, a cost ofl. If each player is assigned to purchase a share ok1,dhe
solution forms a Nash equilibrium.

Throughout the paper we will use an elimination order of ptaywho get assigned
payments and are removed. As candidates for eliminationonsider leaf players.

Definition 2. A player owns donely terminalt, if ¢ is located at a node, where no
terminal of another player is located. A playein a TCG is aleaf player if she owns
a lonely terminal, and there is at most one node with a norlpterminal ofi.

Our general algorithmic framework for deriving exact angragimate Nash equi-
libria is as follows. In each iteration we pick a player, gaspayments, remove the



player and reduce the edge costs by the amount she paid. érittah continues
until no player is left. In the following outline we assumige) = c(e) forall e € E.

Algorithmic Framework

Foriter — 1tok
1 is a leaf player if possible; otherwise an arbitrary player
Determinegp; usingc’e"
Setcitertl(e) « " (e) — p;(e) foralle € E
Remove, contract edges of cost 0

arwNE

Theorem 1. The price of stability in the PTCG is 1.

Proof. To prove our theorem we need the following technical lemmand@ler a
game in whichl™ contains all nodes from the gragh There are two players ands
and a single source terminal at a nedghared by both players. Playinolds exactly
one additional terminal.

Lemma 1. In the described game there is a Nash equilibrium as chedf*as
Algorithm 1

1. For each edgein reverse BFS order
2. Find cheapest deviationt, and A; for playersh and: underc’ and
givenp;, andp; onT..

3. A i mince,c’A i(Te
e Ay e A T o P 75 A

Proof. Algorithm 1 is used to construct a Nash equilibrium purchgdi* for a game
as described in the lemma. It considers edges in reverse BIES foom s with ad-
justed edge costs. L&t denote the part df”* below an edge andT;, the part below
a nodeu, wheree ¢ T, butu € T,. When assigning the cost efwe use a cost
function ¢’ with ¢/(¢/) = 0 for ¢/ € T*\T, andd/(¢’) = c(¢’) otherwise.4; and A,
are the cheapest feasible deviation trees excluelfiog playersi andh, resp. We first
focus on the question, whethgy, allows a cheaper deviation faér. In opposite to
playeri it is not trivial for playerh to assume that all edges outsidelgthave cost 0.
Consider a node where multiple subtrees join. We know for each edges, es, . . .
beloww that the tred;, + ¢; is the optimum forest to connect the terminalg/pf to
T*\T,. But playerh owns terminals in possiblgll subtreesl... Is there a cheaper
forest forh to connect her terminals ifi, to 7\ T, than her calculated contribution?

Lemma 2. The payment functiop;, constructed by Algorithm 1 allows no cheaper
deviation for player.

Proof. Let the edges;, ..., ¢; be the edges directly below a nodén T,,. Assume

the algorithm was able to assign payments that cover the obsiachr; + e;, and
thatw is the first node, at whichy, (75,) is not optlmal forh.

We create a new cost functief) with ¢}, (') = 0for e’ € T*\T, andc}, (¢/) = c(e)—
pi(€e') otherwise. We will see thal™ is the optimum network undet;,. Suppose

the cheapest deviation tre¢, is cheaper tharf™ underc), (i.e. the contribution

of h to T™). W.l.o.g. 4;, includes all edges of cost 0, especially all edges purchased
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Fig. 1. (a), (b) Alternate trees and paths in PTCGs; (c) Distributibhierarchical players for a parent
players, (d) distribution of personalized players in the comporiEmeeded only by

completely by and all edges ot outsideT’,. LetT., be a tree that is not completely
part of A,. Consider for each terminabf h located inTe, the path fromt tow in Ay.

We denote this set of paths by, . Let P’ be the set of subpaths frof; containing

for every P € P, the first part between the terminal bfand the first nodeu g T,

This node always exists because Te;, and itis inT™*, becausd™ covers all nodes

in G. The networkA.; = (Jpcp, P Was considered as a feasible deviation when

constructing the payments @t + e;, as it connects every terminal #3, to a node
of T*\T,. Furthermore, the paymentsmvere the same, hence the cosmf was
equal. Usmg the assumption thatis the first node, for whicl’, is not optlmal
we know thate(Ae;) > c(Te, + ¢;). So after substitutingl., by T, ande; in Ay,
the new network is at least as cheaplas+ e;. To show that this new network is
also feasible, suppose we iteratively remove a gath P’ Now there might other
terminals, whose connections #ouse parts ofP. The last nodew of P is the first
node of P outside ofT;, and it stays connected toas P is the first part of a path
to u. All other nodes off” are inT,; and will be connected by, ande;. Hence, all
terminals affected by the removal &f will finally be reconnected ta. In this way
Ay, can be transformed int6* without cost increase. This proves tHat is optimal
underc;, so Algorithm 1 finds Nash equilibria. a

Figure 1a depicts the argument. Paths from thePsetre indicated by dashed lines.
The subgrap., of A; is drawn bold. A nodev can be either completely outside
T, (like w, for t1) or in anotherT; (like w for t2). ReplacingA., by T, yields a
feasible network that is not more expensive.

Lemma 3. The payments calculated by Algorithm 1 purch@8e



The proof of this lemma can be found in Appendix A. Togethghwiemma 2 this
proves Lemma 1. ]

Finally, we show how to use Lemma 1 to prove Theorem 1. Supp@sare given
a PTCG withk players. At first we simplify the graph by constructing anigglent
metric-closure gamwith the same players, terminals and a complete gépin the
nodes ofl™*. Edge costs are equal to the cost of the shortest path Tthen we use
the algorithmic framework and argue by induction on the nends players. Assume
that the theorem holds for any PTCG with- 1 players. Now consider step 3 for a
game withk players. If there is no leaf player, we can feasibly pick aayer: and let
p; = 0. Otherwise, ifi is a leaf player, we assign her to pay as much as possitilé on
such that she has no incentive to deviate. If the reducedonktiter the framework
iteration is optimal under the reduced cost for the remgikin1 players, the theorem
follows with the induction hypothesis. Here we use Lemma d Atgorithm 1 to
make the argument. Introduce a global plagewho accumulates all players except
i. Playersh andi share a single source at a nodeand an equilibrium assignment for
h represents an optimal solution for the remaining playeer aémoval ofi. Hence,
our inductive step is proven by Lemma 1. In fact we do not ewareho care about
playerh, but instead we use Algorithm 1 only to determijsne Naturally, when used
in step 3 we must employ cost functiefie” for Algorithm 1. O

3 Approximation of Nash Equilibria

In this section we present an algorithm to calculate chegpoapmate Nash equilib-

ria in polynomial time. The algorithm sketched in proof ofetinem 1 is not efficient.

Either we must provide the socially optimum network as inuive must construct

the optimum deviation for the collective playkrto improve the solution network.
In any case this requires to solve an instance of the Steieerproblem. Instead,
in this section we useonnection setto construct polynomial time approximation
algorithms.

Definition 3. [4] A connection sef of playeri is a subset of edges @, such that
for each connected componetiin 7* \ S either (1) there is a terminal ofin C, or
(2) any player that has a terminal i has all of its terminals irC.

For any node without a terminal and degree 2lthincident edges belong to the
same connection sets. So for convenience we assumé'thzs no Steiner nodes
of degree 2. If every player purchases at mesionnection sets, the payments will
form ana-approximate Nash equilibrium. Note that a subset of a cotimeset also
is a connection set.

An algorithm for PTCGs In connection games with 2 terminals per player the
edges ofl™* can be partitioned into equivalence clasSgswheree and f belong to
the same classiff = {j : e € T} = {j : f € T7}. EachS, forms a connection
set for all playersj € J, which is maximal under the subset relation. We will say
that connection sef ; is neededy J. In the following PTCGs we will only consider
maximal connection sets and not explicitly mention a plajiéris information is
given by the subtrees, in which the set is located. Furthexmehen tree connection



requirements are present, connection sets are contigaoua proof of this statement
see Lemma 8 in Appendix B.

Our algorithm uses the framework. In step 3 it assigns a lkgfep: to purchase 2
connection sets. Ifis no leaf playerp; = 0. If a leaf player: is removed in step 4,
distinct connection sets might join and subsequently benglyoregarded as a single
connection set. This happens when they are needed by pletgediffering only by
1. We will use the notion of endangered sets to refer to thesigigmatic sets.

Definition 4. A connection set is calleendangered sébor players if it is needed by
the set of players/ U {i}, and there is another connection set (callieicing se}
needed by the set, withi & J.

Lemma 4. For any leaf player in a PTCG there are at most two endangeedsl. s

A proof of this Lemma is found in Appendix B. We will denote thedangered set
with empty forcing set as thpersonalized sethe endangered set with nonempty
forcing set as theommunity setn step 3 we simply assign a leaf player to purchase
these sets. It requires an easy inductive argument to shaithb algorithm then
works correctly. This yields the following theorem.

Theorem 2. For any optimum centralized solutidfi* in a PTCG, there exists a 2-
approximate Nash equilibrium such that the purchased edgesxactlyl™.

For PTCGs we know thaf™ is connected, hence we can use a 1.55-approximation
algorithm for the Steiner tree problem [18] to get an iniglproximationT’. Fur-
thermore, we can use polynomial time shortest-path algostto find deviations
and connection sets of optimum cost. Using a trick of Anshetteet al [4] we can it-
eratively improvel’ by exchanging connection sets with better paths. For pohyalo
running time we must ensure substantial cost reductiongoin exchange, which can
be done by an adjustment of the edge cost. The details aneatbfe the full version

of this paper.

Thus, for PTCGs there is an algorithm that find2a- ¢)-approximate Nash equilib-
rium on a 1.55-approximate network in time polynomiahiande ™!, for anye > 0.

An algorithm for TCGs  Next we adjust our algorithm to deliver 2-approximate
Nash equilibria puchasin@™ for TCGs with any number of terminals per player.
Each player (denoted as parent player) is divided into afsehitd players with 2
terminals per player. Terminals of the child players araied at the same nodes as
the ones of the parent player. In addition terminals of chlyers are distributed
such that they create a PTCG. Hence, the set of all child pagen purchasé™
with 2 connection sets per player.

The algorithm again uses the framework, and in step 3 a dg@oieedure to assign
the cost of™ to the parent playet. First player: is divided into child players. Then
child players ofi are iteratively assigned to purchase endangered sets iaoded.

In the end; has to purchase all edges assigned to her child players.entifid per-
sonalized and community sets for the child players ohe might first create a PTCG
by splitting all other parent players. However, the nextigsrensures that the assign-
ment of personalized and community sets for a leaf paregepladoes not depend



on the splitting of the other parent players. Hence, in stepe3assign the edges
without explicitly splitting other players thain Details can be found in Appendix C.

Lemma 5. The endangered sets of child players of a leaf parent playee inde-
pendent of the division of other parent players.

In the remainder of the section we show how to divide a parkayep: such that the
union of connection sets purchased by her child playersg&monnection sets. We
get a 2-approximate Nash equilibrium purchasing the optimetworkT™ by using

a special splitting irhierarchical personalizedandsuperfluoushild players.

At first we disregard all non-lonely terminals but one. Let tiode carrying the last
remaining non-lonely terminalbe nodev;. If the player has only lonely terminals,
we pick an arbitrary terminal as Then considefl™ rooted atv;. Once we arrive
at an edge: that is needed only by, the tree connection requirements allow us to
argue that the whole subtree belevis also needed only by Here we insert child
players in a hierarchical fashion. We contract all edgesataneeded only by Let
this adjusted tree be denot&d and consider it in BFS-order rooted@at For each
nodewv carrying a terminal of, we introduce a new child player. She has a terminal
atv and the nearest ancestorwin the tree carrying a terminal éf(see Figure 1c).
These child players will be termdderarchical players

Second, we consider the portions of the tree that were aattao formT”. For
each maximal connected subtfBec T* that is needed only by let w7 be the root
node thafl” shares withl. Let playerj be the first hierarchical child player, whose
terminal t; was placed atur. This player connects upwards in the tree. Now we
consider?’ in DFS-order and locatg; at the first node carrying a terminal ofFor
each new noda,, carrying a terminal encountered in the DFS order, we intceda
new child player and locate her terminals at the nades, andw,. At any time there

is only one lonely terminal iA". Finally, when the last node; carrying a terminal

of ¢ is reached, we move all remaining terminalsugt to w;. They belong to the
hierarchical players connecting downwards in the treeldQfiayers introduced in
the DFS-scan of the componerifsare calledpersonalized playersbecause they
divide parts needed only hy(see Figure 1d).

Third, for every non-lonely terminal afdisregarded in the beginning, we introduce
a superfluouschild player connecting the terminal tg. They will not be assigned
any payments.

Theorem 3. For any optimum centralized solutidfi* in a TCG, there exists a 2-
approximate Nash equilibrium such that the purchased edgesxactlyl™.

Proof. A certain elimination order of child players is used. In atgration a leaf
player is picked, first pick the superfluous players and themhottom-up fashion to
v1 the personalized and hierarchical players. One connesébfor the parent player
is formed by the union of all personalized sets for the chittygrs. The other con-
nection set is the union of the community sets. Actuallyjghdlly stronger statement
holds.

Lemma 6. If the child players of a parent playérare created and eliminated in the
described way, the removal of the personalized and comynseis will only create
components carrying terminals gfrespectively.
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The proof of this lemma can be found in Appendix C. The remafainy one of
the connection sets creates only components with termifals Consider single
connection sets assigned for players in later iteratiorteeflgorithmic framework
on a reduced network. With the property of Lemma 6 we knowshmgle connection
sets for the reduced network are also single connectiorfaretse original network.
This completes the proof of Theorem 3. O

In the full version of this paper we will show how to combindymmial time ap-
proximation algorithms with our scheme to derivg3al +¢)-approximate Nash equi-
librium on a 1.55-approximate network. The assignment¢gulace used by ADTW
is also analyzed by connection sets, however, it does nologrsp much structural
information as our child player splitting. The tree coni@tirequirements allow us
to use a splitting of parent players and proceed in a hieigaktklimination order.
This avoids a matching step employed by ADTW to generateghigament of edge
costs to players. This is crucial for achieving a guaranfezamnnection sets.

A tightness argument For every connection game ADTW finds 3-approximate
Nash equilibria purchasin@™ given only the optimum networ™ as input. Like
our algorithm it uses connection sets and does not empldystasing of edges.
Unfortunately, any deterministic algorithm using oy as input cannot improve
upon these algorithms even if it uses cost sharing. In thig ARTW for general
connection games and our algorithm for TCGs represent aptigorithms. Our al-
gorithm, however, provides better worst-case performancECGs, because ADTW
eventually assigns 3 connection sets to one player of a TGiGantheap alternative
strategy. Proofs of the following three theorems are preskin Appendix D.

Theorem 4. For anye > 0 there is a connection game such that any deterministic
algorithm using only the optimum solutidrf as input constructs a payment function,
which is at least 43 — ¢)-approximate Nash equilibrium.

Theorem 5. For any e > 0 there is a TCG such that any deterministic algorithm
using only the optimum solutidfi* as input constructs a payment function, which is
at least a(2 — ¢)-approximate Nash equilibrium.

Theorem 6. For anye > 0 there is a TCG such that ADTW construct$3a— ¢)-
approximate Nash equilibrium.

4 Backbone Games

In this section we present thmckbone gamean extension of the connection game
to groups of terminals. Each of thieplayers has a set of groups of terminals. Each
terminal may be located at a different node. The playeredrio connect at least
one terminal from each of her groups into a connected netvifferent terminals
may be located at the same nodes. Some important result44tdranslate directly

to the backbone game by restriction to the connection garne.pfice of anarchy

is k, and the price of stability: — 2. It is NP-complete to decide, whether a given
game has a Nash equilibrium, and there is a lower bour@ of €) on approximate
Nash equilibria purchasin@™. Finding the optimum network for a single player is
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the network design problem of the Group Steiner Tree (GSTIP)17]. The prob-
lem of finding a centralized optimum solution netwdfk generalizes the GSTP in
terms of forest connection requirements, so we term thistioeip Steiner Network
Problem (GSNR)There are polylogarithmic approximation algorithms fog GSTP,
but we are not aware of any such results for the GSNP. Henceyillveoncentrate
on algorithms for games, in which the solution is guarant®eelde connected. The
general case is left as an interesting direction for futunekw

Single Source Backbones In a SBG each playei has a grougy; of g; terminals

and must connect at least one terminal to a given source siddete that the price

of anarchy is stillk as the example establishing the bound is a single source.game
The price of stability, however, is 1, and cheap approxinegfgilibria can be found

in polynomial time. Proofs of the following theorems can barid in Appendix E.

Theorem 7. The price of stability in the SBG is 1.

Theorem 8. For the SBG there is a polynomial time algorithm to findla+ ¢)-
approximate Nash equilibrium purchasing a netw@rkvith ¢(T") /c(T*) €
O(lognlog k log(max; g;)).

Surprisingly the deviation factor from the connection gamamslates to the back-
bone game — in contrast to approximation factors of the Btdiee problem. The
construction and the derived results extend to SBGs ontdulegraphs and games,
in which each player has a threshold on her maximum conipibwnd rather stays
unconnected if her assigned share exceeds this threshwde Tesults translate from
ADTW-SS and connection games. In a backbone game with aessugirce grou
consider edges between the terminal$oNo player will include them into her best
deviations. Furthermore, they will not appear in the optimierestT™*. Hence, we
can construct an equivalent single source game with a sowdes by introducing
and contracting edges between all nodes with terminals om

5 Conclusion

In this paper we presented existence proofs and algorithesiclts for finding ex-
act and approximate pure strategy Nash equilibria in a mtwaeation game. Our
tree connection game is a variant of the connection gamé[4jhich every feasible
solution network is guaranteed to be globally connectedthespecial case of 2 ter-
minals per player the price of stability is 1, i.e. there isasN equilibrium as cheap
as the optimum network. Unfortunately, the algorithm caredtng this equilibrium
has exponential running time. Instead we derived a polyabtime algorithm to find
(3.1 + ¢)-approximate Nash equilibria on a 1.55-approximate ndiweren for tree
connection games with any number of terminals per playees@&hjuality guaran-
tees improve significantly over ADTW, the only previous altion for this problem.
Finally, we extended the connection game to the backbone ganwhich players
need to connect groups of terminals. For the single sourse ttee price of stabil-
ity is 1, and(1 + ¢)-approximate Nash equilibria can be found in polynomialetim
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Future work includes finding algorithms for approximate itlogia in general back-
bone games. Furthermore, there still is the potential fgorithms for approximate
equilibria in TCGs and general games with improved appratiom guarantees.
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Appendix
A Price of Stability for PTCGs

A.1 Proof of Lemma 3

Suppose: is the first edge, which cannot be paid for. Then there existdtarnative
path A; for playeri and an alternative tred,, for playerh whose cost bounds the
contributions. Consider any termingl of playerh, and letT7 and A; be the paths
betweens andt; in T and A, respectively. The following lemma about the structure
of Ay is a generalization of [4, Lemma3.4], which holds directly the pathA; for
playeri.

Lemma 7. There is a minimum cost alternative treeg for player 4 with the follow-
ing property. For anyt; there are two nodes; andw; on A; such that all edges on
A; fromt; tov; are in7”, all edges between; andw; are in E\7”, and all edges
betweenu; ands are inT*\T..

Fig. 2. A violation of Lemma 7

Proof. We will see that onced,, violates this lemma, it can be changed into a tree
for playerh that satisfies the properties of the lemma and is not morensige The
proof follows closely the ideas of the proof of Lemma 2.

OnceA, reaches a node outsidg, there is a connection of cost 0 tobecause all
nodes from the graph are ifi*. Hence, in this case we can adjust to satisfy the
lemma without cost increase.

Now supposed; leavesT? to 7.\ 7" and re-enterd™” belowe at another node. Con-
sider the set of edges$ € 77N A; of T, such thatd; excludes edges froffy.. Lete”

be the deepest edge of this set in the BFS-traversal‘dfom s. Consider the edge

[ ¢ A; directly belowe” on T7 (see Figure 2). Recall our assumption thatas the
first edge that could not be paid for. By the time the algorithias trying to purchase
Ty + f, it found that the contribution of playér to T was optimal to connect all
terminals ofh in Ty to T*\Ty. As the payment functions and the adjusted cost func-
tion ¢}, are built adaptively, we know that this is still true in theepent iteration. We
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can use the repairing construction from Lemma 2 to replaeadhpective parts of
Ay, with Ty + f. This yields a new feasible network that is not more expenaivd
uses all edges df’ from ¢; to e”. Hence, in the new networ’ is not considered
anymore, and we move up to the next violating constellatiorhis way A, can be
transformed without cost increase into a network obeyiegemma. a

Now we can argue that the payments assigned by Algorithm fgpayLet T} be the
part inT, of the path betwees andt;. First suppose there is an edfiec A;, N T:.
Then for a nodev incident to f, A;, includes all edges frori™ N T, especially
the node wherd? joins T". If player  deviates toA, and playeri sticks to her
payments, this yields a feasible network with cost less thaaqualc(Ay,) + c(4;).
Otherwise, assume that;, totally excludes edges from:. A; deviates fromI? at
the deviation pointd. However, as is the first edge, which cannot be paid for, it
is optimal for h use the contribution t@; to connect all her terminals located in
T, to d. A, can be transformed into a network includifiy without cost increase.
By assumptiord is not part ofAy, so the repaired network; might be (part of) a
component, which is not connectedstanymore. This connection is then established
by A;. Figure 1b depicts this constellation. The structurelpfensures that the other
terminals ofh outsideT, will still be connected either te or to T;. Hence, if the
contributions ofi to A; andh to A, are not enough to pay fdf, + e, there is a
cheaper network thal™ that can be constructed in one of the two ways described -
a contradiction. This proves Lemma 3. O

B Approximate equilibria for PTCGs

B.1 Proof of Lemma 4

We will show that there is at most one endangered set wigh (). At first, we will
see that in a PTCG all connection sets are contiguous. Natewé are considering
only connection sets that are maximal w.r.t. the subsetioala

Lemma 8. In a PTCG all edges of the same connection set form a contgpath
inT*.

Proof. Recall that in a PTCG every edge in such a connection setgelorthe same
player subtrees. Suppose there is a connectiofi,sghose edges are not contiguous.
Consider the path between two edgeg < S. There are edges from another con-
nection setS’ on the path betweenand f. So the subtre&’ for a playerj must be
present to ensurg’ is different fromS. Suppose we removeand f, then;j remains
connected. Then there are three components and one of tlest¢dC’;) contains
the terminals of playej. There is no playej’ that establishes a connection require-
ment betweerC; and the other components. As she had only 2 terminals, tlagre c
only be eithere or f in 79" but not both. This, however, is not possible, because
and f are present in the same set of player subtrees by assumidéoee, there is
no tree connection requirement to connégtand the other components. This is a
contradiction, because tree connection requirements asm@med. Note that in the
assumed absence of non-terminal nodes of degree 2 eachctionreet is a single
edge. a
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We now assume for contradiction that for a leaf plaiyénere are more connection
sets with the stated property in Lemma 4 and pick arbitrawiy setsS; andS’, with
player sets/; and.J, resp. The corresponding sets includingre denoteds; and
S>. We denote by/ = .J; U J, and assumd; # () and.J; # ().

Upon removal ofS; and.S; three components evolve. Two of them (denafgdand
() each contain one terminal of As the subtred™ for each player is a path, the
third component (denoteds) contains a terminal of each player(ih U J) — (J1 N
J2). NeitherS] nor S} can be located if's, so they must be located @ or Cs.

Case 1:5] and S}, are located in different components. Hence, after remaval;o
and S}, componentg”, andC; evolve (see Figure 3a). Now all terminals of players
in J are distributed orC3, C4 and C5. Hence, when connecting these into a new
component and’;, C5 into a second component we get a feasible forest. This is a
contradiction to the presence of tree connection requinésne

Case 2:Now both S} and.S), are located in the same component. Hence the other
component holds a terminal of each of the players in one skt.gv we assumeé’;
aterminal from each player if. Then, asS} is in Cs all players of.J; need bothS;
andS,, soJ; C Jy. Hence, inC5 there is one terminal of each player.8f — J;. In
Cs there is only one terminal of each player.Jn When we remove), we split off
a new component’; containing one terminal of each of the playersjin S is, of
course, located iy, because it is needed by a subset of the players. If we remove
1, we get a new componeidf; with a terminal of each of the players iR (see
Figure 3b). InC,4 one terminal of each of the players.jh — J; remains. So if we
connectCy andCj5 into a component, there is no need to connect this new compone
to the rest of the tree and the presence of tree connectiolireetents is violated.
Hence, it is shown that there is only one endangered set.with(). In addition for
J = () there is also just one connection set. This yields at mosemaangered sets
for a leaf player and the lemma is proven. a

(a) (b)

Fig. 3. Different cases with components violating tree connecatéguirements
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C Approximate equilibria for TCGs

C.1 Proof of Lemma 6

To see the argument, we first have a closer look at the steucfuendangered and
forcing sets.

Lemma 9. For any leaf player in a PTCG the personalized, communitytaechon-
empty forcing sets share a common node if they exist.

Proof. Suppose for a leaf playethe sets do not share a node. If there is no nonempty
forcing set, there is only the personalized Sgaind the lemma follows trivially. So

let there be a nonempty forcing s&} needed by player set. Remove the commu-
nity set, and let’, C> be the components with and without the lonely terminal, of
resp.

Case 1:Let S; be in Cy and remove it. This split§’, into two components. We
will denote by, the remaining component including the terminaliofrhe other
component is denoted k¥/s;, and it carries one terminal of each playerjnNow
remove all edges that connect to the nedgarrying the lonely terminal of in C;.
Connect all resulting components exceptddo C. Then connect the nodeto CY,.
All connection requirements will be met, but there is a golutvith two components.
This violates the tree connection requirements. Hence,neevkhatS; must be in
.

Case 2:Let'S; be inC; and remove it. Similar to Case 1 we will speak@fandC;
as resulting components after removalSf Now suppose there is another player
with a terminal located ir©]. 77 can only include one af; andS;ygy, soj & J,
and she must have both her terminalg”ih Now isolate the lonely terminal afon
nodewv again. Then construct two components, one consisting 6k andCj; the
other consisting of all other components. This will generafeasible solution with
two components, which is a violation of tree connection meguents. It is easy to
observe that once there are no terminal§’jnthere can be no connection set<’i
except for the personalized sgtneeded only by. The only thing left to show is that
S; must be located id'].

Case 3:Supposes; is in Cy and remove it. Again we denot€), the component
with the terminal ofi and(C'5 the other one. Observe tha@t must carry all terminals

of J. Then removeS; from C; generatingCj and C%. We can isolate the compo-
nents carrying terminals of from the rest of the components. Hence(if and C;

are combined an@] andC, are combined, a solution with 2 components is possible.
This again violates the tree connection requirements.

Hence, ifS; is present inCY, the three connection sets share a Steiner node. Oth-
erwise, the two connection sets meet at the node carryingpttedy terminal ofi.
This concludes the proof of Lemma 9. O

Now, to make our inductive argument, we will reverse the sege of player and
edge removals and instead consider player, edge and natgans. We only present
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the inductive argument. Suppose we have already creatasvarkevith players, for
which the assumption holds. Now we are processing parey¢mpland enter one of
her child playersgj. This player can have a personalized set. For the union pkall
sonalized sets of previous child playersidhe assumption holds that after removal
every component contains a terminal off in addition the newly added personalized
set is removed, the only additional component that evolsdke node carrying the
lonely terminal ofj. Hence, the lemma is proven for the personalized sets.

For the community sets, the case is more complicated. Awiesadd the class of su-
perfluous child players, but they do not purchase anythimgttauns do not violate the
argument. Next, consider the hierarchical players. Thainmunity sets are always
needed by at least one additional player, which is not a gidgler ofi. Consider
only these community sets, then after removal every compdmas a terminal of.
This is ensured by the hierarchical structuring and the tphiat other players are
also present on the sets. Now we also remove the commun#tyngeiduced by the
personalized players. Consider a subffedescribed in the creation of personalized
players, which is needed only ByNote that the root vertew, of T' does not have
to carry any terminals of In addition it might be adjacent to a couple of community
sets of hierarchical players. Note that the whole subIfaaust be purchased by
hence it consists completely of personalized and commaseityof child players aof

To satisfy the lemma every node Thmust be connected by a (possibly empty) path
of personalized sets to a node with a terminal.dfi addition, the rootvr must be
connected by personalized sets to the node carrying thénsmof the hierarchical
players connecting downward in the tree. This serves to ‘eeprevious argument
for hierarchical players feasible. Due to the structurexshim Lemma 2 for the per-
sonalized and community sets a new community set is onlgdaotted when a node
without a terminal is created. In this case, however, thelijoterminal of the corre-
sponding personalized player is to the lower right of theendmbcause the players
were created with a DFS-order. Hence, the root of any subtré&eis connected by
personalized sets to the rightmost terminal of the subtbéh is the last one from
the subtree in the DFS-order. For illustration see Figurerigvhich the bold lines
indicate the personalized sets of the child players I-VsTitoves the case for com-
munity sets.

The splitting for a leaf parent playécreates connection sets, that upon removal yield
only components with terminals éfin it. Hence, if a connection set is removed, all
resulting components must be reconnected to form a feaséitveork. This is the key
property that keeps the connection sets valid, even whenetveork is perturbed by
adding other players. This proves Lemma 6. O

C.2 Proof of Lemmab

Again we use the reversal of the induction by consideringglaedge and node in-
sertions. Suppose we have a child playesf parent player, who is entered into
the network. Let there be an arbitrary splitting of the otparent players into child
players obeying the tree connection requirements. Thepalized set ofj is inde-
pendent of the splitting of the other parent players. Soss@ghe has a community
S. set needed byU{;} and aforcing se$ s needed by/. Consider a different player
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i’ with a child player inJ and.J U {j}. T% cannot have a terminal atand must not
include any other edges incident:athan the two edges ifi. andS;. Otherwise the
tree connection requirements would require a differeno&ehild players ofi’ on S,
andS, which would contradict the assumption that a communityaet is present.
So let us now assume a different splitting:ofWe get different player sets needing
S. andSy. There must be at least one child playe#’afeeding the sets, because they
are both i, However, as there is no terminal or alternate connectienaty child
player ofi’ needingS. will also needS;. Hence,S,. remains the community set for
j. This argument can easily be adjusted for more players. a

D Tightness Results

k-1 k-2 2 1
12 23 k-1k
E_I_L
- - 1 k
—eo—o — — -
12 3 4 k-1 k

(a) (b)

Fig. 4. Tightness example games for the algorithms

D.1 Proof of Theorem 4

Consider a game with 2 terminals per player and an optimatisalT* of cost3k—3
shown in Figure 4a. All edges @f* have cost 1. There is at least one player that pays
a cost of3 — % Each edge is a distinct maximal connection set, becauseslitared

by a distinct set of player subtre&$. One player can have an alternative path of cost
(1 + ¢) outsideT™. As this path is not known to the algorithm, the best straiedg
equilibrate payments between players. It assigns eaclemplay pay a cost o — %

for parts inside her patfi“. As k approaches infinity, the worst-case deviation factor
becomes at leag8 — ¢). 0

D.2 Proof of Theorem 5

For the game in Figure 4b there are exa@ky— 1 connection sets of cost 1. It is
optimal to let each player pay a costof % inside her subtree. So as a deterministic
algorithm working only with7T* our algorithm delivers the optimum asymptotical
worst-case guarantee. 0
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D.3 Proof of Theorem 6

Consider the game in Figure 4b. The algorithm proceeds &snm®l At first each
player purchases her personalized set. Then in the firstispégks two terminals of a
player and assigns the path to be purchased by terminalectmgy to it. Afterwards
the paths to the purchasing terminals are assigned and sotibftl is purchased.
The distribution of edges to terminals is done in a matchteg.sThis is optimal for
the general case, for TCGs however, it might yield an unluaksignment. In our
example it is possible, if the assignment starts by pickilaygqr 2, matching might
assign the terminals of player 1 to purchase 2 connecti@n 8éth the personalized
set this results in 3 connection sets. If all edges have castithere is an alternative
path of cos{(1 + ¢), player 1 has a deviation of factor at le&3t- ¢). O

E Single Source Backbones

E.1 Proof of Theorem 7

ConsiderT™ in BFS order from the source The algorithm constructing the pay-
ments considers edges in reverse order and with an adjussedunction similar to
the procedure for connection games. It assigns each playeost the cost of her
cheapest deviation path — in this case between any of hep geominals and. To
show that this algorithm yields a Nash equilibrium purchg4di™, we use a reduction
to connection games. Construct a new graph= (V’, E’) by adding an artificial
nodeu, for each player. LetU = {ui,...,ux} andV’' = V U U. Connectu;
to all nodes carrying terminals of playewith an artificial edge of cost(G). Let
the set of artificial edges for playérbe E; and letE’ = E U (|, E;). The single
source game i6’, in which each player strives to connegtto s, is called thecor-
responding connection game (CCQhe centralized optimum netwofK* for the
backbone game corresponds to a centralized optimum nefijjofer the CCG and
vice versa, as the degree of everyis 1 in T)*. Note that a cheapest deviation for
a player in both games consists of a path. Applying ADTW-S&a CCG every
playeri will get assigned exactly one artificial edge, and everyaeabkle deviation
for playeri in G’ will also include only one such edge incidentitp Hence, there
is a correspondence of deviation paths and the calculatstl Biguilibrium for the
CCG is also a Nash equilibrium for the backbone game. Furtbes, there is also
a network improvement step possible, as in each improvesanktof the CCG all
nodesu; have degree 1. Hence, such a network yields a better feasblerk in the
backbone game. Finally, observe that our algorithm is edemnt to ADTW-SS in the
CCG. 0

E.2 Proof of Theorem 8

Suppose we are given anapproximate networl’. We employ the adjustment pre-
sented for ADTW-SS and first reduce the cost of every edge bgteofy = (jfg)a)n
with € > 0. For the procedure constructing a Nash equilibriunidrthere is also a
repairing step similar to ADTW-SS. Hence, we can improvesthiation until we find

a network that can be assigned without incentives to dewtth at most@
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repairing steps, the algorithm runs in time polynomiahjrx ande—*. Following the
analysis in [4] we can argue that the algorithm determin@sta)-approximate Nash
equilibrium. However, to ensure the constant ¢ and polynomial running time, we
need for each game r@on-asymptoticalipper bound onx that is polynomial inn
and k. We cannot hope for a constant, as GSTP generalizes set tisirg an al-
gorithm [6] to solve the GSTP withh = (1 + In %)\/E we can compare its solution
against more recent efficient methods for the GSTP with asyticpl polylogarith-
mic performance guarantees [10, 11]. In this way the salutietwork will be an
O(log nlog k log(max; g;))-approximation, but never more than(@ + In £)v/k)-
approximation ofr™. O



