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Abstract. We study a general class of non-cooperative games coming from com-
binatorial covering and facility location problems. A game for k players is based
on an integer programming formulation. Each player wants to satisfy a subset
of the constraints. Variables represent resources, which are available in costly
integer units and must be bought. The cost can be shared arbitrarily between
players. Once a unit is bought, it can be used by all players to satisfy their con-
straints. In general the cost of pure-strategy Nash equilibria in this game can be
prohibitively high, as both prices of anarchy and stability are in © (k). In addition,
deciding the existence of pure Nash equilibria is NP-hard. These results extend to
recently studied single-source connection games. Under certain conditions, how-
ever, cheap Nash equilibria exist: if the integrality gap of the underlying integer
program is 1 and in the case of single constraint players. In addition, we present
algorithms that compute cheap approximate Nash equilibria in polynomial time.

1 Introduction

Analyzing computational environments using game-theoretic models is a quickly evolv-
ing research direction in theoretical computer science. Motivated in large parts by the
Internet, the resulting dynamics of introducing selfish behavior of distributed agents into
a computational environment are studied. In this paper we follow this line of research
by considering a general class of non-cooperative games based on general integer cov-
ering problems. Problems concerning service installation or clustering, which play an
important role in large networks like the Internet, are modeled formally as some vari-
ant of covering or partition problems. Our games can serve as a basis to analyze these
problems in the presence of independent non-cooperative selfish agents.

The formulation of our games generalizes an approach by Anshelevich et al [2], who
proposed games in the setting of Steiner forest design. In particular, we consider a
covering optimization problem given as an integer linear program and turn this into
a non-cooperative game as follows. Each of the k& non-cooperative players considers
a subset of the constraints and strives to satisfy them. Each variable represents a re-
source, and integer units of resources can be bought by the players. The cost of a unit
is given by the coefficient in the objective function. In particular, players pick as strat-
egy a payment function that specifies how much they are willing to pay for the units
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of each resource. A unit is considered bought if the cost is paid for by the amount the
players offer. Bought units can then be used by all players simultaneously to satisfy
their constraints — no matter whether they contribute to the cost or not. A player strives
to minimize the sum of her offers, but insists on satisfaction of her constraints. A va-
riety of integer covering problems, most prominently variants of set cover and facility
location, can be turned into a game with the help of this model. We study our games
with respect to the existence and cost of stable outcomes of the game, which are exact
and approximate Nash equilibria. At first, we characterize prices of anarchy [14] and
stability [1]. They measure the social cost of the worst and best Nash equilibria in terms
of the cost of a social optimum solution. Note that a social optimum solution is the
optimum solution to the underlying integer program. As the cost of exact Nash equilib-
ria can be as high as ©(k), we then consider a two-parameter optimization problem to
find («, §)-approximate Nash equilibria. These are solutions in which each player can
reduce her contribution by at most a factor of a by unilaterally switching to another
strategy, and which represent a S-approximation to the socially optimum cost. We refer
to « as the stability ratio and (3 as the approximation ratio.

Related Work Competitive location is an active research area, in which game-theoretic
models for spatial and graph-based facility location have been studied in the last decades
[7,18]. These models consider facility owners as players that selfishly decide where to
place and open a facility. Clients are modeled as part of player utility, e.g. they are
always assumed to connect to the closest facility. Recent examples of this kind of lo-
cation games are also found in [5,21]. According to our knowledge, however, none of
these models consider the clients as players that need to create connections and facili-
ties without central coordination.

Closer to our approach are cooperative games and mechanism design problems based
on optimization. In [6] strategyproof cost sharing mechanisms have been presented for
games based on set cover and facility location. For set cover games this work was ex-
tended in [15,20] by considering different social desiderata and games with items or sets
being agents. Furthermore, in [11] lower bounds on budget-balance for cross-monotonic
cost sharing schemes were investigated. Cooperative games based on integer cover-
ing/packing problems were studied in [4]. It was shown that the core of such games is
non-empty if and only if the integrality gap is 1. In [8] similar results are shown for a
class of facility location games and an appropriate integer programming formulation.
Cooperative games and the mechanism design framework are used to model selfish ser-
vice receivers who can either cooperate to an offered cost sharing or manipulate. Our
game, however, is strategic and non-cooperative in nature and allows players a much
richer set of actions. We investigate distributed uncoordinated covering scenarios rather
than a coordinated environment with a mechanism choosing customers, providing ser-
vice and charging costs. Our model is suited for a case in which players have to directly
invest into specific resources. Nevertheless our model has some connections to the co-
operative setting, which we will outline in the end of Sect. 2.1.

The non-cooperative model we consider stems from [2], who proposed a game based on
the Steiner forest problem. They show that prices of anarchy and stability are in O(k)
and give a polynomial time algorithm for (4.65 + ¢, 2)-approximate Nash equilibria. In
our uncapacitated facility location (UFL) game we assume that each of the clients must



be connected directly to a facility. We can introduce a source node s, connect all facil-
ities f to it, and direct all edges from clients to facilities. The costs for the new edges
(f,s) are given by the opening costs ¢(f) of the corresponding facilities. This creates
a single-source connection game on a directed graph. If we allow indirect connections
to facilities, the game can be turned into an undirected single-source connection game
(SSC) considered in [2, 10]. For both UFL and SSC games results in [2] suggest that
the price of anarchy is &k and the price of stability is 1 if each player has a single client.
Algorithms for (3.1 + €, 1.55)-approximate Nash equilibria in the SSC game were pro-
posed in [10]. In a very recent paper [3] we considered our game model for the special
case of vertex covering. Prices of anarchy and stability are in ©(k) and there is an ef-
ficient algorithm computing (2, 2)-approximate Nash equilibria. For a lower bound it
was shown that both factors are essentially tight. In addition, for games on bipartite
graphs and games with single edge players the price of stability was shown to be 1.
This paper extends and adjusts these results to a much larger class of games based on
general covering and facility location problems.

Our results We study our games with respect to the quality and existence of pure strat-
egy exact and approximate Nash equilibria. We will not consider mixed equilibria, as
our model requires concrete investments rather than a randomized action, which would
be the result of a mixed strategy. Our contributions are as follows.

Section 2 introduces the facility location games. Even for the most simple variant, the
metric UFL game, the price of anarchy is exactly k£ and the price of stability is at least
k — 2. Furthermore, it is NP-hard to determine whether a game has a Nash equilibrium.
For the metric UFL game there is an algorithm to compute (3, 3)-approximate Nash
equilibria in polynomial time. There is a lower bound of 1.097 on the stability ratio.
For the more general class of facility location problems considered in [8] the price of
stability is 1 if the integrality gap of a special LP-relaxation is 1. The best Nash equi-
librium can be derived from the optimum solution to the LP-dual. Furthermore, if every
player has only a single client, the price of stability is 1. We translate the lower bounds
from the UFL game to SSC games [2] showing that it is NP-hard to determine Nash
equilibrium existence and the price of stability is at least k& — 2. In addition, there is a
lower bound of 1.0719 for the stability ratio in the SSC game. This negatively resolves
the question we left open in [10] whether the price of stability is 1 for SSC games with
more than two terminals per player.

In Section 3 we consider general covering games. Even for the case of vertex cover it
has been shown in [3] that prices of anarchy and stability are k and at least k — 1, respec-
tively, and it is NP-hard to decide the existence of exact Nash equilibria. We show that
for set cover games, in which the integrality gap of the CIP-formulation is 1, the price
of stability is 1. The best Nash equilibrium can be derived from the optimum solution to
the LP-dual in polynomial time. If each player holds one item, the price of stability in
set multi-cover games is 1. There is an algorithm to get (F, F)-approximate Nash equi-
libria in set cover games in polynomial time, where F is the maximum frequency of any
item in the sets. This generalizes results for vertex cover games on bipartite graphs and
an algorithm for (2, 2)-approximate Nash equilibria for general vertex cover games [3].
Proofs omitted from this extended abstract will be given in the full version of the paper.



2 Facility Location Games

Consider the following non-cooperative game for the basic problem of uncapacitated
facility location (UFL). Throughout the paper we denote a feasible solution by S and
the social optimum solution by S*.

A complete bipartite graph G = (T'U F, T x F') with vertex sets F of ny facilities and
T of ny clients or terminals is given. Each of the k£ non-cooperative players holds a set
T; C T of terminals. Each facility f € F' has nonnegative opening costs c( f), and for
each terminal ¢ and each facility f there is a nonnegative connection cost c(t, f). The
goal of each player is to connect her terminals to opened facilities at the minimum cost.
Consider an integer programming (IP) formulation of the UFL problem:

Min Y elfys+ Y elt, Pz

feF teT
subject to Z zep > 1 forallt € T (1)
feF
yr— x5 >0 forallte T, f e F
yg,xep € {0,1} forallt €T, f € F.

Each player insists on satisfying the constraints corresponding to her terminals ¢ € T;.
She offers money to the connection and opening costs by picking as a strategy a pair
of two payment functions p§ : T x F — IRZ and p¢ : F — TR, which specify
her contributions to the connection and opening costs, resp. These are her offers to the
cost of raising the ;s and y variables. If the total offer of all players exceeds the cost
coefficient in the objective function (e.g. for a facility >, p;(f) > ¢(f)), the variable
is raised to 1. In this case the corresponding connection or facility is considered bought
or opened, resp. This affects all constraints, as all players can use bought connections
and opened facilities for free, no matter whether they contribute to the cost or not. A
payment scheme is a vector of strategies specifying for each player a single strategy.
An (a, 8)-approximate Nash equilibrium is a payment scheme in which no player can
reduce her payments by more than a factor of « by unilaterally switching to another
strategy, and which purchases a $-approximation to the socially optimum solution S*.
We refer to « as the stability ratio and (3 as the approximation ratio. Using this concept
a payment scheme purchasing S* is an («, 1)-approximate Nash equilibrium, and an
exact Nash equilibrium is (1, 3)-approximate.

The following observations can be used to simplify a game. Suppose a terminal is not
included in any of the terminal sets 7;. This terminal is not considered by any player
and has no influence on the game. Hence, we will assume that T" = Ule T;.

Suppose a terminal ¢ is owned by a player ¢ and a set of players J, i.e. t € T; N
(Mjes Tj)- Now consider an (approximate) Nash equilibrium for an adjusted game in
which ¢ is owned only by i. If ¢ is added to T; again, the covering requirement of player
7 increases. Contributions of j to resource units satisfying the constraint of ¢ might
have been superfluous previously, but become mandatory now as ¢ is included in T}.
Thus j’s incentive to deviate to another strategy does not increase. So if the payment
scheme is an («, 3)-approximate Nash equilibrium for the adjusted game, it can yield
only a smaller stability ratio for the original game. We will thus assume that all terminal
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Fig. 1. (a) A metric UFL game without Nash equilibria — player 1 owns terminals labeled ¢1, and
t12, player 2 owns terminal ¢2; (b) a metric UFL game with price of stability close to k — 2 for
small € — terminal labels indicate player ownership, facility labels specify opening costs. Black
vertices are facilities, white vertices are terminals. All solid edges have cost 1, all dashed edges
cost € > 0, all other edge costs are given by the shortest path metric.

sets T; are mutually disjoint, as our results continue to hold if the sets T; are allowed
to overlap. Note that in any Nash equilibrium for such a game players do not share
connection costs.

2.1 Metric UFL games

In this section we present results on exact and approximate Nash equilibria for the met-
ric UFL game. For lower bound constructions we only consider a subset of basic edges,
for which we explicitly specify the connection cost. All other edge costs are given by
the shortest path metric over basic edges.

Even in the metric UFL game the price of anarchy is exactly k. The lower bound is
derived by an instance with two facilities, f; with ¢(f1) = k and fo with ¢(fy) = 1.
Each player ¢ has one terminal ¢;, and all connection costs are € > 0. If each player pays
a cost of 1 for f; and her connection cost, then no player has an incentive to switch and
purchase fo completely. S* is derived by opening only f2 and connecting all terminals
to it. This yields a lower bound on the price of anarchy arbitrarily close to k. For an
upper bound suppose there is a Nash equilibrium with cost larger than kc¢(S*). Then
at least one player pays at least the cost ¢(S*) and can thus deviate to purchase S*
completely by herself. This contradicts the assumption of a Nash equilibrium. The ar-
gumentation allows to show a price of anarchy of exactly k£ even for non-metric games.
To derive a bound on the price of stability, we note that there are games without Nash
equilibria.

Lemma 1. There is a metric UFL game without Nash equilibria.

Consider the game in Fig. 1(a). We assume that ¢(f1) = ¢(f3) = 1 and ¢(f2) = 1.5.
Player 1 either contributes to f or to f; and f3. If she purchases only ¢(f3), for it is
best for player 2 to open one other facility, e.g. f1. In this case it is better for player 1
to connect to f; and pay for opening f3 as well. Then player 2 can drop f; and simply
connect to f3. This will create an incentive for player 1 to return to paying only for



f2. Although this is not a formal proof, it illustrates the cycling objectives inherent in
the game. In a Nash equilibrium each terminal must be connected to an opened facility.
Thus, formally all Nash equilibria can be considered by seven cases — depending on the
different sets of opened facilities. It can be shown that for each set of opened facilities
the costs cannot be purchased by a Nash equilibrium payment scheme. This game and
the game outlined for the lower bound on the price of anarchy can be combined to a
class of games that yields a price of stability of £ — 2. The construction is shown in
Fig. 1(b). In addition, deciding the existence of Nash equilibria is NP-hard.

Theorem 1. The price of stability in the metric UFL game is at least k — 2.

Theorem 2. It is NP-hard to decide whether a metric UFL game has a Nash equilib-
rium.

Both results extend easily to non-metric games. Thus, exact Nash equilibria can be quite
costly and hard to compute. For some classes of games, however, there is a cheap Nash
equilibrium. In particular, results in [2] can be used to show that UFL games with a
single terminal per player allow for an iterative improvement procedure that improves
both stability and approximation ratio. The price of stability is 1, and (1 + ¢,1.52)-
approximate Nash equilibria can be found using a recent approximation algorithm [16]
to compute a starting solution. In addition, we show that there is another class of games
with cheap equilibria, which can be computed efficiently.

Theorem 3. For any metric UFL game, in which the underlying UFL problem has in-
tegrality gap 1, the price of stability is 1. An optimal Nash equilibrium can be computed
in polynomial time.

The payments are determined as follows. Reconsider the IP formulation (1) and its
corresponding LP-relaxation obtained by allowing y¢,x;y > 0. The integrality gap
is assumed to be 1, so the optimum solution (z*,y*) to (1) is optimal for the relax-
ation. Using the optimum solution (v*,4*) to the dual of the LP-relaxation we assign

p2(f) = yj; (Z teT; 5;}) for player ¢ and each facility f. In addition, we let player ¢

contribute pf(t, f) = z;(v; — ;) foreacht € T and f € F. The argument that this
gives a Nash equilibrium relies on LP duality and complementary slackness.

For general games we consider approximate Nash equilibria. This concept is motivated
by the assumption that stability evolves if each player has no significant incentive to de-
viate. Formally, for («, §)-approximate Nash equilibria the stability ratio @ > 1 spec-
ifies the violation of the Nash equilibrium inequality, and 3 > 1 is the approximation
ratio of the social cost.

Theorem 4. For the metric UFL game there is a primal-dual algorithm to derive (3, 3)-
approximate Nash equilibria in polynomial time.

Proof. In Algorithm 1 we denote a terminal by ¢, a facility by f, and the player owning
t by 7;. The algorithm raises budgets for each terminal, which are offered for purchas-
ing the connection and opening costs. Facilities are opened if the opening costs are
covered by the total budget offered, and if they are located sufficiently far away from
other opened facilities. For the approximation ratio of 3 we note that the algorithm is a



primal-dual method for the UFL problem [17,19].

For the analysis of the stability ratio consider a single player ¢ and her payments. Note
that the algorithm stops raising the budget of a terminal by the time it becomes directly
or indirectly connected. We will first show that for the final budgets ) .. B is a lower
bound on the cost of any deviation for player . For any terminal ¢ we denote by f(¢)
the facility ¢ is connected to in the calculated solution. Verify that c(¢, f) > B; for
any terminal ¢ and any opened facility f # f(¢). Hence, if a player has a deviation
that improves upon B, it must open a new facility and connect some of her termi-
nals to it. By opening a new facility, however, the player is completely independent
of the cost contributions of other players. Similar to [19] we can argue that the final
budgets yield a feasible solution for the dual of the LP-relaxation. Hence, they form a
3-approximately budget a balanced core solution for the cooperative game [13]. Now
suppose there is a deviation for a player, which opens a new facility f and connects a
subset of her terminals 7'y to f thereby improving upon the budgets. Then the cost of
c(f) + Xier, < 2ter, Br- This, however, would mean that the coalition formed by
T’ in the coalitional game has a way to improve upon their budgets, which is a contra-
diction to B, having the core-property. Hence, we know that  _, e, Bt is alower bound
on every deviation cost. Finally, note that for every directly connected terminal ¢t € T;
player ¢ pays B;. A terminal ¢ becomes indirectly connected only if it is unconnected
and tight to a facility f by the time f is definitely closed. f becomes definitely closed
only if there is another previously opened facility f at distance 2B; from f. Hence,
there is an edge c(t, f’) < 3B, by the metric inequality. So in the end player 4 pays
at most 35; when connecting an indirectly connected terminal to the closest opened
facility. This establishes the bound on the stability ratio. a

In terms of lower bounds there is no polynomial time algorithm with an approximation
ratio of 1.463 unless NP C DTIM E(n®{°g1°8™)) [9]. The following theorem shows
that in the game of Fig. 1(a) the cost of any feasible solution cannot be distributed to
get an approximate Nash equilibrium with stability ratio o < 1.097.

Theorem 5. There is a metric UFL game in which for every («, 3)-approximate Nash
equilibrium oo > 1.097.

Relation to cooperative games In the cooperative game each terminal is a single
player. The foremost stability concept is the core — the set of cost allocations assigning
any coalition of players at most the cost of the optimum solution for this coalition
only. A Nash equilibrium in our game guarantees this property only for the coalitions
represented by our players. On the other hand the investments of a player now alter the
cost of optimal solutions for other players. This feature makes overcovering the central
problem that needs to be resolved to provide cheap solutions with low incentives to
deviate. For deriving cheap approximately budget balanced core solutions the method
of dual fitting can be applied, which scales the assigned payments of players to dual
feasibility. The scaling factor then yields a factor for competitiveness, the notion in
cooperative games analog to the stability ratio. In our non-cooperative framework the
same simple scaling unfortunately does not work. In particular, for recently proposed
greedy methods with better approximation ratios the factor for the approximation ratio
does not translate.



Algorithm 1: Primal-dual algorithm for (3,3)-approximate Nash equilibria

In the beginning all terminals are unconnected, all budgets B; are 0, and all facilities
closed. Raise budgets of unconnected terminals at the same rate until one of the following
events occurs. We denote the current budget of unconnected terminals by B. We call a
terminal ¢ right with facility f if B: > c(t, f).

1. An unconnected terminal ¢ goes tight with an opened facility f.

In this case set t connected to f and assign player i, to pay p§, (¢, f) = c(t, f).

2. For afacility f not yet definitely closed the sum of the budgets of unconnected and
indirectly connected terminals ¢ pays for opening and connection costs:

>, max(B; — c(t, f),0) = c(f). Then stop raising the budgets of the unconnected

tight terminals. Also,

(a) if there are opened facility f’ and terminal ¢’ with c¢(¢', f) + c(t', f') < 2B,
set f definitely closed and all unconnected terminals ¢ tight with f indirectly
connected.

(b) Otherwise open f and set all terminals directly connected to f, which are tight
with f and not yet directly connected to some other facility. For each such
terminal assign player i, to pay p5, (¢, f) = c(t, f) and p{, (f) = By — c(t, f).

In the end connect all indirectly connected terminals to the closest opened facility and
assign the corresponding players to pay for the connection cost.

Lemma 2. The payments computed by recent greedy algorithms [12, 16] yield a stabil-
ity ratio of £2(k).

2.2 Extensions

Connection-Restricted Facility Location Games We extend the game from UFL to
connection-restricted facility location (CRFL) problems as considered in [8]. Instead
of the constraints y; — x;y > 0 there is for each facility f a set of feasible subsets
of terminals that can be connected simultaneously to f. This formulation allows for
instance capacity, quota, or incompatibility constraints and thus encompasses several
well-known generalizations of the problem. For subclasses of these games some of the
previous results can be extended to hold. Details are deferred to the full version.

Theorem 6. For complete CRFL games, in which a partially conic relaxation of the
underlying CRFL problem has integrality gap 1, the price of stability is 1.

Single source connection games By appropriately changing opening and connection
costs most of the previous results translate in some reduced form to the SSC game with
any number of terminals per player. As the previous algorithms in [2, 10] construct
approximate Nash equilibria purchasing §*, we explicitly examine a lower bound for
this case.

Corollary 1. There is a SSC game, in which for every («, 3)-approximate Nash equi-
librium o« > 1.0719. For approximate Nash equilibria with = 1 purchasing S* the
bound increases to o > 1.1835.



Corollary 2. In the SSC game the price of stability is at least k — 2.
Corollary 3. It is NP-hard to decide whether a SSC game has a Nash equilibrium.

3 Covering Games

Covering games and their equilibria are defined similarly to the facility location case.
A covering integer problem (CIP) is given as
n

Min Zc(f)xf

f=1
" 2
subject to Za(t,f)xf >b(t) forallt=1,...,m @
F=1
zr €N forall f=1,...,n.

All constants are assumed to have non-negative (rational) entries a(t, f), b(t), c(f) >0
forallt =1,...,mand f = 1,...,n. Associated with each of the k non-cooperative
players is a subset of the constraints C;, which she strives to satisfy. Integral units of a
resource f have cost ¢( f). They must be bought to be available for constraint satisfac-
tion. Each player ¢ chooses as a strategy a payment function p; : {1,...,n} — IR,
which specifies her non-negative contribution to each resource f. Then an integral num-
ber of x ¢ units of resource f are considered bought if x  is the largest integer such that
> pi(f) = c(f)xy. A bought unit can be used by all players for constraint satisfac-
tion — no matter whether they contribute or not. We assume that if player ¢ offers some
amount p;(f) to resource f, and z; units are bought in total, then her contribution to
each unit is p;(f)/x . Each player strives to minimize her cost, but insists on satisfying
her constraints. We can translate definitions of exact and approximate Nash equilibria
in this game directly from the UFL game. In addition, observations similar to the ones
made in Sect. 2 can be used to simplify a game. Hence, in the following we will assume
w.l.o.g. that the constraint sets C; of the players form a partition of the constraints of
the CIP. Note that in a Nash equilibrium no player contributes to an unbought unit, so
the equality >, p;(f) = c(f)zy holds.

In the covering game prices of anarchy and stability behave similarly as in the metric
UFL game. Using the results for vertex cover games in [3] and similar observations for
the price of anarchy as in Sect. 2.1, we can see that the price of anarchy in the covering
game is exactly k and the price of stability is at least k¥ — 1. Furthermore, even for vertex
cover games it is NP-hard to decide, whether a covering game has a Nash equilibrium.
Hence, we again focus on classes of games, for which cheap Nash equilibria exist. For
variants of set cover games we have the following results. F denotes the maximum
frequency of any element in the sets.

Theorem 7. If for a set cover game, the integrality gap of the CIP is 1, the price of
stability is 1 and an optimal Nash equilibrium can be found in polynomial time.

Theorem 8. The price of stability in singleton set multi-cover games is 1.

Theorem 9. There is a primal-dual algorithm to compute a (F, F)-approximate Nash
equilibrium for set cover games.
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