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Abstract

A simple non-cooperative network creation game has been introduced in [2]. In this paper we study a geo-
metric version of this game, assuming Euclidean metric edge costs on the plane. The price of anarchy in such
geometric games with £ players is still © (k). Hence, we consider the task of minimizing players incentives to
deviate from a payment scheme, purchasing the minimum cost network, which was introduced in [2]. In con-
trast to general games, in small geometric games (2 players and 2 terminals per player), a Nash equilibrium
purchasing the optimum network exists. This can be translated into a (1 + €)-approximate Nash equilibrium
purchasing the optimum network using some more practical assumptions, for any e > 0. For more players,
however, there are games with 2 terminals per player, such that any Nash equilibrium purchasing the opti-
mum solution is at least (% — e) -approximate. On the algorithmic side, we show that playing small games
with best-response strategies yields low-cost Nash equilibria. The distinguishing feature of our paper is the
fact that we needed to develop new techniques to deal with the geometric setting, which are fundamentally
different from the techniques used in [2] for general games.

1 Introduction

The network analysis yields a variety of interesting questions, which are important for many areas in research
and applications. One of the most dynamic driving forces in modern society is the existence of the Internet-a
powerful and universal artefact in human history. An interesting research direction explored recently is to
understand and influence the development of the Internet. A fundamental difference to other networks is that
the Internet is built and maintained by a number of independent agents that pursue relatively limited, selfish
goals. This motivated a lot of the research in a field now called algorithmic game theory. A major direction in
this field is to analyze stable solutions in non-cooperative (networking) games. The most prominent measure
is the price of anarchy [16], which is the ratio of the worst cost of a Nash equilibrium over the cost of an
optimum solution. The price of anarchy has been considered in a variety of fields such as load balancing [6, 7,
16, 20], routing [19, 21, 22], facility location [9, 24], and flow control [10, 23]. A slightly different measure—
the cost of the best Nash equilibrium instead of the worst was considered in [22]. This is the optimum solution
no user has an incentive to defect from, hence we will follow [1] and refer to it as the price of stability. In
this paper we will consider both prices for the geometric version of a network creation game.

Network connection games. Anshelevich et al. [2] proposed recently a game theoretic model called a con-
nection game for building and maintaining the Internet topology, which will be the basis for our paper. Agents
are to build a network, and each agent holds a number of terminals at nodes in a graph, which she wants to
connect by buying edges of the graph. The cost of edges can be shared among the players. An edge can only
be used for connection, if fully paid for. However, once it is paid for, any player can use it to connect her
terminals. A strategy of a player is a payment function, i.e., her (possibly zero) contribution to paying the cost
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of each edge. Given strategies of all players form a Nash equilibrium if no player could deviate to a different
strategy resulting in a smaller total payment to this player.

In this game the problem of finding the cheapest payment strategy for one player is the classic Steiner tree
network design problem. The problem of finding a minimum cost network satisfying all connection needs
and minimizing the sum of all players payments is the generalized Steiner tree problem.

Unfortunately, both the price of anarchy and the price of stability of this game can be in the order of k, the
number of players. This is also an upper bound, because if the price of anarchy were more than &, there would
be a player that could deviate by purchasing the optimum network all by herself.

Furthermore, it is NP-complete to determine, whether a given game has any Nash equilibrium at all. Thus, in
[2] a different approach was taken, in which a central institution determines a network and payment schemes
for players. The goal is twofold: On the one hand a cheap network should be purchased, on the other hand
each player shall have the least motivation to deviate. As a strict Nash equilibrium might not be possible, a
payment scheme was presented that determines a 3-approximate Nash equilibrium on the socially optimum
network, i.e., purchases the minimum cost network and allows each player to reduce her costs by at most
a factor of 3 by deviating. Finding the minimum cost network, however, is NP-hard, and the currently best
known approximation algorithms for the (generalized) Steiner tree problem have an approximation factor of
(2) 1.55 [13, 18]. Using these algorithms for any game a payment scheme can be found in polynomial time
that presents a (4.65 + ¢)-approximate Nash equilibrium purchasing a 2-approximate network [2].
Connection games are related to the field of network creation. Fabrikant et al. [11] proposed a different net-
work creation game, in which each player corresponds to a node. A player can only contribute to edges that
are incident to her node. A similar game was also considered by [4, 14] in the context of social networks.
Being well-suited in this setting, for the global context of the Internet it is more appropriate to assume that
players hold more terminals, can share edge costs and can contribute to costs anywhere in the network.

In a more recent paper Anshelevich et al. [1] have proposed a slightly different setting for the connection
game. Here the focus is put on a classic cost allocation protocol, namely the Shapley value. Each edge is
assumed to be shared equally among the players using it. In this setting they could prove an O(log k) upper
bound on the price of stability. They considered bounds on the convergence of best-response dynamics and
derived extended results for versions of the game with edge latencies and weighting schemes.

Our contributions and results. In this paper we consider a special case of the connection game, the geo-
metric connection game. Geometric edge costs present an interesting special case of the problem, as the
connection costs of a lot of large networks can be approximated by the Euclidean distance on the plane [8].
Furthermore, for the geometric versions of combinatorial optimization problems usually improved results can
be derived by employing the specific Euclidean structure. For example the geometric Steiner tree problem
allows a PTAS [3], which contrasts the inapproximability results for the general case [5]. This makes consid-
eration of the geometric connection game attractive, and yields hope for significantly improved properties. In
this paper, we present the following results for geometric connection games:

e The price of anarchy for geometric connection games with & players is k, even if we have two terminals
per player. This, unfortunately, is the same bound as for general connection games [2].

e For games with 2 players each with 2 terminals, the price of stability is 1. The equilibrium payment
scheme assigns payments along an edge according to a continuous function. For cases, in which this is
unreasonable, we split an edge into small pieces, and each piece is bought completely by one player.
Then a (1 + €)-approximate Nash equilibrium can be achieved, for any ¢ > 0. This is a significant
improvement over the general case, where games with 2 players and 2 terminals per player exist such
that any Nash equilibria purchasing the optimum network is at least (g — ¢)-approximate [15].

e The case of 2 players with 2 terminals per player may seem a very special one, but, it turns out that
we cannot obtain results as above for more complicated games. Namely, for games with three or more
players and 2 terminals per player, these results cannot be extended. There is a lower bound of (% — e),
for any e > 0, on approximate Nash equilibria purchasing the optimum network, which is slightly
lower than the (% — e) bound for corresponding general connection games in [2]. Thus, our result for
geometric games with 2 players and 2 terminals per player is tight.

o If players play the game iteratively with best-response deviations, then in games with 2 players and 2
terminals per player the dynamics arrive at a Nash equilibrium very quickly. Furthermore, the created
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network is a v/2-approximation to the cost of an optimum network.

The main difficulty when dealing with these geometric games is due to their inherent continuous nature,
which, e.g., makes the number of possible player’s strategies potentially unbounded. Thus, most of our results
require specific geometric arguments and new proof techniques that are fundamentally different from the
ones previously used by Anshelevich et al. [2] for general connection games. The development of these
new techniques is considered as one of the contributions of our paper besides the results listed above. For
example, consider how a shared edge is paid for when buying an optimum solution in a game with 2 players
and 2 terminals per player. We define an abstract continuous function that specifies the payments on all
subintervals of the shared edge. Nash properties are shown to imply some geometric parameterized bounds
on this function. We then find such a function as a solution to an appropriate system of functional inequalities,
which leads to an exact Nash equilibrium. The continuity assumptions of the payment function, however, may
not be realistic. We show how to relax these assumptions by discretizing the payment function, which leads
to an (1 + €)-approximate Nash equilibrium, for any e > 0.

Outline. Section 2 contains a formal definition of the geometric connection game, and Section 3 presents our
results on the price of anarchy. Section 4 describes the results on the price of stability (Theorems 2, 3, and 5),
and the analysis of the best-response dynamics (Theorem 4). Missing proofs can be found in the appendix.

2 Themode and preliminaries

The geometric connection game is defined as follows. Let V' be a set of nodes located in the Euclidean plane.
There are k& non-cooperative players, each holding a number of terminals located at a subset of nodes from V.
Each player strives to connect all of her terminals into a connected component. To achieve this a player offers
money to purchase segments in the plane. The cost of a segment is determined by its length in the plane.
Once the total amount of money offered by all players for a certain segment exceeds its cost, the segment
is considered bought. Bought segments can be used by all players to connect their terminals, even if they
contribute nothing to their costs. A strategy for player i is a payment function p; that specifies how much she
contributes to each segment in the plane. A collection of strategies, one for each player, is called a payment
scheme p = (p1, ..., pr). A Nash equilibrium is a payment scheme p, in which no player i can connect her
terminals at a lower cost by unilaterally reallocating her payments and switching to another function p’.t We
will denote the social optimum solution, i.e., the minimum cost forest that connects the terminals of each
player, by T*. The subtree of T* needed by player i to connect her terminals is denoted by T°%.

The problem of constructing a minimum cost network satisfying all connection needs is the geometric Steiner
forest problem. As the components of a Steiner forest are Steiner trees for a subset of players, some well-
known properties of optimum geometric Steiner trees hold for 7*.

Lemma 1l [12, 17] Any 2 adjacent edges in an optimal geometric Steiner tree connect with an inner angle
of at least 120 °.

Lemma 2 [12, 17] Every Steiner point of an optimal geometric Steiner tree has degree 3 and each of the 3
edges meeting at it makes angles of 120 ° with the other two.

Another powerful tool for the analysis of connection games is the notion of a connection set that was the key
ingredient to the analysis presented in [2].

Definition 1 A connection set S of player 5 is a subset of edges of 7%, such that for each connected component
C'inT* \ S either (1°) there is a terminal of ¢ in C, or (2°) any player that has a terminal in C' has all of
its terminals in C.

Intuitively, after removing a connection set from 7" and somehow reconnecting the terminals of player i
the terminals of all players will be connected in the resulting solution. As T is the optimal solution, the
maximum cost of any connection set S for player ¢ is a lower bound for the cost of any of her deviations.
Connection sets in a game with 2 terminals per player are easy to determine. Each T°¢ forms a path inside
T*, and two edges e, ¢’ belong to the same connection set for player i iff {j € {1,...,k} : e € T7} =

! -approximate Nash equilibrium is apayment scheme where each player may reduce her costs by at most a factor of o by deviating.
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Figure 1. Geometric games with maximum price of anarchy.

{j/e{l,....k} : ¢ € TJ"}. Our proofs will rarely use connection sets. We will rather deploy geometric
arguments and use connection sets only to limit the number and types of segments and cases to be examined.

3 Theprice of anarchy

Theorem 1 The price of anarchy for the geometric connection game with k players and 2 terminals per
player, is precisely k.

Proof. We have already argued in the introduction that the price of anarchy is at most k. Let us show now
that & is also a lower bound. At first we will somewhat generally consider how a player in the geometric
environment is motivated to deviate from a given payment scheme. Suppose we are given a game with 2
terminals per player and a feasible forest 7', which satisfies the connection requirement for each player.
Furthermore, let p be a payment function, which specifies a payment for each player on each edge. The next
two Lemmas 3 and 4 follow directly from the Triangle Inequality.

Lemma 3 If the deviation for a player 7 from p includes an edge e ¢ T, this edge is a straight line segment,
with start and end either at a terminal or some other part of 7" (possibly an interior point of some edge of 7).
It is located completely inside the Euclidean convex hull of T'.

Using these observations we can specify some properties of Nash equilibria for geometric connection games.

Lemma 4 In a Nash equilibrium of the geometric connection game for & players, edges e1, e bought fully
by one player are straight segments and meet with other, differently purchased edges with an inner angle of
at least 90 °. In the case of 2 terminals per player e¢; and es can only meet at a point if they have an inner
angle of 180 °.

Consider the game for 2 players and 2 terminals shown in Figure 1a. We have two designated nodes, each
containing one terminal of each player. Let es = e21 Ueao. The payment scheme purchases 7" in the following
way. Player 1 pays for es and es;. Player 2 pays for ¢; and egs. Letthe costs be e; = e3 = ea1 = €20 = %
e1 and e4 as well as es and eg are orthogonal. The optimal solution in this network is the direct connection
between the terminals. The presented payment schemes, however, form a Nash equilibrium. Note that the
necessary conditions of Lemma 4 are fulfilled. In addition, no player can deviate by simply removing any
payment from the network. Lemma 3 restricts the attention to straight segments inside the rectangle, which
is the Euclidean hull of T'. The argument is given for player 1-it can be applied symmetrically to player 2.
We will consider all meaningful straight segments inside the convex hull of T" as deviations. Note first that
a deviation with both endpoints inside the same edge e1, e21, etc. (or with endpoints in eo; and ess) is not
profitable, because the segments are straight. Note further that any segment between e; and eg is unprofitable,
because its length is at least 1. Now consider a deviation d = (u, v) for player 1 connecting points u € e; and
v € eaq, Which are the two segments paid for by player 2. Suppose d # e then |d| > % Using d, however,
player 1 can save only a cost of % by droppinges;. If u € ez and v € esq, then d connects segments purchased
by player 1. Suppose she defects to such an edge. Let 4 be the part of e3 inside the cycle introduced by d in
T (e$, accordingly). Then with the Phythagorean Theorem and |e4|, [eg;| < 1

1
d d d
|d| > [e5 | + 5 > leg| + legs |
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holds, so d is not profitable for player 1. Hence, all edges player 1 would consider for a deviation are un-
profitable. With the symmetric argument for player 2 it follows that the payment scheme represents a Nash
equilibrium. Since the optimum solution is half of the cost of T', the theorem follows for games with 2 players
and 2 terminals per player.

In the network with more players assume that each player has one terminal at each of the two designated
nodes. The nodes are again separated by a distance of 1. Construct a path between the nodes, which approx-
imates a cycle with £ straight edges of cost 1 each (see Figure 1b). Each player i is assigned to pay for one
edge ¢; of cost 1. Observe that the necessary conditions of Lemma 4 are fulfilled. Now consider the devia-
tions for a player 4. She will neither consider segments that cost more than 1 nor segments that do not allow
him to save on e;. Of the remaining deviations none will yield any profit, because the cyclic structure makes
the interior angles between the edges amount to at least 90 °. Any deviation d = (u, v) from a pointu € e; to
any other point v will be longer than the corresponding part e that it allows to save. This argument is valid
for any player i. As the optimum solution is the direct connection of cost 1, the theorem follows. O

This result is contrasted with a result on the price of stability, i.e., the cost of the best Nash equilibrium
over the cost of the optimum network.

4 Theprice of stability

Theorem 2 The price of stability for geometric connection games with 2 players and 2 terminals per player
is 1.

Proof. We will consider all different games classifying them by the structure of their optimum solution
network. The bold networks in Figures 2 and 3 depict the different structures of the optimal solution, denoted
T*, we consider. These are only solutions, in which there is an edge e; € T and e; € T2. If there is no such
edge, the solution is composed of one connection set per player, and a Nash equilibrium can be derived by
assigning each player to purchase her subtree T°%.

a) 1 b)
Figure 2: Network types with one edge per connection set

Type 2.1 In this case the network is a path (see Figure 2 a). The following Lemma 5 describes the struc-
ture of meaningful deviations. Nash equilibrium requires that everybody pays for what is only inside her
subtree. That means e; is paid by player 1 and e, by player 2. The length of every segment lower bounds
the deviation costs (by the connection set property)—so no deviation between points of the same segment is
meaningful. Furthermore, from the above we know that only straight segments inside the convex hull need to
be considered. Hence, there are only the cases left as described in the lemma below.

Lemma5 Given an optimal network 7" of Type 2.1 and a payment function p that assigns player i only to
pay for edges in 7%, the only deviations player 1 will pick are straight segments from a point v € e; to a point
v € ez, player 2 only fromu € es tov € e3.

Proof. We analyze the payments of player 1. The observation follows symmetrically for player 2. With
Lemma 3 and the fact that the segments of 7"* are straight we can restrict the possible deviations to 3 possible
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types of straight segments d = (u,v): u € e1, v Eeg;u € e1,v Eegand u € ez, v € es.

The deviations of case 3 allow player 1 to deviate from (parts of) only one connection set, namely {es}. Pay-
ments on one connection set, however, provide lower bounds for the deviations, and so they are not profitable.
If e; and eo are located on different sides of the line through e3, an edge of case 2 always crosses ez and
therefore decomposes into two edges of the other cases. If e; and e, are located on the same side (this is
depicted in Figure 2a), then by easy observation for each edge of case 2 there is a cheaper edge, which starts
at the same point u € e; and goes directly to the terminal of player 1 on e;. However, as 1 does not pay on
es, the savings on e; and es for player 1 are the same for both edges. Hence an edge of case 1 provides a
superior way to deviate. This proves the lemma. O

An adjusted version of this lemma will be true for most of the cases we consider in the remaining proof.
By the Cosine Theorem the deviation lengths between two adjacent segments are minimized if the angle
between segments is minimized, i.e., amounts to 120 ° (cf. Lemmas 1 and 2). Hence, we will use an angle
assumption for the remaining proof, i.e.,

Angle assumption: all the edges connecting in the optimal solution make inner angles of exactly 120 °.

Consider the following payment scheme, which forms a Nash equilibrium. Let e3 ; be a half subsegment of
ez connecting the center of e3 with the terminal of player 1. Similarly, es o is the other half subsegment of e3,
connecting the center of e with the terminal of player 2. Then, for player 1, p1(e1) = |e1], p1(e3,1) = |es.al,
and p; = 0 elsewhere. For player 2, pa(e2) = |ez|, p2(es,2) = |es 2], and p2 = 0 elsewhere.

Note first that the necessary conditions from Lemma 4 are fulfilled. Consider a deviation d = (u,v) from
Lemma 5 for player 1 with u € e; and v € es. As the angle between e; and es is exactly 120 °, the length
(and cost) of this segment by the Cosine Theorem is

[d] = \/ledI2 + [edl? + leflled],

where e¢ and e4 are the segments of e; and e in the cycle in T + d. The payment of player 1 that can be
removed when buying d is p1 (e¢) + p1(ed) = |ef| + max(|ed| — @ 0). Once v lies in e3 5 paid by player
2, |ed| < 'l and the deviation cannot be cheaper than |e4|. OtherW|se when led] > %l we can see that
les|?

T

leflles] + [e5lles| — led]les] >

Then it follows that

|61| + |€3| + |€1||€3| > |€1| + |€3| |€1||€3| |€3||€3| +2|€1||e3|
Finally we get

= Jef + lef — 1) = pa(ef) + pa(ed)

and see that player 1 has no way of improving her payments. By symmetry the same is true for player 2 and
the proof for this network type is completed.

Type 2.2 This network type consists of a star, which has a Steiner vertex in the middle and three leaves
containing the terminals of the players (see Figure 2b). The proof of the next lemma is in the appendix.

Lemma 6 Given an optimal network 7" of Type 2.2 and a payment function p that assigns player i only to
pay for edges in 7%, the only deviations player 1 will pick are straight segments from a point v € e; to a point
v € es, player 2 only from u € e to v € e3.

The following is a Nash equilibrium payment scheme. Let e} = (u,v), with u, v € es, be any subsegment of

es, where u, v are two interior points on es. Then, in the strategy for player 1, p1(e1) = |e1| and p1(ef) = '?'
for any such subsegment e of e3. For player 2, pa(e2) = |e2| and pa(es) = p1(ef) for any subsegment e} of

es. For any other segments in the plane, p; = 0 and p, = 0.
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Consider a deviation d = (u, v) for player 1 with u € e; and v € e3. The amount of payment player 1 can

save with this edge is
L lesl g2 3leg|?
5 =\l +leflleg] + = = \/ldP? = == <d].

Hence, the deviation is always more costly than the possible cost saving for player 1. The proof of a strict
Nash for this type follows from the symmetric argument for player 2.

Figure 3: Network types with connections sets e; and e having two edges

Type 2.3 Inthis network type we have two Steiner points and the terminals of a player are located on different
sides of the line through e3 (see Figure 3a). The connection set for player i formed by edges that are only in
T now consist of two edges e;; and e;». The proof of the next lemma can be found in the appendix.

Lemma 7 Suppose we have Type 2.3 optimum Steiner network. Under the same assumptions as of Lemma
5 the only deviations player 1 will consider in this game are straight edges from a point « € e;; or a point
u € e1o to @ point v € es, player 2 only from u € eo; Or u € exx t0 v € eg3.

We construct an equilibrium payment as follows. For player 1, p1(e11) = |e11], p1(e12) = |e12] and p1(es) =
'2—3| with e} being any subsegment of e, as for the scheme of Type 2.2 above. For player 2, p2(e21) = |ea1],
p2(e22) = |ega] and p(e3) = pi(e3). Otherwise, p; = 0 and p = 0. For all possible deviations, the cost is
greater than the contribution to 7 a player could save. This follows with the proof of Type 2.2.

Type 2.4 The last network type considered is the one including two Steiner points where the terminals of
a player are located on the same side of the line through es (see Figure 3b). Here we get some additional
deviations that complicate the analysis. The proof of the next lemma is in the appendix.

Lemma 8 Given a network 7" of Type 2.4 and a payment function that assigns payments to player ¢ only in
her subtree 7. Then the only deviations player 1 considers are straight edges between u € eq; Or u € eq»
and v € ez as well as the direct connection between her terminals. For player 2 the symmetric claim holds.

To present the payment function, we scale our game such that es has length 1. We now treat e3 as an interval
[0, 1] and introduce a function f(z,y) € [0,1],0 < z < y < 1 that specifies the fraction of the cost player
1 pays in the interval [z, y] of es, i.e. the payment of player 1 on [z, y] is (y — x) f(z, y). Let, w.l.o.g., the
Steiner point of e1; be point 0 of es and the other Steiner point be point 1. We now have to ensure that for
every deviation from e1; or e15 to a point y, 1 — y € es the savings on the segments do not exceed the cost
of the deviation. This results in the following bounds:

len| +yf(0,y) < Vl|eu> +y2+lenly, (1)
lee| +yf(1—y,1) < e+ %+ lew2ly (2)

For player 2 the symmetric requirements lead to

IN

lea1| +y(1 — £(0,y)) Viea? + 42 + lealy, 3)
leaa| +y(1— f(1 — 9, 1)) < V]e2|? +y% + [ealy. (4)
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Furthermore we can derive bounds from the direct connections between the terminals. They will be denoted
as dq and d, for players 1 and 2, respectively. With the optimality of our network and |es| = 1 we have

|d1] + |d2| = |e1n] + |era] + |ear] + [e22| + 1. (%)
As we strive for a Nash payment scheme, d; and d5 are not cheaper than the contribution of the players:

|di] > leu] + leia] + £(0,1), (6)
ld2| = leaa| + |ea2| + 1= f(0,1). ()
The nature of these edges implies that their bounds only apply to the payment on the whole segment e, i.e.,

they do not restrict the partition of the payment inside the segment. Using a function h(z) = Va2 + 2 + 1—x
and solving for f we get

lear] + leaa| +1—|dof < £(0,1) < da] —[enn] — eral, ®)
1—h (ﬁ) < fOy) = h (@) ; ©)

Y Yy
1—h<@) < f-y1) < h(@> (10)

Y Yy

Now consider the behavior of h(z) in (9) and (10) when altering the constants |e11| and |e12]. We observe

that for the derivative of h(x)
W () 2:c+1—2\/172+a:+1<
xr) =
2vVx? +x+1
holds. The function is monotone decreasing in z, and increasing |e11], |e12], |e21], |e22] tightens lower and up-

per bounds. So we will only consider deviations from terminals to es, as this results in the strongest bounds
for the Nash payments.

0 (11)

In addition to these bounds we also require that payments can be feasibly split to subintervals. The payment
of player 1 on an interval [z, y] has to be the sum of the payments on the two subintervals [x, v] and [v, y] for
any v € [z, y]. Using this property, we can define f(x,y) by using the functions f(0,y) and f(1 — y, 1):

f(:c,y)—yf(o’y;:if(o’x), f(1—y,1_x)_yf(l_y’liizf(l_x’l), 0<z<y<l (12)

In particular, we will focus on symmetric payment functions, i.e., we will assume that f(0,y) = f(1 —y,1)
for any y € [0, 1]. Observe, that this also implies that f(z,y) = f(1 —y,1 — ), where 0 < z <y < 1.
For the rest of the proof we will strive to provide a feasible function f(0,y), which obviously must obey all
bounds (8)-(10). First, we pay some attention to the feasibility of the bounds.

Lemma 9 The bounds (8)-(10) do not imply a contradiction. In particular the interior bounds (9), (10) can
be fulfilled by £(0,y) = 1.

Proof. We already know that the upper bound function A (x) is monotone decreasing in z. We observe that
forany z, 2’ > 0

zlLrI;O(l—h(x)) = 1 = zlLrI;Oh(z), (13)
1—h(z) < L < hn@). (14)

This proves the second part of the lemma.
With (5) it is obvious that (8) is no contradiction. Assume that the bounds in (8) and (9) form a contradiction.
Then at least one of

1—nh(lear]) > |di] = |e11] — |e1z], (15)
lea1| + [e22| + 1 —|da| > h(len]) (16)
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must hold. However, with (5) we have

|€22|+\/|€21|2+1+|€21| < |d2|, a7
|€12|+\/|€11|2+1+|€11| < |d1| (18)

and it is easy to see that both bounds give a contradiction with the Triangle Inequality. Thus the bounds above
are feasible. The first part of the lemma follows with a similar argument for the bounds of (8) and (10). [

This result supports our proofs for the previous network Types 2.3 and 2.2. The function used is the lin-
ear function f(z,y) = % and satisfies the bounds (9) and (10), which are the only ones present. For network
Type 2.4 a solution is possible as well. In the easiest case if

1
|€21|+|€22|+1—|d2|§§§|d1|—|€11|—|€12| (19)

holds, f(0,y) = f(z,y) = % again is a solution. The remaining analysis for this case will then be the same
as for the previous network Type 2.3 and the same results follow. Hence, for the remainder of the proof we
will assume (19) is not valid. A solution for this more complicated situation is presented in the next lemma.

Lemma 10 There is a constant ¢ and one of the two functions

o =1 (%) o pow-1-n(%)

that allow us to construct a payment scheme forming a Nash equilibrium in network of Type 2.4.

Proof. In the first case we assume that: r = |ea1] + |eg2| + 1 — |d2| > 5. Then f(0, y) must behave like the
upper bounds and achieve a value of r for y = 1:

t V2 +ty+y?—t 1—1r2
0,y)=h{-)= t= .
f1(7y) (y) y ) % _1

In the second case we assume: r = |d1| — |e11| — |e12| < 3. Then f(0,y) must behave like the lower bounds
and achieves a value of r for y = 1:

t N 2 ¢ 1—172
fz(07y):1—h<—)=1— Sk e S )
Y Y 2r—1

To achieve a consistent definition of f(xz,y) we define f(1,1) = f(0,0) := limy—o f(0,y) = 1.

Then, with Lemma 9 and the monotonicity of h(z) we see that the functions f7, f> obey the bounds (8)-(10)
forany y € [0, 1]. Namely, Lemma 9 says that the upper bound functions of (9) and (10) map only to [0.5, 1],
and the lower bound functions map only to [0,0.5]. Since f; maps only to [0.5, 1], all lower bounds are
feasible. The upper bounds for f; are also feasible, because the constants ¢ involved in f; are smaller than
appropriate constants in the upper bounds and we use the monotonicity of A (-). Similarly for fo. Functions
f1 and f5 allow to construct a Nash equilibrium payment function. If the payment of player 1 is given by f;
(f2), then the payment of player 2 is given by a function f5 (f1) with the same constant r as for player 1. [

This concludes the proof of Theorem 2. O

The proof of the theorem relies on the fact that an edge es can be purchased such that the payments of
players on the intervals of es follow a continuous differentiable function. This seems a rather strong and very
unrealistic property. We present two possible alternatives to avoid this. First a discretization of the payment
scheme on e3 is considered such that subsegments of the network are assigned to be purchased completely
by single players. The adjustment slightly increases the incentives to deviate. Another way to overcome this
is to let players play the game according to best-response strategies. This will lead into a strict low-cost Nash

equilibrium. A divisible payment scheme p = (p1,...,px) for a geometric connection game is a payment
scheme such that there exists a partition P of the plane into segments such that p;(e) = 0 or p;(e) = |e| for
alli=1,...,kandall e € P. For proofs of the next two theorems see the appendix.
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Theorem 3 Given any e > 0 and any geometric connection game with 2 players and 2 terminals per player,
there exists a divisible payment scheme, which is a (1 4 ¢)-approximate Nash equilibrium as cheap as the
optimum solution.

Theorem 4 In any geometric connection game with 2 players and 2 terminals per player, there exists a Nash
equilibrium generated by best-response dynamics, which is a v/2-approximation to the optimum solution.

Unfortunately, the nice results for small games cannot be generalized to games with more players. For games
with 3 or more players there exists a constant lower bound on approximate Nash equilibria, hence we cannot
achieve deviation factors arbitrarily close to 1 when purchasing an optimum solution network.

Theorem 5 For any k£ > 3, e > 0 there exists a game with & players and 2 terminals per player, for which

every optimum solution is at least a (;‘,’j—j — ¢)-approximate Nash equilibrium.

Proof. The proof is similar to the one for the general case given in [2]. In the class of games delivering the
bound there is a circle of terminals with unit distance, and the optimal solution is a minimum spanning tree of
cost 2k — 1. In the geometric environment edges crossing the interior of the circle are not of interest, because
their cost is always larger than 1. Actually, their cost exceeds 2 once the number of players is more than 4,
which then is more than the asymptotical payment of each player in the best payment scheme. So no player
will consider them as a reasonable alternative. Consider the game in Figure 4, in which every edge of 7* has

b)
Figure 4: Lower bound for approximate Nash purchasing the optimal network.

cost 1. T is depicted with an additional edge of cost 1, which will be the only deviation edge considered.
The situation for a player can be simplified to the view of Figure 4b. Note that for players 1 and &, z = 0
and y = 0, respectively. For every player there are at least two ways to deviate, either she just contributes
to one half of the cycle by paying part « of this half, or she completes the other half of the cycle by paying
y + z + 1, where y, z are the parts she pays on the depicted portions of the cycle. Thus her deviation factor
will be at least

{x+y+z x+y+z}
max , .

T y+z+1
Minimizing this expression with x = y + z + 1 there is at least one player, who is assigned to pay for
z+y+z=2zr—1> 21 Solving for z and combining with z = y + z + 1 results in: ZEE2 —
2”” L > g’]z 7. Now move the terminals s; and ¢ a little further to the outside keeplng the Iengths of the
edges (s1,s2) and (tx—1,tx) to 1, but increasing the length of (s1, ¢x) to length (1 + €). T will then be the

unique optimal solution, and the factor becomes at least (M — e). O

3k—1

Observe that this lower bound proof applies exclusively to games with & > 3 players. For 2 players the
indicated 7™ would not be the optimum solution, as it would involve inner angles of less than 120 °.
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A Appendix

A.1 Proofsof threelemmas

Proof. (of Lemma 6) This is straightforward because every other deviation allows the corresponding player
to save on (parts of) only one connection set, but these parts provide lower bounds for the deviations. |

Proof. (of Lemma 7) We apply the corresponding arguments from the previous network types to exclude
nearly all other deviations. The final argument is provided by noting that an edge between v € e;; and
v € e19 Crosses ez and therefore decomposes to two edges of the specified form. The statement for player 2
follows by symmetry. O

Proof. (of Lemma 8) The previous arguments help to exclude all other deviations. Unlike Type 2.3, a direct
connection between e;; and e;o does not cross es and the case does not decompose. If, however, player 1
picks such a deviation, by the Triangle Inequality she will be most profitable to pick the direct connection
between her terminals. a

A.2 Discretization

Proof of Theorem 3. In this situation we assign certain parts of the network to be paid exclusively by one
player. This can be achieved with a technical adjustment: We split the network in small pieces, which are
assigned to be bought by one of the players. In this way we can generate divisible payment schemes with a
low incentive to deviate depending on the grain of the splitting intervals. Let us again consider the different
types of games leaving aside Type 2.1, where a divisible payment scheme was already constructed.

Type 2.2 We assume the segment e3 is discretized into 'et—?" segments es ;,7 = 1,..., 'et—?" of length ¢. Let
the enumeration start at the Steiner vertex—see Fig. 2b. For the ease of presentation we define the connection
point between es ; and es ;11 to be the right end of es ; and the left end of e3 ;1. One of the two players
must buy the piece e3 ; of length ¢, whose left end is the Steiner point. This player then buys two consecutive
straight lines and violates the conditions from Lemma 4. She will be able to reduce her payments by connect-
ing directly between the endpoints.

Consider the following payment function: The segments es ; are assigned alternating such that every two
neighboring segments are paid by different players. Player 1 buys the first and the other "odd’ segments. d
is a deviation from u € e; to v € es. Note that once v is in a segment es ; bought by player 2, there is a
deviation to the left end of e3 ; that is cheaper and allows player 1 the same savings. She will only deviate to
points located on segments es_;, which she buys. Furthermore, we show below that player 1 can achieve the
best cost reduction by deviating to e ; (see Figure 5).

Lemma 11 For every deviation d from u € e; to a point in segment e ;, j # 1 there is a deviation d’ from
u to a point in e 1, which yields a higher cost reduction for player 1.

Proof. Assume d = (u,v) with u € e1,v € e3; # es1 and ef, ed being the corresponding segments in
the cycle. es ; is paid by player 1. Let r be the number of full segments player 1 buys on eg. Let e} be the
segment between the left end of e3 ; and v. Thus p1(e$) = rt + ¢4 and |e%| = 2rt + |e4]. v’ is to be the point
on eg ; that has distance |e4]| to the left end of e3; and d’ = (u,v’) the deviation to this point. The lemma
states that
pi(ef) +pales) _ paled) +pafes)
|d'[ + pi(es) — les| — |d] + pi(es) — 7t — |eg]

Note that we consider a fixed point of ¢;, however, two different points on e3. We have to consider that the
deviation to v is more costly than d’, however, also allows player 1 to decrease the contribution to the cost of
e3 by an additional amount of r¢. It follows that

|d] > |d'| +rt
As all terms are nonnegative, the inequality allows squaring on both sides:

|d|> > |d'|? + 2rt|d'| + (rt)?.
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Figure 5: d’ is more profitable than d

Then with
ld| = \/Ieill2 + (21t + [e5])? + (2rt + lej]) e
] = y/ledl2 + (42 + ledlles)
this reduces to
3 2 / d / d /
5 (rt)” + 2les| +[ef] = les| + lei] = |d',
which holds by the Triangle Inequality. O

Having established this result, we continue by upper bounding the cost reduction player 1 can achieve. Player
1 will always deviate from her terminal to the right end of e3 ;. The relative reduction will be maximized, if
she has no additional payments than |e{| + |es.1|- Then with

T+t

Va2 + 2 +at

€1(xz,t) =

the deviation factor becomes
1+ e(t) < erflel ).

Observe, that lim; g e1(|e1|, ) = 1. Finally, it is obvious that player 2 pays at most half of es for any
deviation from e, to e3. She therefore has a strict equilibrium. It is only the player buying es ; and the odd
segments who can improve her payments. It is possible to pick the player in the beginning such that

1+ e(t) = min{er(|e1], t), e1(|e2], 1)}

Type 2.3 With the discretization of e3 described for Type 2.2, we lose a factor of (1 + ¢(¢)) for this type, too.
Now both players might deviate from both sides of e, however, the most profitable deviations again are the
ones to the segments e3 ; and e3 |, | /¢, Which connect to the Steiner points. To see this, consider two deviation
edges d, = (uq,vq) and dp = (up,vp) With u, € e11, up € e12, vq,vp € es. If the cycles introduced by
d, and dj, intersect on es, changing the endpoints, i.e., edges d = (uq,v) and d’ = (up,v,) lead to a
superior, non-intersecting deviation. However, once the cycles do not intersect on e3, we can decompose the
situation and consider each side with e;; and e; separately (see Figure 6). The rest of the proof then follows
analogously to the previous type. Note that our bound for ¢(¢) can be adjusted to hold

1 + G(t) S max{min{61(|611|,t), 61(|€21|,t)}, min{€1(|€12|,t), 61(|€22|,t)}}

if we assign the e3 ; alternating and the segments es 1, e3 |,/ /¢ to the player, which yields the smaller factor,
respectively. Furthermore the proof of this type includes all previously considered network types, especially
all types for which any of |e11, |e12], |ea1], |e22| = 0. Note that in these networks we might not have Steiner
points and the inner angle between the segments could be greater than 120 °. Greater angles, however, make
it less favorable to deviate from a payment scheme, which was already observed in the proof of Theorem 2
(Angle Assumption).
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Figure 6: d and d’ are better than d,, and d;

Type 2.4 For this case we will use a slightly different discretization. We assume that es is split into seg-
ments e ; of length ¢. Now we do not assign the segments to a single player. We rather split each e3 ; into
two subsegments (possibly with different lengths) and assign each player to purchase one subsegment. Of
course, one can further refine this discretization with a smaller ¢ to obey the previously used assumption that
each of the equally sized segments e3 ; has to be paid completely by one player. This, however, would lead
to negligibly perturbed results but involve much more technical details, therefore we refrained from doing so.
Let the segments e3 ; be defined as for the previous types. We start our enumeration at an arbitrary Steiner
point and split each segment es ; into two subsegments. The subsegment connected to the left (right) end of
es,; is called the left (right) share of e3 ;. Assume that player 1 buys every left share and player 2 every right
share. The length of the shares is possibly different in each e ; and specified by the value of the function
£(0, z), which was given in the proof of Theorem 2 for Nash equilibrium payments. With a similar calcula-
tion we can verify the same statement as in Lemma 11, however, now the corresponding point on segment
es,1 might be in the part paid by player 2. Thus, the bound might be slightly lower, because player 1 is only
willing to deviate to the end of the part of the first segment paid by him. We can also exclude intersecting
devitaions shown in Figure 6. With the worst-case assumption that each player pays only for one segment on
es, we get the following pessimistic upper bound for (t):

1+ €(t) < max{ei(a,tb) | a € {lenn],|e12],]ea1],|eaz|}, b€ {1, f(0,%),1— f(0,)}} -1

This proves Theorem 3. O

A.3 Best response dynamics

Proof of Theorem 4. The theorem will be proven using best-response dynamics. The players repeatedly
apply a local improvement step and switch to the cheapest possibility to connect their terminals. To prove
that these dynamics arrive at a Nash equilibrium, we need the following lemma.

Lemma 12 Suppose player 1 purchases the direct connection d; between her terminals and player 2 pur-
chases straight segments s;, ¢ € N that meet with d; with inner angles of more than 90 °. Player 1 will not be
able to decrease her payments below |d; | using any portion of any segment s;.

Proof. Directly from the Triangle Inequality (see Figure 7). Divide the plane into three regions based on d;
(see Figure 7). The dashed lines are orthogonal to segment d;. Assume for the moment that the lemma holds
for segments that hit the middle region A,. If a straight segment s of player 2 meets d; at a terminal, it must
never cross to the As, because otherwise the inner angle would be less than 90 °. As we assume the lemma
holds for As, it suffices to consider only deviations that start at a point . € d;. However, from « player 1
needs less cost to reach her terminal than any other point on s. Hence, she will never be motivated to use
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Figure 7: d; stays the cheapest connection.

some portion of s.

Turning to the middle region A, consider a segment s that meets at an inner point of d;. It is obvious that
s must be orthogonal to d; to provide an inner angle of 90 °. Suppose at first that there is only one seg-
ment s, and that player 1 uses some portion of it in a deviation. Then she has to pay the connection from
two points on d; to two points on s. This is obviously more costly than the part on d; she can save. As-
sume now there are more segments s;, @ € N connecting to d;. Again the cheapest connections between any
s; and s; as well as the cheapest connections between the terminals and any segment s, are parallel to d;.
Therefore, d; provides the cheapest connection between the terminals of player 1 and the lemma is proven. (J

In the first step player 1 chooses to pay for her direct connection d;. For the second step let us at first
consider the case that player 2 connects to d; and uses some portion of it. She will connect in the cheapest
way, obeying the properties described in Lemma 3. Her connections will be straight segments connecting to
dy with at least 90 ° inner angles when connecting to a terminal and exactly 90 ° angles when connecting to
an interior point of d;. Thus, Lemma 12 can be used to argue that a Nash equilibrium is achieved.
Otherwise, it could happen that player 2 picks her direct connection d5 as well. Then player 1 could possibly
improve her payments using the payments of player 2. If she can, her new connections will allow to argue
that Lemma 12 holds for player 2 and an equilibrium is achieved. Otherwise we obviously have a Nash equi-
librium, because no player can decrease her payments anymore.

Lemma 13 The Nash equilibrium network Tz designed with the local improvement steps is at most a v/2
approximation of the optimal centralized network 7.

Proof. Let the equilibrium network be denoted by T'z. The lemma states that for the ratio

. ||:7F5|| <3 (20)

holds. As we have seen before, each T'r always contains at least one direct connection between termi-
nals of a player. For the rest of the proof assume that the connection is present for player 2. Observe that
|Tg| < |di| + |d2]| holds, i.e., the cost of the direct deviations is always an upper bound for the cost of the
Nash equilibrium. We will again consider all possible geometric connection games for 2 players and 2 termi-
nals per player. If T* consists of two components or two edges, which are exactly d; and ds, the method finds
an exact Nash equilibrium purchasing it. So suppose 7" is a connected tree, which has an edge ez present
in both subtrees 7' and T2. We will consider the games as in the proof of Theorem 2 according to their
optimum solution network as shown in Figures 2 and 3. In the following transformations of 7* and Ty are
described that construct different networks. Each transformation will increase the bound on r. In the figures
thin lines indicate 7' and thick lines 7.
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Type 5.1 Consider a game, in which the optimal network is of the type depicted in Figure 2a. It has no
Steiner point, thus the angles between the segments are possibly greater than 120 °. T’z contains ds. In the
network in Figure 2a player 1 uses e; in Tg to connect her terminal. e; is also part of 7. (Observe, that
if e1 is not part of T, then this transformation decreases |T'z| by less than it decreases |7*|. Thus, ratio r
again can only increase. ) Thus, the ratio can be increased by dropping e; from both 7* and T'g. The result of
this is depicted in Figure 8. Remember Figure 8 does not depict the original game or network but a reduced

Figure 8. T* and T’ after removing e;.

construction to bound the ratio in a game with an optimal network of Figure 2a. Notice that with the Cosine
Theorem

|da| = V/]ea]? + |es|? — 2[ea|es] cos a,
where o € [%w, ﬂ is the inner angle between e» and e3. Let d’ be a segment orthogonal to d-» and connecting
terminal 1 to d», see Figure 8. Using the Sine Theorem, the length of the small segment d’ is given as
le2||es] sin a

|d'| = ,
V0eal? + |es]? — 2lea]|es| cos a

Thus, the ratio is bounded by
|da| + |d'|
= lea| + |es|”
How large can this bound be ? We assume the cost of 7 to be fixed to |7*| = |e2| + |es| = 1 and find a
game, which distributes this cost to e and e3 as badly as possible. Let x = |ez| and 1 — 2 = |es], then

(sina—2cosa — 2)z(l —x) + 1

Ry serrers ey Es

Maximizing this expression with the derivative for x results in

(sina —2cosa — 2)(2z(1 4+ cosa)(x — 1) + 1)
((sina — 2cosa — 2)z(1 — x) + 1)(1 + cos )

(1-2z)=2z—-1.

The square root has a real value only for x = % which is a maximum point. For any given value of « the
ratio is maximized by setting |e2| = |es|. Then

sin « V2 —2cosa
r(0.5,a) < + .
2v/2 — 2 cos 2

In the interesting range for a € [3m, 7] the derivative of (0.5, ) has only one extreme point at @ =
arccos (—2) ~ 2.2143, which corresponds to an angle of 126.87 °. The plot in Figure 9 shows that it is a

maximum point. In any case the value of  is less than 1.12 < /2. These steps to upper bound the ratio can
be applied to the majority of games. The crucial point in the application is that both direct deviations d1, do
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Figure 9: Behavior of theratio (0.5, «) for angles between 120 ° and 180 °.

must share a point with edge es. Then ds, es and a third edge, which is only in the subtree of player 2, will
always form at least one such triangle depicted in Figure 8. Then some parts of the payments of player 1 can
be upper bounded by the cost of the edges, which are only present in her subtree. This will always enable to
transform the networks to arrive at a constellation depicted in Figure 8 and to upper bound r by 1.12.

To illustrate this fact and the possible transformations two additional types of games are analyzed. Notice
that both types have an optimal solution 7* such that both d; and d5 share a point with es.

Type 5.2 In this type games have optimal networks 7* including exactly one Steiner point and three edges
(see Figure 2b). T'r consists of dy and the segment connecting the terminal of player 1. This segment can be
upper bounded by e; and the shortest connection between d, and the Steiner point. Then using this upper
bound for T'r the ratio can be further increased by dropping e;. This leads directly to a network construction
of Figure 8, thus in this case ratio r again is bounded by 1.12.

Type 5.3 Consider a game, which has an optimal solution of the type depicted in Figure 3a. It has two Steiner
points and the terminals of the players are located on different sides of the line through e3. Then player 1
connects directly to d> from her terminals. Suppose she buys e;; and e;» instead and connects to do from
the Steiner points. This will be more costly than the connections she actually chooses in T'g, hence one can
upper bound T with this assumption. However, now in the cost of 7* and in the upper bound of |T'z| the
costs of the edges e;;1 and e are present. Hence, we can increase the upper bound by removing these costs
from both expressions. This is equivalent to adjusting the network as depicted in Figure 10. This new network
construction, however, can easily be identified to consist of two networks that were already considered in the
previous types. Thus, the ratio r again is bounded by 1.12.

1

=d

1

Figure 10: Transformations increasing the upper bound for 7.

Type 5.4 Finally, consider the type of games, in which at least one of the deviations does n