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Abstract. The uncapacitated facility location problem (UFLP) is a
problem that has been studied intensively in operational research. Re-
cently a variety of new deterministic and heuristic approximation algo-
rithms have evolved. In this paper, we consider five of these approaches
- the JMS- and the MYZ-approximation algorithms, a version of Local
Search, a Tabu Search algorithm as well as a version of the Volume al-
gorithm with randomized rounding. We compare solution quality and
execution times on different standard benchmark instances. With these
instances and additional material a web page was set up [26], where the
material used in this study is accessible.

1 Introduction

The problem of locating facilities and connecting clients at minimum cost has
been studied widely in Operations Research. In this paper we focus on the un-
capacitated facility location problem (UFLP). We are given n possible facility
locations and m cities. Let F' denote the set of facilities and C' the set of cities.
Furthermore there are non-negative opening costs f; for each facility ¢ € F' and
connection costs c;; for each connection between a facility ¢ and a city j. The
problem is to open a collection of facilities and connect each city to exactly one
facility at minimum cost.

Instead of solving this problem to optimality, we will focus on finding approx-
imate solutions. In the following we will present five methods, which are origi-
nating in different areas of optimization research. We will compare two approx-
imation algorithms, two heuristics based on local search and one on LP-based
approximation and rounding, which were recently developed and found to work
good in practice.

1.1 Approximation Algorithms

Recently some new approximation algorithms have evolved for the metric version
of the UFLP in which the connection cost function c¢ satisfies the triangular
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inequality. A couple of different techniques were used in these algorithms like
LP-rounding ([11], [24]), greedy augmentation ([10]) or primal-dual methods
([20], [10]). In terms of computational hardness Guha and Khuller [13] showed
that it is impossible to achieve an approximation guarantee of 1.463 unless NP C
DTIM E[n©(og18™)]. For our comparison we chose two of the newest and most
promising algorithms.

JMS-Algorithm The JMS-Algorithm uses a greedy method to improve the
solution. The notion of time that is involved was introduced in an earlier 3-
approximation algorithm by Jain and Vazirani [20]. Later on Mahdian et al.
[21] translated the primal-dual scheme into a greedy 1.861-approximation algo-
rithm. In the third paper Jain, Mahdian and Saberi [19] presented the JMS-
Algorithm (JMS), which improved the approximation bound to 1.61. However,
it had a slightly worse complexity of O(n'3) instead of O(n'? log n') with
n' = max{n, m}. The following sketch of JMS is taken from [22]:

1. At first all cities are unconnected, all facilities unopened, and the budget
of every city j, denoted by Bj, is initialized to 0. At every moment, each
city j offers some money from its budget to each unopened facility i. The
amount of this offer is equal to max(B; — ¢;;,0) if j is unconnected, and
maz(cyj — ¢ij,0) if it is connected to some other facility 4'.

2. While there is an unconnected city, increase the budget of each unconnected
city at the same rate, until one of the following events occurs:

(a) For some unopened facility ¢, the total offer that it receives from cities
is equal to the cost of opening i. In this case, we open facility 7, and for
every city j (connected or unconnected) which has a non-zero offer to 1,
we connect j to i.

(b) For some unconnected city j, and some facility 4 that is already open, the
budget of j is equal to the connection cost ¢;;. In this case, we connect
j to 1.

One important property of the solution of this algorithm is that it cannot
be improved by simply opening an unopened facility. This is the main advan-
tage over the previous 1.861-algorithm in [21]. In [19] experiments revealed an
appealing behavior of JMS in practice.

MYZ Algorithm The MYZ algorithm could further improve the approxima-
tion factor of JMS. Mahdian, Ye and Zhang [22] applied scaling and greedy
augmentation to the algorithm. For the resulting MYZ Algorithm (MYZ) the
authors could prove an approximation factor of 1.52 for the metric UFLP, which
is at present the best known factor for this problem for any algorithm. MY?Z is
outlined below. In step 4 of the algorithm C' is the total connection cost of the
present solution and C' the connection cost after opening a facility u.

1. Scale up all opening costs by a factor of § = 1.504
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Solve the scaled instance with JMS

Scale down all opening costs by the same factor §

while there is a unopened facility u, for which the ratio (C — C' — f,)/ fu is
maximized and positive, open facility u and update solution

W

1.2 Heuristic and Randomized Algorithms

In terms of meta-heuristics there has not been such an intense research activity.
A simulated annealing algorithm [3] was developed, which produces good results
to the expense of high computation costs. Tabu search algorithms have been
very successful in solving the UFLP (see [2], [23], [25]). A very elaborate genetic
algorithm has been proposed by Kratica et al. over a series of papers ([16], [17],
[18]). Their final version involves clever implementation techniques and finds
optimal solutions for all the examined benchmarks.

Tabu Search In [23] Van Hentenryck and Michel proposed a simple Tabu
Search algorithm that works very fast and outperforms the genetic algorithm in
[18] in terms of solution quality, robustness and execution time. Therefore we
used this algorithm for the experiments. It uses a slightly different representation
of the problem. For a solution of the UFLP it is sufficient to know the set S C F’
of opened facilities. Cities are connected to the cheapest opened facility, i.e. city
J is connected to i € S with ¢;; = mingcg(ci;). A neighborhood move from S to
S' is defined as flipping the status of a facility from opened to closed (S’ = S\7)
or vice versa (S’ = SU14). When the status of a facility was flipped, flipping back
this facility becomes prohibited (tabu-active) for a number of iterations. The
number of iterations is adjusted using a standard scheme (see [23] for details).
The high level algorithm can be stated as follows:

S « an arbitrary feasible solution
Set cost(S*) = oo
do
bestgain = maximum cost savings over all possible non-tabu flips
if (bestgain > 0)
Apply random flip with best gain, update tabu lists and list length
else close random facility
Update S - connections of cities and datastructures
if (cost(S) < cost(S*)) do S* « S
. while change of S* in the last 500 iterations
. return S*

RPN UTE W=
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For every city j the algorithm uses three pieces of information: The number
of the opened facility with the cheapest connection to j, the cost of this connec-
tion and the cost of the second cheapest connection to an opened facility. With
this information the gains of opening and closing a facility can be updated incre-
mentally in step 8. Thereby a direct evaluation of the objective function can be
avoided. The algorithm uses priority queues to determine the second cheapest
connections for each city. Due to these techniques the algorithm has an execution
time of O(m log n) in each iteration.
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Local Search The Local Search community has only paid limited attention
to the UFLP so far. Apart from the Tabu Search algorithms there have been
a few simple local search procedures proposed in [15], [10]. In this paper we
use the simple version of Arya et al [4], for which the authors could prove an
approximation factor of 3 on metric instances. The algorithm works with the
set S of opened facilities as a solution. An operation op is defined as opening
or closing a facility or exchanging the status of an opened and a closed facility.
To improve the execution time of the algorithm we incorporated the use of
incremental datastructures from the Tabu search algorithm and preferences for
the simple moves as follows. We generally prefer applying the simple flips of
opening and closing a facility (denoted as ops). As in the Tabu Search we apply
one random flip of the flips resulting in best gain of the cost function. When
these flips do not satisfy the acceptance condition, we pick the first exchange
move found that would give enough improvement. If there is no such move left,
the algorithm stops. This modified version can be stated as follows:

. S « an arbitrary feasible solution
exitloop + false
while exitloop = false
while there is an ops such that cost(ops(S)) < (1 — p(nf—m)) cost(S)
find a random ops* of the ops with best gain
do S + ops*(9)
if there is an op such that cost(op(S)) < (1 — p(n‘T)) cost(S)
do S + op(S)
else exitloop < true
return S

COX® NSO W=
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In our experiments the parameters were set to € = 0.1 and p(n,m) = n+ m.
Arya et al. suggested that the algorithm should be combined with the standard
scaling techniques [10] to improve the approximation factor to 2.414. Interest-
ingly this version performs inferior in practice. Therefore the version without
scaling (denoted as LOCAL) was used for the comparison with the other algo-
rithms. More on the unscaled and scaled versions of Local Search can be found
in section 2.5 and [14].

Volume Algorithm For some of the test instances we obtained a lower bound
using a version of the Volume algorithm, which was developed by Barahona in
[6]. The Volume algorithm is an iterated subgradient optimization procedure,
which is able to provide a primal solution and a lower bound on the optimal so-
lution cost. To improve solution quality and speed up the computation Barahona
and Chudak [7] used the rounding heuristic (RRWC) presented in [11] to find
good upper bounds on the optimal dual solution cost and thereby reduced the
iterations of the Volume algorithm. However, this approach has generally very
high execution times in comparison to the other methods presented here. Instead
we used a faster version of this algorithm which involves only a basic randomized
rounding procedure and slightly different parameter settings. It will be denoted
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by V&RR and is available on the web page of the COIN-OR project by IBM [5].
Regarding solution quality and execution time this algorithm is generally inferior
to the other algorithms. The results should only be seen as benchmark values of
available optimization code. We will not go into detail describing the method,
the code or the parameter settings here. The interested reader is referred to [5],
[6], [7] for the specific details of the algorithm and the implementation.

2 Experiments

We tested all given algorithms on several sets of benchmark instances. First we
studied the Bilde-Krarup benchmarks, which were proposed in [9]. These are
non-metric small scale instances with n x m = 30 x 80 - 50 x 100. We chose
this set because it is randomly generated, non-metric and involves the notion
of increasing opening costs also present in the large scale k-median instances.
Next we focused on small scale benchmarks proposed by Galvao and Raggi in
[12]. These are metric instances with n = m = 50 - 200, which we chose because
they make use of the shortest path metric and a Normal distribution to generate
costs. Then we examined the performance on the cap instances from the ORLIB
[8] and the M* instances, which were proposed in [18]. These are non-metric
small, medium and large scale instances with n x m = 16 x 50 - 2000 x 2000.
They have previously been used to examine the performance of many heuristic
algorithms. Finally we studied metric large scale instances with n = m = 1000
- 3000, which were proposed in [1] and used as UFLP benchmarks for testing
the performance of the Volume algorithm in [7]. So our collection of benchmark
instances covers a variety of different properties: small, medium and large size;
Euklidian metric, shortest path metric and non-metric costs; randomly gener-
ated costs from uniform distributions and Normal distributions.

On all instances we averaged over the performance of 20 runs for each algo-
rithm. The experiments were done on a 866Mhz Intel Pentium III running Linux.
For most problems we used CPLEX to solve the problems to optimality. The
CPLEX-runs were done on a 333Mhz Sun Enterprise 10000 with UltraSPARC
processors running UNIX. The execution times are about a factor of 2.5 times
higher than the times for the algorithms. Here we only report average results for
the different benchmark types. For more detailed results of our experiments and
values for the single instances the reader is referred to [14].

With all benchmark instances, implementations of all algorithms and benchmark
generators a web page was set up. All material used in this study can be accessed
online at the UflLib [26].

2.1 Bilde-Krarup Instances

The Bilde-Krarup instances are small scale instances of 22 different types. The
costs for the different types are calculated with the parameters given in Table 1.
As the exact instances are not known, we generated 10 test instances for each
problem type. In Table 3 we report the results of the runs for each algorithm.
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Table 1. Parameters for the Bilde-Krarup problem classes

Type | Size (n x m) fi Cij

B 50 x 100 | Discrete Uniform (1000, 10000) | Discrete Uniform (0,1000)
C 50 x 100 | Discrete Uniform (1000, 2000) | Discrete Uniform (0,1000)
Dqg* 30 x 80 Identical, 1000*q Discrete Uniform (0,1000)
Eq* 50 x 100 Identical, 1000*q Discrete Uniform (0,1000)
* q=1,...,10

In columns ’Opt’ we report the percentage of runs that ended with an optimal
solution. In columns "Error’ we report the average error of the final solution in
percentage of the optimal solution, in columns "Time’ the average execution time
in seconds. In column ’CPX’ we denoted the average execution time of CPLEX
to solve the instances.

The deterministic algorithms perform quite good on these instances. The average
error is 2.607% at maximum although the problems are not of metric nature.
MYZ performs significantly better than JMS in terms of solution quality. It can
solve additional 37 problems to optimality and has a lower average error. The
execution time is slightly higher because it uses JMS as a subroutine.

For the heuristic algorithms TABU provides the best results. It was able to solve
problems of all classes to optimality in a high number of runs. Unfortunately
it also is much slower than LOCAL, MYZ and JMS. LOCAL also performs
competitive on most of these problem classes. Compared to TABU it is able to
solve problems of all classes to optimality, but the overall number of instances
solved is very much lower. In terms of the execution time it is much faster though.
V&RR is outperformed by any of the other algorithms. It reveals the highest
execution time and the worst solution quality.

2.2 Galvao-Raggi Instances

Galvio and Raggi proposed unique benchmarks for the UFLP. A graph is given
with an arc density d, which is defined as § = connections present /(m * n).
Each present connection has a cost sampled from a uniform distribution in the
range [1,n] (except for n = 150, where the range is [1,500]). The connection
costs between a facility 4 and a city j are determined by the shortest path
from ¢ to j in the given graph. The opening costs f; are assumed to come from
a Normal distribution. Originally Galvdo and Raggi proposed problems with
n = m = 10, 20, 30, 50, 70, 100, 150 and 200. We will consider the 5 largest types.
The density values and the parameters for the Normal distribution are listed in
Table 2. The exact instances for these benchmarks are not known. As for the
Bilde-Krarup benchmarks we generated 10 instances for each class. The results
of our experiments are reported in Table 3. Columns ’Opt’, ’Error’ and *Time’
are defined as before. We also included the average execution times of CPLEX
in column *CPX’.

JMS performs slightly better than MYZ on these metric instances. Of the heuris-
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Table 2. Parameters for the Galvdo-Raggi problem classes

Size ¢ | Parameters for f;

mean stand. dev.
50 [0.061| 25.1 14.1
70 |0.043 | 42.3 20.7
100 | 0.025 | 51.7 28.9
150 | 0.018 | 186.1 101.5
200 | 0.015 | 149.5 94.4

tic and randomized algorithms V&RR performs very good - even better than
TABU and LOCAL - to the expense of high execution times. In fact, the times
are prohibitively high as the algorithm needs much more time than CPLEX
to solve the instances to optimality. LOCAL performs a little bit better than
TABU, because both the execution times and the average errors are smaller.
However, it is not very reliable to find optimal solutions.

2.3 ORLIB and M* Instances

The cap problems from the ORLIB are non-metric medium sized instances. The
M* instances were designed to represent classes of real UFLPs. They are very
challenging for mathematical programming methods because they have a large
number of suboptimal solutions. In Table 4 we report the results for the different
algorithms. In columns ’Opt’ we again denote the percentage of runs that ended
with an optimal solution. In Columns ’Error’ we report the average error of the
final solution in percentage of the optimal solution. For the larger benchmarks
the optimal solutions are not known. Instead we used the best solutions found
as a reference, which for all benchmarks were encountered by TABU. All values
that do not relate to an optimal solution are denoted in brackets. In columns
"Time’ we report average execution times in seconds. Furthermore in column
"CPX’ we report the average execution time of CPLEX.

Again the deterministic algorithms perform very well. The maximum error for
both methods was produced on the capa benchmark. Of the deterministic al-
gorithms MYZ did perform better than JMS. It was able to solve additional
6 problems to optimality. JMS could only achieve a better performance in 4
of the 37 benchmarks. In terms of execution time MYZ becomes slightly less
competitive on larger problems because the additional calculations of the greedy
augmentation procedure need more time.

With a maximum average error of 0.289% TABU again is the algorithm with
the best performance on these benchmarks. It is able to solve all problems to
optimality - in most cases with a high frequency. Hence, our results are consis-
tent with the values reported in [23]. However, the execution times of our code
are significantly faster than the times needed by the implementation of Michel
and Van Hentenryck on a similar computer (a factor of 2 and more). Compared
to TABU the solution quality of LOCAL is not very competitive. It fails to
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find optimal solutions on 9 problems, while 7 of them are cap-benchmarks. The
execution times, however, are very competitive, as it performs in most cases sig-
nificantly better than TABU.

V&RR performs generally worse than the other algorithms. On some of the cap
instances it achieves good solution quality. On the M* instances, however, it per-
forms worse than all other algorithms in terms of solution quality and execution
time. The execution times for the small problems exceed the times of CPLEX
again. The practical use of this algorithm for small problems should therefore
be avoided. For problems with m,n > 100, however, execution times of CPLEX
become significantly higher.

2.4 k-median Instances

In this section we take a look at large scale instances for the UFLP. The bench-
marks considered here were originally introduced for the k-median problem in
[1]. In [7] they were used as test instances for the UFLP. To construct an in-
stance, we pick n points independent uniformly at random in the unit square.
Each point is simultaneously city and facility. The connection costs are the Eu-
klidian distances in the plane. All facility opening costs are identical. To prevent
numerical problems and preserve the metric properties, we rounded up all data
to 4 significant digits and then made all the data entries integer. For each set
of points, we generated 3 instances. We set all opening costs to 1/n/10, 1/n/100
and 4/n/1000. Each opening cost defines a different instance with different prop-
erties. In [1] the authors showed that, when n is large, any enumerative method
based on the lower bound of the relaxed LP would need to explore an exponen-
tial number of solutions. They also showed that the solution of the relaxed LP
is, asymptotically in the number of points, about 0.998% of the optimum.

In Table 4 we report the results of our experiments for n = 1000, 2000, 3000. In
column "LB’ we provide the lower bound on each problem calculated by V&RR.
For each algorithm we report the average error and the average execution time.
All errors were calculated using the lower bound in "LB’.

On these metric benchmarks JMS again performs slightly better than MYZ.
TABU is the best algorithm in terms of solution quality. LOCAL manages to
find better solutions than the deterministic algorithms, but it is much slower
than TABU, JMS and MYZ. The performance of V&RR is not competitive in
comparison to the other algorithms. It is outperformed in terms of solution qual-
ity and execution time by all algorithms on nearly all benchmarks. Only on the
larger benchmarks with small opening costs the execution times of LOCAL are
equally slow. One reason for this is the use of priority queues. For the problems
with smaller opening cost optimal solutions open a high number of facilities.
Here the operations on the queues are getting expensive. When implemented
without queues the adjustment of the datastructures when opening a facility
(which is the operation used more often here) could be executed in O(m). The
closing operation would need O(nm), which leads to inferior execution times on
average. However, in this case the closing operation is most often used in the
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exchange step, which is called after nearly all facilities have been opened. Then
most of the cities are connected to the facility located at the same site, and clos-
ing a facility affects only one city. So finding the new closest and second closest
facilities can be done in O(m). Thus, it is not surprising that an implementation
without queues was able to improve the execution times on the large problems
with n = m > 1000 by factors of up to 3. Nevertheless we chose to implement
priority queues in our version of LOCAL as their theoretical advantage leads to
shorter execution times on average.

2.5 Scaling and Local Search

In [10] a scaling technique was proposed to improve the approximation bound
of local search for the metric UFLP. In the beginning all costs are scaled up
by a factor of V2. Then the search is executed on the scaled instance. Of all
candidates found the algorithm exits with the one having the smallest cost for
the unscaled instance. With this technique the search is advised to open the most
economical facilities. However, the solution space of the scaled instance might
not be similar to the space of the unscaled instance. Therefore in practice it is
likely that the scaled version ends with inferior solutions. It becomes obvious that
this adjustment is just for lowering theoretical bounds and has limited practical
use. The scaling technique was proposed for Local Search on the metric UFLP.
However, it deteriorates the performance of Local Search on metric as well as
non-metric instances. Please see [14] for experimental results.

3 Conclusions

The uncapacitated facility location problem was solved by 5 different algorithms
from different areas of optimization research. The deterministic algorithms man-
age to find good solutions on the benchmarks in short execution times. Generally
MYZ can improve the performance of JMS to the expense of little extra execu-
tion time. On the tested metric instances the performance of the algorithms is
competitive to the heuristic and randomized algorithms tested while the execu-
tion times remain significantly shorter. Here JMS offers slightly better solutions
than MYZ. The approximation algorithms reveal higher errors only on a few
tested non-metric instances, but always deliver solutions that are within 5% of
optimum. The presented Local Search profits from the intelligent use of datas-
tructures. On a number of instances the execution times are able to compete
with those of MYZ and JMS, but due to changing starting points the algorithm
is not very robust. Scaling techniques that lead to improved approximation fac-
tors deteriorate the performance of the algorithm in practice. TABU is able to
find optimal solutions in most cases. It is much faster than V&RR (and Local
Search on special instances), but the execution times cannot compete with those
of MYZ and JMS. The tested version of the Volume algorithm V&RR is not
competitive regarding solution quality and execution times.

The preference for a method in practice depends on the properties of the problem
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instances and the setting. If speed is most important, JMS or MYZ should be
used, especially if metric instances are to be solved. If solution quality is most
important, TABU should be used. In a general setting the results indicate a
preference for TABU, as it achieves best solution quality in a reasonable amount
of time.

Finally we present a plot of the results in relation to TABU. The x- and y-
coordinates represent values regarding execution time and solution cost, respec-
tively. The coordinates were calculated by dividing the results of the algorithms
by the results of TABU. We further adjusted some of the data by averaging over
the D- and E-instances of Bilde-Krarup and the instances of the same size of
k-median, respectively. There are 22 dots for each algorithm.

Only a few dots are located in the lower half of the plot, i.e. hardly any time
TABU was outperformed in terms of solution cost. Moreover, there is hardly any
dot in the lower left quadrangle, which indicates better performance in terms of
execution time and solution cost. In the upper left quadrangle most of the dots
of JMS and MYZ are located indicating faster performance with higher solution
costs. In the upper right part most of the dots of V&RR are located. This means
worse performance regarding execution time and solution cost. Most of the dots
of LOCAL are spread closely above the line in the upper half, which is due to
slightly higher solution costs, the faster performance on smaller and the slower
performance on larger instances.

Acknowledgement The author would like to thank Tobias Polzin for helpful
hints and advice in the development of this study.
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Fig. 1. Plot of solution costs and execution times in comparison to TABU



Table 3. Results for Bilde-Krarup and Galvao-Raggi instances

Type CPX JMS MYZ LOCAL TABU V&RR

Opt [ Error | Time || Opt | Error | Time || Opt | Error | Time || Opt | Error | Time || Opt | Error | Time
B 6.859 50% | 0.416 | 0.003 || 40% | 0.588 | 0.003 || 80% | 0.046 | 0.012 || 100% | 0.000 | 0.053 || 70% | 0.419 | 0.421
C 107.558 10% | 1.750 | 0.003 30% | 0.886 | 0.003 || 42% | 0.848 | 0.014 64% | 0.245 | 0.055 1% | 4.454 | 0.525
D1 21.591 0% | 2.445 | 0.001 10% | 1.689 | 0.002 || 25% | 1.678 | 0.006 54% | 0.241 | 0.038 2% | 3.719 | 0.239
D2 30.990 10% | 1.675 | 0.002 20% | 1.133 | 0.002 || 20% | 1.758 | 0.006 67% | 0.537 | 0.044 5% | 3.083 | 0.254
D3 28.103 10% | 2.607 | 0.002 40% | 0.923 | 0.002 || 29% | 0.879 | 0.006 89% | 0.073 | 0.042 9% | 2.245 | 0.235
D4 26.685 30% | 0.796 | 0.002 30% | 0.597 | 0.002 || 72% | 0.530 | 0.006 || 100% | 0.000 | 0.041 || 32% | 1.248 | 0.243
D5 22.368 40% | 0.647 | 0.002 70% | 0.085 | 0.002 || 59% | 0.402 | 0.006 94% | 0.004 | 0.040 || 38% | 0.995 | 0.246
D6 28.393 20% | 1.042 | 0.002 30% | 1.315 | 0.002 || 50% | 0.882 | 0.006 87% | 0.146 | 0.042 || 42% | 0.919 | 0.259
D7 24.484 10% | 1.771 | 0.002 60% | 0.664 | 0.002 || 80% | 0.354 | 0.005 || 100% | 0.000 | 0.042 || 80% | 0.214 | 0.251
D8 20.947 || 40% | 1.587 | 0.002 40% | 1.044 | 0.002 || 63% | 1.000 | 0.006 90% | 0.166 | 0.043 || 40% | 1.390 | 0.259
D9 22.326 70% | 0.846 | 0.002 90% | 0.012 | 0.002 || 80% | 0.285 | 0.006 || 100% | 0.000 | 0.043 || 73% | 0.496 | 0.256
D10 19.122 70% | 0.252 | 0.002 80% | 0.189 | 0.002 || 63% | 0.760 | 0.006 93% | 0.139 | 0.043 || 74% | 0.506 | 0.268
E1l 133.839 20% | 2.265 | 0.003 30% | 1.317 | 0.003 || 10% | 1.430 | 0.013 57% | 0.388 | 0.062 0% | 5.712 | 0.516
E2 229.305 || 20% | 1.650 | 0.003 || 40% | 0.845 | 0.003 || 14% | 2.712 | 0.013 || 94% | 0.006 | 0.067 || 0% | 4.479 | 0.560
E3 190.860 20% | 1.610 | 0.003 20% | 0.940 | 0.003 || 38% | 0.784 | 0.012 63% | 0.268 | 0.061 5% | 3.419 | 0.553
E4 185.168 30% | 1.192 | 0.003 30% | 0.781 | 0.004 || 24% | 1.577 | 0.013 90% | 0.013 | 0.060 5% | 2.505 | 0.581
E5 163.571 10% | 2.560 | 0.003 70% | 0.690 | 0.004 || 30% | 2.019 | 0.013 || 100% | 0.000 | 0.062 || 21% | 1.924 | 0.546
E6 173.918 40% | 1.049 | 0.003 50% | 0.661 | 0.004 || 56% | 0.969 | 0.013 || 100% | 0.000 | 0.062 || 22% | 1.981 | 0.602
E7 164.845 50% | 0.759 | 0.004 50% | 0.613 | 0.004 || 52% | 0.996 | 0.015 || 100% | 0.000 | 0.063 || 12% | 1.802 | 0.586
ES8 180.186 10% | 1.474 | 0.004 | 40% | 0.887 | 0.004 || 40% | 1.043 | 0.014 90% | 0.177 | 0.067 || 37% | 1.318 | 0.585
E9 174.150 30% | 1.232 | 0.004 60% | 0.674 | 0.004 || 65% | 0.655 | 0.013 || 100% | 0.000 | 0.066 || 42% | 0.896 | 0.592
E10 | 148.229 40% | 0.775 | 0.004 60% | 0.404 | 0.004 || 74% | 0.948 | 0.013 || 100% | 0.000 | 0.066 || 50% | 0.864 | 0.598
50 0.200 || 100% | 0.000 | 0.001 || 100% | 0.032 | 0.001 || 90% | 0.236 | 0.006 || 100% | 0.000 | 0.026 || 97% | 0.007 | 0.112
70 0.332 90% | 0.038 | 0.003 70% | 0.065 | 0.003 || 56% | 0.063 | 0.013 90% | 0.061 | 0.037 || 93% | 0.001 | 0.238
100 0.677 || 90% | 0.014 | 0.006 80% | 0.099 | 0.007 || 35% | 0.022 | 0.026 84% | 0.039 | 0.055 || 90% | 0.002 | 0.965
150 1.623 70% | 0.059 | 0.016 60% | 0.111 | 0.016 || 46% | 0.020 | 0.062 50% | 0.239 | 0.085 || 85% | 0.001 | 3.375
200 3.355 60% | 0.071 | 0.036 70% | 0.032 | 0.036 || 40% | 0.022 | 0.127 || 49% | 0.131 | 0.133 || 68% | 0.011 | 7.363
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Table 4. Results for ORLIB, M and k-median instances

Type CPX JMS MYZ LOCAL TABU V&RR
Opt| Error| Time| Opt| Error| Time Opt| Error| Time Opt| Error| Time| Opt| Error| Time
cap7* 0.107 0%| 0.401| 0.001 10%| 0.397| 0.001 50% | 0.044| 0.002 100% | 0.000| 0.023|[100% | 0.000 0.047
capl0* | 0.098 0% | 0.499| 0.001 10% | 0.144| 0.001 50% | 0.059| 0.003| 100%| 0.000| 0.024|100% | 0.000 0.073
capl3*| 0.196 0%| 0.493| 0.002|| 10%| 0.138| 0.002 50% | 0.236| 0.006 | 100% | 0.000| 0.027| 85%| 0.017 0.159
capa-c | 77.745 0% | 1.990| 0.152 0% | 2.712| 0.159 50% | 0.242| 0.476 82% | 0.077| 1.072|| 70%| 0.039 19.457
MO* 20% | 0.786| 0.008| 30% | 0.452| 0.008 63% | 0.320| 0.027| 100%| 0.000| 0.067]| 23%| 1.004 1.842
MP* 20% | 0.387| 0.049|| 30%| 0.118| 0.050 68% | 0.086| 0.166|| 100% | 0.000| 0.235 6% | 1.203 11.229
MQ* 20% | 0.444| 0.142| 30%| 0.132| 0.143 93% | 0.041| 0.523|| 100% | 0.000| 0.669 4% | 1.367 25.027
MR* [10%] | [0.381] | 0.464 || [10%] |[0.380] | 0.476 || [69%] |[0.229] | 2.136 |[[100%] |[0.000] | 1.825|| 0% |[2.022]| 79.391
MS [10%] | [0.000] | 2.281 || [10%] | [0.000] | 2.323||[100%] | [0.000] | 11.720 || [100%] | [0.000] | 6.366|| 0% |[1.829]| 304.066
MT 0% | [0.205] | 11.079 | 0% |[0.205] | 11.241 || [100%] | [0.159] | 89.529 || [ 90%] | [0.020] [31.505 || 0% | [1.817] | 1283.285
Problem LB JMS MYZ LOCAL TABU V&RR
Error | Time || Error | Time || Error | Time || Error | Time || Error | Time
1000,10 1432737 || 1.085 | 1.758 || 1.486 | 1.810 || 0.457 17.282 || 0.500 | 4.713 6.972 | 356.955
1000,100 607591 || 0.920 | 1.758 || 0.902 | 1.799 || 0.358 48.320 || 0.327 | 5.166 4.713 | 245.225
1000,1000 | 220479 || 0.664 | 1.767 || 0.435 | 1.802 || 0.570 62.622 || 2.046 | 2.856 4.703 | 187.718
2000,10 2556794 || 1.198 | 8.651 || 1.218 | 8.921 || 0.530 85.863 || 0.526 | 16.797 9.694 | 1172.350
2000,100 | 1122455 || 0.996 | 8.516 || 1.581 | 8.684 || 0.547 | 289.785 || 0.529 | 18.803 6.729 | 1000.169
2000,1000 | 437553 || 0.852 | 8.599 || 0.849 | 8.730 || 0.531 | 682.241 || 0.467 | 88.423 3.366 | 912.588
3000,10 3567125 || 1.499 | 21.924 || 1.973 | 22.310 || 0.546 | 228.680 || 0.555 | 39.209 || 12.644 | 2951.249
3000,100 | 1600551 || 1.141 | 21.660 || 1.498 | 22.008 || 0.682 | 892.870 || 0.664 | 44.901 || 10.821 | 2677.263
3000,1000 | 643265 || 0.888 | 21.630 || 0.957 | 21.914 || 0.468 | 2188.568 || 0.375 | 67.246 4.309 | 2008.729
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