Computing Pure Nash and Strong Equilibria in Bottleneck
Congestion Games

Tobias Harks* Martin Hoefer' Max Klimm? Alexander Skopalik®

May 14, 2010

Abstract

Bottleneck congestion games properly model the properties of many real-world net-
work routing applications. They are known to possess strong equilibria — a strengthening
of Nash equilibrium to resilience against coalitional deviations. In this paper, we study the
computational complexity of pure Nash and strong equilibria in these games. We provide
a generic centralized algorithm to compute strong equilibria, which has polynomial run-
ning time for many interesting classes of games such as, e.g., matroid or single-commodity
bottleneck congestion games. In addition, we examine the more demanding goal to reach
equilibria in polynomial time using natural improvement dynamics. Using unilateral im-
provement dynamics in matroid games pure Nash equilibria can be reached efficiently. In
contrast, computing even a single coalitional improvement move in matroid and single-
commodity games is strongly NP-hard. In addition, we establish a variety of hardness
results and lower bounds regarding the duration of unilateral and coalitional improve-
ment dynamics. They continue to hold even for convergence to approximate equilibria.

1 Introduction

One of the central challenges in algorithmic game theory is to characterize the computational
complexity of equilibria. Results in this direction yield important indicators if game-theoretic
solution concepts are plausible outcomes of competitive environments in practice. Probably
the most prominent stability concept in (non-cooperative) game theory is the Nash equilibrium
— a state, from which no player wants to unilaterally deviate — and its’ complexity has been
under increased scrutiny for quite some time. A drawback of Nash equilibrium is that in
general it exists only in mixed strategies. There are, however, practically important classes
of games that allow pure Nash equilibria (PNE), most prominently congestion games. In a
congestion game [19], there is a set of resources, and the pure strategies of players are subsets
of this set. Each resource has a delay function depending on the load, i.e., the number of
players that select strategies containing the respective resource. The individual cost for a

*Department of Mathematics, TU Berlin, Germany, harks@math.tu-berlin.de.

fDepartment of Computer Science, RWTH Aachen University, Germany, mhoefer@cs.rwth-aachen.de.
Supported by DFG through UMIC Research Center at RWTH Aachen University and grant Ho 3831/3-1.

tDepartment of Mathematics, TU Berlin, Germany. k1limm@math.tu-berlin.de.

$Department of Computer Science, RWTH Aachen University, Germany. skopalik@cs.rwth-aachen.de.
Supported in part by the German Israeli Foundation (GIF) under contract 877/05.

player in a regular congestion game is given by the sum over the delays of the resources in
his strategy.

Congestion games are an elegant model to study the effects of resource usage and con-
gestion with strategic agents. They have been used frequently to model competitive network
routing scenarios [20]. For these games the complexity of exact and approximate PNE is
now well-understood. A detailed characterization in terms of, e.g., the structure of strat-
egy spaces [1,8] or the delay functions [4,22] has been derived. However, regular congestion
games have shortcomings, especially as models for the prominent application of routing in
computer networks. The throughput of a stream of packets is usually determined by the
delay experienced due to available bandwidth or capacity of links. Here the throughput of
a player is closely related to the performance of the most congested (bottleneck) link (see,
e.g., [3,5,13,18]). A model that captures this aspect more realistically are bottleneck conges-
tion games, in which the individual cost of a player is the maximum (instead of sum) of the
delays in his strategy. Despite being a more realistic model for network routing, they have
not received similar attention in the literature. For classes of non-atomic (with infinitesimally
small players) and atomic splittable games (finite number of players with arbitrarily splittable
demand) existence of PNE and bounds on the price of anarchy were considered in [5,16]. For
atomic games with unsplittable demand PNE do always exist [3]. In fact, Harks et al. [11]
establish the finite improvement property via a lexicographic potential function. Interestingly,
they are able to extend these conditions to hold even if coalitions of players are allowed to
change their strategy in a coordinated way. This implies that bottleneck congestion games do
admit even (pure) strong equilibria (SE), a solution concept introduced by Aumann [2]. In
a SE, no coalition (of any size) can deviate and strictly decrease the individual cost of each
member. Every SE is a PNE, but the converse holds only in special cases (e.g., for singleton
games [12]).

SE represent a very robust and appealing stability concept. In general games, however,
they are quite rare, which makes the existence guarantee in bottleneck congestion games
even more remarkable. For instance, even in dominant strategy games such as the Prisoner’s
Dilemma there might be no SE. Not surprisingly, for regular congestion games with linear
aggregation the existence of SE is not guaranteed [12,14]. The existence of PNE and SE
in bottleneck congestion games raises a variety of important questions regarding their com-
putational complexity. In which cases can PNE and SE be computed efficiently? As the
games have the finite improvement property, another important issue is the duration of nat-
ural (coalitional) improvement dynamics. More fundamentally, it is not obvious that even a
single such coalitional improving move can be found efficiently. These are the main questions
that we address in this paper.

1.1 Owur Results

We examine the computational complexity of PNE and SE in bottleneck congestion games.
In Section 2 we focus on computing PNE and SE using (centralized) algorithms. Our first
main result is a generic algorithm that computes a SE for any bottleneck congestion game.
The algorithm iteratively decreases capacities on the resources and relies on a strategy packing
oracle. The oracle decides if a given set of capacities allows to pack a collection of feasible
strategies for all players and outputs a feasible packing if one exists. The running time of the

algorithm is essentially determined by the running time of this oracle. We show that there
are polynomial time oracles for matroids, a-arborescences, and single-commodity networks.
Thus, our generic algorithm yields an efficient algorithm to compute SE for the corresponding
classes of games. For general games, however, we show that the problem of computing a SE
is NP-hard, even in two-commodity networks.

In Section 3 we study the duration and complexity of sequential improvement dynamics
that converge to PNE and SE. We first observe that for every matroid bottleneck congestion
game the lazy best response dynamics presented in [1] converge in polynomial time to a PNE.
In contrast to this positive result for unilateral dynamics, we show that it is NP-hard to decide
if a coalitional improving move exists, even for matroid and single-commodity network games,
and even if the deviating coalition is fixed a priori. This highlights an interesting contrast for
these two classes of games: While there are polynomial time algorithms to compute a SE, it
is impossible to decide efficiently if a given state is a SE — the decision problem is co-NP-hard.

For more general games, we observe in Section 3.2 that constructions of [22] regarding
the hardness of computing PNE in regular games can be adjusted to yield similar results for
bottleneck games. In particular, in (a) symmetric games with arbitrary delay functions and
(b) asymmetric games with bounded-jump delay functions computing a PNE is PLS-complete.
In addition, we show that in both cases there exist games and starting states, from which
every sequence of improvement moves to a PNE is exponentially long. We extend this result
to the case when moves of coalitions of size O(n'~¢) are allowed, for any constant € > 0. In
addition, we observe that all of these hardness results generalize to the computation of a-
approximate PNE and SE, for any polynomially bounded factor . An a-approximate PNE
(SE) is a relaxation of a PNE (SE), which is stable only against (coalitional) improving moves
that decrease the delay of the (every) moving player by at least a factor of a > 1.

We conclude the paper in Section 4 by outlining some interesting open problems regarding
the convergence to approximate equilibria. All proofs missing in this extended abstract are
presented in the Appendix.

1.2 Preliminaries

Bottleneck congestion games are strategic games G = (N, S, (¢;)ien), where N = {1,...,n}
is the non-empty and finite set of players, S = X icN S; is the non-empty set of states or
strategy profiles, and ¢; : S — N is the individual cost function that specifies the cost value
of player i for each state S € §. A game is called finite if S is finite. For the sake of
a clean mathematical definition, we define strategies and costs using the general notion of
a congestion model. A tuple M = (N, R,S,(d,)rer) is called a congestion model if N =
{1,...,n} is a non-empty, finite set of players, R = {1,...,m} is a non-empty, finite set
of resources, and § = Xi €N S; is the set of states or profiles. For each player i € N,
the set S; is a non-empty, finite set of pure strategies S; C R. Given a state S, we define
0.(S) = |{i € N :r € S;}| as the number of players using 7 in S. Every resource r € R has
a delay function d, : S — N defined as d,.(S) = d,(¢,(S)). In this paper, all delay functions
are non-negative and non-decreasing. A congestion model M is called matroid congestion
model if for every i € N there is a matroid M; = (R,Z;) such that S; equals the set of
bases of M;. We denote by rk(M) = max;en rk(M;) the rank of the matroid congestion
model. (Bottleneck) congestion games corresponding to matroid congestion models will be

called matroid (bottleneck) congestion games. Matroids exhibit numerous nice properties,
some of which are described in the Appendix. For a comprehensive overview see standard
textbooks [15, Chapter 13] and [21, Chapters 39 — 42].

Let M be a congestion model. The corresponding bottleneck congestion game is the
strategic game G(M) = (N, S, (¢i)ien) in which ¢; is given by ¢;(S) = max,eg, dr (¢:-(S)).
We drop M whenever it is clear from context. We define the corresponding regular congestion
game in the same way, the only difference is that ¢;(S) = Y-, g dr(£,(S)). For a coalition
C C N we denote by —C' its complement and by S¢ = X icC S; the set of states of players
in C. A pair (5,(S;,5-¢)) € S x S is called an a-improving move of coalition C' if ¢;(S) >
aci (S, S—¢) for all i € C and a > 1. For a = 1 we call (S, (S, S_¢)) improving move
(or profitable deviation). A state S is a k-strong equilibrium (k-SE), if there is no improving
move (S, -) for a coalition of size at most k. We say S is a strong equilibrium (SE) if and only
if it is a n-SE. Similarly, S is a pure Nash equilibrium (PNE) if and only if it is a 1-SE. We
call a state S an a-approximate SE (PNE) if no coalition (single player) has an a-improving
move (5,-). We denote by I(S) the set of all possible a-improving moves (S,S’) to other
states S’ € S. We call a sequence of states (S°,S',...) an improvement path if every tuple
(Sk, Sk+1) € I(S*) for all k = 0,1,2,.... Intuitively, an improvement path is a path in a
so-called state graph G(G) derived from G, where every state S € S corresponds to a node in
G(G) and there is a directed edge (5, 5’) if and only if (S,5’) € I(9).

2 Computing Strong Equilibria

In this section, we investigate the complexity of computing a SE in bottleneck congestion
games. We first present a generic algorithm that computes a SE for an arbitrary bottleneck
congestion game. It uses an oracle that solves a strategy packing problem (see Definition 2.1),
which we term strategy packing oracle. For games in which the strategy packing oracle can
be implemented in polynomial time, we obtain a polynomial algorithm computing a SE. We
then examine games for which this is the case. In general, however, we prove that computing
a SE is NP-hard, even for two-commodity bottleneck congestion games.

2.1 The Dual Greedy

The general approach of our algorithm is to introduce upper bounds u, (capacities) on each
resource 7. The idea is to iteratively reduce upper bounds of costly resources as long as the
residual capacities admit a feasible strategy packing, see Definition 2.1 below. Our algorithm
can be interpreted as a dual greedy, or worst out algorithm as studied, e.g., in the field of
network optimization, see Schrijver [21].

Definition 2.1 (Strategy packing oracle).

INPUT: Finite set of resources R with upper bounds (u,)rer, and n collections Sy, ...,S, C 2F
given implicitly by a certain combinatorial property.

OutpUT: Sets S; € S1,...,5, € Sy, such that |i € {1,...,n} :r €S| <wu, for allr € R, or
the information, that no such sets exist.

More specifically, when the algorithm starts, no strategy has been assigned to any player
and each resource can be used by n players, thus, u,, = n. If r is used by n players, its cost

Algorithm 1: Dual Greedy, the strategy packing oracle is denoted by ©.
Input: Bottleneck congestion game G(M) to the model M = (N, R, S, d)
Output: SE of G

1set NN=N,and u, =n,l, =0,d. =d, forall r € R;
2 while {r € R:u, >0} # 0 do

3 choose 1’ € argmax,c .y, >0{dr (ur + 1) };

4 Upr 2= Upr — 1

5 if O(N',R, Sy, d',u,) = () then

6 Upr 2= Upr + 1

7 foreach j € N’ with v’ € S} do

8 Sj = S;,

9 setlT::lT—I—l,uT::uT—lforallreS;-;
10 N':=N"\{j};

11 end

12 foreach r € R do

13 | di(z) =dp(x+ 1) forall z =1,...,n —I;
14 end

15 end

16 S'=O(N',R,Sn/,d' uy);

17 end

18 return 5;

equals d,(n). The algorithm now iteratively reduces the maximum resource cost by picking
a resource 1’ with maximum delay d,.(u,) and w, > 0. The number of players allowed on
r’ is reduced by one and the strategy packing oracle checks, if there is a feasible strategy
profile obeying the capacity constraints. If the strategy packing oracle outputs such a feasible
state S, the algorithm reiterates by choosing a (possibly different) resource that has currently
maximum delay. If the strategy packing oracle returns () after the capacity of some ' € R
was reduced to u,» — 1, we fix the strategies of those u,» many players that used 7’ in the state
the strategy packing oracle computed in the previous iteration and decrease the bounds u, of
all resources used in the strategies accordingly. This ensures that ' is frozen, i.e., there is no
residual capacity on 7’ for allocating this resource in future iterations of the algorithm. The
algorithm terminates after at most n - m calls of the oracle. For a formal description of the
algorithm see Algorithm 1.

Theorem 2.2. Dual Greedy computes a SE.

Proof. Let S denote the output of the algorithm. In addition, we denote by Ni, k=1..., K,
the sets of players whose strategies are determined after the strategy packing oracle (denoted
by ©) returned () for the k-th time. Clearly, ¢;(S) < ¢;(S) for all ¢ € Ny, j € N;, with k& > [.
We will show by complete induction over k that the players in N1 U- - -U N will not participate
in any improving move of any coalition.

We start with the case & = 1. Let (u,)rcr be the vector of capacities in the algorithm
after the strategy packing oracle returned () in line 5 for the first time and u,, is updated in
line 6.

Suppose there is a coalition C' C N with C N Ny # () that deviates profitably from S to
T = (Si, S—¢). We distinguish two cases.

Case 1: 4,(T) < u, for all r € R. Since ®(N, R, S,d,u) = (), where @, = u, — 1,if r =1’
and u,, else, at least |Ny| players use r' in T. Using d,»(T) > d,(S) for all r € R, we obtain a
contradiction to the fact that every member of C must strictly improve.

Case 2: There is 7 € R such that ¢z(T") > wu,. Using that Dual Greedy iteratively reduces
the capacity of those resources with maximum delay (line 3), we derive that dz(T") > d,(S)
for all r € R. Using ¢:(T) > w,, there is at least one player i € C' with 7 € T;, hence, this
player does not strictly improve.

For the induction step k& — k + 1, suppose the players in N1 U --- U Ny stick to their
strategies and consider the players in Niy1. As the strategies of the players in Ny U--- U Ny
are fixed, the same arguments as above imply that no subset of Nj;y; will participate in a
profitable deviation from S. O

It is worth noting that the dual greedy algorithm applies to arbitrary strategy spaces. If
the strategy packing problem can be solved in polynomial time, this algorithm computes a
SE in polynomial time. Hence, the problem of computing a SE is polynomial time reducible
to the strategy packing problem. For general bottleneck congestion games the converse is also
true.

Theorem 2.3. The strategy packing problem is polynomial time reducible to the problem of
computing a SE in a bottleneck congestion game.

Proof. Given an instance of the set packing problem II we construct a bottleneck congestion
game Gp. Let IT be given as set of resources R with upper bounds (u,),ecr, and n collections
Si,...,S, C 2. The game Gp consists of the resource R U {ry,...,r,} and the players
1,...,n+1. The set of strategies of player i € {1,...,n}is {S;U{r;} | S; € S;}. Player n+1
has the strategies R and {rq,...,r,}. For each resource r € R The delay is 0 it is used by at

most u, + 1 and 2 otherwise. For each resource r € {ry,...,r,} the delay is 0, if used by at
most one player and 1, otherwise.
If a strategy profile of the player 1,...,n violates an upper bound u, on a resource r € R,

player n + 1 has delay of 2 if he plays strategy R. If he plays {rq,...,7,} he and all other
players have delay of 1. Hence, if there is a feasible strategy packing, every SE of the game
yields delay 0 for every player. Otherwise, every SE yields delay 1 for every player. Therefore,
the state of the players 1,...,n in a SE of Gyy corresponds to a solution for the strategy packing
problem II, if such a solution exists. On the other hand, if there is no solution for II, every
player in every SE in G has delay of 1. O

In the next section we will present some interesting cases, in which the strategy packing
problem can be solved in polynomial time, or in which computation becomes NP-hard.
2.2 Complexity of Strategy Packing

Theorem 2.4. The strategy packing problem can be solved in polynomial time for matroid
bottleneck congestion games where the strategy set of player i equals the set of bases of a
matroid M; = (R,Z;) given by a polynomial independence oracle.

Proof. For each matroid M; = (R,Z;), we construct a matroid M/ = (R',Z}) as follows.
For each resource r € R, we introduce u, resources r',...,r% to R'. We say that r is the
representative of 1, ... r¥r. Then, a set I’ C R’ is independent in M if the set I that arises
from I’ by replacing resources by their representatives is independent in M;. This construction
gives rise to a polynomial independence oracle for M;.

Now, we regard the matroid union M’ = M{V---V M), see Definition A.1 in the Appendix,
which again is a matroid. Using the algorithm proposed by Cunningham [6] we can compute
a maximum-size set B in I V ---V I}, in time polynomial in n, m, rk(M), and the maximum
complexity of the n independence oracles.

Clearly, if |B| < ..y rk(M;), there is no feasible packing of the bases of My, ..., M,. If,
in contrast, |B| = >,y rk(M;), we obtain the corresponding strategies (S, ..., S,) using the
algorithm. O

We now consider strategy spaces defined as a-arborescences, which are in general not
matroids. Let D = (V, R) be a directed graph with |R| = m. For a distinguished node in
a € V, we define an a-arborescence as a directed spanning tree, where a has in-degree zero
and every other vertex has in-degree one.

Theorem 2.5. The strategy packing problem can be solved in time O(m?n?) for a-arborescence
games in which the set of strategies of each player equals the set of a-arborescences in a directed
graph D = (V, R).

Proof. The problem of finding k disjoint a-arborescences in G can be solved in time O(m? k?),
see Gabow [10, Theorem 3.1]. Introducing u, copies for each edge r € R, the problem of
finding admissible strategies in the original problem is equivalent to finding n disjoint a-
arborescences. O

For single-commodity networks efficient computation of a SE is possible using well-known
flow algorithms to implement the oracle. When we generalize to two commodities, however,
a variety of problems concerning SE become NP-hard by a simple construction.

Theorem 2.6. The strategy packing problem can be solved in time O(m?) for single-commodity
bottleneck congestion games.

Proof. Assigning a capacity of u, to each edge and using the algorithm of Edmonds and Karp
we obtain a maximum flow within O(m?). Clearly, if the value of the flow is smaller than n,
no admissible strategies exist and we can return (). If the flow is n or larger we can decompose
it in at least n unit flows and return n of them. O

Theorem 2.7. In two-commodity network bottleneck games it is strongly NP-hard to (1)
compute a SE, (2) decide for a given state whether any coalition has an improving move, and
(8) decide for a given state and a given coalition if it has an improving move.

Proof. We reduce from the 2 DIRECTED ARC-DISJOINT PATHS (2DADP) problem, which
is strongly NP-hard, see Fortune et al. [9]. The problem is to decide if for a given directed
graph D = (V, A) and two node pairs (s1,t1), (s2,t2) there exist two arc-disjoint (s1,¢1)- and
(s2,t2)-paths. For the reduction, we define a corresponding two-commodity bottleneck game
by introducing non-decreasing delay functions on every arc r by d,(z) = 0, if z < 1 and 1, else.

We associate every commodity with a player. Then, 2DADP is a Yes-instance if and only if
every SE provides a payoff of zero to every player. For the other problems we simply construct
a solution, in which the strategies are not arc-disjoint. The remaining results follow. O

3 Convergence of Improvement Dynamics

In the previous section, we have outlined some prominent classes of games, for which SE can
be computed in polynomial time. Furthermore, it is known [11] that sequential improvement
dynamics converge to PNE and SE. We now show that the Nash dynamics convergences
quickly to a PNE in matroid games. For the convergence to SE one has to consider deviations
of coalitions of players. However, deciding if such a deviation exists is NP-hard even in matroid
games or single-commodity network games.

3.1 Matroid and Single-Commodity Network Games

We first observe that bottleneck congestion games can be transformed into regular congestion
games while preserving useful properties regarding the convergence to PNE. This allows to
show fast convergence to PNE in matroid bottleneck games.

3.1.1 Convergence to Pure Nash Equilibria

The following lemma establishes a connection between bottleneck and regular congestion
games. For a bottleneck congestion game G we denote by G"™ the regular congestion game
with the same congestion model as G' except that we choose d’.(S) = m%) r € R.

Lemma 3.1. Every PNE for G**™ is a PNFE for G.

Proof. Suppose S is a PNE for G*"™ but not for G. Thus, there is player i € N and
strategy S; € S;, such that max,egs, d(£:(5)) > max,cg dr(6:-(S;,5-;)). We define d =
max,cg dp(¢,(S),S—;)). This implies max,cg, d-(¢,(S5)) > d + 1. We obtain a contradiction
by obsezrving

37 d(6:(9) = maxdl(6:(S)) = m™ > (m—1)ym? > > di(6:(S], S-))
reS; reS; reS]]

We analyze the lazy best response dynamics considered for regular matroid congestion
games presented in [1] and combine their analysis with Lemma 3.1. This allows to establish
the following result.

Theorem 3.2. Let G be a matroid bottleneck congestion game. Then the lazy best response
dynamics converges to a PNE in at most n? - m - rk(M) steps.

Proof. We consider the lazy best response dynamics in the corresponding game G*"™. In
addition, we suppose that a player accepts a deviation only if his bottleneck value is strictly
reduced. It follows that the duration is still bounded from above by n? - m - rk(M) best
responses as shown in [1]. O

3.1.2 Convergence to Strong Equilibria

For matroid bottleneck congestion games we have shown above that it is possible to converge
to a PNE in polynomial time by a kind of best-response dynamics with unilateral improving
moves. While previous work [11] establishes convergence to SE for every sequence of coalitional
improving moves, it may already be hard to find one such move. In fact, we show that an a-
improving move can be strongly NP-hard to find, even if strategy spaces have simple matroid
structures. This implies that deciding whether a given state is an c-approximate SE is strongly
co-NP-hard — even if all delay functions satisfy the 8-bounded-jump condition! for any 8 > a.

Theorem 3.3. In matroid bottleneck congestion games it is strongly NP-hard to decide for
a given state S if there is some coalition C C N that has an a-improving move, for every
polynomaal time computable c.

Proof. We reduce from SET PACKING. An instance of SET PACKING is given by a set of
elements F and a set U of sets U C E, and a number k. The goal is to decide if there are
k mutually disjoint sets in U. Given an instance of SET PACKING we show how to construct
a matroid game G and a state S such that there is an improving move for some coalition of
players C' if and only if the instance of SET PACKING has a solution.

The game will include |[N| = 14 [U|+ |E|+ ;¢ |U| many players. First, we introduce a
master player p1, which has two possible strategies. He can either pick a coordination resource
r. or the trigger resource r;. For each set U € U, there is a set player py. Player py can
choose either r; or a set resource ri;. For each set U and each element e € U, there is an
inclusion player py.. Player py. can use either the set resource ry; or an element resource
re. Finally, for each element e, there is an element player p. that has strategies {r.,r.} and
{re, 74} for some absorbing resource ry,.

The state S is given as follows. Player p; is on r., all set players use r, all inclusion
players the corresponding set resources ry, and all element players the strategies {rc,r.}.
The coordination resource 7. is a bottleneck for the master player and all element players.
The delays are d, (xr) = o+ 1, if x > |E| and 1, otherwise. The trigger resource has delay
dy,(z) =1,if x < |U| — k+ 1, and o + 1, otherwise. For the set resources ry the delay is
dyy(x) =1, if <1 and a + 1, otherwise. Finally, for the element resources the delay is
dy,(x) =1if 2 <1 and a + 1 otherwise.

Suppose that the underlying SET PACKING instance is a Yes-instance, then an a-improving
move is as follows. The master player moves to r¢, the k set players corresponding to a solution
choose their set resources, the respective inclusion players move to the element resources, and
all element players move to r,. The delay of r. reduces from o + 1 to 1, and the delay of
r¢ reduces from « + 1 to 1. Thus, the master player, all set players, and all element players
improve their bottleneck by a factor of &+ 1. The migrating inclusion players do not interfere
with each other on the element resources. Thus, they also improve the delay of their bottleneck
resource by factor o + 1, and we have constructed an a-improving move for the coalition of
all migrating players, all set players, and all element players.

Suppose that the underlying SET PACKING instance is a No-instance. For contradiction,
assume that there is a coalition C' that has an a-improving move. Consider any player p € C.
We will show that for any player p # pq, i.e., any set, inclusion, or element player, p; € C is

'Delay function d,. satisfies the 8-bounded-jump condition if d,.(z 4+ 1) < 8 - d.(x) for any z > 1.

a prerequisite for achieving any strict improvement. We first note that the master player can
never strictly improve without changing his strategy, because all element players will always
use r. in their strategy. A move from r. to r; is an improvement if and only if at least k set
players drop r;. These players must switch to the corresponding resources. However, for a set
player pps such a move is an improvement if and only if all inclusion players on 7y drop this
resource from their strategy. These inclusion players must switch to the element resources.
An inclusion player py . improves by such a move if and only if the element player drops the
resource and py . is the only inclusion player moving to r.. This implies that the moving set
players must correspond to sets that are mutually disjoint. Finally, the element players move
from r. to r, with delay d,, = 0, and this is an improvement if and only if the master player
moves away from r.. This last argument establishes that p € C' implies p; € C.

However, if the master player p; € C, then we again follow the chain of reasoning above
and see that the players corresponding to at least £ mutually disjoint sets must move and
therefore be in C'. This is a contradiction to having a No-instance.

Finally, we can add the resource r, to every strategy of the master, set, and inclusion
players. In this way, the combinatorial structure of all strategy spaces is the same — a partition
matroid M with rk(M) = 2 and partitions of size 1 and 2 — only the mapping to resources is
different for each player. O

The previous theorem shows hardness of the problem of finding a suitable coalition and a
corresponding improving move. Even if we specify the coalition in advance and search only
for strategies corresponding to an improving move, the problem remains strongly NP-hard.

Corollary 3.4. In matroid bottleneck congestion games it is strongly NP-hard to decide for
a given state S and a given coalition C' C N if there is an a-improving move for C, for every
polynomial time computable c.

Proof. We will show this corollary using the games constructed in the previous proof by
fixing the coalition C' = N. Consider the construction in the previous proof. The coalition
described above that has an improving move for a Yes-instance consists of the master player,
all set players, all element players and the inclusion players that correspond to the sets of
the solution to SET PACKING. However, the inclusion players are only needed to transfer the
chain of dependencies to the element players. We can set the strategy space of player py . to
{rn,m} x {ru,rc}. Here rp and r; are two resources with delays d,, = o+ 1 and d,, = 0.
In S we assign the inclusion players to strategies {rp,ry}. Then an improving move for the
inclusion players that remain on 7y is to exchange 7y by ;. Thus, the problem of finding
an arbitrary coalition with an improving move becomes trivial. However, we strive to obtain
an improving move for C = N, and this must generate improvements for the master player
and the set players. Thus, we still must reassign some inclusion players from the resources
ry to the element resources r.. Here we need to resolve conflicts as before, because otherwise
inclusion players end up with a delay of o + 1 on r. and do not improve. Following the
previous reasoning we have an a-improving move if and only if the underlying SET PACKING
instance is solvable. Finally, by appropriately adding dummy resources, we can again ensure
that the combinatorial structure of all strategy spaces is the same. O

We can adjust the previous two hardness results on matroid games to hold also for single-
commodity network games.

10

Theorem 3.5. In single-commodity network bottleneck congestion games it is strongly NP-
hard to decide for a given state S (1) if there is some coalition C C N that has an a-improving
move, and (2) if a given coalition C C N has an a-improving move, for every polynomial time
computable .

Proof. We transform the construction of Theorem 3.3 into a symmetric network bottleneck
congestion game, see Fig. 1 for an example. First, we introduce for each resource r., r¢, ry
for all U € U and r, for all e € E an edge with the corresponding delay function as before.
Additionally, we identify players and their strategies by routing them through a set of gadgets
composed of edges, which have capacities implemented by cost functions that are 1 up to a
capacity bound and « + 10 above.

The first gadget is to separate the players into groups. An edge with capacity 1 identifies
the master player, an edge with capacity || the set players, an edge with capacity Y ¢, |U|
the inclusion players, and an edge with capacity | F| the element players. The set and inclusion
players are then further divided into their particular identities by edges of capacity 1. The
element players route all over r.. In addition, the master player has the alternative to route
over r. or ;. After the players have passed r. they again split into specific element players
using edges of capacity 1. One player is allowed to route directly to the source t. This is
meant to be the master player, but it does not hurt our argument if this is not the case.

After the players have routed through the capacitated gadgets, they can be assumed to
reach an identification point (indicated by gray nodes in Fig. 1) and obtain an identity. Then
they decide on a strategy from the previous game by routing over one of two allowed paths.
In particular, we can allow the set players to route either over r; or their ry, the inclusion
players over ry or 7., and the element players over r. or directly to the sink ¢.

We can create the corresponding state S as before by assigning the master player to
route over 7. directly to the sink, the set players over r;, the inclusion players over ry and
the element players over r.. This assignment is such that every player receives one identity
(i.e., routes over exactly one gray node) and every identity is taken (i.e., every gray node is
reached by exactly one player). This property also holds for every improving move — with the
exception of one element player, who might route directly from r. to the sink, but as noted
before this does not hurt the argument.

Our network structure allows to reconstruct the reasoning as before. Any improving move
must include the master player, which improves if and only if he moves together with players
corresponding to a solution to the Set Packing instance. Note that even by switching player
identities, we cannot create an improving move when the underlying Set Packing instance is
unsolvable. This proves the first part of the theorem.

For the second part, we use the same adjustment as in Corollary 3.4 to ensure that
inclusion players can always improve. Directly before the middle fan out (see Figure 1) that
results in identification of inclusion players we simply insert a small gadget with 2 parallel
edges r; and 7. In this way, all inclusion players must route over one of r; or r; and one of
their corresponding 77 or r.. This resembles the strategy choices in the matroid game and
yields hardness of computing an improving move for the coalition C' = N. This proves the
theorem. O

11

A

Figure 1: Network construction for a SET PACKING instance with U =
{{e1,e2},{ea,e3},{es,e1}}. Gray nodes serve as identification for players as discussed
in the text.

12

3.2 General Games and Approximation

The results of the previous sections imply hardness of the computation of SE or coalitional
deviations, even in network games. Therefore, when considering general games we here re-
strict ourselves mostly to unilateral improving moves and PNE. Unfortunately, even in this
restricted case the hardness results for regular congestion games in Skopalik and Vécking [22]
immediately imply identical results for bottleneck congestion games. The main result of [22]
shows that computing an approximate PNE is PLS-hard. The proof is a reduction from CIR-
cuiTFLIP. We can regard the resulting congestion game as a bottleneck congestion game. It
is straightforward to adjust all arguments in the proof of [22] to remain valid for bottleneck
congestion games. We provide some details on the construction of the class G(n) of games
in the Appendix. A standard transformation [8] immediately yields the same result even for
symmetric games, in which S; = §; for all 4,j € N.

Corollary 3.6. Finding an a-approximate PNE in a symmetric bottleneck congestion game
with positive and increasing delay functions is PLS-complete, for every polynomial-time com-
putable o > 1.

A second result in [22] reveals that sequences of a-improving moves do not reach an a-
approximate PNE quickly — even if all delay functions satisfy the S-bounded-jump condition
with a constant 5. Again, the proof remains valid if one regards the game as an asymmetric
bottleneck congestion game. This yields the following corollary.

Corollary 3.7. For every a > 2, there is a B > 1 such that, for every n € N, there is a
bottleneck congestion game G(n) and a state S with the following properties. The description
length of G(n) is polynomial in n. The length of every sequence of a-improving moves leading
from S to an a-approzimate equilibrium is exponential in n. All delay functions of G(n)
satisfy the B-bounded-jump condition.

Using the same trick as before to convert an asymmetric game in a symmetric one yields a
similar result for symmetric games. However, we must sacrifice the S-bounded-jump condition
of the delay functions, for every 5 polynomial in n.

Despite the fact that (coalitional) improving moves are NP-hard to compute, one might
hope that the state graph becomes sufficiently dense such that it allows short improvement
paths. Unfortunately, we can show that this is not true, even if we consider all improving
moves of coalitions of size up to O(n'~¢), for any constant ¢ > 0. Again, the same result holds
for symmetric games when sacrificing the bounded-jump condition.

Theorem 3.8. For every o > 2, there is a § > 1 such that, for every n € N and for every
k € N, there is a bottleneck congestion game G(n, k) and a state S with the following properties.
The description length of G(n, k) is polynomial in n and k. The length of every sequence of
a-improving moves of coalitions of size at most k leading from S’ to an a-approximate k-SE
is exponential in n. All delay functions of G(n, k) satisfy the B-bounded-jump condition.

Proof. Our proof adjusts the construction of [22], which we recapitulate in the Appendix.
The main idea of our adjustment is to construct a bottleneck congestion game G(n, k) by
generating k copies of the game G(n). We then add resources to the strategies. These
resources make sure that there is a improvement step for a player in G(n) if and only if there
is a improvement step of corresponding k players of the k& copies in G(n, k).

13

To each strategy j € {1,...,9} of player every Main; of every the copy m € {1,...,k} we
add a resource Aik Additionally, we add this resource to all strategies j' # j of all players
Main; of every other copy m’ # m. Each of these resources has delay of 5! if it is allocated
by at most one player and §°T3 otherwise. Analogously, we add resources to the strategies of
the auxiliary players. That is, for every player Block] of every copy m € {1,...,k}, we add
a resource Bij in his strategy 1. We also add his resource in every strategy 2 of the every
player Blockg of every other copies m’ # m. Similarly, for every player Blockg of every copy
m € {1,...,k}, we add a resource Cij in his strategy 2, which we also add to every strategy 1
of the every player Blockg of every other copies m’ # m. Each of these resources has a delay
of 61 if it is allocated by at most one player and 6°t2 otherwise. Finally, we have to increase
¢ slightly.

We obtain the initial strategy profile s’ of G(n, k) if every player of every copy m of G(n)
plays according to the initial strategy profile S of his copy. It it easy to see, that no coalition
of less than k player of a copy m has an incentive to change their strategies. At least one of
them would have to allocate a A-, B-, or C-resource that is already in use by another player.
Thus, it is not an improvement step for these players. We, therefore, can conclude that all k
copies of a player always choose the same strategy. On the other hand, if there is an improving
move of one player in G(n), there is a coalitional improving move of all k copies of that player
in G(n, k). If all players mimic this deviation in their copies, by construction, no two players
allocate the same A-, B-, or C-resource. Furthermore, if the improvement step decreases the
delay in G(n), it does so for every copy of the player in G(n, k).

Finally, note that as long as k is polynomial in n we obtain a reduction of polynomial size.
In particular, for k£ = n/<~! we obtain a new game with nk players, for which the unilateral
moves of G(n) are exactly moves of coalitions of size (nk)!~¢ and no smaller coalitions have
improving moves. This proves the theorem. O

4 Conclusion

We have provided a detailed study of the computational complexity of exact and approximate
pure Nash and strong equilibria in bottleneck congestion games. However, some important
and fascinating open problems remain. While we have shown that results from [22] essentially
translate, we were not able to establish the positive result of [4] about quick convergence to
approximate PNE for symmetric games with bounded-jump delays. In addition, there are
open problems regarding the duration of unilateral dynamics in symmetric network games
and hardness of computing PNE in asymmetric networks. Finally, it would be interesting to
see how results on centralized computation of SE extend to the computation of a-approximate
SE and k-SE, for 1 < k < n.

References

[1] Heiner Ackermann, Heiko Roglin, and Berthold Vécking. On the impact of combinatorial
structure on congestion games. J. ACM, 55(6), 2008.

14

2]

Robert Aumann. Acceptable points in general cooperative n-person games. In Contri-
butions to the Theory of Games IV, volume 40 of Annals of Mathematics Study, pages
287-324. 1959.

Ron Banner and Ariel Orda. Bottleneck routing games in communication networks.
IEEE J. Sel. Area Comm., 25(6):1173-1179, 2007.

Steve Chien and Alistair Sinclair. Convergence to approximate Nash equilibria in con-
gestion games. In Proc. 18th Symp. Discrete Algorithms (SODA), pages 169-178, 2007.

Richard Cole, Yevgeniy Dodis, and Tim Roughgarden. Bottleneck links, variable demand,
and the tragedy of the commons. In Proc. 17th Symp. Discrete Algorithms (SODA), pages
668-677, 2006.

William Cunningham. Improved bounds for matroid partition and intersection algo-
rithms. SIAM J. Comput., 15(4):948-957, 1986.

Jack Edmonds. Matroid partition. In G.B. Dantzig and A.F.Veinott, editors, Mathemat-
ics of the Decision Sciences, pages 335-345. AMS, 1968.

Alex Fabrikant, Christos Papadimitriou, and Kunal Talwar. The complexity of pure Nash
equilibria. In Proc. 36th Symp. Theory of Computing (STOC), pages 604-612, 2004.

Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomor-
phism problem. Theor. Comput. Sci., 10:111-121, 1980.

Harold Gabow. A matroid approach to finding edge connectivity and packing arbores-
cences. J. Comput. Syst. Sci., 50(2):259-273, 1995.

Tobias Harks, Max Klimm, and Rolf Moéhring. Strong Nash equilibria in games with the
lexicographical improvement property. In Proc. 5th Intl. Workshop Internet € Network
Economics (WINE), 2009.

Ron Holzman and Nissan Law-Yone. Strong equilibrium in congestion games. Games
Econ. Behav., 21(1-2):85-101, 1997.

S. Keshav. An engineering approach to computer networking: ATM networks, the Inter-
net, and the telephone network. Addison-Wesley, 1997.

Hideo Konishi, Michel Le Breton, and Shlomo Weber. Equilibria in a model with partial
rivalry. J. Econ. Theory, 72(1):225-237, 1997.

Bernhard Korte and Jens Vygen. Combinatorial Optimization: Theory and Algorithms.
Springer Verlag, 2002.

Vladimir Mazalov, Burkhard Monien, Florian Schoppmann, and Karsten Tiemann.
Wardrop equilibria and price of stability for bottleneck games with splittable traffic.
In Proc. 2nd Intl. Workshop Internet & Network Economics (WINE), pages 331-342,
2006.

15

[17]

[18]

[19]

[21]

[22]

Crispin St. John Alvah Nash-Williams. An application of matroids to graph theory. In
P. Rosenstiehl, editor, Theory of Graphs; Proc. of an International Symposium in Rome
1966, pages 263-265, 1967.

Lili Qiu, Yang Richard Yang, Yin Zhang, and Scott Shenker. On selfish routing in
internet-like environments. IEEE/ACM Trans. Netw., 14(4):725-738, 2006.

Robert Rosenthal. A class of games possessing pure-strategy Nash equilibria. Intl. J.
Game Theory, 2:65-67, 1973.

Tim Roughgarden. Routing games. In Noam Nisan, Eva Tardos, Tim Roughgarden, and
Vijay Vazirani, editors, Algorithmic Game Theory, chapter 18. Cambridge University
Press, 2007.

Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer
Verlag, 2003.

Alexander Skopalik and Berthold Vocking. Inapproximability of pure Nash equilibria. In
Proc. 40th Symp. Theory of Computing (STOC), pages 355-364, 2008.

16

Appendix

A Basics in Matroid Theory

In the following, we will briefly introduce the notion of matroids. For a comprehensive intro-
duction as well as for the proofs of the mentioned results we refer the reader to the textbooks
of Korte and Vygen [15, Chapter 13] and Schrijver [21, Chapters 39 — 42].

Let F be a finite set. A tuple M = (F,Z) where T C 2 is called a matroid if (i) () € Z,
(t5) if I € Z and J C I, then J € Z, and (i) if I,J € Z and |J| < |I|, then there exists
ani € I\ J with JU{i} € Z. A set A C F is called independent if A € T and dependent,
otherwise. The set of (inclusion wise) maximal independent subsets of F' is called the basis
of M.

For given F', a matroid (F,Z) may be of exponential size, thus, one frequently assumes
that a matroid comes with an independence oracle that returns for all sets A C F whether
A € T or not. It shall be noted that for many subclasses of matroids an independence oracle
can be implemented in polynomial time.

Another way of representing matroids is via a rank function rk : 2¥ — N. Every sub-
cardinal, monotonic and sub-modular function rk gives rise to a matroid whose independent
sets then are defined as {A C F : rk(A) = |A|}. If the independent sets are known a priori
via an independence oracle the rank function is defined as rk(A) = maxjez.7ca |I]. With a
slight abuse of notation, we define for a matroid M = (F,Z) the rank of the matroid itself as
rk(M) = rk(F).

To present our positive results for matroid bottleneck congestion games in a general frame-
work we give the definition of matroid union. This concept has been introduced by Nash-
Williams [17] and Edmonds [7].

Definition A.1 (Matroid union). Let My = (S1,Z4),..., My = (Sk,Z) be matroids. Define
the union of these matroids as My V +--V My = (S1U---USk,Z1 V- -V I) where

Il\/"'\/Ik:{IlLJ"'U[k:Il GIl,...,[kEIk}.

Nash-Williams proved that for k& matroids My = (S1,Z1),..., My = (Sk,Z) their union
MyV- - -V My is a matroid again. The maximum cardinality of an independent set in Z; V- - - VZ,
equals the maximum cardinality of a common independent set of two suitably constructed
matroids. This observation reduces the problem of finding a maximum-size set in Z; V- - - V7,
to the intersection problem of two matroids, which can be solved in polynomial time, see
Cunningham [6].

B Description of G(n)

In this section, we recapitulate the construction of G(n) from [22]. This shows that (bottle-
neck) congestion games do not converge quickly to a PNE even if the players only perform
unilateral a-improving moves.

We construct a (bottleneck) congestion game G(n) that resembles a recursive run of n
programs, i.e., sequences of unilateral a-improving moves. After its activation, program i
triggers a run of program ¢ — 1, waits until it finishes its run, and triggers it a second time.

17

These sequences are deterministic apart from the order in which some auxiliary players make
their improvement steps.

‘ Strategies of Block] | Resources ‘ Delays ‘

(1) t! §1/2a%50 1
bf 62‘—1/5@'—1—2
(2) ct 2061 /51F2

Figure 2: Definition of the strategies of the players Blockg

A program 7 is implemented by a gadget G; consisting of a main player that we call Main;
and eight auxiliary players called Block}, . ,Blockf. The main player has nine strategies
numbered from 1 to 9. Each auxiliary player has two strategies, a first and a second one. A
gadget Gj is idle if all of its players play their first strategy. Gadget G;+1 activates gadget
G; by increasing the delay of (the bottleneck resource in) the first strategy of player Main,.
In the following sequence of improvement steps the player Main; successively changes to the
strategies 2,...,8. We call this sequence a run of G;. During each run, Main,; activates
gadget G;_1 twice by increasing the delay of the (bottleneck resource in the) first strategy of
Main;_;. Gadget G, is blocked (by player Block?) until player Main; reaches its strategy
9. Then G;;1 continues its run, that is, it decreases the delay of the bottleneck resource in
the first strategy of player Main;, waits until gadget GG; becomes idle again, and afterwards
triggers a second run of GG;. The role of the auxiliary players of G; is to control the strategy
changes of Main; and Main; .

In the initial state s, every gadget G; with 1 <i <n — 1 is idle. Gadget G, is activated.
In every improvement path starting from s, gadget G; is activated 2"~* times, which yields
the theorem.

Now we go into the details of our construction. The (bottleneck) congestion game G(n)
consists of the gadgets G1,...,G,. Each gadget G; consists of a player Main; and the players
Block}, . ,Block?. The nine strategies of a player Main; are given in Figure 3. The two
strategies of a player Block? are given in Figure 2. § = 10a? is a scaling factor for the delay
functions. ‘
The auxiliary players implement a locking mechanism. The first strategy of player Block?

is {t, bg } and its second strategy is {c/}. The delays of the resources b and ¢ are relatively
small (6~! and 2a.6°~1, respectively) if allocated by only one player. If they are allocated by
two or more players, however, then each of them induce a significantly larger delay of §°*2.
Theses resources are also part of the strategies of Main; or Main; ;. Note, that neither Main;
nor Main; {1 has an incentive to change to a strategy having a delay of 82 or more. The delay
of the resource #! is chosen such that Block! has an incentive to change to its second strategy
if Main; allocates this resource. If Main; neither allocates this resource nor the resource bg ,
it has an incentive to change to its first strategy. Due to scaling factor 5*=1 the delays of the
resource ¢ do not affect the preferences of Main,.

These definitions yield the following properties. If auxiliary player Blockg of gadget G;
plays its first strategy then this prevents Main; from choosing strategy j + 2. Player Blockg
has an incentive to change to its second strategy only if player Main; chooses its strategy

18

j + 1. By this mechanism, we ensure that Main; chooses the strategies 1 to 8 in the right
order. In addition, the first strategy of Blockg3 prevents Main;;1 from going to strategy 4 or
8. This ensures that Main; 1 waits until the run of player Main; is completed. Furthermore,
Main;4+1 can enter into strategy 3 or 7 only if all auxiliary players of gadget G; use their first
strategy. This ensures that a run starts with all auxiliary players being in their first strategy.

This shows that in every sequence of improvement steps from s to a Nash equilibrium in
the (bottleneck) congestion game G(n) each gadget i is activated 2"~ times. One can easily
check that every improvement step of a player decreases its delay (of the bottleneck resource)
by a factor of at least o and every delay function satisfies the S-bounded-jump condition with
B =63 with 6 = 10a°.

19

‘ Strategy ‘ Resources ‘ Delays ‘

(1) er 5 /9a°5°

(2) e? 8aB6
ek gy | 20002 /50
t) =1 /202511

(3) e 776
e, 51 /902611
2 =1 /202511
bzl 5@—1/52+2

(4) el 6005
b?—l 5i—2/5i+1
3 51 /202511
bz2 51—1/524—2

(5) e? 5a° 8"
¢ 51 /202511
b? 51—1/524—2

(6) e? 408"
ek gy | 20002 /5
) =1 /202511
b;l 5@—1/52+2

(7) el 3a38°
el | §1/9a%511
0 51 /202511
bZB 51—1/524—2

(8) e 2025°
b?—l a(si—2/5i+1
t! =1 /202511
b? 5@—1/52+2

(9) e’ ad’
3 51 /202511
bz7 5i—1/5i+2

Figure 3: Definition of the strategies of the players Main;. The delay of resource el is
constantly 9a%6".

20

