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We study linear Fisher markets with satiation. In these markets, sellers have earning limits and buyers
have utility limits. Beyond applications in economics, they arise in the context of maximizing Nash social
welfare when allocating indivisible items to agents. In contrast to markets with either earning or utility
limits, markets with both limits have not been studied before. They turn out to have fundamentally different
properties.

In general, the existence of competitive equilibria is not guaranteed. We identify a natural property of
markets (termed money clearing) that implies existence. We show that the set of equilibria is not always
convex, answering a question of [17]. We design an FPTAS to compute an approximate equilibrium and prove
that the problem of computing an exact equilibrium lies in the complexity class CLS, i.e., the intersection of
PLS and PPAD. For a constant number of buyers or goods, we give a polynomial-time algorithm to compute
an exact equilibrium.

We show how (approximate) equilibria can be rounded and provide the first constant-factor approximation
algorithm (with a factor of 2.404) for maximizing Nash social welfare when agents have capped linear
(a.k.a. budget-additive) valuations. Finally, we significantly improve the approximation hardness for additive
valuations to

√
8/7 > 1.069.
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1. Introduction Market equilibrium is a central solution concept in economics. It is useful to
analyze and predict the outcomes of the interaction of strategic agents in large markets. Two of the
most fundamental and extensively studied market models are (Arrow-Debreu) exchange markets
and the special case of Fisher markets, introduced by Walras [56] and Fisher [9], respectively, in the
late nineteenth century. Besides their importance in economics, market equilibria have also been
a very fruitful domain for algorithm design – many novel algorithmic ideas have been developed
in the context of computing market equilibria. In the majority of these works, the preferences
of the agents are assumed to be nonsatiated, mostly in order to guarantee the existence of an
equilibrium. However, there are also a number of works that consider satiation of utilities, which
appears naturally in many situations; see, e.g., [1, 5, 37, 41, 43].
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Market equilibria have found many surprising applications even in non-market settings that do
not involve an exchange of money. The reason is that they exhibit remarkable fairness and efficiency
properties – the most prominent example is the popular fairness notion of competitive equilibrium
with equal incomes (CEEI) [46].

In this paper, we study the Fisher model for markets with buyers and sellers that trade divisible
goods. Buyers come to the market with money and have utility functions over allocations of goods.
Given a price for each good, each buyer demands an affordable bundle of goods that maximizes his
utility. At a market equilibrium, the prices are such that all goods are fully sold. Without loss of
generality, we assume that each good comes in unit supply. Moreover, we assume that each single
good is brought by a unique seller.1

In a linear Fisher market, each buyer has a linear utility function, i.e., the utility of a buyer is
additive over goods and scales linearly in the amount of each good received. Linear market models
have been extensively studied since the 1950s [26, 30]. Recently, two natural generalizations of
linear Fisher markets, based on satiation, were introduced. In these models, either i) buyers have
utility limits or ii) sellers have earning limits.

In the first model, each buyer has an upper limit on the amount of utility that he wants to obtain.
Each buyer spends the least amount of money on purchasing a bundle of goods that maximizes his
utility up to the limit. He takes back any unused part of his money. We will refer to these utility
functions as capped linear utilities. Equilibria in this model always exist, they can be captured
by a convex program [17, 8], and there is a combinatorial polynomial-time algorithm to find an
equilibrium [8].

Capped linear utilities are also known as budget-additive utilities in the literature. They repre-
sent a natural elementary case of functions with a concavity or submodularity structure. Utility
functions of this form are studied frequently, e.g., in online advertising [45, 44], offline social wel-
fare maximization [4, 6, 53, 13, 38], online algorithms [10, 22], mechanism design [11], Walrasian
equilibria [51, 28], and market equilibria [8, 17].

In the second model, each seller has an upper limit on the amount of money that she wants to
earn. Each seller sells the least amount of her good to earn the maximum amount of money up to
the limit. She takes back any unsold portion of the good. This is a natural property and implies
similar preferences for sellers as capped linear utilities imply for buyers. For further discussion and
applications of earning limits, see [17]. Equilibria in this model may not always exist. However, the
following are known: a necessary and sufficient condition for the existence, a convex programming
formulation, and combinatorial polynomial-time algorithms for computing an equilibrium when it
exists [17, 8].

The natural generalization of the two models, where both buyers and sellers have limits, was only
briefly introduced in [17]. The authors posed an intriguing open question of obtaining a convex
programming formulation for equilibria in this model. Markets with both utility and earning limits
are the main subject of our paper. We study markets of this class that satisfy the sufficient condition
for existence in the context of earning limits. In this class of markets, we show that the set of
equilibria can be non-convex, thereby answering the question of [17]. We design an FPTAS to
compute an approximate equilibrium and prove that the problem of computing an exact equilibrium
lies in the complexity class CLS (Continuous Local Search), which represents the intersection of
the classes PLS (Polynomial Local Search) and PPAD (Polynomial Parity Arguments on Directed
Graphs) [27].

1 For markets with linear utilities, the assumption that each agent brings a single good can be made without loss of
generality. Fisher markets are sometimes defined without sellers, since their preferences are rather straightforward
and can be expressed implicitly in the equilibrium conditions. Here we chose to explicitly model sellers for the goods.
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For a constant number of buyers or goods, we present a polynomial-time algorithm to compute
an exact equilibrium. To the best of our knowledge, this is the first market equilibrium problem
that lies in CLS and for which no polynomial-time algorithm is known.

Beyond the economic interest in modeling buyer and seller preferences, generalized Fisher mar-
kets have also found further applications, especially for approximating the maximum Nash social
welfare when allocating indivisible items to a set of agents. The Nash social welfare is defined
as the geometric mean of agents’ valuations, which provides an interesting trade-off between the
extremal objectives of social welfare and egalitarian welfare. In social welfare, the objective is to
maximize the sum of the valuations, while in egalitarian welfare, the objective is to maximize the
minimum of the valuations. The Nash social welfare objective was proposed in the classic game
theory literature by Nash [47] when solving the bargaining problem. It is closely related to the
notion of proportional fairness studied in networking [40]. Nash social welfare satisfies a set of
desirable axioms such as independence of unconcerned agents, the Pigou-Dalton transfer principle,
and independence of common utility scale (see, e.g., [39, 46]). The latter implies that, in contrast
to both social and egalitarian welfare, it is invariant to individual scaling of each agent valuation
with possibly different constant factors.

The problem of maximizing the Nash social welfare objective is known to be APX-hard [42],
even for additive valuations. In a remarkable result, Cole and Gkatzelis [18] gave the first constant-
factor approximation algorithm for additive valuations. The constant was subsequently improved
to 2 [17]. The algorithm computes and rounds an equilibrium of a Fisher market where sellers have
earning limits. Moreover, the approach has been extended to provide a 2-approximation in multi-
unit markets with agent valuations, which remain additive-separable over items [8], but might be
concave in the number of copies received for each item [3].

In this paper, we show algorithms to compute (approximate and exact) market equilibria along
with a rounding procedure. These algorithms yield the first constant-factor approximation algo-
rithm for maximizing the Nash social welfare when agents have capped linear valuation functions.
The analysis of these valuations significantly advances our understanding beyond additive-separable
and towards non-separable submodular ones.

Finally, we also strengthen the existing hardness results for approximating Nash social welfare.
We provide a new inapproximability bound of 1.069 that applies even in the case of additive
valuations. This significantly improves the constant over 1.00008 in [42].

1.1. Contribution and Techniques

Money-Clearing Markets and an FPTAS We study Fisher markets with linear valuations
and earning and utility limits. In markets with utility limits, a market equilibrium always exists. For
markets with earning limits, equilibria exist if and only if the market satisfies a natural condition
on budgets and earning limits (which we term money clearing). In particular, this condition holds
for all market instances that arise in the context of computing approximate solutions for the Nash
social welfare problem. In both markets models with either earning or utility limits, the set of
equilibria is always convex.

For both earning and utility limits, we also concentrate on markets with the money-clearing
condition, which we show is sufficient (but not necessary) for the existence of an equilibrium. We
prove that the set of market equilibria can be non-convex. Hence, in contrast to the above cases,
the toolbox for solving convex programs (e.g., ellipsoid [17] or scaling algorithms [18, 8]) is not
directly applicable for computing an equilibrium.

Our main result is a new algorithm to compute an approximate equilibrium. Based on a constant
ε > 0, it perturbs the valuations and rounds the parameters vij up to the next power of (1+ε). Then
it computes an exact equilibrium of the perturbed market in polynomial time, which represents
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an approximate equilibrium in the original market. This yields a novel FPTAS for markets with
earning and utility limits. We note that the non-convexity of equilibria also applies to perturbed
markets, which is surprising since we show an exact polynomial-time algorithm for computing an
equilibrium.

To compute an exact equilibrium in the perturbed market, we first obtain an equilibrium (prices
p, allocation x) of a market that results from ignoring all utility limits [17, 8]. This need not be
an equilibrium of the market with both limits, because some buyers may be overspending. Let
the surplus of a buyer be the money spent minus the money needed to obtain the utility limit,
and similarly let the surplus of a good be the target income minus the actual income. In the
precise definition of surplus below, negative values will be ruled out. We concentrate on buyers
with positive surplus. Let S be the set of buyers who have a positive surplus at prices p. Our idea
is to pick a buyer, say k, in S, and decrease the prices of goods in a coordinated fashion. The goal
is to make k’s surplus zero while keeping all zero surpluses at zero, namely those for all the goods
and all the buyers not in S. We show that after a polynomial number of iterations of price decrease,
either buyer k’s surplus becomes zero or we discover a good with price zero in equilibrium. Picking
a particular buyer is crucial in the analysis because we rely on this buyer to show that a certain
parameter strictly decreases. This guarantees a substantial price decrease and implies a polynomial
running time.

Complexity of Exact Equilibria In addition to the FPTAS, we examine the complexity
of computing an exact equilibrium in money-clearing markets. We show that this problem lies
in PPAD ∩ PLS. To show membership in PLS we first design a finite-time algorithm to compute
an exact equilibrium. We define a finite configuration space such that the algorithm proceeds
through a sequence of configurations. We show that configurations in the sequence do not repeat,
and the algorithm terminates with an equilibrium. By defining a suitable potential function over
configurations, we show that the problem is in PLS. As a refinement, whenever there are a constant
number of buyers or sellers, we show that the number of configurations is polynomially bounded
using a cell decomposition technique. This implies that our algorithm computes an equilibrium in
polynomial time if the number of buyers or goods is constant.

For membership in PPAD we first derive a formulation as a linear complementarity problem
(LCP). It captures all equilibria, but it also has non-equilibrium solutions. To discard the non-
equilibrium solutions, we incorporate a positive lower bound on several variables. This turns out
to be a non-trivial adjustment, because a subset of prices may be zero at all equilibria, so we must
be careful not to discard equilibrium solutions. Then, we add a suitable auxiliary variable to the
LCP and apply Lemke’s algorithm [19]. We show that the algorithm is guaranteed to converge to
an exact equilibrium under the money clearing condition. This, with a result of Todd [54], proves
that the problem lies in PPAD.

Approximating Nash Social Welfare Finally, we consider the problem of maximizing Nash
social welfare when allocating indivisible items to agents. We design an approximation algorithm
that computes an equilibrium in a money-clearing market and rounds it to an integral allocation.
Here we study the problem for agents with capped linear valuation functions. For these instances,
money-clearing markets with earning and utility limits represent a natural fractional relaxation.
We use our algorithms to compute an exact equilibrium (in the FPTAS for perturbed valuations).
Given an exact equilibrium (for either perturbed or original valuations), we provide a rounding
algorithm that turns the fractional allocation into an integral one. While the algorithm exploits a
tree structure of the equilibrium allocation as in [18], the rounding becomes much more challenging,
and we must be careful to correctly treat agents that reach their utility limits in the equilibrium.
In particular, we first conduct several initial assignment steps to arrive at a solution where we have
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a set of rooted trees on agents and items, and each item j has exactly one child agent i who gets at
least half of the fractional valuation from j. In the main step of the rounding algorithm, we need
to ensure that the root agent r receives one of his child items. Here we pick a child item j that
generates the most value for r. A problem arises at the child agent i of j since r receiving j could
decrease i’s valuation by a lot more than a factor of 2. Recursively, we again need to enforce an
allocation for agent i, thereby “stealing” fractional value from one of i’s grandchildren agents, and
so on. It may seem as if there is no hope for this approach to yield any reasonable approximation
guarantee, but we show that in aggregate the agents only suffer a small constant-factor loss.

Our analysis of this rounding procedure provides a lower bound on the Nash social welfare
obtained by the algorithm, which is complemented with an upper bound on the optimum solution.
Both bounds crucially exploit the properties of agents (goods) that reach the utility (earning) limits
in the market equilibrium. These bounds imply an approximation factor of 2e1/(2e) < 2.404. Since
the equilibrium conditions apply with respect to perturbed valuations, we obtain a (2e1/(2e) + ε)-
approximation in polynomial time, for any constant ε > 0.

In terms of lower bounds, we strengthen the existing inapproximability bound to
√

8/7> 1.069.
Our improvement is based on the construction for the hardness of social welfare maximization for
capped linear valuations from [13]. For the Nash social welfare objective, we observe how to drop
the utility limits and apply the construction even for additive valuations.

A preliminary version of this paper appeared at the 29th ACM-SIAM Symposium on Discrete
Algorithms (SODA 2018) [31].

1.2. Related Work

Market Equilibria The problem of computing market equilibria is an intensely studied prob-
lem, so we restrict our discussion to previous work that appears most relevant.

For linear Fisher markets, equilibria are captured by the Eisenberg-Gale convex program [26].
Later, Shmyrev [52] obtained another convex program for this problem. Cole et al. [17] provide
a dual connection between these and other convex programs. A combinatorial polynomial-time
algorithm for computing equilibrium in this model was obtained by Devanur et al. [23]. Orlin [49]
gave the first strongly polynomial-time algorithm using a scaling technique. More recently, Végh [55]
gave a different scaling-based algorithm that also runs in strongly polynomial time.

Fisher markets are a special case of the more general Arrow-Debreu exchange markets. There
are many convex programming formulations for linear exchange markets; see [21] for details. The
first polynomial-time algorithm was obtained by Jain [36] based on the ellipsoid method. Ye [57]
obtained a polynomial-time algorithm based on the interior-point method. Duan and Mehlhorn [25]
developed the first combinatorial polynomial-time algorithm, which was later improved in [24].
More recently, Garg and Végh [35] obtained the first strongly polynomial-time algorithm for this
problem.

Linear Fisher markets with either utility or earning limits were studied only recently [17, 8], and
equilibria in these models can be captured by extensions of Eisenberg-Gale and Shmyrev convex
programs, respectively. In markets with utility limits, combinatorial polynomial-time algorithms
are obtained in [8, 55], the set of equilibria forms a lattice, and equilibria with maximum or
minimum prices can also be obtained efficiently [8]. In markets with earning limits, combinatorial
polynomial-time algorithms are obtained in [18, 8]. Any equilibrium can be refined to one with
minimal or maximal prices in polynomial time [8].

Nash Social Welfare The Nash social welfare is a classic objective for allocating goods to
agents. Nash [47] proposed it for the bargaining problem as the unique objective that satisfies a
collection of natural axioms. Since then, it has received significant attention in the literature on
social choice and fair division (see, e.g., [12, 20, 50, 29] for a subset of notable recent work, and
the references therein).
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For divisible items, the problem of maximizing the Nash social welfare is solved by competitive
equilibria with equal incomes (CEEI) [46]. However, CEEI can provide significantly more value in
terms of Nash social welfare than optimal solutions for indivisible items. To obtain an improved
bound on the indivisible optimum, Cole and Gkatzelis [18] introduced and rounded spending-
restricted equilibria, i.e., equilibria in markets with an earning limit of 1 for every good. More
generally, equilibria in linear markets with earning limits can be described by a convex program [17]
similar to the one by Shmyrev.

For indivisible items and general non-negative valuations, the problem of maximizing the Nash
social welfare is hard to approximate within any finite factor [48]. For additive valuations, the prob-
lem is APX-hard [42], and efficient 2-approximation algorithms based on market equilibrium [18, 17]
and stable polynomials [2, 3] exist. These algorithms have been extended to give a 2-approximation
in markets with multiple copies per item [8] and additive-separable concave valuations [3]. Barman
et al. [7] introduced another technique based on limited envy and obtained a 1.45-approximation
for additive valuations. Very recently, Chaudhury et al. [14] generalized this result to obtain a 1.45-
approximation for a common generalization of both capped linear and additive-separable concave
valuations.

1.3. Outline The rest of the paper is structured as follows. We introduce notation and prelim-
inaries in Section 2. In Section 3.1, we discuss the existence of market equilibria under the money
clearing condition. The FPTAS for perturbed markets is discussed in Section 3.2. The following
sections contain our results on computing exact equilibria – membership in PLS (Section 3.3), the
polynomial-time algorithms for a constant number of buyers or goods (Section 3.4), and member-
ship in PPAD (Section 3.5). The rounding algorithm for maximizing the Nash social welfare and
the analysis of its approximation factor are presented in Section 4.1. In Section 4.2, we present the
improved hardness bound for the approximation of Nash social welfare with additive valuations.
Finally, we conclude in Section 5 with a discussion of directions for future research.

2. Preliminaries

Fisher Markets with Earning and Utility Limits In such a market, there is a set B of n
buyers and a set G of m divisible goods. Each good is owned by a separate seller and comes in unit
supply. Each buyer i∈B has a utility value uij ≥ 0 for a unit of good j ∈G and a budget mi > 0 of
money. Suppose buyer i receives a bundle of goods xi = (xij)j∈G with xij ∈ [0,1], then the utility

function is capped linear if ui(xi) = min
(
ci,
∑

j uijxij

)
, where ci > 0 is the utility cap.

The vector x = (xi)i∈B with
∑

i∈B xij = 1 for every j ∈ G denotes a (fractional) allocation of
goods to buyers. For an allocation, we call i a capped buyer if ui(xi) = ci. We also maintain a
vector p = (p1, . . . , pm) of prices for the goods. Given price pj for good j, a buyer needs to pay
xijpj when getting xij allocation of good j ∈ G. Given a vector of prices p, a demand bundle
x∗i of buyer i is an affordable bundle of goods that maximizes the utility of buyer i, i.e., x∗i ∈
arg maxxi

{
ui(xi) |

∑
j pjxij ≤mi

}
. For price vector p and buyer i, we let λi = minj pj/uij and

denote by αi = 1/λi the maximum bang-per-buck (MBB) ratio (where we assume 0/0 = 0). Given
prices p and allocation x, the money flow fij from buyer i to seller j is given by fij = pjxij. If price
pj > 0, then xij uniquely determines fij and vice versa.

For each seller j, let xj =
∑

i xij; then the seller utility is uj(xj, pj) = min(dj, pjxj) =
min (dj,

∑
i fij), where dj > 0 is the earning or income cap. We call seller j a capped seller

if uj(xj, pj) = dj. An optimal supply e∗j allows seller j to obtain the highest utility, i.e., e∗j ∈
arg max{uj(ej, pj) | ej ≤ 1}.

We assume that all parameters of the market, uij, ci, dj and mi, for all i∈B and j ∈G, are non-
negative integers. Let U = maxi∈B,j∈G{uij,mi, ci, dj} be the largest integer in the representation of
the market.
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We consider three natural properties for allocation and supply vectors:
1. An allocation xi for buyer i is called modest if

∑
j uijxij ≤ ci. By definition, for uncapped

buyers every demand bundle is modest. For capped buyers, if a bundle of goods is modest, then
ci =

∑
j uijxij.

2. A demand bundle xi is called thrifty or MBB if it consists only of MBB goods: xij > 0 only if
uij/pj = αi. For uncapped buyers every demand bundle is MBB.

3. A supply ej for seller j is called modest if ej = min(1, dj/pj).
Given a set of prices, a thrifty and modest demand bundle for buyer i minimizes the amount of

money required to obtain optimal utility. A modest supply for seller j minimizes the amount of
supply required to obtain optimal utility in equilibrium. Our interest lies in market equilibria that
have thrifty and modest demands and modest supplies. Note that they also emerge when earning
and utility caps are not satiation points but limits in the form of hard constraints on the utility in
equilibrium (c.f. [17]).

Definition 2.1 (Thrifty and Modest Equilibrium). A thrifty and modest (market) equi-
librium is a pair (x,p), where x is an allocation and p a vector of prices such that the following
conditions hold: (1) p≥ 0 (prices are nonnegative), (2) ej is a modest supply for every j ∈G, (3)
xj ≤ ej for every j ∈G (no overallocation), (4) xi is a thrifty and modest demand bundle for every
i∈B, and (5) Walras’ law holds: pj(ej −xj) = 0 for every j ∈G.

Note that in equilibrium, if xj < ej, then pj = 0, due to Walras’ law.
Consider the following condition termed money clearing : For each subset of buyers and the

goods these buyers are interested in, there is a feasible allocation of the buyer money that does not
violate the earning caps. More formally, let B̂ ⊆B be a set of buyers, and N(B̂) = {j ∈G | uij >
0 for some i∈ B̂} be the set of goods such that there is at least one buyer in B̂ with positive utility
for the good.

Definition 2.2 (Money Clearing). A market is money clearing if∑
i∈B̂

mi ≤
∑

j∈N(B̂)

dj, for all B̂ ⊆B . (1)

The notion of money clearing has been used in previous work. In particular, when there are only
earning limits, money clearing is a precise characterization of markets that have thrifty and modest
equilibria [8]. For markets with both limits, it is sufficient for existence (see Section 3.1).

Perturbed Markets Our FPTAS in Section 3.2 computes a thrifty and modest equilibrium
in a perturbed market M̃.

Definition 2.3 (Perturbed Utility, Perturbed Market). For a market M and a
parameter ε > 0, the perturbed utility of buyer i is given by ũi(xi) =

∑
j ũijxij, where ũij ∈ {0, (1 +

ε)k | integer k≥ 0} such that

ũij/(1 + ε)≤ uij ≤ ũij, for all i∈B,j ∈G. (2)

The perturbed market M̃ is exactly the market M in which every buyer i ∈ B has perturbed
utilities ũi. We define Ũ = maxi∈B,j∈G ũij as the largest perturbed utility.

In Section 3.2 we observe that an exact equilibrium in M̃ is an ε-approximate equilibrium for the
unperturbed market M.
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Nash Social Welfare There is a set B of n agents and a set G of m indivisible items, where we
assume m≥ n. We allocate the items to the agents, and we represent an allocation S = (S1, . . . , Sn)
using a characteristic vector xS with xS

ij = 1 iff j ∈ Si and 0 otherwise. Agent i ∈ B has a value
vij ≥ 0 for item j and a global utility cap ci > 0. The budget-additive or capped linear valuation

of agent i for an allocation S of items is vi(x
S
i ) = min

(
ci,
∑

j∈G vijx
S
ij

)
. The goal is to find an

allocation that approximates the optimal Nash social welfare, i.e., the optimal geometric mean of
valuations

max
S

(∏
i∈B

vi(x
S
i )

)1/n

.

Our approximation algorithm in Section 4 relies on rounding an equilibrium for a linear Fisher
market with earning and utility limits. Our rounding algorithm deteriorates the Nash social welfare
only by a constant factor. More precisely, we round an exact equilibrium of the perturbed market
M̃. The fact that this equilibrium satisfies the properties in Definition 2.1 with respect to perturbed
utilities increases the approximation factor only by a small constant (see Section 4.1.3).

3. Computing Equilibria

3.1. Existence and Structure of Equilibria In this section, we briefly discuss the existence
and structure of thrifty and modest equilibria in markets with utility and earning limits. The set
of equilibria in these markets has interesting and non-trivial structure. For markets with utility
limits, an equilibrium always exists [8]. For markets with earning limits, an equilibrium may not
exist, because uncapped buyers always spend all their money. In these markets, the money-clearing
condition is necessary and sufficient for the existence of a thrifty and modest equilibrium [8] (see
also [17] for the case that uij > 0 for all i∈B, j ∈G).

We observe that in a market M with both limits, money clearing is sufficient but not necessary
for the existence of a thrifty and modest equilibrium. Our FPTAS below gives an ε-approximate
equilibrium in money-clearing markets, for arbitrarily small ε. Since all market parameters are
assumed to be finite integers, for sufficiently small ε this implies the existence of an exact equilib-
rium.

This is interesting since the structure of equilibria in such markets can be quite complex. For
example, in money-clearing markets M there can be no convex program describing thrifty and
modest equilibria. This holds even if we restrict to the ones that are Pareto-optimal with respect
to the set of all thrifty and modest equilibria. Equilibria for the corresponding markets without
caps, or with either earning or utility caps might not remain equilibria in the market with both
sets of caps. Hence, the existence of a thrifty and modest equilibrium in money-clearing markets
M follows neither from a convex program nor by a direct application of existing algorithms for
markets with only one set of either utility or earning caps. The following proposition summarizes
our observations.

Proposition 3.1. There are marketsM with utility and earning limits such that the following
hold:
1. M is not money-clearing and has a thrifty and modest equilibrium.
2. M is money-clearing, and the set of thrifty and modest equilibria is not convex. Among these

equilibria, there are multiple Pareto-optimal equilibria, and their set is also not convex.
3. For a money-clearing market M and the three related markets – (1) with only utility caps, (2)

with only earning caps, (3) without any caps – the sets of equilibria are mutually disjoint.

Proof. We provide an example market for each of the three properties.
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Property 1: Consider a linear market with one buyer and one good. The buyer has m1 = 2, utility
u11 = 2, and utility cap c1 = 1. The good has earning cap d1 = 1. The unique thrifty and modest
equilibrium has price p1 = 2 and allocation x11 = 1/2. The income of the seller equals the earning
cap. Due to price 2, the supply is 1/2, for which the achieved utility equals the utility cap. Both
seller and buyer exactly reach their caps and obtain an optimal utility. Note that the money clear-
ing condition (1) is violated.

Property 2: Consider the following example. There are two buyers and two goods. The buyer
budgets are m1 = 2 and m2 = 32. The utility caps are c1 =∞, c2 = 32, the earning caps are d1 = 8,
d2 = 26. The linear utilities are given by the parameters u11 = u22 = 32, u12 = 128, and u21 = 2.
Note that the total available money 2 + 32 equals the sum of the earning caps 8 + 26.

Consider any equilibrium (x,p). We use b1 and b2 to refer to buyers 1 and 2, respectively. If
both earning caps are met, the total spending equals the available money. Thus, b2 needs to spend
money on both goods, and we have p2 = 16p1. Hence, b1 spends only on good 1, so the money flow
must be f11 = 2, f12 = 0, f21 = 6, and f22 = 26. Since the earning cap d1 = 8, we have p1 ≥ 8. With
prices (8y,128y) and y≥ 1, the buyer utilities are (8/y, 8/y).

We turn to the case that some earning cap is not met and, as a consequence, not all money is
spent. As b1 has utility cap ∞, b2 must not be spending in full. So b2 must reach his utility cap
of 32. Also, any good not meeting its earning cap must be sold in full. We now distinguish cases
according to which buyer buys which goods.
b1 buys some of both goods: Then p2 = 4p1 and b2 only buys the second good. b1 buys some

of good 2, so b2 does not buy all of good 2 and does not reach his utility cap, a contradiction.
b2 buys some of both goods: Then p2 = 16p1. Since b1 spends all money on the first good

and b2 buys some of the first good, p1 > 2 and hence p2 > 32. Thus, the bang-per-buck ratio of b2

is less than 1. Hence, b2 cannot reach his utility cap, a contradiction.
Each buyer buys exactly one of the goods: It is impossible that b1 only buys the second

good and b2 only buys the first good because p2 ≤ 4p1 in the former case and p2 ≥ 16p1 in the latter
case. Thus, b1 only buys the first good and b2 only buys the second good, and hence 4p1 ≤ p2 ≤ 16p1.
As m1 = 2, the earning cap for the first good is not met, and so the first good is sold entirely.
The price of the first good must be such that b1 spends all money and the first good is completely
sold, i.e., p1 = 2 and hence 8≤ p2 ≤ 32. Since m2 = 32, u22 = 32, and c2 = 32, b2 will buy as much
of good 2 as he possibly can. Since the second good has an earning cap of 26, p2 ≤ 26. So the
possible equilibria have prices (2, y) with 8≤ y ≤ 26. The utilities are (32,32) and both goods are
completely allocated.

We summarize the discussion: The equilibria form two disjoint convex sets, either prices (2, y)
and buyer utilities (32,32), for y ∈ [8,26]; or prices (8y,128y) and buyer utilities (8/y, 8/y), for y≥ 1.

There are exactly two Pareto-optimal equilibria: prices (2,8) (which also represents the income
for the sellers) and buyer utilities (32,32); and prices (8,128) (with income (8,26) for the sellers)
and buyer utilities (8,8). The first equilibrium is strictly better for both buyers, the second one
strictly better for both sellers.

Property 3: Consider the following market with 2 buyers and 2 goods. The buyer budgets are
m1 = 100 and m2 = 11. The utility caps are c1 = 0.9, c2 =∞. The earning caps are d1 = 9, d2 =∞.
The utilities are u11 = u22 = u12 = u21 = 1.

First note that in all equilibria, the prices are equal as all the utilities are the same. If we ignore
all caps, the price p of each good is (total budget)/2 = 55.5. If we ignore the utility caps and
consider only earning caps, we have p = (total budget) - (cap of good 1) = 102. If we ignore the
earning caps and consider only utility caps, we have 0.9p+ 11 = 2p, resulting in p= 10. With both
utility and earning caps, we have spending = 0.9p+ 11 = income = 9 + p, resulting in p= 20. �
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3.2. Computing Equilibria in Perturbed Markets In this section, we describe and ana-
lyze Algorithm 1, an FPTAS for computing an approximate equilibrium in money-clearing markets
M. The input parameters for such a market are uij,mi, ci, dj, for all i∈B and j ∈G, where uij is
the utility derived by buyer i for a unit amount of good j, mi is the budget of buyer i, ci is the
utility cap of buyer i, and dj is the earning cap of seller j. For any ε > 0, Algorithm 1 computes

an exact equilibrium in a perturbed market M̃, where we increase every non-zero parameter uij

to the next-larger power of (1 + ε).

Additional Concepts Our algorithm steers prices and money flow towards equilibrium by
monitoring the surplus of buyers and sellers. Note that a buyer i is capped if miαi ≥ ci.
Definition 3.1 (Active Budget and Supply, Income, Surplus). Given prices p and

flow f , the active budget of buyer i is ma
i = min(mi, ci/αi), and the active supply of seller j is

eaj = min(1, dj/pj). The active price paj = pje
a
j = min(pj, dj) is the income of seller j. The surplus

of buyer i is s(i) =
∑

j∈G fij −ma
i , and the surplus of good j is s(j) = paj −

∑
i∈B fij.

Several graphs connected to the MBB ratio are useful here.

Definition 3.2 (MBB graph, MBB edge, MBB residual graph). Given prices p, we
define the MBB graph G(p) = (B ∪G,E), an undirected bipartite graph with node sets composed
of buyers and sellers. The set of edges E are all MBB edges, where an undirected pair {i, j} is an
MBB edge if i ∈ B, j ∈G, and uij/pj = αi. Given prices p and money flow f , the MBB residual
graph Gr(f ,p) = (B ∪G,A) is a directed graph with the following arcs: If {i, j} is MBB, then (i, j)
is an arc in A; if {i, j} is MBB and fij > 0, then (j, i) is an arc in A.

As argued in [49, 24], we can assume without loss of generality that the MBB graph is non-
degenerate, i.e., it is a forest.

In the MBB residual graph, we interpret the money flow f to originate at the buyers and to flow
to the goods, where all edges have infinite capacity. Edges (i, j) and (j, i) in the MBB residual graph
indicate that flow from i∈B to j ∈G can be increased and decreased, respectively. In contrast, let
us also define a reverse flow network N−(p,Z), where p is a vector of prices and Z ⊆B a subset
of buyers. N−(p,Z) is constructed by adding a sink t to the MBB graph. The network has nodes
G∪B ∪ {t}, edges (i, t) for i ∈B \Z, and the reverse MBB edges (j, i) if {i, j} is an MBB edge.
All edges have infinite capacity. The supply at node j ∈G is paj , demand at node i∈B is ma

i , and
demand at node t is

∑
j p

a
j −
∑

im
a
i . The flow in the network corresponds to money. It originates

at the goods and flows to the buyers (and possibly further to the sink t). Given a money flow f in
the network N−(p,Z), the surplus of buyer i∈B \Z corresponds to flow on (i, t)

s(i) =
∑
j∈G

fji−ma
i = fit .

Buyers in Z do not have edges to the sink. Hence, their surplus is fixed to 0 for every feasible flow.

Algorithm and Invariants Algorithm 1 starts by finding a min-price equilibrium
(xmin,pmin) with utility caps but no earning caps. A min-price equilibrium has coordinate-wise
smallest prices, i.e., for every good j the price pmin

j is the smallest price of good j in all equilibria.
Such an equilibrium can be computed in polynomial time using the algorithm of [8]. The algorithm
then removes the set S of goods with price 0 at pmin and the set Γ(S) of buyers having positive
utility for a good in S. Note that buyers in Γ(S) are capped and only buy the goods in S at
(xmin,pmin). The algorithm sets the prices of goods in S to zero and the allocation of buyers in
Γ(S) as per xmin, and then it proceeds with the remaining set of buyers and goods. Lemma 3.9 (in
Section 3.5) shows that the price of each remaining good j in any equilibrium with both utility and
earning caps is at least pmin

j ≥ 1/(nŨn). Recall that Ũ = maxi,j ũij is the largest perturbed utility.
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For convenience, the algorithm maintains a money flow f . For goods with non-zero prices, f is
equivalent to an allocation x. Next, it finds an equilibrium with earning caps but no utility caps.2

Such an equilibrium exists because the market is money-clearing. The equilibrium can be computed
in polynomial time [17, 8] and consists of a pair (f ,p) of flow and prices such that the outflow of
every good j is paj and the inflow of every buyer i is mi. Given this equilibrium, the algorithm then
initializes Z to the set of buyers with zero surplus in (f ,p).

There are two possible approaches at this point: to increase prices or to reduce them. Raising
prices does not work, e.g., consider two buyers b1 and b2 and a good g. Both buyers have a budget
of 1 and utility 1 for the entire good g, and they have a utility cap of 1/4 and ∞, respectively. The
earning cap of g is ∞. The starting price of g is 2 if we ignore the utility caps, and clearly, it is not
possible to find an equilibrium with both utility and earning caps by raising the prices.

Consequently, we proceed by reducing prices in a controlled way. More specifically, the algorithm
proceeds in a series of iterations. In each iteration, prices are reduced on a carefully chosen subset
of goods, and for capped buyers3 interested in these goods, budgets are reduced in proportion. The
idea is that uncapped buyers will be able to buy more goods, displacing capped buyers who need
to reduce their spending.

The following Invariants are maintained during the run of Algorithm 1:
• no price ever increases.
• if s(i) = 0 for a buyer i, it remains 0. Z is monotonically increasing.
• N−(p,Z) allows a feasible flow, i.e., s(i)≥ 0 for every buyer i ∈B and s(j) = 0 for every good
j ∈G.

Lemma 3.1. The Invariants hold during the run of Algorithm 1.

The lemma is quite straightforward to see. Towards a proof, we explain the algorithm in more
technical detail. The algorithm uses a descending-price approach. There is always a flow inN−(p,Z)
with outflow of a good j ∈G equal to paj , in-flow into buyer i∈B∩Z equal to ma

i , and in-flow into
buyer i ∈ B \ Z at least ma

i . These imply that if a good (buyer) becomes uncapped (capped), it
remains uncapped (capped).

The algorithm ends when Z =B, i.e., all buyers have zero surplus, and hence (f ,p) is an equilib-
rium of M̃. In the body of the outer while-loop, we first pick a buyer k whose surplus is positive.
The inner while loop ends when the surplus of k becomes zero. This increases the size of Z (in
line 19).

In the body of inner while-loop, we construct the set B̂ of buyers and Ĝ of goods that can reach
buyer k in the MBB residual graph (see Definition 3.2). We then continuously decrease the prices of
all goods in Ĝ by a common factor γ, starting from γ = 1. This may destroy MBB edges connecting
buyers in B̂ with goods in G \ Ĝ. However, by the definition of Ĝ there is no flow on such edges.
For uncapped goods in Ĝ (capped buyers in B̂), this decreases the active price (budget) by a factor
of γ. We stop if one of the two events happens: (1) a new MBB edge appears, or (2) γ is equal to
the minimum factor possible that allows a feasible flow with the current MBB edges, i.e., in-flow
into a good j ∈ Ĝ is equal to paj , outflow from a buyer in B̂ ∩Z is equal to ma

i , and outflow from

a buyer in B̂ \Z is at least ma
i . While the value of γ for event (1) results from ratios of ũij, the

value of γ for event (2) is found by Algorithm 2 based on a linear program (LP). Observe that the
flow f and γ = 1 are a feasible initial solution for the LP.

After an event happened, we update to a new feasible flow f using Algorithm 3. For prices
p and the set Z of zero-surplus buyers, the in-flow into a good j ∈ G must be equal to paj , the

2 We remark that an alternate approach may also work that starts from an equilibrium with utility caps but no
earning caps, and then proceeding analogously by raising prices to find an equilibrium with both utility and earning
caps.

3 Recall that a buyer is capped if his current utility equals his cap.
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Algorithm 1: FPTAS for M with Earning and Utility Caps

Input : Market M given by budgets mi, utility caps ci, earning caps dj, utilities uij, for all
i∈B and j ∈G, approximation parameter ε;

Output: Equilibrium (x,p) of the perturbed market M̃
1 Construct M̃ by increasing each non-zero uij to the next-larger power of (1 + ε), set

Ũ ←maxij ũij, and run the rest of the algorithm on M̃
2 (xmin,pmin)← min-price equilibrium of M̃ when ignoring all earning caps
3 S←{j ∈G | pmin

j = 0} and Γ(S)←{i∈B | uij > 0, j ∈ S}
4 Set pj← 0, for all j ∈ S and xij← xmin

ij , for all i∈ Γ(S) and j ∈ S
5 Remove goods in S and buyers in Γ(S) from M̃
6 (f ,p)← equilibrium of M̃ when ignoring all utility caps // s(j) = 0, ∀j ∈G; s(i)≥ 0, ∀i∈B
7 Z←{i∈B | s(i) = 0} // set of zero surplus buyers

8 while Z 6=B do
9 k← a buyer in B \Z // s(k)> 0

10 while (s(k)> 0) do

11 B̂←{k}∪ {i∈B | i can reach k in the MBB residual graph}
12 Ĝ←{j ∈G | j can reach k in the MBB residual graph}
13 p′← p and γ← 1

14 Set pj← γ · pj, for all j ∈ Ĝ
15 Decrease γ continuously down from 1 until one of these events occurs:
16 Event 1: A new MBB edge appears

17 Event 2: γ = MinFactor(p′, f , B̂, Ĝ,Z) // Algorithm 2

18 f ← FeasibleFlow(p,Z) // Algorithm 3

19 Z←Z ∪{i∈B | s(i) = 0}
20 Assign xi according to f for all buyers i∈B that have not been assigned yet.
21 return (x,p)

outflow from a buyer in Z must be equal to ma
i , and the outflow from a buyer in B \Z must be at

least ma
i . Algorithm 3 sets up a feasibility LP to find such a feasible flow. When being invoked by

Algorithm 1, Algorithm 3 is guaranteed to be able to return a feasible flow.

Running Time We bound the running time of Algorithm 1. Event 1 provides a new MBB
edge between a buyer in B \ B̂ and a good in Ĝ. Event 2 restricts the price decrease in γ ensuring
that the invariants are maintained. Event 2 happens under two conditions: First, when the input
configuration changes, i.e., either the set of capped buyers or the set of uncapped goods increases,
and second, when further decrease would violate one of the invariants. These are captured in
the LP (Algorithm 2) through γλici ≥mi and γpj ≥ dj, respectively. Observe that the remaining
inequalities of the LP precisely capture feasible flows in N−(p,Z) when varying prices of goods
in Ĝ using γ. This implies that the only possibility for the second condition is that N−(p,Z) no
longer has a feasible flow. At such a critical value of γ, (1) there is a subset of buyers S ⊆ B̂ such
that

∑
i∈Sm

a
i =

∑
j∈Γ(S) p

a
j , where Γ(S) is the set of goods to which buyers in S have MBB edges,

and (2) further decrease of prices would make the total active budget of buyers in S larger than
the total active prices of Γ(S). Observe that the first condition of Event 2 can happen at most
m+n times during the entire run of the algorithm. In order to show polynomial running time, it
suffices to bound the number of instances of Event 2 occurring under the second condition.

Since
∑

i∈Sm
a
i ≤

∑
i∈S,j∈Γ(S) fij ≤

∑
j∈Γ(S) p

a
j , when equality holds, the buyers in S all have zero

surpluses. If the subset S contains buyer k, then the surplus of k in every feasible flow is zero
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Algorithm 2: MinFactor

Input : Prices p, flow f , set of buyers B̂, set of goods Ĝ, set of zero-surplus buyers Z
Output: Smallest price parameter γ s.t. prices are consistent with the input configuration

1 E← set of MBB edges at prices p between B̂ and Ĝ

2 G̃c← set of goods from Ĝ that are capped at (f ,p)

3 B̃c← set of buyers from B̂ that are capped at (f ,p)

4 λi←mink∈G pk/uik, for all i∈ B̂
5 Solve the following LP in flow variables g and γ:

minγ s.t.∑
i∈B̂ gij = dj, for all j ∈ G̃c∑
i∈B̂ gij = γpj, for all j ∈ Ĝ \ G̃c

γpj ≥ dj, for all j ∈ G̃c∑
j∈Ĝ gij = γciλi, for all i∈ B̃c ∩Z∑
j∈Ĝ gij ≥ γciλi, for all i∈ B̃c \Z∑
j∈Ĝ gij =mi, for all i∈ B̂ \ B̃c

γλici ≥mi, for all i∈ B̂ \ B̃c

gij = 0, for all {i, j} ∈ (B̂× Ĝ) \E
gij ≥ 0, for all i∈ B̂, j ∈ Ĝ

6 return Optimal solution γ of above LP

Algorithm 3: FeasibleFlow

Input : Perturbed market M̃, prices p, and set of zero-surplus buyers Z
Output: Feasible flow consistent with the input configuration

1 E← set of MBB edges at prices p
2 λi←mink∈G pk/uik, for all i∈B
3 Bc← set of capped buyers at p
4 Gc← set of capped goods at p
5 Solve the following feasibility LP in flow variables f :∑

i∈B̂ fij = dj, for all j ∈Gc∑
i∈B̂ fij = pj, for all j ∈G \Gc∑
j∈Ĝ fij = ciλi, for all i∈Bc ∩Z∑
j∈Ĝ fij ≥ ciλi, for all i∈Bc \Z∑
j∈Ĝ fij =mi, for all i∈B \Bc

fij = 0, for all {i, j} ∈ (B×G) \E
fij ≥ 0, for all i∈B,j ∈G

6 return Feasible solution f of above LP

at such a minimum γ, and hence the inner while-loop ends. Otherwise, the MBB edges between
buyers in B \S and goods in Γ(S) will become non-MBB in the next iteration. Observe that there
must be at least one such edge because these buyers can reach k in the MBB graph. So in each
event of the inner while-loop, either a new MBB edge appears (Event 1) or an existing MBB edge
vanishes (Event 2). Next, we show that for a given buyer k, the total number of iterations of the
inner while-loop is polynomially bounded. For this, we first show that the price of a good strictly
decreases during each iteration of the inner while-loop.
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Lemma 3.2. In each iteration of the inner while-loop, the MBB ratio of buyer k strictly
increases.

Proof. Each iteration of the inner while-loop ends with one of the two events. Clearly, Event 1
can occur only when the prices of goods in Ĝ strictly decrease, and this implies that the MBB of
buyer k strictly increases. In case of Event 2, as argued above, there is a subset S ⊆ B̂ of buyers
such that

∑
i∈Sm

a
i =

∑
j∈Γ(S) p

a
j , where Γ(S) is the set of goods to which S have MBB edges.

If k ∈ S, then s(k) = 0 at the end of this iteration. As s(k)> 0 at the start of the iteration, we
deduce that

∑
i∈Sm

a
i <

∑
j∈Γ(S) p

a
j at the beginning of this iteration, and since equality emerges,

the prices must have strictly decreased and the MBB of k strictly increased.
If k 6∈ S, then S 6= B̂ and the flow on all MBB edges from B̂ \S to Γ(S) has become zero. Note

that there is at least one such edge due to the construction of B̂ and Ĝ. The fact that there was a
non-zero flow on these edges implies that

∑
i∈Sm

a
i <

∑
j∈Γ(S) p

a
j at the beginning of this iteration.

We conclude that the prices of goods must have strictly decreased and the MBB of k strictly
increased. �

Next we show that the price of a good decreases substantially after a certain number of iterations.
For this, we partition the iterations into phases, where every phase has 3m iterations of the inner
while-loop.

Lemma 3.3. Let p and p′ be the prices at the beginning and end of a phase, respectively. Then
p′j ≤ pj for all j ∈G, and there exists a good ` such that p′` ≤ p`/(1 + ε).

Proof. By Lemma 3.1, p′j ≤ pj for all j ∈G. For the second part, note that B̂ always contains
buyer k during an entire run of the inner while-loop. Since prices decrease monotonically, the
MBB αk of buyer k increases monotonically. Further, if there is an MBB path (formed by MBB
edges) from buyer k to a good j, say {k, j1},{j1, i1},{i1, j2}, . . . ,{ik−1, jk},{jk, ik},{ik, j}, then for
an integer c, we have

αkpj =

∏
ũkj1 ũi1j2 . . . ũik−1jk ũikj∏
ũi1j1 ũi2j2 . . . ũikjk

= (1 + ε)c .

In each iteration, either a new MBB edge appears or an existing MBB edge vanishes. When a new
MBB edge appears, a new MBB path from buyer k to a good j gets established. When an existing
MBB edge vanishes, then an old MBB path from k to a good j gets destroyed. Further, if there is
an MBB path from k to j, then the price of j decreases monotonically. If there is no MBB path
from k to j, then the price of j does not decrease. After at most 3m events, there has to be a good
j such that initially there is an MBB path from k to j, then no MBB path between them for some
iterations, then again an MBB path between them. Let pj be the price of good j at the time when
there is no path from k to j. Let αk and α′k be, resp., the MBB for buyer k at the time the MBB
path from k to j was broken and when it was subsequently reestablished. Since pj does not change
unless there is a path from k to j, we have

αkpj = (1 + ε)c1 and α′kpj = (1 + ε)c2 , for some integers c1 and c2.

Since α′k >αk, due to Lemma 3.2, we have α′k ≥ αk(1 + ε). Let good l be an MBB good for buyer
k when he has multiplier α′k, and let pl and p′l be the prices of good l when the MBB path from k
to j was broken and when it was later established. This implies

uil/p
′
l = α′k ≥ αk(1 + ε) ≥ (1 + ε)uil/pl

and, thus, p′l ≤ pl/(1 + ε). �

Recall that Ũ is the largest rounded utility.
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Lemma 3.4. The number of iterations of the inner while-loop of Algorithm 1 is at most
O(nm log1+ε(nŨ

n
∑

imi)).

Proof. By Lemma 3.3, in each phase the price of a good decreases by a factor of 1 + ε. The
number of iterations in a phase is in O(m). The starting price of any good is at most

∑
imi. Note

that the price of a good j cannot go down below pmin
j ≥ 1/(nŨn) (Lemma 3.9), otherwise it would

contradict that pmin
j is the minimum possible price of j in any equilibrium. This implies that the

inner while-loop ends for a particular buyer k before the price of some good j is less than pmin
j .

Hence, the number of phases is at most n log1+ε(nŨ
n
∑

imi), and the number of iterations of the
inner while-loop is at most O(nm log1+ε(nŨ

n
∑

imi)). �

Theorem 3.1. For every ε > 0, Algorithm 1 computes a thrifty and modest equilibrium in the
perturbed market M̃ in time polynomial in m, n, U and 1/ε.

Proof. From Lemma 3.1, all invariants are maintained throughout the algorithm. Hence, the
surplus of each good is 0, the surplus of each buyer is non-negative, and all prices decrease mono-
tonically. The algorithm ends when the surplus of each buyer is zero.

Lemma 3.4 shows that there are at most O(nm log1+ε(nŨ
n
∑

imi)) iterations. Since rounded

utilities exceed utilities by a factor of at most 1+ε, this can be upper bounded by O(n2m
ε

log(nU)),
where U denotes the largest integer in the representation of the market. Each iteration can be
implemented in polynomial time. �

Approximate Equilibrium Our algorithm computes an exact equilibrium in M̃ in poly-
nomial time. We show that such an exact equilibrium of M̃ is an ε-approximate equilibrium of
M, thereby obtaining an FPTAS for the problem. Next, we define the precise notion of an ε-
approximate market equilibrium. It is based on a notion of an ε-approximate demand bundle.

Definition 3.3 (Approximate Demand). For a vector p of prices, let x∗i be a demand bun-
dle for buyer i. An allocation xi for buyer i is called an ε-approximate (thrifty and modest) demand
bundle if (1)

∑
j uijxij ≤ ci, (2)

∑
j xijpj ≤ma

i , and (3) ui(xi)≥ (1− ε)ui(x
∗
i ).

An ε-approximate (thrifty and modest) equilibrium differs from an exact equilibrium only by a
relaxation of condition (4) to ε-approximate demand (c.f. Definition 2.1)

Definition 3.4 (Approximate Equilibrium). An ε-approximate (thrifty and modest) equi-
librium is a pair (x,p), where x is an allocation and p a vector of prices such that conditions
(1)-(3), (5) from Definition 2.1 hold, and (4) xi is an ε-approximate demand bundle for every i∈B.

Note that our definition is rather demanding – there are many further possible relaxations which
we do not allow (e.g., we require exact market clearing, modest supplies, exact earning and utility
caps), some of which are found in other notions of approximate equilibrium in the literature.

Lemma 3.5. An exact equilibrium (x,p) of M̃ is an ε-approximate equilibrium of M.

Proof. Conditions (1) − (3) and (5) hold for M̃ and are unchanged for M. To see the ε-
approximate property, let αi and α̃i be the MBB of buyer i at prices p w.r.t. utility ui and perturbed
utility ũi, respectively. Formally, αi = maxk∈G uik/pk and α̃i = maxk∈G ũik/pk. Since (1 + ε)uij >
ũij ≥ uij for all i, j, we have (1 + ε)αi > α̃i ≥ αi for all i. At prices p, let x∗i be an optimal bundle
of buyer i. Clearly, ui(x

∗
i ) = min{ci,miαi}, and ũi(xi) = min{ci,miα̃i}. Therefore,

ui(xi)>
ũi(xi)

1 + ε
=

min{ci,miα̃i}
1 + ε

≥ min{ci,miαi}
1 + ε

=
ui(x

∗
i )

1 + ε
≥ (1− ε)ui(x

∗
i ) .

Condition (1) of the ε-approximate demand holds forM as uij ≤ ũij for all i, j. Condition (2) holds
as ma

i = min{mi, ci/αi} and α̃i ≥ αi. Finally, (3) holds as argued above. �
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Algorithm 4: Finite-Time Algorithm for Money-Clearing Markets

Input : Market M given by budgets mi, utility caps ci, earning caps dj, utilities uij, for all
i∈B and j ∈G;

Output: Equilibrium prices p and allocation x
1 (f ,p)← equilibrium of M when ignoring all utility caps
2 while

∑
i s(i)> 0 do

3 f ← balanced flow in N−(p) // surpluses change similarly

4 δ←maxi s(i)

5 B̂← set of buyers with surplus δ // δ > 0

6 Ĝ←{k ∈G | fki > 0, i∈ B̂}
7 Set γ← 1, and pj← γ · pj for all j ∈ Ĝ
8 Decrease γ continuously down from 1 until one of these events occurs:
9 Event 1: An uncapped buyer becomes capped

10 Event 2: A capped good becomes uncapped
11 Event 3: A new MBB edge appears

12 Event 4: A subset of B̂ becomes tight // N−(p) is feasible

13 f ← feasible flow in N−(p)
14 (f ,p)← MinPrices(f ,p)
15 x← FindAllocation(f ,p)
16 return (x,p)

Corollary 3.1. Algorithm 1 is an FPTAS for computing an ε-approximate equilibrium for
money-clearing markets with earning and utility limits.

3.3. Membership in PLS In this section we show that the problem of computing an exact
equilibrium in a money-clearing marketM is in the class PLS. We first design Algorithm 4, a finite-
time descending-price algorithm. It again relies on the reverse flow network N−(p) = N−(p,∅)
defined in the previous section for which we use Z = ∅.

Algorithm and Invariants The algorithm starts by computing a market equilibrium ignoring
the utility caps of the buyers. This equilibrium exists since the market is money-clearing. It is a
pair (f ,p) of flow and prices for which the outflow of good j is equal to paj and the inflow into
buyer i is mi.

We will maintain the following Invariants during the while-loop in Algorithm 4:
− No price ever increases.
− N−(p) allows a feasible flow.

Lemma 3.6. The Invariants hold during the run of Algorithm 4.

The lemma is quite straightforward to see. Towards a proof, we explain the algorithm in more
technical detail. The algorithm uses a descending-price approach. There is always a flow in N−(p)
with out-flow of good j ∈G equal to paj and in-flow into buyer i∈B at least ma

i . The first invariant
implies that once a good becomes uncapped, it remains uncapped, and once a buyer becomes
capped, he remains capped.

We proceed to discuss the algorithm. It will then be straightforward to see that the lemma holds.
In the body of the while-loop, we first compute a balanced flow f . A balanced flow is a maximum
feasible flow in N−(p) which minimizes the 2-norm of surplus vector s = (s(1), s(2), . . . , s(|B|)).
The notion of balanced flow was introduced in [23] for equilibrium computation in linear Fisher
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Algorithm 5: MinPrices

Input : Market M, prices p, flow f
Output: Minimum prices consistent with input configuration, feasible money flow

1 E← set of MBB edges at prices p
2 Gc← set of capped goods at (f ,p)
3 Bc← set of capped buyers at (f ,p)
4 Solve the following LP in price variables q and flow variables g:

min
∑

j qj
uijqk = uikqj, for each pair of edges {i, j},{i, k} ∈E
uijqk ≥ uikqj, for each pair of edge {i, j} ∈E and non-edge {i, k} 6∈E
qj ≤ dj, for all j ∈G \Gc

qj ≥ dj, for all j ∈Gc∑
i gij = dj, for all j ∈Gc∑
i gij = qj, for all j ∈G \Gc∑
j gij =mi, for all i∈B \Bc

mi ≥
∑

j gij ≥ ciqk/uik, for all i∈Bc where {i, k} ∈E
gij = 0, for all {i, j} ∈ (B×G) \E
qj ≥ 0; gij ≥ 0 for all i∈B,j ∈G

5 return Optimal solution (g∗,q∗) of the above LP

Algorithm 6: FindAllocation

Input : Market M, prices p, flow f
Output: Allocation x

1 Ĝ←{j ∈G | pj = 0}
2 B̂←{i∈B | uij > 0, j ∈ Ĝ}
3 Solve the following feasibility LP in allocation variables (xij)i∈B̂,j∈Ĝ:∑

j∈Ĝ uijxij = ci, for all i∈ B̂∑
i∈B̂ xij ≤ 1, for all j ∈ Ĝ

xij ≥ 0 for all i∈ B̂, j ∈ Ĝ
4 xij← fij/pj for all i∈B \ B̂, j ∈G \ Ĝ
5 return x

markets. It can be computed by n maxflow computations. Consider two buyers i and k with
different surpluses, say s(i)> s(k). If there is a good j connected to i and k by MBB edges, then
there is no flow from j to i [23]. Otherwise, we could decrease fji, increase fjk by the same amount,
and thus decrease the 2-norm of the surplus vector.

Let δ be the maximum surplus of any buyer, and let B̂ be the set of buyers with surplus δ. We
let Ĝ be the set of goods k that have non-zero flow to some buyer in B̂. We then decrease the
prices of all goods in Ĝ by a common factor γ. Starting with γ = 1, we decrease it continuously.
This may destroy MBB edges connecting buyers in B̂ with goods in G\ Ĝ, but, by definition of Ĝ,
there is no flow on such edges. For uncapped goods and capped buyers, this decreases the active
price, respectively budget by a factor of γ. We stop if one of four events happens: (1) an uncapped
buyer becomes capped, (2) a capped good becomes uncapped, (3) a new MBB edge appears, or
(4) a subset of B̂ becomes tight. A subset T of buyers is called tight with respect to prices p if∑

i∈T m
a
i =

∑
j∈Γ(T ) p

a
j , where Γ(T ) ⊆ Ĝ is the set of goods connected to T in the MBB graph.
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Observe that in a feasible flow in N−(p), each buyer i ∈ S receives flow ma
i from Γ(S), but some

of the flow from Γ(S) may go to buyers outside S. Therefore, we must have∑
i∈S

ma
i ≤

∑
j∈Γ(S)

paj , for all S ⊆B.

We can determine the value of γ at which Event 4 happens using n max-flow computations [23].
Next we obtain a feasible flow f in N−(p), which is guaranteed to exist by Event 4. We then use
an LP (Algorithm 5) to compute the pair (g,q) of flow and prices which minimizes

∑
j qj subject

to the constraints that (1) the same buyers are capped, (2) the same goods are capped, and (3)
the same edges are MBB as for (f ,p). The ratio of any two prices in a connected component of the
MBB graph is constant, and f is a feasible solution to the LP. Hence, q≤ p component-wise. This
implies that, indeed, the invariants hold throughout the while-loop.

Finally, we find an equilibrium allocation using Algorithm 6. Here, we first obtain the set Ĝ
of zero-priced goods and the set B̂ of buyers who have non-zero utilities for some good in Ĝ.
Clearly, the buyers of B̂ must be capped. For the buyers and goods in B̂ and Ĝ respectively, we
find an allocation by solving a feasibility LP which allocates each buyer i a bundle of goods worth
ci amount of utility. Note that the set of feasible solutions for this LP is non-empty, because we
always maintain all the invariants (Lemma 3.6) throughout the algorithm.

Running Time and PLS We call the tuple (E,Bc,Gc) a configuration, where E ⊆B ×G is
a set of MBB edges, Bc ⊆B is a set of capped buyers, and Gc ⊆G is a set of capped sellers. At
the beginning of each iteration, we have a configuration based on the current prices. The following
lemma ensures that our algorithm makes progress towards an equilibrium.

Lemma 3.7. During the run of Algorithm 4, no configuration repeats.

Proof. An iteration ending with Event 1 or 2 grows the set of capped buyers or the set of uncapped
goods. Since these sets never lose members, no preceding configuration can repeat. If the sum of
prices is strictly decreased before an event, i.e., γ < 1, none of the preceding configurations can
repeat, since we find the minimum possible prices for the current configuration at the end of each
iteration. We will show below that the prices of the goods in Ĝ are strictly decreased when an
iteration ends with Event 3 or 4.

In the case of Event 3, a new MBB edge appears from a buyer k in B \ B̂ to a good j in Ĝ.
For such an edge to become MBB, γ must be strictly less than 1: Since k 6∈ B̂, s(k) < δ in the
balanced flow. If γ = 1, then using this MBB edge from k to j, we could increase the surplus of k
and decrease the surplus of a buyer in B̂. This would decrease the 2-norm of the surplus vector, a
contradiction.

Next consider an iteration that ends due to Event 4, and suppose the prices of goods in Ĝ are
not decreased, i.e., γ = 1. Note that the surplus of each buyer in B̂ is δ > 0 and the surplus of each
good is 0. Hence, before we decrease prices in lines 8-12 of Algorithm 4,∑

j∈Ĝ

paj −
∑
i∈B̂

ma
i = δ · |B̂| .

If Event 4 occurs at γ = 1, then there is already a tight subset T ⊆ B̂, i.e.,
∑

j∈Γ(T ) p
a
j −
∑

i∈T m
a
i = 0,

where Γ(T ) is the set of goods connected to T . However, for each i ∈ T , δ = s(i) =
∑

j∈Γ(T ) fji −
ma

i . Together, they imply that δ · |T | =
∑

i∈T (
∑

j∈Γ(T ) fji −ma
i ) =

∑
i∈T,j∈Γ(T ) fji −

∑
j∈Γ(T ) p

a
j =

−
∑

i6∈T,j∈Γ(T ) fji, which is a contradiction. �

Theorem 3.2. For any money-clearing market, Algorithm 4 computes a thrifty and modest
equilibrium in exponential time.
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Proof. In each iteration, the balanced flow can be obtained in polynomial time [23]. Consider
the maximum γ at which an event occurs. The maximum γ for the first three events can be easily
obtained in polynomial time. For Event 4, we need to find the maximum γ when a set of buyers
become tight, which can be computed using at most a linear number of max-flow computations [23,
8]. Finally, the LP in Algorithm 5 can be solved in polynomial time, hence each iteration can be
implemented in polynomial time.

By Lemma 3.7, each iteration begins with a different configuration. There are 2O(n·m·(nm)) dis-
tinct configurations, so Algorithm 4 terminates with an equilibrium. The running time depends
polynomially on n, m, U , and the number of distinct configurations. �

Observe that our algorithm constructs an initial configuration in polynomial time. Then, for each
configuration, we can interpret the sum of consistent prices as an objective function, which can
be computed by algorithm MinPrices. Furthermore, we can define a suitable neighborhood among
configurations. Algorithm 4 can be interpreted as doing this. Also, we can compute in polynomial
time an equilibrium for a market Ms as a starting configuration for our algorithm. As such, our
algorithm implements the oracles for the class PLS.

Corollary 3.2. The problem of computing a thrifty and modest equilibrium in money-clearing
markets is in the class PLS.

Proof. We call a configuration feasible if the LP in Algorithm 5 is feasible and its output makes
the feasibility-LP of Algorithm 6 non-empty. Otherwise, we call the configuration infeasible. For
membership in PLS, we construct neighborhood and cost functions on the set of configurations
that are computable in polynomial time and satisfy the following property: A configuration has
lowest cost among all its neighbors (local optimum) if and only if it is an equilibrium.

For each feasible configuration, let the cost be the optimum value of the corresponding LP.
For each infeasible configuration, we define its cost to be a prohibitively high value of (n +
m)Un+m+1

∑
i∈Bmi. Each infeasible configuration has a unique neighbor – the starting configura-

tion of Algorithm 4 (in line 1). Observe that we can take any feasible configuration as the starting
configuration in Algorithm 4. Accordingly, we define the unique neighbor of each feasible configu-
ration C as the next configuration in Algorithm 4 when it is started with C. Clearly, both cost and
neighborhood functions are polynomial-time computable, and a configuration is a local optimum
if and only if it is a thrifty and modest equilibrium. This proves the claim. �

Remark 3.1. It is not obvious how to use Algorithm 1 to show membership in the class PLS.
The difficulty lies in defining a suitable configuration space and a potential function.

3.4. Constant Number of Buyers or Goods In this section, we show that Algorithm 4
runs in polynomial time when either the number of buyers or the number of sellers is a constant.
Consider the number of MBB graphs for a fixed set of capped buyers and capped sellers. Using a cell
decomposition technique, we show it is polynomial when |B| or |G| is constant. We create regions
in a constant-dimensional space by introducing polynomially many hyperplanes. The number of
non-empty regions formed by N hyperplanes in Rd is O(Nd). Thus, we get a polynomial bound on
the number of regions.

We then show that each MBB graph maps to a particular region thus created. Since the number
of regions is polynomial, we get a polynomial bound on the number of different MBB graphs. This
implies that for any given set of capped buyers and capped sellers, Algorithm 4 examines only
polynomially many configurations. Since the set of capped buyers only grows and the set of capped
sellers only shrinks, this implies a polynomial running time for Algorithm 4.

Theorem 3.3. For any money-clearing market with a constant number of buyers or sellers,
Algorithm 4 computes a thrifty and modest equilibrium in polynomial time.
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Proof. For a constant number of goods, consider the following set of hyperplanes in (p1, . . . , p|G|)-
space, where pj denotes the price of good j:

uijpj′ −uij′pj = 0, for all i∈B and all j, j′ ∈G.

These hyperplanes partition the space into cells, and each cell has one of the signs <,=,> for each
hyperplane. Further, each MBB graph (B ∪G,E) satisfies the following constraints in p-variables:

For all {i, j},{i, j′} ∈E : uijpj′ −uij′pj = 0
For all {i, j} ∈E and all {i, j′} 6∈E : uijpj′ −uij′pj > 0.

Now, for a constant number of buyers consider the following set of hyperplanes in (λ1, . . . , λ|B|)-
space, where 1/λi denotes the MBB of buyer i:

λiuij −λi′ui′j = 0, for all i, i′ ∈B and all j ∈G.

These hyperplanes partition the space into cells, and each cell has one of the signs <,=,> for each
hyperplane. Further, each MBB graph (B ∪G,E) satisfies the following constraints in λ-variables:

For all {i, j},{i′, j} ∈E : λiuij −λi′ui′j = 0
For all {i, j} ∈E and all {i′, j} 6∈E : λiuij −λi′ui′j > 0.

In both cases, each MBB graph maps to a particular cell in the cell decomposition. Since the
number of cells is polynomially bounded for constant |G| or |B|, this implies a polynomial bound
on the number of different MBB graphs. Thus, since the set of capped buyers only grows and the
set of capped sellers only shrinks, we get a polynomial running time for Algorithm 4. �

3.5. Membership in PPAD In this section, we show that computing a thrifty and modest
equilibrium in money-clearing markets M is in the class PPAD. We first derive a formulation
as a linear complementarity problem (LCP). It captures all thrifty and modest equilibria of M,
but also has non-equilibrium solutions. To discard the non-equilibrium solutions, we incorporate a
positive lower bound on variables representing the prices of the goods and the MBB ratio of each
buyer. This turns out to be a non-trivial adjustment, because a subset of prices may be zero at all
equilibria, so we must be careful not to discard equilibrium solutions. Our approach is based on our
previous work [8], in which we gave a polynomial-time algorithm for marketsMb with utility limits
(but without earning limits). This algorithm finds an equilibrium whose prices are coordinate-wise
smallest among all equilibria.

Our approach can be summarized as follows. Consider a money-clearing marketM. Now suppose
we remove all earning caps to obtain a market Mb. To this market we apply the algorithm of [8]
and obtain a min-price equilibrium (xmin,pmin). We show that using pmin, the market M can be
partitioned into two separate markets M1 and M2. Market M1 consists of all goods with price 0
in pmin and all buyers having non-zero utility for these goods.M2 consists of the remaining buyers
and goods. Since all buyers in M2 have no utility for goods in M1, we have that M2 is money
clearing if and only if M is money clearing.

Based on these two markets, we show that there is4 an equilibrium of M that is an equilibrium
of M1 and an equilibrium of M2. We already know an equilibrium for M1 with a price of 0 for
every good. For M2 we show that at every equilibrium, the price of a good j is at least pmin

j .
Using this lower bound on the equilibrium prices inM2, we construct a modified LCP formulation

4 In fact, it can be shown that every equilibrium ofM has this property, but this is not necessary for membership in
PPAD.
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M-LCP which exactly captures all equilibria ofM2. We add a suitable auxiliary scalar variable to
M-LCP and apply Lemke’s algorithm. If M2 is money clearing, we show that Lemke’s algorithm
is guaranteed to converge to an equilibrium of M2. Combining this with the equilibrium of M1

gives an equilibrium of M. Further, using a result of Todd [54] specified later, this proves that
computing an equilibrium in money-clearing markets M is in PPAD.

3.5.1. LCP Formulation We start our analysis by deriving an LCP formulation to capture
the equilibria of M. Let ⊥ denote a complementarity constraint between an inequality and a
variable, e.g., uijλi−pj ≤ 0⊥ fij ≥ 0 is shorthand for uijλi−pj ≤ 0 and fij ≥ 0 and fij(uijλi−pj) =
0. The LCP has the following variables and constraints:

• p = (pj)j∈G, where pj is the price of good j,
• f = (fij)i∈B,j∈G, where fij is the money spent on good j by buyer i,
• λ= (λi)i∈B, where 1/λi is the MBB of buyer i at prices p,
• δ= (δi)i∈B, where (mi− δi) is the active budget of buyer i,
• β= (βj)j∈G, where (pj −βj) is the active price of good j.

For all (i, j)∈ (B,G) : uijλi− pj ≤ 0 ⊥ fij ≥ 0 (3)
For all i∈B : mi− ciλi ≤ δi ⊥ δi ≥ 0 (4)
For all i∈B : −

∑
j fij ≤−(mi− δi) ⊥ λi ≥ 0 (5)

For all j ∈G : pj − dj ≤ βj ⊥ βj ≥ 0 (6)
For all j ∈G :

∑
i fij ≤ pj −βj ⊥ pj ≥ 0 (7)

Lemma 3.8. The LCP defined by (3)–(7) captures all the equilibria of M.

Proof. Let (f ,p) be an equilibrium of M. Let 1/λi be the MBB ratio of buyer i at prices p.
Clearly, λi = minj:uij>0 pj/uij. In equilibrium, each buyer only spends money on goods with largest
MBB ratio, so fij > 0 only if uijλi − pj = 0. This implies that (p, f ,λ) satisfies (3). The active
budget ma

i of buyer i is min{mi, ciλi}, and
∑

j fij = ma
i . Setting δi = max{0,mi − ciλi} satisfies

(4). This further implies that ma
i =mi− δi, and (5) follows. Similarly, the active price paj of good j

is min{pj, dj}, and
∑

i fij = paj . Setting βj = max{0, pj − dj} satisfies (6). This further implies that
paj = pj −βj, and (7) follows. This proves the claim. �

Lemma 3.8 shows that all equilibria of M are captured by the LCP (3)-(7). However, there
are solutions to this LCP which are not market equilibria. For example, λi = pj = βj = fij = 0
for all i and j and δi =mi for all i is an LCP solution but not an equilibrium. To discard these
non-equilibrium solutions in the LCP, we strive to include a positive lower bound to all pj and λi.

Remark 3.2. Previous constructions [32, 34] of LCPs for market equilibria use a positive lower
bound of 1 for the prices. In our case this is not sufficient, for at least two reasons. First, there
might be prices that are zero in all equilibria. A positive lower bound for these prices would discard
all equilibria as solutions of the LCP. Second, there are solutions to the LCP, where λi = 0 and
δi = mi for all i and fij = 0 for all (i, j). As a consequence, we need to establish positive lower
bounds for all λi.

To handle these difficulties we use our polynomial-time algorithm [8] for marketsMb with utility
caps. Consider market M and disregard all earning caps. The resulting market is a market Mb,
for which our algorithm from [8] can compute a price vector pmin = (pmin

j )j∈G of a min-price
equilibrium. A min-price equilibrium has coordinate-wise smallest prices, i.e., for every good j the
price pmin

j is the smallest price of good j in all equilibria. As a consequence, the set S = {j ∈
G | pmin

j = 0} includes all goods that have price zero in every equilibrium of market Mb. Let
Γ(S) be the set of buyers who derive non-zero utility from goods in S, i.e., Γ(S) = {i ∈B | uij >
0 for some j ∈ S}.
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We partition the market into two disjoint markets. Market M1 includes exactly the goods of S
and the buyers in Γ(S). Market M2 has the remaining goods and buyers. By definition uij = 0 for
every j ∈ S and i 6∈ Γ(S) and hence no buyer in M2 will ever spend on goods in M1. The min-
price equilibrium (xmin,pmin) yields an equilibrium for M1, since all utility caps for all i ∈ Γ(S)
are reached and all earning caps for all j ∈ S are satisfied. We will next establish that in every
equilibrium for M2 every good j 6∈ S has a price pj ≥ pmin

j . Then no buyer M1 will ever spend on
goods from M2, justifying the separation of the markets.

Lemma 3.9. In every equilibrium for marketM2, pj ≥ pmin
j , for all j 6∈ S. Furthermore, pmin

j ≥
1/(nUn

max), where Umax is the largest utility parameter.

Proof. For the first part, consider the min-price equilibrium (xmin,pmin) without earning caps,
restricted to buyers and goods in M2. For a subset T of goods, let Γp(T ) denote the set of buyers
having MBB edges to at least one good in T at prices p. We claim that for any non-empty set T of
goods in M2, either Γpmin(T ) contains an uncapped buyer or there is a capped buyer in Γpmin(T )
who spends money on a good outside T . Observe that if neither of the two conditions are true, then
we can find another equilibrium by reducing the prices of goods in T and keeping the allocation
the same, which contradicts that (xmin,pmin) is a min-price equilibrium without earning caps.

Now suppose there is an equilibrium (x,p) of M2 where pj < pmin
j for some j 6∈ S. Let γ =

mink∈G\S pk/p
min
k < 1 and let T be the set of goods j in G \ S for which pj/p

min
j = γ, i.e., T =

{j ∈G \ S | pj/pmin
j = γ}. Consider any buyer i ∈ Γpmin(T ) and let ma

i (p) and ma
i (pmin) denote

the active budget of i at prices p and pmin, respectively. Then ma
i (pmin) = min(mi, λici), where

λi is the reciprocal of the MBB ratio of i at prices pmin. Since the prices of the goods outside
T are scaled by a factor larger than γ when passing from pmin to p, all MBB goods for i with
respect to prices p are entirely in T . Also λi is scaled by γ and hence ma

i (p) = min(mi, γλici).
Thus, if i is capped in (xmin,pmin), then i will be capped in (x,p) and ma

i (p) = γma
i (pmin).

If i is uncapped in the former equilibrium, he may or may not be uncapped in the latter, and
ma

i (p) = min(mi, γλici)>γmi ≥ γmin(mi, λici) = γma
i (pmin). Using these properties, we obtain∑

i∈Γ
pmin (T )

ma
i (p)≥ γ ·

∑
i∈Γ

pmin (T )

ma
i (pmin)≥ γ ·

∑
j∈T

pmin
j =

∑
j∈T

pj ≥
∑
j∈T

paj . (8)

If in equilibrium (xmin,pmin), Γpmin(T ) contains an uncapped buyer, the first inequality of (8) is
strict, and if a capped buyer spends money on a good outside T , the second inequality of (8) is
strict. In either case, we have ∑

i∈Γ
pmin (T )

ma
i (p)>

∑
j∈T

paj ,

a contradiction because buyers in Γpmin(T ) only have MBB edges to goods in T at prices p.
For the second part, consider the MBB graph G restricted to buyers and goods in M2 at prices

pmin. Observe that each connected component C of G contains an uncapped buyer, otherwise we
could reduce the prices of goods in C, which contradicts that (xmin,pmin) is a min-price equilibrium.
Since the budget of each buyer is at least 1, there is a good, say gC , in C that has price at least
1/n. Moreover, since there is a path of length at most n of MBB edges connecting every other good
g in C with gC , the price of g is at least 1/(nUn

max), where Umax = maxi,j uij. �

Next we derive an LCP for market M2 using the lower bound on the price of each good as
given in Lemma 3.9. At this point, we need to solve the equilibrium problem for M2 only, so let
B2 = B \ Γ(S) and G2 = G \ S denote the sets of buyers and goods in M2, respectively. For the
lower bound on λi’s we define

Λ =
1

2
· min
i∈B2,j∈G2: uij>0

{
pmin
j

uij

}
. (9)
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Consider the following modified LCP in variables (λ′,p′, f ,δ,β), where we substitute λi , λ′i +Λ
and pj , p′j + pmin

j . Together with λ′i ≥ 0 and p′j ≥ 0, this implies that pj ≥ pmin
j and λi ≥Λ.

For all (i, j)∈ (B2,G2) : uij(λ
′
i + Λ)− (p′j + pmin

j )≤ 0 ⊥ fij ≥ 0 (10)
For all i∈B2 : mi− ci(λ′i + Λ)≤ δi ⊥ δi ≥ 0 (11)
For all i∈B2 : −

∑
j fij ≤−(mi− δi) ⊥ λ′i ≥ 0 (12)

For all j ∈G2 : p′j + pmin
j − dj ≤ βj ⊥ βj ≥ 0 (13)

For all j ∈G2 :
∑

i fij ≤ p′j + pmin
j −βj ⊥ p′j ≥ 0 (14)

The constraints (10)-(14) represent the M-LCP. It is the same as the LCP (3)-(7) for M2 with
additional constraints pj ≥ pmin

j for all j ∈G2 and λi ≥ Λ for all i ∈ B2. We show that this LCP
exactly captures all equilibria of M2.

Lemma 3.10. A solution of M-LCP is a thrifty and modest equilibrium of M2 and vice-versa.

Proof. Lemmas 3.8 and 3.9 show that every equilibrium of M2 is a solution of M-LCP. For
the other direction, consider a solution (λ′,p′, f ,δ,β) of M-LCP. For the active prices, we show
paj = min(dj, p

′
j + pmin) = p′j + pmin−βj. Indeed, if βj = 0, we have p′j + pmin

j ≤ dj by (13), and then
paj = p′j +pmin

j ; otherwise p′j +pmin
j = dj +βj ≥ dj and then paj = dj. Similarly, for the active budgets,

we have ma
i = min(mi, ci(λi + Λ)) =mi− δi. Indeed, if δi = 0, we have mi ≤ ci(λ′i + Λ) by (11), and

then ma
i =mi; otherwise mi = ci(λ

′
i + Λ) + δi ≥ ci(λ′i + Λ), and then ma

i = ci(λ
′
i + Λ). This implies

that the active price paj of good j is p′j + pmin
j −βj, and the active budget ma

i of buyer i is mi− δi.
Clearly, ma

i > 0 for all i∈B2, and paj > 0 for all j ∈G2.
We next show that λ′i > 0 for all i. Suppose λ′i = 0 for a buyer i. Then the left inequality in (10)

is not tight by (9) and hence fij = 0 for all j. However,
∑

j fij = 0 violates the left inequality of
(12) since mi− δi =ma

i > 0. Hence λ′i > 0, for all i∈B2.
The constraints (10) ensure that fij > 0 implies uij/(p

′
j + pmin

j ) = maxk∈G2
uik/(p

′
k + pmin

k ), i.e.,
money flows only on MBB edges, and each buyer buys an optimal bundle.

The constraints (12) together with the fact that λ′i > 0 ensure
∑

j fij =ma
i for each i, i.e., each

buyer spends his entire active budget. Now we only need to show that each good receives money
equal to its active price, i.e.,

∑
i fij = paj , for all j ∈G2.

Note that the prices pmin impose an equilibrium forM2 without the earning caps. Let S′ = {j ∈
G2 | p′j = 0}. Clearly,

∑
i fij = paj , for all j ∈G2 \ S′, due to (14). Let Γ(S′) be the set of buyers

having at least one MBB good in S′ at prices pmin. Since pmin is the min-price equilibrium without
earning caps, the total active budget at prices pmin of buyers in Γ(S′) is at least the total prices of
goods in S′, i.e.,

∑
j∈S′ p

min
j ≤

∑
i∈Γ(S′)m

a
i (pmin), where (as in the proof of the preceding lemma)

we use ma
i (pmin) to denote the active budget of i at prices pmin.

Now suppose we set prices pj = p′j + pmin
j ≥ pmin

j for all j ∈G2. Since pj > p
min
j for all j ∈G2 \S′

and pj = pmin
j for all j ∈ S′, buyers in Γ(S′) have in S′ all their MBB goods at prices p. Hence,

λi for buyers i ∈ Γ(S′) does not change. Thus, ma
i =ma

i (p) =ma
i (pmin) for every i ∈ Γ(S′), which

implies ∑
j∈S′

pmin
j ≤

∑
i∈Γ(S′)

ma
i . (15)

Further, summing the left-hand-side inequality of constraints (14) and (12) for buyers in Γ(S′) and
using the fact that λ′i > 0, for all i, we get∑

i∈Γ(S′)

ma
i =

∑
i∈Γ(S′),j∈S′

fij ≤
∑
j∈S′

pmin
j −

∑
j∈S′

βj =
∑
j∈S′

paj .

Together with (15), this implies that βj = 0 for all j ∈ S′, and all inequalities are equalities.
Therefore

∑
i fij = paj for all j ∈ S′ and hence for all j ∈G2. �
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3.5.2. Lemke’s Algorithm In this section, we apply Lemke’s algorithm (see Appendix A for
details) on the M-LCP. For this, we first add an auxiliary, non-negative, scalar variable z in (12)
and consider

−
∑
j

fij − z ≤−(mi− δi) ⊥ λ′i ≥ 0 and z ≥ 0 . (16)

This is the conjunction of the inequality z ≥ 0 with a complementarity constraint. We denote byM-
LCP2 the set of constraints (10-11), (13-14) and (16). The primary ray ofM-LCP2 is z ≥mi− δi,
for all i. The other variables are set to λ′ = 0, p′ = 0, f = 0, δi = max{0,mi − Λci}, for all i,
and βj = max{0, pmin

j − dj}, for all j. In the proof of the following theorem we show that under
the money-clearing condition, there are no secondary rays in M-LCP2. Hence, Lemke’s algorithm
applied to this LCP will converge to an equilibrium.

Theorem 3.4. Lemke’s algorithm applied to M-LCP2 converges to an equilibrium in money-
clearing markets.

Proof. We prove the result by contradiction. Suppose Lemke’s algorithm converges on a sec-
ondary ray R, which starts at a vertex (λ′∗,p

′
∗, f∗,δ∗,β∗, z∗) where z∗ > 0 (otherwise, the algorithm

would have stopped in the vertex) and extends in direction (λ′o,p
′
o, fo,δo,βo, zo), i.e.,

R= {(λ′∗,p′∗, f∗,δ∗,β∗, z∗) +α(λ′o,p
′
o, fo,δo,βo, zo) | α≥ 0}.

Observe that (λ′o,p
′
o, fo,δo,βo, zo) ≥ 0 since all variables of M-LCP2 are constrained to be non-

negative. We consider three cases and show a contradiction in each of them.
Case 1: p′o > 0: On R, the following hold:
• Since all prices are increasing, all βj’s are increasing due to (13). Thus for large α, the left

inequality of (13) is tight and hence p−d =β. Thus paj = p′j + pmin
j −βj = dj for all j.

• Further,
∑

i fij = paj for all j by (14) since prices p′ are positive.
• Consider any pair (i, j) with fij > 0. Then λ′i > 0 by (9) and (10).
• Let S = {i∈B2 | λ′i > 0}. For i∈ S, the left inequality in (16) is an equality. Summing over i∈ S,

we obtain
∑

i∈S(mi − δi)− z|S|=
∑
dj. By the money clearing property (1),

∑
i∈Smi ≤

∑
j dj

and hence z = 0 and z∗ = 0; a contradiction.

Case 2: p′0 = 0: On R, the following hold:
• The vector of all prices remains constant and equal to pmin + p′∗.
• λ′0 = 0 since otherwise the left inequality in (10) does not hold for large α. Thus λ′ is constant:
λ′ =λ′∗.

• f0 = 0 as otherwise the left inequality in (14) does not hold for large α. Thus, f = f∗.
• Since f , p, and λ are constant, β must be constant by (14) and δ must be constant by (11).

Thus, δo = 0 and βo = 0.
• Since a direction vector cannot be zero, we must have zo > 0. Note that all other components of

the direction vector are zero.
• Since zo > 0, (16) implies λ′ = 0 and, hence, λ′∗ = 0.
• We further conclude f∗ = 0 from (9) and (10), then p′∗ = 0 from (14), (δ∗)i = max{0,mi− ciΛ}

from (11), and finally (β∗)j = max{0, pmin
j − dj} from (13).

This means that the ray is not a secondary ray, but the primary ray; a contradiction.

Case 3: p′o ≯ 0 and p′o 6= 0: On R, the following hold:
• Some prices are increasing and some are constant on R. Let S′ = {j ∈G2 | (p′o)j > 0} be the set

of goods with increasing prices.
• For j ∈ S′, βj must be increasing by (13). Hence, the left inequality in (13) must be an equality.

Thus, paj = dj, and by (14)
∑

i fij = dj.
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• The prices of all goods in S′ are increasing to infinity, and these goods are sold up to their

maximum possible revenue. Hence, the buyers who buy these goods have zero utility for the

goods outside S′, because each buyer buys an optimal bundle and the prices of goods outside

S′ are constant. Let Γ(S′) be the set of buyers buying goods in S′ on R. Then λ′i > 0 for all

i∈ Γ(S′) due to (9) and (10), and hence the left inequality in (16) is an equality.

• Summing (16) over i ∈ Γ(S′), we obtain
∑

i∈Γ(S′)(mi− δi)− z|Γ(S′)|=
∑

j∈S′ dj. By the money
clearing property

∑
i∈Γ(S′)mi ≤

∑
j∈S′ dj. Thus z = 0 and z∗ = 0, a contradiction.

This completes the proof. �

We note that the algorithm of [8] guarantees that the price vector pmin is rational with a bit

length that is polynomial in the size of the input (i.e., in the sum of the logarithm of every

uij,mi, dj, ci). This further implies that Λ is rational with polynomial bit length. Hence, the polyhe-

dron associated withM-LCP2 is defined by rational numbers with a bit length that is polynomial

in the size of the input.

Corollary 3.3. The problem of computing a thrifty and modest equilibrium in money-clearing

markets is in the class PPAD.

Proof. By Theorem 3.4, Lemke’s algorithm must converge to an equilibrium for money-clearing

marketsM. Note that Lemke’s algorithm traces a path on the 1-skeleton of a polyhedron. Let v be

a vertex on the path found by Lemke’s algorithm. To prove membership in PPAD, we need to show

that the unique predecessor and successor of v on this path can be found efficiently. Clearly, these

two vertices, say u and w, can be found simply by pivoting. To determine which vertex leads to

the start of the path, i.e., the primary ray, and which leads to the end, we use a result by Todd [54]

on the orientability of the path followed by a complementary pivot algorithm. It shows that the

signs of the sub-determinants of tight constraints satisfied by the vertices u, v and w provide the

orientation of the path. This concludes the proof of membership in PPAD. �

Remark 3.3. We note that a money-clearing market M can be reduced to a more general

Leontief-free market [33]. However, the agents in the reduced market remain satiated because buyers

and sellers in M are thrifty. The results for Leontief-free markets in [33] (such as membership in

PPAD) require non-satiation of agents. Hence, these results are not directly applicable to markets

M via such a reduction.

4. Approximating the Nash Social Welfare

4.1. Constant-Factor Approximation for Capped Linear Valuations In this section,

we present a (2e1/(2e) +ε)-approximation algorithm for maximizing Nash social welfare with capped

linear (or budget-additive) valuations, for every constant ε > 0.

Consider maximizing Nash social welfare when allocating a set G of indivisible items to a set

B of agents with capped linear valuations. As a first step, we execute a simple adjustment to the

valuation functions. Note that if for some agent i ∈ B and some item j ∈G we have vij ≥ ci, we

can equivalently assume that vij = ci since the valuation of i can be at most ci. More formally, let

v′ij = min(vij, ci) and v′i(x
S
i ) = min

(
ci,
∑

j∈G v
′
ijx

S
ij

)
. The following lemma is straightforward and

its proof is omitted.

Lemma 4.1. v′i(x) = vi(x) for every integral allocation x.

Henceforth, we will assume that vij ≤ ci, for all i∈B, j ∈G.
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To solve the integral maximization problem, consider the following convex program which con-
stitutes a natural fractional relaxation.

maximize

(∏
i∈B

(∑
j∈G

vijxij

))1/n

s.t.
∑
j∈G

vijxij ≤ ci for all i∈B,

∑
i∈B

xij ≤ 1 for all j ∈G,

xij ≥ 0 for all i∈B, j ∈G.

(17)

The optimal solution to this program is the allocation vector of a thrifty and modest equilibrium
in a Fisher market, in which agent i has a linear utility with uij = vij, a utility limit ci, and a
budget mi = 1 (for details, see, e.g. [8, 17]).

Unfortunately, the optimal fractional allocation of this program can be significantly better in
terms of the Nash social welfare than any integral solution with all xij ∈ {0,1} (see [18] for an
example, in which the ratio is exponential in |B|). Hence, as in [8, 17, 18], we introduce additional
earning limits dj = 1 for all j ∈G. We will see that this lowers the achievable objective function
value in equilibrium and allows us to round the fractional equilibrium allocation to an integral one
that approximates the optimal Nash social welfare.

Consider the resulting Fisher market M with utility and earning limits. Our first observation
is that non-trivial instances of the Nash social welfare problem give rise to a market M that is
money clearing.

Lemma 4.2. Consider the Fisher market M resulting from an instance of the Nash social
welfare problem. If the market M is not money clearing, then the maximum Nash social welfare
for indivisible items is 0.

Proof. Obviously, if market M is not money clearing, then there exists a subset B′ of buyers
such that the sum of the earning caps of goods in Γ(B′) = {j | vij > 0, i ∈B′} is smaller than the
sum of the budgets of buyers in B′. This implies that |Γ(B′)|< |B′|. Hence, there is no allocation
where each agent in B′ gets at least one item of positive valuation. Thus, the Nash social welfare
must always be 0. �

When the market is not money clearing, every integral allocation has the optimal Nash social
welfare. It is easy to check the money-clearing condition (1) by a max-flow computation.

Hence, for the remainder of this section, we assume that the instance of the Nash social wel-
fare problem is non-trivial, i.e., the resulting Fisher market is money clearing. We have seen in
Section 3.1 above that a money-clearing market M always has a thrifty and modest equilibrium.
Suppose we are given such an equilibrium (x,p).

The Nash social welfare objective allows scaling the valuation function of every agent i by any
factor γi > 0. This adjustment changes neither the equilibrium, the integral optimum solution of
the Nash social welfare problem, nor the approximation factor. Given the equilibrium (x,p), we
want to normalize the valuation function for agent i based on the MBB ratio αi of buyer i in the
market equilibrium.

In equilibrium, there can be a set of goods G0 = {j | pj = 0}. All buyers B0 = {i | uij >
0 for some j ∈G0} interested in any good j ∈G0 have an infinite MBB ratio. Due to our equilib-
rium conditions, every i ∈B0 must be capped and receive allocation only from G0, i.e., ui(x) = ci
and xij > 0 only if j ∈G0 and uij > 0. Moreover, since no buyer i ∈B \B0 has positive utility for
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any of the goods G0, these goods are allocated only to B0. Therefore, we can treat items G0 and
agents B0 separately in the analysis.

For all i ∈ B \B0, we normalize v′ij = vij/αi and c′i = ci/αi. This does not change the demand
bundle for buyer i, and thus (x,p) remains an equilibrium. In the resulting instance, every such
buyer has an MBB ratio of 1 in (x,p). Consequently, v′ij ≤ pj for all i∈B \B0, j ∈G, where equality
holds if and only if j is an MBB good of buyer i. For simplicity we assume that v and c fulfill these
conditions directly, i.e., vij = v′ij and ci = c′i. Together with the fact that vij ≤ ci for all (i, j) this
implies

vij ≤min(pj, ci), for all i∈B \B0 and all j ∈G. (18)

The following lemma is a helpful insight on the structure of equilibria.

Lemma 4.3. Consider a money-clearing market M with mi = 1, dj = 1, and vij ≤ ci, for all
i ∈ B,j ∈G. Suppose we normalize the utilities based on a thrifty and modest equilibrium (x,p).
Then the following properties hold.

(a) A buyer i ∈B \B0 spends ma
i = min(1, ci) units of money. His valuation vi(x) equals ma

i .
If i is capped, ci ≤ 1.

(b) If i is capped, he is allocated at least one unit of goods.
(c) If i is capped and j is an MBB good for buyer i, then pj ≤ 1.
(d) If pj < 1, j is completely sold.
(e) The money spent on good j is paj = min(pj,1).

Proof. An uncapped buyer i ∈B \B0 spends his entire budget as otherwise xi would not be a
demand bundle. Since the MBB ratio is 1, the valuation vi(x) equals the money spent by i. If i is
capped, his valuation equals ci, and hence the money spent equals ci, so ci ≤ 1.

Since vij ≤ ci always and ci = vi(x) for a capped buyer, ci = vi(x)≤ ci
∑

j xij and hence
∑

j xij ≥
1.

If j is an MBB good for a capped buyer i, then pj = vij ≤min(pj, ci) according to (18) and hence
pj ≤ ci ≤ 1, where the last inequality was established in (a).

If 0< pj < 1, the supply ej = min(1, dj/pj) = min(1,1/pj) = 1. Thus j is completely sold.
Finally, the money spent on j is pjej = pj min(1,1/pj) = min(pj,1) = paj . �

Our subsequent analysis proceeds as follows. First, in Section 4.1.1, we describe an upper bound
on the optimal Nash social welfare of any integral solution. The upper bound is based on the
properties of any thrifty and modest equilibrium described above. Then, in Section 4.1.2, we show
how to round an equilibrium and obtain an integral solution which is a 2e1/(2e)-approximation
to the optimal Nash social welfare. Finally, in Section 4.1.3, since our FPTAS from Section 3.2
computes an exact equilibrium in a perturbed market, we discuss the impact of perturbation on
the approximation guarantee.

4.1.1. Upper Bound In this section, we describe an upper bound on the optimal Nash social
welfare when valuations are normalized based on an equilibrium (x,p). The bound relates to prices
and utility caps of the capped buyers in (x,p). We denote by Bc and Bu the set of capped and
uncapped buyers in (x,p), respectively. Recall that since (x,p) is a thrifty and modest equilibrium,
buyers may not spend their entire budget and sellers may not sell their entire supply. We denote
by ma

i = min(1, ci) the active budget of buyer i and by paj = min(pj,1) the active price of good j.
The following result is a generalization of a similar bound shown in [18].

Theorem 4.1. For valuations v and caps c normalized according to equilibrium prices p,(∏
i∈B

vi(x
∗)

)1/n

≤

∏
i∈Bc

ci
∏

j:pj>1

pj

1/n

,



Garg, Hoefer, and Mehlhorn: Fisher Markets and Nash Social Welfare
28 Mathematics of Operations Research 00(0), pp. 000–000, c© 0000 INFORMS

where x∗ is an integral allocation that maximizes the Nash social welfare.

Proof. Consider an integral allocation x∗ that maximizes the Nash social welfare. For the agents
i∈B0 ⊆Bc, a simple upper bound is

∏
i∈B0

vi(x
∗)≤

∏
i∈B0

ci. Next, we obtain an upper bound on∏
i∈B\B0

vi(x
∗) using the market equilibrium (x,p). The starting point is the observation that for

a buyer who receives a good, due to the rescaling, his valuation is equal to the good’s price.

Step 1. Consider the set Gh of goods with a price greater than 1. Let Γ(Gh) be the set of
buyers who buy some good in Gh at x, i.e., Γ(Gh) := {i ∈ B | xij > 0, j ∈ Gh}. Note that every
agent of Γ(Gh) is uncapped due to Lemma 4.3(c), i.e., Γ(Gh)∩Bc = ∅. Next, allocate the goods in
Gh to Γ(Gh), one per buyer, but only to buyers whose valuation equals the price. This is possible
because at equilibrium (x,p), there is one unit of spending on each of these goods, and each buyer
has one unit of money. Thus, for every subset F ⊂Gh, the set of buyers interested in F is of size
at least |F |, which implies by Hall’s theorem that a perfect matching exists for these goods and
buyers. Let Bh ⊆ Γ(Gh) be the set of buyers who each gets one good of Gh in this matching. Clearly,
|Bh|= |Gh|. Remove the goods in Gh and the buyers in Bh from further consideration.

Step 2. We now increase the valuations of the remaining buyers (i.e., B \ (B0 ∪Bh)) for the
remaining goods (i.e., G\ (G0∪Gh)) so that on every good they are equal to the prices, i.e., we set
v′ij = pj for all (i, j). Note that the Nash social welfare can only increase. Arbitrarily allocate the
remaining goods fractionally so that each remaining buyer i receives valuation min{ci,1}. This is
possible because the sum of the prices of all remaining goods is exactly equal to

∑
i∈Bc\B0

ci + |B \
Bc| − |Bh|.

Clearly, as shown in [18], the resulting Nash social welfare upper bounds the Nash welfare at x∗

and is equal to ∏
i∈Bc

ci
∏

j:pj>1

pj

1/n

.

�

4.1.2. Rounding Equilibria In this section, we give an algorithm to round a fractional
allocation of a thrifty and modest equilibrium (x,p) to an integral one. Without loss of generality,
we may assume that the allocation graph (B ∪ G,E) with E = {{i, j} ∈ B × G | xij > 0} is a
forest [49, 24]. In the following, we only discuss how to round the trees in (B \B0)× (G \G0). For
trees in B0 ×G0, the rounding and the analysis are very similar, but independent of prices and
slightly simpler (see Appendix B). Consider the following procedure:

Preprocessing: It consists of three substeps.
(a) For each tree component of the allocation graph, assign some agent to be a root node.
(b) For every good j keep at most one child agent. This child-agent i must buy the largest amount

of j among the child agents (ties are broken arbitrarily) and must have an active budget which
is less than twice the price of j, i.e., ma

i /2< pj. In other words, child agent i is cut off from
good j if a sibling buys more of good j (ties are broken arbitrarily) or if pj ≤ma

i /2. Note that
if a sibling buys more of good j, the sibling also spends more on good j.

(c) Agents whose connection to their parent-good is severed in step (b) become roots.
Rounding: It consists of two substeps.
(a) Goods with no child agent are assigned to their parent agent.
(b) For each non-trivial tree component, do the following recursively: Assign the root agent a child

good j that gives the maximum value (among all children goods) in the fractional solution.
Except in the subtree rooted at j, assign each good to its child agent in the remaining tree.
Make the child agent of good j the root node of a newly created tree.
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Let us define the remaining valuation of a buyer after preprocessing as the sum of the fractional
values for the goods at the ends of the remaining edges incident on the buyer.

Lemma 4.4. After preprocessing, the remaining valuation of each root agent r is at least
vr(x)/2. For all other agents i the valuation is at least vi(x). If good j has child agents and pj > 1,
then j keeps a child agent.

Proof. Whenever an agent i loses allocation because the connection to the parent-good j is cut,
a new tree component is being created, and i becomes its root node. If i is cut from j, then either
xij ≤ 1/2 or pj ≤ma

i /2. In either case, since vij ≤ ci for all (i, j), i receives at most half of his utility
from j. For a good j with child agents and pj > 1, the child agent i who buys most of j is kept as
a child since pj > 1/2≥ma

i /2. �

Lemma 4.5. After step (a) of the rounding, each tree component T has kT + 1 agents and kT
goods for some kT ≥ 0. Suppose agent i in T is assigned a good j with pj > 1 during step (a) of the
rounding. Then T consists of only i and j, the valuation of i after rounding is pj, and Bc ∩T = ∅.

Proof. The first part is straightforward since after step (a) of the rounding, every remaining
good has exactly one parent agent and one child agent. For the second part, consider any good j
with price pj > 1. If j has children-agents, the one that spends most on j stays as a child, because
ma

i′ ≤ 1< 2pj for any agent i′. This implies that if j is a leaf of the initial forest, only its parent
agent spends money on it, call it i. Since the money inflow into j is one and i has only one unit
to spend, only i spends on j and i spends one unit on j. Thus T consists of only i and j. Further,
vij = pj, since j is an MBB good for i. Hence, pj ≤ ci by (18). The valuation of i after rounding is
pj > 1, and i is not capped in the equilibrium. This implies Bc ∩T = ∅. �

Lemma 4.6. After rounding, each agent i who is assigned his parent good obtains a valuation
of at least vi(x)/2.

Proof. Consider any good j in the tree in the rounding step. Since j was not assigned to its
parent agent during rounding step (a), its price is at least half of the active budget of its child agent
i, i.e., pj ≥ma

i /2. Since j is MBB for i, we see vij = pj. From this good the child-agent obtains a
valuation of at least half of the valuation in the equilibrium. �

Consider a tree T at the beginning of step (b) of the rounding with kT + 1 agents and kT goods.
Assume kT ≥ 1 first. Let a1, g1, a2, g2, . . . , al, g`, a`+1 be the recursion path in T starting from the
root agent a1 and ending at the leaf agent a`+1 such that a1, . . . , a`+1 became root agents of the
trees formed recursively during the rounding step, and good gi is assigned to ai in this process,
for 1≤ i≤ `. Note that a`+1 is not assigned any good in step (b) of the rounding. However, as the
proof of the following lemma shows, a`+1 must have been assigned some good during step (a) of
the rounding. Let ki denote the number of agent ai’s children, for 1≤ i≤ `. If kT = 0, then `= 0
and a1 = a`+1 is the root of a tree containing no goods after step (a) of the rounding.

Lemma 4.7. The product of the valuations of agents in T in the rounded solution is at least(
1

2

)kT−`+1

· 1

k1 · · ·k`
·
∏

i∈T∩Bc

ci
∏

j∈T :pj>1

pj .

Proof. Let c̄i = min{1, ci} for all i∈B.
We first deal with the case kT = 0. Then ` = 0. If a good j of price pj > 1 is assigned to a1

during step (a) of the rounding, then the valuation of a1 after the rounding is pj and Bc∩T = ∅ by
Lemma 4.5. This establishes the claim even without the leading factor 1/2. If all goods assigned to
a1 during step (a) of the rounding have price at most one, then {j ∈ T : pj > 1}= ∅ and T ∩Bc ⊆
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{a1}. Moreover, the value of a1 after the preprocessing is at least va1(x)/2 = c̄1/2. The rounding
does not decrease this value.

We turn to the case kT ≥ 1. Let qi = xai,gi > 0 be the amount of good gi bought by agent ai in
the equilibrium, for 1≤ i≤ l. Then ai spends qipi on good gi.

In the market equilibrium, the root agent a1 receives at least half of the valuation from his
children. Thus q1p1 ≥ c̄1/(2k1).

We next show that agent ai, 2 ≤ i ≤ ` + 1, receives at least value qi−1 max(c̄i, pi−1) from his
children in the equilibrium. Note that agent ai can spend at most min{pi−1,1} − qi−1pi−1 ≤ c̄i −
qi−1pi−1 on good gi−1: If ai is capped, then pi−1 ≤ ci = c̄i as good gi−1 is MBB for ai, and if ai is not
capped, then, by (18), c̄i = 1. Thus ai must spend qi−1pi−1 on direct children in the equilibrium. This
establishes the claim if c̄i ≤ pi−1. So assume pi−1 < c̄i. Agent ai can receive at most a fraction 1−qi−1

of good gi−1. Hence the value ai receives from this good is at most (1− qi−1)pi−1 ≤ (1− qi−1)c̄i.
Thus ai must receive value at least qi−1c̄i from children goods.

Now qipi ≥ qi−1 max(c̄i, pi−1)/ki for 2≤ i≤ `, since agent ai spends qipi on good gi, and this is
at least a fraction 1/ki of what he spends totally on his children.

The product of the valuations of a1 to a`+1 in the rounded solution is at least p1 . . . p` ·
q` max(c̄`+1, p`). This holds since gi is assigned to ai, for 1 ≤ i ≤ `, and a`+1 receives a value at
least q` max(c̄`+1, p`) from his children in the equilibrium. Since these children are assigned to a`+1

during step (a) of the rounding, he receives at least this value in the rounded solution.
Combining the arguments above we obtain

p1 · · ·p` · q` ·max(c̄`+1, p`)

≥ c̄1

2q1k1

· q1 max(c̄2, p1)

q2k2

· · · q`−1 max(c̄`, p`−1)

q`k`
· q` ·max(c̄`+1, p`)

=
1

2

(
1

k1 . . . k`

)
c̄1 ·

∏
2≤i≤`+1

max(c̄i, pi−1)

≥ 1

2

(
1

k1 . . . k`

) ∏
1≤i≤`+1

c̄i ·
∏

1≤i≤`,
pi>1

pi

≥ 1

2

(
1

k1 . . . k`

) ∏
1≤i≤`+1,
i∈T∩Bc

ci ·
∏

1≤i≤`,
pi>1

pi ,

(19)

where the next to last inequality follows from max(c̄i, pi−1)≥ c̄i ·max(1, pi−1), for all i.
By Lemma 4.6, each of the remaining kT − ` agents in T gets value at least max(vi(x)/2, p)≥

max(c̄i/2, p), where p is the price of the parent-good. This implies that each remaining agent i
in T receives valuation at least c̄i/2. Further, every good j with pj > 1 is assigned to a distinct
agent, and the bound in (19) already applies for the agents on the recursive path. Combining these
observations, we obtain the following lower bound for the product of the valuations of agents in T :(

1

2

)kT−`+1(
1

k1 . . . k`

) ∏
i∈T∩Bc

ci
∏

j∈T :pj>1

pj .

�

Theorem 4.2. The rounding procedure gives a 2e1/2e-approximation for the optimal Nash
social welfare with capped linear valuations.

Proof. Suppose there are trees T 1, T 2, . . . , T a at the beginning of the rounding. Let ki + 1 and ki

be the number of agents and goods in tree T i, respectively. Let li + 1 be the number of agents on
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the path in T i traced during the rounding step, and let ki1, . . . , k
i
li

be the number of children goods
for agents along that path.

The bound in Lemma 4.7 for trees T ⊆ (B \B0)× (G\G0) can also be obtained for our rounding
of trees T ⊆B0×G0 (Lemma B.4 in the Appendix). Thus, the Nash social welfare of the rounded
solution is at least(1

2

)∑a
i=1(ki−li+1)(

1

k1
1 . . . k

1
l1
k2

1 . . . k
2
l2
. . . ka1 . . . k

a
la

) ∏
i∈Bc

ci
∏

j:pj>1

pj

1/n

=
1

2
· 2

∑a
i=1 li/n ·

(
1∏a

i=1

∏li

j=1 k
i
j

)1/n
∏

i∈Bc

ci
∏

j:pj>1

pj

1/n

≥ 1

2

(
2
∑a

i=1 l
i∑a

i=1

∑li

j=1 k
i
j

)∑a
i=1 li/n

∏
i∈Bc

ci
∏

j:pj>1

pj

1/n

≥ 1

2e1/2e

∏
i∈Bc

ci
∏

j:pj>1

pj

1/n

.

The first equation uses
∑a

i=1(ki +1) = n, which implies
∑a

i=1(ki− li +1) = n−
∑a

i=1 l
i. With a 1/n-

factor in the exponent stemming from the outer bracket, the first expression becomes (1/2)1−
∑

i l
i/n.

The subsequent inequality follows from the standard relation of arithmetic and geometric means

applied to the set of all kij, i.e.,
(∏

i

∏
j k

i
j

)1/n

≤
(∏

i

∏
j k

i
j

)1/
∑

i l
i

≤
∑

i

∑
j k

i
j/
∑

i l
i. The last

inequality uses
∑a

i=1

∑li

j=1 k
i
j ≤ n and the fact that (2x)x is minimal at x= 1/2e. �

4.1.3. Rounding Equilibria of Perturbed Markets Given a parameter ε′ > 0, our FPTAS
in Section 3.2 computes an exact equilibrium for a perturbed market, which results when agents

have perturbed valuations ṽi(x) = min
(
ci,
∑

j ṽijxij

)
with the same caps ci and ṽij ≥ vij ≥ ṽij/(1+

ε′). Suppose we apply our rounding algorithm to the exact equilibrium for ṽ. It obtains an allocation
S such that (∏

i

vi(x
S
i )

)1/n

≥ 1

(1 + ε′)

(∏
i

ṽi(x
S
i )

)1/n

≥ 1

(1 + ε′)
· 1

2e1/2e

(∏
i

ṽi(x
∗)

)1/n

≥ 1

(1 + ε′) · 2e1/2e
·

(∏
i

vi(x
∗)

)1/n

.

If we apply the FPTAS with ε′, then this yields an approximation ratio of at most 2e1/2e + ε for
ε= 2e1/(2e)ε′. We summarize our main result:

Corollary 4.1. For every ε > 0 there is an algorithm with running time polynomial in n, m,
log maxi,j{vij, ci}, and 1/ε that computes an allocation which is a (2e1/2e +ε)-approximation to the
optimal Nash social welfare.

4.2. Hardness of Approximation In this section, we prove a hardness result for approx-
imation of the maximum Nash social welfare with additive valuations. The best previous bound
was a lower bound of 1.00008 [42]. Our improved bound of

√
8/7 > 1.069 follows by adapting a

construction in [13] for (sum) social welfare with capped linear valuations.
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Theorem 4.3. For every constant δ > 0, there is no (
√

8/7− δ)-approximation algorithm for
maximizing Nash social welfare with additive valuations unless P = NP.

For clarity, we first describe the proof for capped linear valuations. Subsequently, we show how
to drop the assumption of caps.

Lemma 4.8. For every constant δ > 0, there is no (
√

8/7 − δ)-approximation algorithm for
maximizing Nash social welfare with capped linear valuations unless P = NP.

Proof. Chakrabarty and Goel [13] show hardness for (sum) social welfare by reducing from MAX-
E3-LIN-2. An instance of this problem consists of n variables and m linear equations over GF(2).
Each equation consists of three distinct variables. For the Nash social welfare objective, we need
slightly more structure in the optimal assignments. Therefore, we consider the stronger problem
variant Ek-OCC-MAX-E3-LIN-2, in which each variable occurs exactly k times in the equations.

Theorem 4.4 ([15]). For every constant ε ∈ (0, 1
4
) there is a constant k(ε), and a class of

instances of Ek-OCC-MAX-E3-LIN-2 with k ≥ k(ε) such that k → ∞ as ε → 0, for which we
cannot decide if the optimal variable assignment fulfills more than (1−ε)m equations or fewer than
(1/2 + ε)m equations, unless P = NP.

Our reduction follows the construction in [13]. We only sketch the main properties here. For
more details see [13, Section 4].

For each variable xi we introduce two agents 〈xi : 0〉 and 〈xi : 1〉. Each of these agents has a cap
of ci = 4k, where k is the number of occurrences of xi in the equations. Since in Ek-OCC-MAX-
E3-LIN-2 every variable occurs exactly k times, we have ci = 4k for all agents.

For each variable xi there is a switch item. The switch item has value 4k for agents 〈xi : 0〉 and
〈xi : 1〉, and value 0 for every other agent. It serves to capture the assignment of the variable – if
xi is set to xi = 1, the switch item is given to 〈xi : 0〉 (for xi = 0, the switch item goes to 〈xi : 1〉).
Due to his cap, an agent cannot obtain additional value from receiving any other items.

The remaining items, called equation items, are defined as follows. For each equation xi + xj +
xk = α with α ∈ {0,1}, we introduce four classes of equation items – one class for each satisfying
assignment. In particular, we get class 〈xi : α;xj : α;xk : α〉 as well as classes 〈xi : ᾱ, xj : ᾱ, xk : α〉,
〈xi : ᾱ, xj : α,xk : ᾱ〉 and 〈xi : α,xj : ᾱ, xk : ᾱ〉. For each of these classes, we introduce three items.
Hence, for each equation we introduce twelve items in total. An item 〈xi : αi, xj : αj, xk : αk〉 has a
value of 1 for the three agents 〈xi : αi〉, 〈xj : αj〉, and 〈xk : αk〉, and value 0 for every other agent.

Clearly, there is an optimal assignment of items to agents which assigns the switch item of every
variable xi to one of the two agents 〈xi : 0〉 or 〈xi : 1〉. If the switch item is assigned to a different
agent, it has value 0 for that agent, so removing the item does not decrease the valuation and the
Nash social welfare. Then giving it to any of the two agents 〈xi : 0〉 or 〈xi : 1〉 can only increase
the Nash social welfare. Therefore, we can assume that an optimal assignment yields some variable
assignment for the underlying instance of Ek-OCC-MAX-E3-LIN-2.

Consider an equation xi +xj +xk = α that becomes satisfied by setting the variables (xi, xj, xk) =
(αi, αj, αk). Then none of the agents 〈xi : αi〉, 〈xj : αj〉, and 〈xk : αk〉 gets a switch item, and we can
assign exactly four equation items to each of these agents (for details see [13]). Hence, all twelve
equation items generate additional value. In particular, it follows that if xi is involved in a satisfied
equation, one of its agents gets a switch item, and the other one can receive at least four equation
items.

Consider an equation xi + xj + xk = α that becomes unsatisfied by setting the variables
(xi, xj, xk) = (αi, αj, αk). Then for one class of equation items, all agents who value these items have
already received switch items (for details see [13]). Hence, at most nine equation items generate
additional value. They can be assigned to the agents who did not receive switch items so that each
agent receives three items. In particular, it follows that if xi is involved in an unsatisfied equation,
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one of its agents gets a switch item, and the other one can receive at least three equation items.
Hence, in every optimal solution the Nash social welfare is strictly larger than 0.

We now derive a lower bound on the optimal Nash social welfare when (1− ε)m equations can
be satisfied. In this case, we obtain value 4k for the n agents that receive switch items. Moreover,
we get an additional total value of 12m(1− ε) + 9mε generated by the equation items. Note that
m= kn/3. We will lower bound the Nash social welfare of an optimal assignment in this case. For
this, it suffices to consider the assignment indicated above – for each satisfied equation, all incident
agents without switch items get four equation items. For each unsatisfied equation, all incident
agents without switch items get 3 equation items. Then, every agent obtains a value in the range
[3k,4k]. A lower bound on the Nash social welfare when agents share the value 12m(1− ε) + 9mε
is obtained when some agents have the maximum value of 4k, while all others have the minimum
value of 3k. This occurs when n(1− ε) agents have value 4k. Therefore, when an assignment of
items to agents generates Nash social welfare of more than(

(4k)n · (4k)n(1−ε) · (3k)nε
) 1

2n = k · 4 1
2 · 4 1

2 · (3/4)
ε
2 ,

we take this as an indicator that at least m(1− ε) equations can be fulfilled.
In contrast, now suppose only (1/2+ε)m equations can be fulfilled. In this case, we obtain value

4k for the n agents who receive the switch items. Moreover, we get an additional total value of at
most 12m(1/2 + ε) + 9m(1/2− ε) = 10.5m+ 3εm generated by the equation items. Next, we upper
bound the Nash social welfare of such an assignment. To this end, we assume that all n agents who
do not receive a switch item get an equal share of the value generated by equation items, i.e., a
share of 3.5k+kε. Therefore, when an assignment of items to agents generates Nash social welfare
of at most

((4k)n · (k(3.5 + ε))
n
)

1
2n = k · 4 1

2 · (3.5 + ε)
1
2 ,

we can take this as an indicator that at most m(1/2 + ε) equations can be fulfilled.
Hence, if we can approximate the optimal Nash social welfare by at most a factor of

4
1
2 · (3/4)

ε
2

(3.5 + ε)
1
2

=

(
4 · (3/4)ε

3.5 + ε

) 1
2

,

we can decide whether the instance of Ek-OCC-MAX-E3-LIN-2 has an optimal assignment with at
least m(1− ε) or at most m(1/2 + ε) satisfied equations. This shows that, for every constant δ > 0,
there is no (

√
8/7− δ)-approximation algorithm for maximizing Nash social welfare with capped

linear valuations unless P=NP. �

We now show how to adjust the construction for additive valuations without caps.
Proof of Theorem 4.3. We use the same construction as in Lemma 4.8 with the following

adjustments. A switch item for variable xi now has a large value M � 4k for agents 〈xi : 0〉 or
〈xi : 1〉. All agent valuations are additive and have no caps (i.e., all ci =∞).

First, we again establish the lower bound on the optimal Nash social welfare when (1− ε)m
equations can be satisfied. Then we can assign the switch items so that 12m(1−ε) + 9mε equation
items are each assigned to an agent who values it (i.e., it represents a literal in the corresponding
equation) and does not receive a switch item. Each of the remaining 3mε equation items is assigned
to an agent who values it (i.e., it represents a literal in the corresponding equation) and does receive
a switch item. Instead, to construct a lower bound on the achievable Nash social welfare, we simply
drop these items from consideration. Therefore, a necessary condition to fulfill m(1− ε) equations
is that there is an assignment of items to agents that generates Nash social welfare of at least(

Mn · (4k)n(1−ε) · 3knε
) 1

2n = k
1
2 ·M 1

2 · 4 1
2 · (3/4)

ε
2 .
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Now suppose only (1/2 + ε)m equations can be fulfilled. To construct an upper bound on the

optimal Nash social welfare, we apply the same reasoning as above. n agents receive switch items

according to an optimal variable assignment. The 12m(1/2 + ε) + 9m(1/2 − ε) = 10.5m + 3εm

equation items are assigned in equal shares to agents without switch items. The remaining 3m(1/2−
ε) items are assigned in equal shares to agents with switch items. Therefore, a necessary condition

for the case when at most m(1/2 + ε) equations can be fulfilled is that the optimal assignment of

items to agents generates Nash social welfare of at most

((
M + k

(
1

2
− ε
))n

· (k(3.5 + ε))
n

) 1
2n

= k
1
2 ·
(
M + k

(
1

2
− ε
)) 1

2

· (3.5 + ε)
1
2 .

Hence, approximating the optimal Nash social welfare to within a factor of at most

(
M

M + k
(

1
2
− ε
)) 1

2

·
(

4 · (3/4)ε

3.5 + ε

) 1
2

allows us to distinguish between the cases whether the instance of Ek-OCC-MAX-E3-LIN-2 has an

optimal assignment with at least m(1− ε) or at most m(1/2 + ε) satisfied equations. The second

fraction clearly grows to
√

8/7 as ε→ 0. For a fixed number M , the first fraction decreases, since

k = k(ε) increases with decreasing ε. However, we can choose a number M = ω(k) since k is the

number of occurrences of a single variable and, thus, the input size is polynomial in k. For example,

with M = k2 the first term approaches 1 as ε→ 0 (and k→∞). This proves the theorem. �

5. Future Directions There are many interesting questions arising from our work. Equilibria

in linear Fisher markets with both earning and utility limits turn out to have intriguing structure.

Although an equilibrium may not always exist in these markets, we showed that it always exists

when the market satisfies the money clearing condition, i.e., money clearing is a (polynomial-time

checkable) sufficiency condition for existence. While existence is guaranteed in this case, the set of

equilibria is non-convex.

Our algorithm initially ignores all utility caps and then incorporates them using a descending-

price approach. Conceivably, an analogous algorithm could be obtained by first ignoring all earning

caps and then carefully incorporating them using a suitable ascending-price approach. Some inter-

esting directions are to show whether (1) such an ascending-price algorithm exists, (2) all equilibria

can be obtained using one of the two algorithms, and (3) there is a convex program capturing the

set of equilibria attainable by either approach.

We obtain an FPTAS to compute an approximate equilibrium. Beyond money-clearing markets,

however, even deciding existence is not well-understood – is it NP-hard, or can it be tightly char-

acterized by a simple condition that can be checked in polynomial time? In addition to deciding

existence, can we efficiently find exact equilibria in general (if they exist) or in money-clearing

markets? Is the problem of finding equilibria for money-clearing markets complete for CLS?

We showed that an approximate equilibrium can be rounded to obtain a constant-factor approx-

imation of Nash social welfare for agents with capped linear (i.e., budget-additive) valuations. This

shows that in order to obtain a constant-factor approximation algorithm for the Nash social wel-

fare problem, we only need a constant-factor approximate equilibrium of an appropriate Fisher

market. It would be interesting to see if equilibria in Fisher markets with limits can yield good

approximation algorithms for the Nash social welfare problem for more general classes of valuations.
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Appendix A: The Linear Complementarity Problem and Lemke’s Algorithm Given
an n × n matrix M and a vector q, the linear complementarity problem5 asks for a vector y
satisfying the following conditions:

My≤ q, y≥ 0 and y · (q−My) = 0. (20)

The problem is interesting only when q 6≥ 0, since otherwise y = 0 is a trivial solution. Let us
introduce slack variables v to obtain the equivalent formulation

My+v= q, y≥ 0, v≥ 0 and y ·v= 0. (21)

The reason for imposing non-negativity on the slack variables is that the first condition in (20)
implies q−My ≥ 0. Let P be the polyhedron in 2n-dimensional space defined by the first three
conditions; we will assume that P is non-degenerate6. There are standard ways to handle degeneracy
in Lemke’s scheme, namely lexico-minimum ratio test (see Section 4.3 of [19] and also [16]) to
ensure termination in a finite number of steps. Under the non-degeneracy condition, any solution
to (21) will be a vertex of P, since it must satisfy 2n equalities. Note that the set of solutions may
be disconnected.

An ingenious idea of Lemke was to introduce a new variable and consider the following system,
which is called the augmented LCP:

My+v− z1 = q, y≥ 0, v≥ 0, z ≥ 0 and y ·v= 0. (22)

Let P ′ be the polyhedron in (2n+ 1)-dimensional space defined by the first four conditions of
the augmented LCP; again we will assume that P ′ is non-degenerate. Since any solution to (22)
must still satisfy 2n equalities, the set of solutions, say S, will be a subset of the one-skeleton of
P ′, i.e., it will consist of edges and vertices of P ′. Any solution to the original system must satisfy
the additional condition z = 0 and hence will be a vertex of P ′.

Now S turns out to have some nice properties. Any point of S is fully labeled in the sense that
for each i, yi = 0 or vi = 0.7 We will say that a point of S has double label i if yi = 0 and vi = 0
are both satisfied at this point. Clearly, such a point will be a vertex of P ′, and it will have only
one double label. Since there are exactly two ways of relaxing this double label, this vertex must
have exactly two edges of S incident on it. Clearly, a solution to the original system (i.e., satisfying
z = 0) will be a vertex of P ′ that does not have a double label. On relaxing z = 0, we get the unique
edge of S incident on this vertex.

As a result of these observations, it follows that S consists of paths and cycles. Of these paths,
Lemke’s algorithm explores a special one. A ray is an unbounded edge of S such that the vertex of
P ′ it is incident on has z > 0. Among the rays, one is special – the one on which y= 0; the points
on this ray have v= q+z1 and z ≥−mini qi. This is called the primary ray, and the rest are called
secondary rays. Now Lemke’s algorithm explores, via pivoting, the path starting with the primary
ray. This path must end either in a vertex satisfying z = 0, i.e., a solution to the original system,
or a secondary ray. In the latter case, the algorithm is unsuccessful in finding a solution to the
original system; in particular, the original system may not have a solution.

5 We refer the reader to [19] for a comprehensive treatment of notions presented in this section.

6 A polyhedron in n-dimension is said to be non-degenerate if on its d-dimensional faces exactly n−d of its constraints
hold with equality. For example on vertices (0-dimensional face) exactly n constraints hold with equality. There are
many other equivalent ways to describe this notion.

7 These are also known as almost complementary solutions in the literature.
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Remark A.1. The set-up for the primary ray can be somewhat streamlined. First, the variable
z is only needed in rows in which q is negative. For the other rows, one fixes the value of v to the
value of q. In our application, we can use this streamlining for equations (10) and (14).

Second, assume that the constraint for yn is of the form yn ≥E ⊥ yn ≥ 0, where the expression E
is a function of variables y1 to yn−1. The constraint expresses yn = max(0,E). With a slack variable
vn, the constraint becomes −yn + vn = −E, and if E > 0 for y1 = y2 = . . . = yn−1 = 0, one would
have to introduce a z into the equation. Instead, one can set yn to max(0,E) and fix vn to yn−E
on the ray. In our application, we can use this streamlining for equations (11) and (13). Only, for
equation (12) we introduce the z-variable and obtain (16).

Third, one can also do without introducing the vector v of slack variables. Without them one
moves in Rn+1 in the 1-skeleton of the polyhedron defined by the inequalities My− z1≤ q, y≥ 0,
z ≥ 0. On each edge or ray, n of the inequalities are satisfied with equality, and on a vertex, n+ 1
are. The streamlining describing in the second paragraph still applies.

As mentioned above, if q has no negative components, (20) has the trivial solution y = 0. In
this case Lemke’s algorithm cannot be used for finding a non-trivial solution, since it is simply
not applicable. However, the Lemke-Howson scheme is applicable in this case; it follows a comple-
mentary path in the original polyhedron (21) starting at y = 0 and guarantees termination at a
non-trivial solution if the polyhedron is bounded.

Appendix B: Rounding Trees with Zero Price Goods In this section, we give an algo-
rithm to round trees T0 ⊆B0×G0 of the equilibrium (x,p) to an integral allocation. Recall that in
such trees, all goods have price pj = 0 and all buyers reach their caps ci’s. Consider the following
procedure which is similar to the procedure in Section 4.1.2. It uses only the allocation x and does
not rely on prices. In particular, the only price-based assignment rule is in the preprocessing step,
and it can be replaced here with an equivalent, more direct criterion:
Preprocessing: It consists of three substeps.
(a) For each zero-price tree component of the allocation graph, assign some agent to be a root

node.
(b) For every good j keep at most one child agent. This child agent i must receive the largest

amount of j among the child agents (ties are broken arbitrarily) and must receive a utility that
is more than half of his total utility, i.e., uijxij > ci/2. In other words, child agent i is cut off
from good j if a sibling buys more of good j (ties are broken arbitrarily) or if uijxij ≤ ci/2.

(c) Agents whose connection to their parent goods is severed in step (b) become roots.
Rounding: It consists of two substeps.
(a) Goods with no child agent are assigned to their parent agent.
(b) For each non-trivial zero-price tree component, do the following recursively: Assign the root

agent a child good j that gives him the maximum value (among all children goods) in the
fractional solution. Except in the subtree rooted at j, assign each good to its child agent in
the remaining tree. Make the child agent of good j the root node of the newly created tree.

Let us define the remaining valuation of an agent after preprocessing as the sum of the fractional
values for the goods at the ends of the remaining edges incident on the agent. The following lemmas
follow by construction.

Lemma B.1. After preprocessing, the remaining valuation of each root agent r is at least cr/2.
For all other agents i the valuation is at least ci.

Lemma B.2. After step (a) of the rounding, each tree component T has kT + 1 agents and kT
goods for some kT ≥ 0.

Lemma B.3. After the rounding, each agent i that is assigned his parent good obtains a valu-
ation of at least ci/2.
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Next, consider a zero-price tree T at the beginning of step (b) of the rounding with kT + 1
agents and kT goods. Assume kT ≥ 1 first. Let a1, g1, a2, g2, . . . , al, g`, a`+1 be the recursion path in
T starting from the root agent a1 and ending at the leaf agent a`+1 where a1, . . . , a`+1 became root
agents of the trees formed recursively during the rounding step, and good gi is assigned to ai in this
process, for 1≤ i≤ `. Note that a`+1 is not assigned any good in step (b) of the rounding. However,
we can deduce from Lemma B.1 that a`+1 must have been assigned some good during step (a) of
the rounding. We denote by ki the number of children for agent ai, for 1≤ i≤ `. If kT = 0, then
`= 0 and a1 = a`+1 is the root of a tree containing no goods after step (a) of the rounding.

Lemma B.4. The product of the valuations of agents in T in the rounded solution is at least(
1

2

)kT−`+1

· 1

k1 · · ·k`
·
∏
i∈T

ci .

Proof. Let qi = xai,gi > 0 denote the amount of good gi bought by agent ai in the equilibrium, for
1≤ i≤ l. Since the root agent a1 receives at least half of the valuation from his children (including
the ones before any edge removals), we have ua1g1q1 ≥ ca1/(2k1). Further, since uij ≤ ci for all (i, j),
each agent ai, 2 ≤ i ≤ ` + 1, receives value of at most uaigi−1

(1 − qi−1) ≤ cai(1 − qi−1) from his
parent-good, and thus value of at least qi−1cai from children in the equilibrium. This implies that
uai,giqi ≥ qi−1cai/ki for 2≤ i≤ `.

The product of the valuations of a1 to a`+1 in the rounded solution is at least
∏l

i=1 uaigi · q`ca`+1
.

This holds since gi is assigned to ai, for 1≤ i≤ `, and a`+1 receives a value of at least q`ca`+1
from

his children in the equilibrium. Since these children are assigned to a`+1 during step (a) of the
rounding, he receives at least this value in the rounded solution.

Combining the arguments above we obtain

∏̀
i=1

uaigi · q`ca`+1
≥ ca1

2q1k1

q1ca2
q2k2

· · ·
q`−1ca`
q`k`

· q`ca`+1

=
1

2

(
1

k1 . . . k`

)
·
∏

1≤i≤`+1

cai .

Since each of the remaining kT − ` agents i in T gets a value of at least ci/2, the product of the
valuations of agents in T in the rounded solution is at least(

1

2

)kT−`+1(
1

k1 . . . k`

)∏
i∈T

ci .
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