
When Dividing Mixed Manna is Easier than
Dividing Goods: Competitive Equilibria with a

Constant Number of Chores

Jugal Garg1⋆, Martin Hoefer2⋆⋆, Peter McGlaughlin1∗, and Marco
Schmalhofer2

1 University of Illinois at Urbana-Champaign, USA.
{jugal,mcglghl2}@illinois.edu

2 Goethe University, Frankfurt am Main, Germany.
{mhoefer,schmalhofer}@em.uni-frankfurt.de

Abstract. We study markets with mixed manna, where m divisible
goods and chores shall be divided among n agents to obtain a competitive
equilibrium. Equilibrium allocations are known to satisfy many fairness
and efficiency conditions. While a lot of recent work in fair division is
restricted to linear utilities, we focus on a substantial generalization to
separable piecewise-linear and concave (SPLC) utilities. We first derive
polynomial-time algorithms for markets with a constant number of items
or a constant number of agents. Our main result is a polynomial-time
algorithm for instances with a constant number of chores (as well as any
number of goods and agents) under the condition that chores dominate
the utility of the agents. Interestingly, this stands in contrast to the case
when the goods dominate the agents utility in equilibrium, where the
problem is known to be PPAD-hard even without chores.

1 Introduction

The allocation of a set of items to a set of agents in a fair and efficient manner is
the main challenge in fair division, a prominent field in economics with a variety
of well-established concepts and techniques [22]. Algorithms for fair division
have recently prompted a large amount of research interest in AI, due to many
important applications arising from computer-aided decision making in various
parts of society [10, Part II]. Standard criteria for fair and efficient allocation in
markets include envy-freeness (EF; no agent prefers the bundle of goods from
another agent), proportionality (PROP; every agent gets a bundle that has at
least her “average” value), and Pareto-optimality (PO). Interestingly, all these
criteria are achieved in a competitive equilibrium from equal incomes (CEEI), an
equilibrium allocation in a market when every agent has $1 of (fake) money.

For more than two decades, the computation of competitive equilibria (with
and without equal incomes) has been a main line of research in fair division and,

⋆ Supported by NSF grant CCF-1942321 (CAREER).
⋆⋆ Supported by DFG grant Ho 3831/5-1, 6-1 and 7-1.

2 J. Garg et al.

more broadly, at the intersection of economics and computer science [23, Chap-
ters 5+6]. An intriguing recent development in this area is the consideration of
chores and, more generally, mixed manna. In an allocation problem with mixed
manna there are goods and chores. Goods are desired by at least one of the
agents (e.g., cake), chores are undesirable for all agents (e.g., job shifts, cleaning
tasks). In particular, chores are not disposable. All goods can and chores must
be allocated to the agents. The goal again is to satisfy fairness criteria such as
EF, PROP, and/or PO. The consideration of mixed manna substantially gener-
alizes our understanding of fair division and represents an intriguing challenge
for algorithms to computing such allocations when they exist. 4 In a seminal con-
tribution [7] the existence of competitive equilibria under general conditions for
instances with mixed manna were established. Moreover, even for mixed manna,
CEEI retain their attractive fairness properties. Clearly, this raises a natural
question from a computational perspective, which we study in this paper: Under
which conditions can competitive equilibria be computed in polynomial time for
markets with mixed manna?

The answers depend on whether we consider instances with only goods, only
chores or, more generally, true mixed manna. For only goods, markets with
linear utilities allow even strongly polynomial-time algorithms [24, 19]. For addi-
tively separable piecewise-linear concave (SPLC) utilities, the problem is PPAD-
hard [14]. For only chores, the problem is PPAD-hard for linear utilities when we
allow agents to have infinitely negative utility for some chores [12]. For mixed
manna, an equilibrium can be computed efficiently for linear utilities, when we
have a constant number of agents or a constant number of items [17].

1.1 Contribution and Outline

In this paper, we provide polynomial-time algorithms for computing competi-
tive equilibria in markets with mixed manna. The introduction of the formal
model and preliminary results are given in Section 2. As a first set of results, we
show a polynomial-time algorithm to compute equilibria in markets with SPLC
utilities when the number of agents or items (i.e., goods and bads) is constant.
This substantially generalizes the results in [17] where only linear utilities are
considered. SPLC utilities are quite more general and applicable as they model
natural properties like decreasing marginals while maintaining (piecewise) lin-
earity; see, e.g., [18]. The discussion of these results is given in Section 3. We
note that this is the first polynomial time algorithm to compute a competitive
equilibrium of mixed manna with SPLC utilities under any assumptions. Our
main result is then presented in Section 4 – an efficient algorithm for computing
competitive equilibria in negative instances with arbitrary many agents, goods,
and a constant number of chores. The agents can have SPLC utilities for goods,
but we assume linear utilities for chores. Negativity is a condition that implies
that chores dominate the utility of the agents (for a formal definition see Sec-
tion 2). This is a notable contrast to positive instances with SPLC utilities for
goods, where computation of an equilibrium is PPAD-hard, even without chores.

Competitive Equilibria with a Constant Number of Chores 3

Finally, in Section 5 we discuss an algorithm that rounds any equilibrium for
markets with divisible mixed manna to an allocation for the same market with
indivisible mixed manna. The resulting allocation guarantees Pareto-optimality
(PO) and a notion of proportionality3.

1.2 Further Related Work

The literature on competitive equilibrium in markets with only goods is vast,
and a complete review is beyond the scope of this paper. Instead, we refer the
reader the books [9, 25, 22], and focus on the case of mixed manna.

While most of the work in fair division focuses on goods, there are a few
works for the case of bads [26, 4, 9, 25]. The study of competitive division with
a mixed manna was initiated by [7]. They establish equilibrium existence and
show further properties, e.g., that multiple, disconnected equilibria may exist,
and polynomial-time computation is possible if there are either two agents or
two items with linear utility functions [8].

On the algorithmic side, an algorithm to compute a competitive allocation of
bads with linear utility functions was recently proposed in [11]. The algorithm
runs in strongly polynomial time if either the number of agents or bads is con-
stant. This result was generalized in [17] to a mixed manna. Our work generalizes
this further to the case of SPLC utilities.

Chaudhury et al. [13] provided an algorithm to compute an equilibrium of
mixed manna with SPLC utility functions. However, our work differs from theirs
in two important ways. First, our approach allows for computing all equilibria
in an instance, while in [13] only one is found. In negative instances where ‘bads
overwhelm the goods’, there are generally multiple equilibria in which agents
receive significantly different utilities, i.e., an agent might prefer one equilibrium
over another. Thus, finding all equilibria might enable a social planner to offer
an allocation that is more ‘fair’ to all agents. Second, the algorithm in [13] has
polynomial runtime when the number of agents or items is constant for instances
with only bads. Our algorithm runs in polynomial time for a more general setting
of mixed manna under the same conditions.

Fair allocation of indivisible items is an intensely studied problem. Recently,
attention has shifted to the case of all bads or mixed manna, see e.g. [20, 1, 6,
3]. Most closely related to our work is a recent contribution [2] presenting an
algorithm to compute an indivisible allocation that is PO and PROP1 in markets
with mixed manna. Our algorithm has a number of similarities with the approach
in [2]. A notable difference is that in our case the divisible allocation constitutes
a competitive equilibrium in the divisible market. Hence, our algorithm comes
with the additional benefit of strengthening the algorithmic connection between
competitive equilibrium and fair indivisible allocations.

3 More precisely, the allocation satisfies an adaptation of proportionality up to one
good (PROP1) to mixed manna.

4 J. Garg et al.

2 Preliminaries

2.1 Fair Division with Mixed Manna

We consider fair division of mixed manna, in which there is a set N = [n] of n
agents and a set M = [m] of m divisible items. We strive to divide the items
among the agents. W.l.o.g. we may assume that there is a unit amount of each
item. A fractional allocation x = {x1, . . . , xn} assigns each agent i ∈ N a bundle
of items xi = (xi1, . . . , xim), where xij ∈ [0, 1] is the amount of item j agent
i receives. An allocation is feasible if all items are fully assigned, i.e., ∀j ∈ M ,∑

i∈N xij = 1. For the rest of the paper, we assume all allocations are feasible,
unless otherwise explicitly stated.

Each agent i ∈ N has a utility function ui that maps the received bundle to
a numerical value. In this paper, we assume all utility functions are additively
separable over items, piecewise linear, and concave (SPLC). Formally, agent i’s
utility for receiving xij amount of item j ∈ M is given by the piecewise linear
and concave function fij(xij), and the total utility for the bundle xi is given by
ui(xi) =

∑
j∈M fij(xij). Let {uij1, . . . , uijk} be the slopes of each linear segment

of fij with lengths {lij1, . . . , lijk}. In contrast to the familiar case of disposable
goods where fij ≥ 0, ∀i ∈ N, ∀j ∈ M , a mixed manna allows fij ∈ R, i.e., an
agent may get positive or negative utility for an item. We assume each agent
labels each item either an (individual) good or bad. If item j is a good for agent
i, then fij > 0 and uij1 > uij2 > · · · > uijk > 0, which implies concavity and
captures the classical condition of decreasing marginal returns. Otherwise, j is
a bad for agent i, then fij < 0 and 0 > uij1 > uij2 > · · · > uijk. Note that
two agents i, i′ might disagree the label of a given item j, e.g., j can be a good
for i and a bad for i′. For simplicity of the technical exposition, we assume that
uijk ̸= 0 for all segments.4 Let |fij | denote the number of linear segments of fij .
Also, we sometimes write (i, j, k) to refer to the k-th segment of the function fij .

Instance Types. In [7], the authors show that every fair division instance
with mixed manna falls into one of three types: positive, negative, or null. The
type roughly indicates whether there is a ‘surplus’ of goods or bads.

More formally, let N+ = {i ∈ N : maxj∈M uij1 > 0} be the set of attracted
agents, i.e., agents that each have at least one good, whereas N− = N \N+ is
the set of repulsed agents that have only bads. We use X to denote the set of
feasible allocations, and U for the set of agent utilities over all feasible allocations.
If u ∈ U , then u = (u1(x1), . . . , un(xn)) for some x ∈ X . Next, we define Γ+ =

RN+

+ × {0}N−
. Note that in Γ+ attracted agents benefit (the RN+

+ portion),

without harming any repulsed agents (the {0}N−
portion). Also, let Γ++ =

RN+

++ × {0}N−
be the relative interior of Γ+.

Definition 1. A fair division instance is called

4 While we conjecture that conceptually all our ideas can be applied also when uijk = 0
is allowed, the analysis of such segments generates a lot of technicalities, which we
leave for future work.

Competitive Equilibria with a Constant Number of Chores 5

– positive if U ∩ Γ++ ̸= ∅
– null if U ∩ Γ+ = {0}
– negative if U ∩ Γ+ = ∅.

For an interpretation of a positive instance, we can ensure all attracted agents
receive strictly positive utility without harming any repulsed agents (who dislike
all items). Conversely, in a negative instance, no feasible allocation gives all
attracted agents non-negative utility. Finally, in null instances, the only feasible
allocations which give all agents non-negative utility satisfy ui(xi) = 0, ∀i ∈ N .

Determining the Instance Type. We can determine the type of a given
instance with SPLC utilities in polynomial time by solving the following LP. The
approach extends results of [17] for linear utilities.

max t

s.t.
∑
j,k

uijkxijk ≥ t, ∀i ∈ N+

∑
i∈N+,k

xijk = 1, ∀j ∈ M

0 ≤ xijk ≤ lijk, ∀i ∈ N+, j ∈ M

(1)

The solution t gives a lower bound on any attracted agent’s utilities by the first
set of constraints. The second set of constraints simply requires that all items are
fully allocated among attracted agents, and the third set of constraints ensures
that segments aren’t overallocated.

Proposition 1. Let (t∗, x∗) be a solution to (1). The sign of t∗ determines the
instance type:
– If t∗ > 0, then the instance is positive.
– If t∗ = 0, then the instance is null.
– If t∗ < 0, then the instance is negative.

Proof. First suppose that t∗ > 0. Then all attracted agents receive strictly pos-
itive utility, while repulsed agents receive no allocation. Hence the instance is
positive by Definition 1.

Next suppose that t∗ = 0. We want to show that the only feasible alloca-
tions which give all agents non-negative utility satisfy ui(xi) = 0, ∀i ∈ N . For
contradiction suppose not. Then at least one agent k ∈ N+ receives strictly pos-
itive utility uk(xk) > 0, and some other agent i ∈ N+ receives a total utility of
ui(xi) = 0. We now construct an alternate allocation y so that ui(yi) > 0, ∀i ∈
N+, contradicting the optimality of t∗ = 0.

Let M+ = {j ∈ M : maxi∈N uij1 > 0} and M− = M \ M+ = {j ∈ M :
maxi∈N uij1 < 0}. First observe that for any good j ∈ M+, there is i ∈ N+ such
that uij1 > 0. Therefore, we may assume that no agent i′ ∈ N+ with ui′j1 < 0
receives any part xi′j > 0 of j. This is valid since reallocating xi′j to i, i.e.,
yij = xij + xi′j and yi′j = 0 improves both agents utilities.

6 J. Garg et al.

Next consider any agent i with a non-zero allocation, i.e., xi ̸= 0, such that
ui(xi) = 0. Since xi ̸= 0, we must have xij , xij′ > 0, for some j ∈ M+ and
j′ ∈ M−. If uk(xk) = ϵ > 0 for some k ∈ N+, then we can reallocate some
portion of xij′ to agent k to make both agents utilities strictly positive, i.e.,
transfer a fraction of bad j′ from agent i to agent k. Let d be the final segment
of j′ with positive allocation xkj′d > 0. If there is none, then d = 1. Now set

yij′ = xij′ −min

(
min(ϵ, lkj′d − xkj′d)

2|ukj′d|
, xij′

)
and

ykj′ = xkj′ +min

(
min(ϵ, lkj′d − xkj′d)

2|ukj′d|
, xij′

)
.

Then uk(yk) = ϵ/2 > 0, and ui(yi) > 0.
After the steps above, either ui(yi) > 0 or yi = 0, for all i ∈ N+. If ui(yi) > 0

for all i ∈ N+, then we reach a contradiction to that t∗ = 0 is optimal. Therefore,
assume that yi = 0 for some i ∈ N+. By definition of N+, there is j ∈ M+ such
that uij1 > 0. Further, all items are fully allocated in x, so there is z ∈ N+ with
xzj > 0, and uz(yz) = ϵ > 0. Let d be the last segment with xzjd > 0. Suppose
we reallocate a portion of xzj to agent i:

yij = min

(
min(ϵ, lij1)

2|uzjd|
, xzjd

)
and

yzj = xzj −min

(
min(ϵ, lij1)

2|uzjd|
, xzjd

)
.

Then uz(yz) ≥ ϵ/2 > 0 and ui(yi) > 0. Repeating this step for all i ∈ N+

with xi = 0 ensures that ui(yi) > 0 for all i ∈ N+, which contradicts that t∗

maximizes (1).
The above argument shows that if t∗ = 0, then x∗ must satisfy ui(x

∗
i) =

0, ∀i ∈ N+, so the instance is null. Finally, repeating the above arguments in
case t∗ < 0 shows that the instance must be negative. ⊓⊔

2.2 Competitive Equilibrium

We are interested in computing competitive equilibria (CE). To define this no-
tion, we turn a fair division instance into a market. We endow each agent i ∈ N
with a budget ei of (virtual) currency. We assume that all agents’ budgets are
restricted to have the same sign, sign(ei) = sign(ej), ∀i, j ∈ N . The sign of
agents’ budgets corresponds to the instance type. In positive instances, we as-
sume strictly positive budgets with ei > 0, while in negative instances all budgets
are strictly negative. In null instances, there is no money, and computing a CE is
easy.5 Hence, for the rest of the paper, we concentrate on positive and negative
instances.
5 Any feasible allocation that gives all agents non-negative utility can be seen as
CE. We can compute such an allocation when solving the LP (1) to determine the
instance type.

Competitive Equilibria with a Constant Number of Chores 7

A competitive equilibrium consists of an allocation x and a vector of prices
p = (p1, . . . , pm) for the items. In markets with mixed manna, the prices of an
item can also be positive or negative. A price pj > 0 represents a payment to
receive a fraction of an item an agent enjoys, while pj ≤ 0 means that agents
are paid to receive a fraction of a bad item they dislike. Nevertheless, we say i
buys item j whenever xij > 0.

Definition 2 (Competitive Equilibrium). A pair (x∗, p∗) of allocation and
prices is a competitive equilibrium if:

1.) Items are fully allocated:
∑

i∈N x∗
ij = 1, ∀j ∈ M .

2.) Budgets are fully spent:
∑

j∈M x∗
ijp

∗
j = ei, ∀i ∈ N .

3.) Each agent i ∈ N buys a utility-maximizing bundle:

x∗
i ∈ arg max

xi∈Rm
ui(xi), s.t.

∑
j∈M

xijp
∗
j ≤ ei, xij ≥ 0. (2)

Our algorithms for computing CE apply even to scenarios with different bud-
gets, where agents have different entitlements to the items (e.g., when dissolving
a business partnership where one partner is more senior than another). The
prominent special case of equal budgets, i.e., ei = ej , ∀i, j ∈ N , is a competitive
equilibrium from equal incomes (CEEI).

Bogomolnaia et al. [7] show that CE exist under very general conditions
and satisfy a number of fairness criteria. The following theorem summarizes the
result in our context.

Theorem 1. If agents’ utility functions are SPLC, then a competitive equilib-
rium always exists. The allocation is Pareto-optimal, satisfies envy-freeness and
proportionality.

Global Goods and Bads. It is easy to see that any item j either has p∗j > 0
in every CE or p∗j ≤ 0. If uij1 > 0 for some agent i ∈ N , then p∗j > 0, since
otherwise agent i has infinite demand for j in (2) regardless of the budget ei.
Then p∗j cannot be an equilibrium price. If maxi uij1 ≤ 0, then p∗j < 0, since
otherwise no agent chooses to purchase j in (2). Therefore item j is not allocated
at all.

Hence, in addition to individual goods and bads for each agent, we define a
global set of goods M+ = {j ∈ M : maxi∈N uij1 > 0} and the complement, a
global set of bads M− = M \M+ = {j ∈ M : maxi∈N uij1 < 0}.

2.3 Optimal Bundles

Let us analyze the structure of an agent’s optimal bundle in a CE. Note that for
SPLC utilities, the optimization problem in (2) is an LP. We use variables xijk

as agent i’s allocation on the k-th segment of item j. Since the segment (i, j, k)

8 J. Garg et al.

has length lijk, we have 0 ≤ xijk ≤ lijk. Given a vector of prices p, agent i then

solves the LP maxxi

{∑
j,k uijkxijk

∣∣∣ ∑j,k xijkpj ≤ ei, 0 ≤ xijk ≤ lijk

}
.

Bang and Pain Per Buck. Given prices p, we define agent i’s bang per buck
for the k-th segment of good j ∈ M+ as bpbijk = uijk/pj , and the pain per buck
for the k-th segment of bad j ∈ M− as ppbijk = uijk/pj . Note that bpb (ppb) gives
the utility (disutility) per unit spending on a good (bad). Next, we partition the
segments of i’s utility function into the equivalence classes {Gi

1, . . . , G
i
k} with

the same bpb, where the Gi
j are labeled in decreasing order of bpb. Similarly, we

define {Bi
1, . . . , B

i
k′} as the equivalence classes of segments with the same ppb

labeled in increasing order. Intuitively, agent i must buy the segments of the Gi
j ’s

in increasing order, i.e., all of Gi
1, then all of Gi

2 and so on, since they provide
the highest utility per unit spending. Similarly, i buys the segments of the Bi

j ’s
in increasing order since they provide the minimum disutility per unit spending.
These facts are easy consequences of KKT conditions applied to the above LP.

Forced and Flexible Segments. If agent i exhausts her budget in the
segments Gi

r and Bi
s, then she buys all the segments in Gi

1 through Gi
r−1, and Bi

1

through Bi
s−1. We call these forced segments since i must buy them to maximize

her utility. We call the segments of Gi
r and Bi

s flexible segments, since i can buy
a fraction of any of the segments, but she need not buy the entire (or even any
part) of these segments. Finally, we call segments of a class undesirable when
they have lower bpb than Gi

r or higher ppb than Bi
s.

The following proposition shows a structural condition on the bang and pain
per buck of flexible segments for goods and bads in a CE.

Proposition 2. Let (x, p) be a CE, and let Gi
r and Bi

s be flexible segments of
agent i. If (i, j, k) ∈ Gi

r and (i, j′, k′) ∈ Bi
s, then, bpbijk = ppbij′k′ .

Proof. Clearly, bpbijk ≥ ppbij′k′ otherwise disutility per unit earning exceeds
utility gained per unit spending. For contradiction, suppose that bpbijk > ppbij′k′ .
Recall that this means i’s utility gained per unit spending on the segment (i, j, k)
is higher than her utility lost per unit earning on segment (i, j′, k′). We want to
show that i can increase her utility by purchasing a small additional amount of
each item.

Formally, suppose i purchases δijk and δij′k′ more of segments (i, j, k) and
(i, j′, k′) respectively, and let yi be her new bundle: yijk = xijk + δijk, yij′k′ =
xij′k′ + δij′k′ , and yilt = xilt otherwise. By purchasing in the ratio δij′k′ =
−δijkpj/pj′ , i’s spending remains unchanged. Further, choosing max(δijk, δij′k′) ≤
max(lijk−xijk, lij′k′ −xij′k′) ensures that her new bundle yi remains on the seg-
ments (i, j, k) and (i, j′, k′). Therefore, yi is a feasible bundle with the same total
spending as xi. Now observe that

ui(yi)− ui(xi) = δijkuijk + δij′k′uij′k′ = δijkpj
(uijk

pj
− uij′k′

pj′

)
> 0,

since uijk/pj = bpbijk > ppbij′k′ = uij′k′/pj′ . Therefore, i’s bundle xi is not
optimal for prices p, contradicting that (x, p) is a CE. ⊓⊔

Competitive Equilibria with a Constant Number of Chores 9

UPB Graph. Given prices p, we define the following bipartite graph G(p) =
(V,E) that we refer to as the utility per buck graph (UPB). We drop the price
argument when the meaning is clear. We create a vertex for each agent i ∈ N
on one side and a vertex each item j ∈ M on the other side. Let Gi

k ∪Bi
k′ be the

flexible segments for agent i. We create the following edges: (i, j), ∀j ∈ Gi
k∪Bi

k′ ,
∀i ∈ N .

3 Constant Number of Agents or Items

In this section, we discuss an algorithm for computing all CE for instances with
SPLC utilities when there is a constant number of agents or a constant number of
items. Our approach represents an extension of algorithms for linear utilities [17].
The treatment of SPLC utilities creates a number of technical challenges in the
correct handling of forced and flexible segments.

We assume that the input is a market with agents, items, utilities, and bud-
gets6 (in accordance with the instance type). Our algorithm is based on the
‘cell’ decomposition technique pioneered by [15]. It rests on the fact that k hy-
perplanes separate Rd into O(kd) non-empty regions or cells. If d is constant,
then this creates only polynomially many cells. We choose hyperplanes so that
each cell corresponds to a unique set of forced and a unique set of flexible seg-
ments for each agent. We call such a set system a UPB configuration. Since
agents only purchase segments from a UPB configuration in a CE, each cell
uniquely determines which items an agent might purchase. Hence, for a cell it
remains to check the conditions for a CE: 1.) all items are fully sold, and 2.)
all agents spend their budget. Note that the optimal bundles condition will get
automatically satisfied by consistent selection of forced and flexible segments.

Overall, our algorithm proceeds as follows: 1.) Enumerate the polynomially
many UPB configurations via cell decomposition. Then, for each UPB configu-
ration: 2.) Check whether there are feasible prices. 3.) Check whether for these
prices there is a CE allocation consistent with the UPB configuration. We here
concentrate on step 1, polynomial-time algorithms for steps 2 and 3 are described
in the full version.

3.1 Finding UPB Configurations

We present a cell decomposition to determine all meaningful UPB configura-
tions. We show that if the number of agents or items is constant, we obtain
only poly(n,m) cells. Using polynomial-time algorithms for finding prices and
allocations (full version), we get a polynomial-time algorithm to compute all CE.

Constant Number of Agents. Let n = |N | = d be a constant. Suppose for
a given set of prices, Bi

r and Gi
s are agent i’s flexible segments. Then, for any

6 Alternatively, if the goal is to compute CEEIs for a fair division instance, we can
determine the instance type in polynomial time by solving the LP (1) and then
assign appropriate budgets ei = 1 or ei = −1 for all i ∈ N .

10 J. Garg et al.

(i, j, k) ∈ Bi
r∪Gi

s, we have uijk/pj = αi > 0. Also, any segment with uijk/pj > αi

must be forced for good j ∈ M+, and any segment with uijk/pj < αi must be
forced for a bad j ∈ M−. Note that if (i, j, k) is a flexible segment for i, then
uijk/αi = pj .

Let λi = 1/αi, and consider Rn with coordinates λ1, . . . , λd. For each tuple
(a, b, j, r, s) where a, b ∈ N , j ∈ M , r ≤ |faj | and s ≤ |fbj |, we create a hyper-
plane uajrλa−ubjsλb = 0. In the> half-space, we have uajrλa > ubjsλb. If (b, j, s)
is flexible segment of good j ∈ M+ for agent b, then uajrλa > ubjsλb = pj , or
uajr/pj > 1/λa = αa, i.e., the segment (a, j, r) is forced for agent a. Similarly,
(b, j, s) is flexible segment of bad j ∈ M− for agent b, then in the > half-space
uajr/pj < αa, i.e., (a, j, r) is forced for agent a.

A cell is the intersection of these half-spaces, which gives a partial ordering
on the uijkλi’s. We sort the segments of good j ∈ M+ in the decreasing or-

der of uijkλi, and partition them into equivalence classes Gj
1, . . . , G

j
s with the

same uijkλi value. Similarly, we create equivalence classes Bj
1, . . . , B

j
s for bad

j by sorting the uijkλi in increasing order. By the above discussion, if flexi-

ble segments of good j ∈ M+ are in Gj
t , then all segments in Gj

t′ with t′ < t

are forced. Let Bj
<k = ∪k−1

z=1B
i
z and define Gi

<k similarly. Now the flexible seg-
ment, say s, of good j is the largest integer such that

∑
(i,j,k)∈Gj

<s
lijk < 1,

since the last spending by any agent on good j before it is fully sold happens
on Gj

s. The same holds for any bad j ∈ M−. Then, each cell corresponds to a
unique UPB configuration. Let S = maxi,j |fij |. Observe that the total number

of hyperplanes created is m
(
nS
2

)
= O(mn2S2), and they divide Rn into at most

O((mn2S2)n) = O((mS2)d) many cells.

Constant Number of Items. We concentrate on negative instances, i.e.,
ei < 0. One can adapt the argument to positive instances by swapping the roles
of goods and bads. Due to space constraints we discuss a high-level overview
here. Let m = |M | = d, a constant. Consider Rd with coordinates p1, . . . , pd.
For each tuple (i, j, k, r, s) where i ∈ N , j ̸= k ∈ M , r ≤ |fij | and s ≤ |fik|,
we create a hyperplane uijrpk − uikspj = 0. Each hyperplane divides Rd into
regions with signs >, =, or <, where the sign of determines whether i prefers
the segment (i, j, r) or (i, k, s), e.g., if j, k ∈ M+ then uijr/pj ≥ uiks/ps in the
≥ region. A cell is the intersection of these half-spaces, so that a cell gives a
partial ordering of bpbijr and ppbijr for each agent i ∈ N . Sort the segments
(i, j, r) of goods in decreasing order of bpb for agent i and create the equivalence
classes Gi

1, . . . , G
i
c with the same bpb. Similarly create the equivalence classes

Bi
1, . . . , B

i
c′ of segments of bads with the same ppb, sorted in increasing order.

We let ppbj be the ppb of Bi
j , and bpbj be the bpb of Gi

j .

Let Bi
<j = ∪j−1

z=1B
i
z and define Gi

<j similarly. Also let Bi
<1 = Gi

<1 = ∅. If Bi
j

and Gi
k are i’s flexible segments, then Bi

<j and Gi
<k are her forced segments.

Thus, each choice of flexible segments Bi
j and Gi

k for each agent yields a unique
UPB configuration.

To find agent i’s flexible segments we add another set of hyperplanes∑
(i,j,k)∈Bi

<r∪Gi
<s

lijkpj − ei = 0 to partition cells into sub-cells. The sign of

Competitive Equilibria with a Constant Number of Chores 11

sub-cell >, =, or < determines whether an agent over- or underspends her bud-
get. For example, in a negative instance where ei = −1, then in the > region∑

(i,j,k)∈Bi
<r∪Gi

<s
lijkpj > ei, so if agent i purchases all segments of Bi

<r ∪Gi
<s,

then she still needs to purchase more bads to reach her budget. From this in-
formation we can ultimately determine i’s flexible segments. This aspect is the
most significant challenge by SPLC utilities over the linear case in [17].

4 Constant Number of Bads

In this section, we show that in a negative instance when agents have linear
utility functions for bads we can relax the requirement for a constant number
of items, and instead only ask for a constant number of bads. To be clear, we
still allow any number of goods with SPLC utilities. This result improves on [17]
by using a weaker set of assumptions to obtain a polynomial time algorithm to
compute a CE of mixed manna.

Note that linear utility function is SPLC with a single segment, i.e., fij(xij) =
uijxij . For a set of prices p, define the minimum pain per buck bads as mpbi =
argminj∈M− uij/pj and let αi = minj∈M− uij/pj . In a negative instance where
all agents must purchase some bads, αi is well defined. Let Gi

k be agent i’s
flexible segment for goods with bang per buck bpbk. Then bpbk = αi, and any
segments Gi

j with bpbj > bpbk are forced.

Finding UPB Configurations. The algorithm has the same basic structure
as in Section 3.1: we use a cell decomposition to enumerate UPB configurations,
then determine prices and check if an equilibrium allocation exists. The difference
lies in the cell decomposition. It can be seen as a hybrid of the techniques used
in the two scenarios in Section 3.1.

In a negative instance, agents have negative budgets ei = −1, and must earn
on some bads. First, we determine the mpbi bads for each agent in a cell using a
similar approach as the constant number of items case. This gives the set of bads
each agent might purchase and determines the value of αi = minj∈M− uij/pj . In
the constant number of agents case, we used the variables λi = 1/αi to determine
mbbi goods and mpbi bads for each agent. Now we adapt the approach using the
variables pj/uij = 1/αi = λi, for bad j ∈ mpbi.

Theorem 2. Suppose the instance is negative and that agents have linear utility
functions for bads and SPLC utility functions for goods. If the number of bads
is constant, then we can compute all CE in polynomial time.

Proof. Let d = |M−| be a constant. Consider Rd with coordinates p1, . . . , pd. For
each agent i ∈ N and each pair of bads j, k ∈ M− we introduce the hyperplane
uijpk − uikpj = 0, which partitions Rd into regions with sign >, =, or <. Thus,
a cell gives a partial ordering on the terms uijpk. Sort the bads by uijpk values
under this ordering, i.e., j < k if uijpk < uikpj , and let Bi

1, . . . , B
i
c be the

equivalence classes listed in increasing order. Then Bi
1 are the mbbi goods for

12 J. Garg et al.

agent i in the cell. To see this, suppose (i, j) ∈ Bi
1 and (i, k) ∈ Bi

z for some z > 1.
Then, uijpk < uikpj , or uij/pj < uik/pk, i.e., j ∈ mbbi. We use

(
d
2

)
hyperplanes

for each agent, giving O(nd2) in total. Therefore there are at most O(nd) cells.
Note that all bads j ∈ mpbi have ppb of αi = minj∈M− uij/pj . Recall that we

used λi = 1/αi to determine the forced and flexible segments when the number
of agents is constant. We follow a similar procedure, this time using pj/uij =
1/αi = λi, for a j ∈ mpbi. To simplify notation, for each agent i pick a bad
k ∈ mpbi, and let c(i) = 1/uik and define p(i) = pk. Then p(i)c(i) = λi = 1/α.

We now determine the flexible segments of goods for each agent in a given cell.
For each tuple (i, i′, j, k, k′) where i ̸= i′ ∈ N , j ∈ M+, k < |fij |, k′ < |fi′j |, we
create a hyperplane uijkc(i)p(i)− ui′jk′c(i′)p(i′) = 0, if p(i) ̸= p(i′). Otherwise,
we compare the values uijk|c(i)| and ui′jk′ |c(i′)| directly, since p(i), c(i) < 0.
This further divides a cell into sub-cells where we have a partial ordering on the
agents’ segments for each good j ∈ M+, i.e., (i, j, k) > (i′, j, k′) if uijkc(i)p(i) >

ui′jk′c(i′)p(i′) since ci, p(i) < 0. For each good j ∈ M+, define Gj
1, . . . , G

j
c as the

equivalence classes with the same uijkc(i)p(i) value, sorted in decreasing order.
Since each good must be fully sold, let r be largest integer such that∑

(i,j,k)∈Gj
<r

lijk < 1, i.e., j becomes fully sold once agents purchase the seg-

ments of Gj
≤r. Then, G

j
r are the flexible segments. Indeed, let (i, j, k) ∈ Gj

r

be a flexible segment for agent i. This means that uijk/pj = αi, or pj =
uijk/αi = uijkc(i)p(i), by our choice of c(i) and p(i). Consider the segment
(i′, j, k′) ∈ Gj

q, for some q < r. Then,
ui′jk′

αi′
= ui′jk′c(i′)p(i′) > uijkc(i)p(i) = pj ,

i.e.,
ui′jk′

pj
> αi′ , so that (i′, j, k′) is a forced segment for agent i. Also, by our

choice of r, the final segments of j that agents purchase are Gj
r.

Let S be the maximum number of segments of any agents’ utility functions.
We formed sub-cells by adding hyperplanes for each tuple (i, i′, j, k, k′) where
i ̸= i′ ∈ N , j ∈ M+, k < |fij |, k′ < |fi′j | . We created |M+|

(
nS
2

)
= O(mn2S2)

overall in any given cell, which partitions the cell into at most O(md(nS)2d)
sub-cells. As previously calculated, there are O(nd) cells. The total number of
sub-cells is O(mdn3dS2d), which is poly(n,m, S) for constant d. ⊓⊔

Remark: If both goods and (constantly many) bads have SPLC utilities, we
need to find agent i’s flexible segments of bads Bi

s. The ppb of theses segments
is αi. However, flexible segments are determined by ensuring an agent spends
her entire budget, which obviously depends on both goods and bads. Thus, we
cannot consider goods and bads separately as we have done in this proof. Finding
a polynomial-time algorithm in this case is an interesting open problem.

5 Indivisible Manna

Finally, we turn to fair division with indivisible mixed manna. We assume that
there are m indivisible items. Each agent i ∈ N has a utility value uij for each
item j ∈ M . In this section, we assume that the utilities for the agents are
additive, i.e., ui(Si) =

∑
j∈Si

uij for every subset Si ⊆ M of items assigned to

Competitive Equilibria with a Constant Number of Chores 13

agent i. Item j is a good for agent i if uij > 0. If uij < 0, then j is a bad for
i.7 More globally, we define sets of (global) goods and bads as in Section 2, i.e.,
M+ = {j ∈ M : maxi∈N uij > 0} and M− = M \M+.

In a feasible allocation, we can assign the goods but must assign all bads to
the agents. Clearly, in a Pareto-optimal (PO) feasible allocation, we assign all
items; in particular, goods only get assigned to agents that have positive value
for them. While finding a feasible allocation is trivial, our goal is to satisfy a
natural fairness criterion that we term proportional up to a single item. Our
definition is a direct extension of the version for goods to mixed manna.

Definition 3. A feasible allocation S = (S1, . . . , Sn) for an instance with mixed
manna is proportional up to a single item (PROP1) if for every agent i there
is j ∈ M+ such that ui(Si ∪ {j}) ≥ 1

n · ui(M) or j ∈ Si ∩ M− such that
ui(Si \ {j}) ≥ 1

n · ui(M).

Our main result is a polynomial-time rounding algorithm that yields a feasible
PROP1 allocation. Our algorithm is inspired by algorithms for markets with only
goods [5, 21]. We pretend the instance is divisible with linear utilities, compute
a CEEI based on the instance type (all budgets are 1, 0, or -1 respectively), and
then use our algorithm to round the CEEI to an indivisible allocation that is
feasible and PROP1. For positive and negative instances it is also PO.

Theorem 3. There is a polynomial-time algorithm to round any CEEI for a
divisible instance with mixed manna and linear utilities to a feasible indivisible
PROP1 allocation. For positive/negative instances the rounded allocation is PO.

Proof. Due to space constraints, we show the result for positive instances. Con-
sider a CEEI (x, p) in a positive instance. Agent i only buys from a subset of
goods that give the maximum bang per buck mbbi = maxk∈M+ uik/pk and/or a
subset of bads that give minimum pain per buck mpbi = mink∈M− uik/pk). If i
buys both goods and bads, then mbbi = mpbi. The sets of mbbi goods and mpbi
bads are invariant to scaling all utility values uij by a common factor γj > 0.
Further, properties feasibility, PO, and PROP1 are also invariant to such a scal-
ing. Hence, we assume w.l.o.g. that the utilities are scaled such that whenever
xij > 0, this implies uij/pj = 1. As a consequence, since all budgets are 1, we
have ui(xi) = 1 for all i ∈ N . Further, by market clearing,

∑
j pj =

∑
i ei = n.

Hence, with a budget of n, any agent i would be able to buy all goods and bads.
However, when doing so, every good delivers at most a utility per unit spending
of 1, and every bad at least a pain per utility of earning of 1. As a consequence,
ui(M) ≤ n, and ui(xi) ≥ 1

nui(M).
Now consider the allocation graph G, i.e., the bipartite graph composed of

agents, items, and edges E = {{i, j} ∈ N ×M | xij > 0}. Because the allocation
x is fractional PO (i.e., no other allocation makes an agent better off without
making someone else worse off), we can use standard arguments for linear mar-
kets and assume that the allocation graph is a forest [8, 16]. Moreover, for the

7 For consistency with previous sections, we assume that uij ̸= 0 throughout. Our
arguments can be adapted easily by assuming that when uij = 0, j is a good for i.

14 J. Garg et al.

same reason, it holds that xij > 0 and uij < 0 only when j ∈ M− is a (global)
bad. Thus, for every agent, the set of incident goods in G fulfills∑

j∈M+:xij>0

uij ≥ 1−
∑

j∈M−:xij>0

xijuij . (3)

For our rounding algorithm, we consider every tree T of G separately. We root
T in an arbitrary agent r and initialize Sr = ∅. Now apply a greedy algorithm:
First add all incident leaf items to Sr, since these items are already assigned
fully to i in the CEEI. Then go through the remaining children goods of r in
non-increasing order of urj , and add good j to Sr as long as ur(Sr ∪ {j}) ≤ 1.
Due to (3) and since we include only leaf bads of r into Sr, there is either child
good j′ with ur(Sr ∪ {j′}) > 1 or we add all child items to Sr resulting in
ur(Sr) = 1. In both cases, Sr fulfills PROP1.

We recursively apply the greedy approach. Remove r from T and all children
goods assigned to r. Assign each remaining child item of r to its respective child
agent. This splits T into a number of subtrees of T1, T2, The new roots are
the grandchildren r1, r2, . . . of r. We label each new root whether it received its
parent good (RG), its parent bad (RB), or did not receive its parent good (NG).
Note that, recursively, a parent bad is always assigned to the child agent.

If ri is (RG), it is easy to see that the greedy procedure and the arguments
for r can be applied directly to assign a subset to ri that is PROP1. If ri is
(RB), let ji be the parent bad. We apply the greedy procedure, but stop only
after the first child good that yields uri(Sri \{ji}) ≥ 1. Such a good exists, since
ri buys a fraction of ji in the CEEI, and the set of all child goods of ri fulfills (3).
Clearly, the resulting set Sri is PROP1. Finally, if ri is (NG), let ji be the parent
good. Hence, we apply the greedy algorithm, but stop only after the first child
good gives uri(Sri ∪ {ji}) ≥ 1. Again, such a good exists due to (3). Again,
the resulting Sri is PROP1. Using these arguments, we can proceed recursively
top-down through the entire tree. The resulting allocation is PROP1.

For PO, recall that we scale utilities based on mbbi and mpbi values. We
allocate only mbbi goods and mpbi bads in the CEEI, so xij > 0 only if uij/pj =
1, i.e., if xij > 0, then uij = pj . The other items have less value, i.e., if xij = 0,
then uij ≤ pj . The algorithm assigns item j to agent i only if xij > 0 and,
thus, uij = pj . As a consequence, the algorithm gives each item to an agent with
maximum scaled utility for that item. Hence, the allocation maximizes the sum
of all scaled utilities of the agents. This proves that it is PO.

References

1. Aziz, H., Caragiannis, I., Igarashi, A., Walsh, T.: Fair allocation of indivisible goods
and chores. In: Proc. 28th Intl. Joint Conf. Artif. Intell. (IJCAI) (2019)

2. Aziz, H., Moulin, H., Sandomirskiy, F.: A polynomial-time algorithm for computing
a Pareto optimal and almost proportional allocation. Oper. Res. Lett. 48(5), 573–
578 (2020)

3. Aziz, H., Rey, S.: Almost group envy-free allocation of indivisible goods and chores.
IJCAI (2020)

Competitive Equilibria with a Constant Number of Chores 15

4. Azrieli, Y., Shmaya, E.: Rental harmony with roommates. J. Economic Theory
153, 128–137 (2014)

5. Barman, S., Krishnamurthy, S.K.: On the proximity of markets with integral equi-
libria. In: Proc. 33rd Conf. Artif. Intell. (AAAI) (2019)

6. Bhaskar, U., Sricharan, A., Vaish, R.: On approximate envy-freeness for indivisible
chores and mixed resources (2020), arxiv:2012.06788

7. Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaia, E.: Competitive divi-
sion of a mixed manna. Econometrica 85(6), 1847–1871 (2017)

8. Bogomolnaia, A., Moulin, H., Sandomirskiy, F., Yanovskaia, E.: Dividing bads
under additive utilities. Social Choice and Welfare 52(3), 395–417 (2019)

9. Brams, S.J., Taylor, A.D.: Fair division - from cake-cutting to dispute resolution.
Cambridge University Press (1996)

10. Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A. (eds.): Handbook of
Computational Social Choice. Cambridge University Press (2016)

11. Branzei, S., Sandomirskiy, F.: Algorithms for competitive division of chores (2019),
arXiv:1907.01766

12. Chaudhury, B.R., Garg, J., McGlaughlin, P., Mehta, R.: Dividing bads is harder
than dividing goods: On the complexity of fair and efficient division of chores
(2020), arxiv:2008.00285

13. Chaudhury, B.R., Garg, J., McGlaughlin, P., Mehta, R.: Competitive allocation of
a mixed manna. In: Proc. 31st Symp. Discrete Algorithms (SODA) (2021)

14. Chen, X., Teng, S.: Spending is not easier than trading: On the computational
equivalence of Fisher and Arrow-Debreu equilibria. In: Proc. 20th Intl. Symp. Al-
gorithms and Computation (ISAAC). pp. 647–656 (2009)

15. Devanur, N., Kannan, R.: Market equilibria in polynomial time for fixed number of
goods or agents. In: Proc. 49th Symp. Foundations of Computer Science (FOCS).
pp. 45–53 (2008)

16. Devanur, N., Papadimitriou, C., Saberi, A., Vazirani, V.: Market equilibrium via
a primal–dual algorithm for a convex program. J. ACM 55(5) (2008)

17. Garg, J., McGlaughlin, P.: Computing competitive equilibria with mixed manna.
In: Proc. 19th Conf. Auton. Agents and Multi-Agent Systems (AAMAS). pp. 420–
428 (2020)

18. Garg, J., Mehta, R., Sohoni, M., Vazirani, V.V.: A complementary pivot algorithm
for market equilibrium under separable, piecewise-linear concave utilities. SIAM J.
Comput. 44(6), 1820–1847 (2015)

19. Garg, J., Végh, L.A.: A strongly polynomial algorithm for linear exchange markets.
In: Proc. 51st Symp. Theory of Computing (STOC) (2019)

20. Huang, X., Lu, P.: An algorithmic framework for approximating maximin share
allocation of chores (2019), arXiv:1907.04505

21. McGlaughlin, P., Garg, J.: Improving Nash social welfare approximations. J. Artif.
Intell. Res. 68, 225–245 (2020)

22. Moulin, H.: Fair Division and Collective Welfare. MIT Press (2003)
23. Nisan, N., Tardos, É., Roughgarden, T., Vazirani, V. (eds.): Algorithmic Game

Theory. Cambridge University Press (2007)
24. Orlin, J.: Improved algorithms for computing Fisher’s market clearing prices. In:

Proc. 42nd Symp. Theory of Computing (STOC). pp. 291–300 (2010)
25. Robertson, J., Webb, W.: Cake-Cutting Algorithms: Be Fair If You Can. AK Pe-

ters, MA (1998)
26. Su, F.E.: Rental harmony: Sperner’s lemma in fair division. The American Math-

ematical Monthly 106(10), 930–942 (1999)

