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Abstract

In this paper we study a dynamic version of capacity maximization in the physical model
of wireless communication. In our model, requests for connections between pairs of points in
Euclidean space of constant dimension d arrive iteratively over time. When a new request
arrives, an online algorithm needs to decide whether or not to accept the request and to assign
one out of k£ channels and a transmission power to the request. Accepted requests must satisfy
constraints on the signal-to-interference-plus-noise (SINR) ratio. The objective is to maximize
the number of accepted requests.

Using competitive analysis we study algorithms using distance-based power assignments, for
which the power of a request relies only on the distance between the points. Such assignments
are inherently local and particularly useful in distributed settings. We first focus on the case of
a single channel. For request sets with spatial lengths in [1, A] and duration in [1,T] we derive a
lower bound of Q(T" - A%2) on the competitive ratio of any deterministic online algorithm using
a distance-based power assignment. Our main result is a near-optimal deterministic algorithm
that is O (T - A4/2)%2)_competitive, for any constant & > 0.

Our algorithm for a single channel can be generalized to k channels. It can be adjusted
to yield a competitive ratio of O (k DU A(d/%”)“) for any factorization (¥, k") such that

k' - k" = k. This illustrates the effectiveness of multiple channels when dealing with unknown
request sequences. In particular, for ©(logI" - log A) channels this yields an O(logT" - log A)-
competitive algorithm. Additionally, we show how this approach can be turned into a random-
ized algorithm, which is O(log T - log A)-competitive even for a single channel.

1 Introduction

Determining the capacity of wireless networks is a major challenge in networking. Most studies in
this area rely on the physical model taking into account that the strength of a signal fades with the
distance from the sender. A node can successfully receive a signal if the signal to interference plus
noise ratio (SINR) is above some threshold, that is, if the signal’s strength is sufficiently large in
comparison to the sum of other signals received simultaneously plus ambient noise.

Only very recently, we have seen significant progress in understanding the algorithmic aspects
of the scheduling problems arising in the physical model [3-5,10,11,13,17]. Previous work focuses
on offline optimization problems of the following kind. Suppose one is given a set of n requests
for connections between pairs of points in Euclidean space of constant dimension d. One has to
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specify a subset of requests and a power assignment to each pair such that the requests can be
scheduled simultaneously, that is, the chosen requests with the power assignments satisfy the SINR
constraint. The objective is to maximize the number of chosen requests. This variant is sometimes
referred to the throughput version of the capacity mazximization problem. A related problem is to
minimize the number of batches such that the requests in each batch satisfy the SINR constraint.
In this case batches can be mapped to orthogonal channels or time slots.

Most of the previous work focuses on power assignments that are distance-based, i. e., the power
assignment is a function of the distance between the two nodes of a request. Prominent examples are
the linear power assignment in which the power is chosen proportional to the loss in power between
the nodes of a request (and, hence, depends polynomially on the distance) and the uniform power
assignment in which all requests get assigned the same power. Such assignments are inherently
local and, hence, particularly useful in distributed settings. The linear power assignment has the
additional advantage of being energy-minimal.

The best known offline results for the uniform power assignment are achieved in [10] and [14].
They present algorithms that achieve O(1) approximation guarantees with respect to the number of
requests that can be scheduled simultaneously when restricting to the uniform power assignment.
This approach can easily be extended to obtain an O(logn) approximation ratio on the number
of batches for the uniform power assignment [10]. Similarly, in [9] an algorithm is presented that
achieves an O(logn) approximation on the number of batches when restricting to linear power
assignments. Very recently, Kesselheim [15] presented a constant factor approximation algorithm
for maximizing the number of requests using arbitrary power assignments.

Let us remark that offline approximation ratios restricted to uniform or linear power assignments
can often be translated into approximation ratios with respect to general power assignments by
spending an additional factor of order log A, where A is the ratio between the largest and the
smallest distance among all request pairs. To see this, consider an optimum solution with general
powers and cluster the accepted requests into O(log A) classes such that in class ¢ requests have
lengths in [2°1,2%). For the restricted instance of all requests with lengths in [2¢71, 2¢) the optimum
solution using uniform power assignment yields at least a constant fraction of the size of class i if
requests are located in the Euclidean plane. This can be derived from, e.g., results in [1] and shows
the result for uniform powers. As uniform and linear power assignments differ only by a constant
factor if request lengths are within a factor of 2, the same result holds for linear assignments using,
e.g., results of [3]. More generally, using our insights below one can easily extend this argument to
hold for arbitrary fading metrics (for a definition see below).

Consequently, the algorithms from [10] and [14] using uniform power assignments achieve an
O(log A) approximation ratio in comparison to general power assignments. The same approxima-
tion ratio has been achieved independently in [1]. It follows from the analysis presented in [8,16] that
this approximation ratio is best possible for algorithms using uniform or linear power assignments.

A drawback of the previous work is that it neglects the dynamic nature of request scheduling in
wireless networks. The focus of our paper lies exactly on this aspect. We study request scheduling
in wireless networks as an online problem, that is, requests arrive one by one. When a new request
arrives, an online algorithm needs to decide whether or not to accept the request and to assign a
power rate. In the multi-channel version, accepted requests must also be assigned to one out of k
available channels. Decisions about acceptance as well as power and channel assignments cannot
be revoked later.



1.1 Online Request Scheduling

In our online model we receive an unknown number of n communication requests sequentially over
time. Each request 1 < ¢ < n consists of a point pair. For a directed request there is a sender
s; and a receiver r; that strive to establish an uninterrupted connection. For undirected requests,
both points are receiver and sender at the same time. In this paper we consider sets of directed
and undirected requests, as well as mixed sets of requests. We assume that points come from a
metric space with a distance function d(z,y). We use short notation for d;; = d(s;,7;), the distance
between sender s; and receiver r;. We also refer to d;; as the length of request i. More generally,
for two different directed requests we use d;; = d(s;,r;). We denote by A = (max; d;;)/(min; d;;)
the so called aspect ratio. Further, each request pair i comes with a parameter ¢;, which denotes
the duration of the request. We denote by I' = (max; t;)/(min; ¢;), where w.l.o.g. we let min; ¢; = 1
and max; t; = I'. We assume requests lie in R? of constant dimension d, and the distance function
is an [,-norm or the l,q,-norm. Finally, we show how to extend most of our results to doubling
metrics [2,6].

Requests arrive sequentially over time and are assumed to be characterized by the physical
model [12]. The goal is to accept the maximum number of requests that can successfully com-
municate simultaneously. For each request an online algorithm must make a decision whether to
accept the request or not. For an accepted request ¢ it needs to set a power level p; and a channel

k; € {1...,k} for the sender s; to emit a signal. For undirected requests we assume that both points
emit signals with the same power and on the same channel. The algorithm iteratively expands the
sets S1,...,S) of accepted requests on the corresponding channels. Decisions on acceptance, power

levels, and channels of a request cannot be revoked later on. If a request is accepted, the algorithm
must ensure that it remains successful throughout the time. The criterion of “successful” for an
accepted directed request i is the following SINR constraint:

5_; >0 Z % + Nkz : (1)
u JESk; i1 It

This constraint is the central condition for successful communication in the physical model. It
characterizes the strength at r; of the signal emitted by s; compared to ambient noise Nj, and
the interference from signals of all other senders on the same channel k;. In this expression « is
the path loss exponent that characterizes the decay of a signal over a distance. In this paper we
consider a Euclidean fading metric [13], i.e., we require that « > d, where we treat both o and d
as constants. The constant 3 is called the gain.

For a successful undirected request the SINR constraint has to be satisfied at both points of
the pair. Similarly, when considering another receiver ¢, both points of j are senders using power
pj and create interference. For notational simplicity, however, we will treat them as two directed
requests in the right-hand side of (1). An online algorithm has to ensure that (1) is satisfied for all
1€ S5 =51U...USk throughout.

For simplicity we assume that noise is absent, Ny = ... = N = 0. Our algorithms will satisfy
the SINR constraint with strict inequality. This allows to scale powers up sufficiently to satisfy
the constraints also when there is noise. Clearly, such a scaling might be wasteful or infeasible in
practice, but this aspect is beyond our analysis. When there is no noise, we can scale all distances
such that min; d;; = 1 and max; d;; = A.

In this paper we are particularly interested in distance-based power assignments because of their
simplicity and locality, which is a striking conceptual advantage in distributed wireless systems. A
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distance-based power assignment p is given by p; = ¢(d;;) with a function ¢ : [1, A] — (0,00). For
uniqueness we assume ¢ is always scaled such that ¢(1) = 1. Examples are uniform ¢(d;) = 1
or linear ¢(d;;) = dSi assignments. Recently, a square-root assignment ¢(d;;) = d‘;;/ ? has attracted
some interest [8,13] as it yields better approximation ratios for the offline version of request schedul-
ing than uniform and linear power assignments. We generalize these three classes to polynomial
assignments of the form ¢(d;;) = d}f* with parameter r € R.

For the analysis of our online algorithms we make use of the following definitions. Let A(w)
denote the number of request pairs an online algorithm A accepts, and let OPT(w) denote the
number of requests in an optimal offline solution on an input sequence w. An online algorithm is c-
competitive (or “yields competitive ratio ¢”) if there exists a constant a, such that for every input w
we have A(w) > (OPT(w)/c) + a. We call algorithm A strictly c-competitive if it is c-competitive
with a = 0. Note that all algorithms presented in this paper are strictly competitive. For the lower
bounds we do not need to rely on strictness.

1.2 Our Results

Our first contribution are lower bounds for deterministic online algorithms choosing requests for
a single channel. We show that any deterministic online algorithm using a polynomial power
assignment with parameter » cannot yield a competitive ratio better than 2 (F . Ad'ma"{r’l_r}). For
uniform and linear power assignments, this results in a lower bound of {2 (I‘ . Ad); for the square root
power assignment, it yields a lower bound of 2 (F - A% 2). In fact, we can show that the (F A4/ 2)
lower bound on the competitive ratio is not restricted to polynomial power assignments: In the
case of directed requests, this bound holds for any distance-based power assignment and, in the
case of undirected requests, the same bound holds even for general power assignments.

Our lower bounds reveal an exponential gap between the approximation guarantees achievable
by deterministic online and offline algorithms. The main difficulty of the online scenario turns out
to be that requests cannot be ordered by length. This has been a crucial ingredient to all existing
deterministic offline algorithms with polylogarithmic approximation guarantee [1,10,13].

Our second contribution is a deterministic online algorithm for a single channel that almost
matches the lower bounds. All following results hold for directed and undirected requests. Algo-
rithm SAFE-DISTANCE works for polynomial power assignments with r € [0,1]. For uniform and
linear power assignments, it achieves a competitive ratio of O (F . Ad). For the square-root power
assignment, we extend the basic idea and obtain algorithm MULTI-CLASS SAFE-DISTANCE. For
any constant € > 0 it achieves a competitive ratio of O (F - AY 2+E).

Let us explicitly point out that these competitive ratios compare the performance of online
algorithms with polynomial power assignments to optimal offline algorithms with general power
assignments. Combining the upper bound for the square root power assignment with the lower
bounds above shows that this power assignment achieves nearly the best possible competitive ratio
among all (distance-based) power assignments (in case of directed requests) and is superior to any
other polynomial power assignment.

Our third contribution is an illustration of the power of multiple channels for deterministic
online algorithms. We generalize algorithm MULTI-CLASS SAFE-DISTANCE and its analysis from 1
to k channels and achieve an exponential reduction in the competitive ratio. We prove that algo-

rithm MULTI-CLASS SAFE-DISTANCE using k = k' - k” channels is only O (k- T/ . A(d/%”)JrE)—

competitive. In particular, with just a logarithmic number of channels we obtain a deterministic
algorithm with logarithmic competitive ratio. This algorithm is only constant-competitive against



an optimum solution that uses only one channel. By randomly choosing a channel, we thus obtain
a randomized algorithm for a single channel that is O(logI' - log A)-competitive with respect to the
expected number of accepted requests.

Finally, we show the robustness of our results by extending all upper bounds from Euclidean to
doubling metrics. This allows to introduce features such as obstacles in our model, which locally
disturb Euclidean distances but do not affect the global structure of the metric.

Outline For technical reasons, we present our results in a different order than listed above. In
Section 2 we first analyze algorithm SAFE-DISTANCE before stating the general lower bound in
Theorem 2.5. In Section 3 we give the near-optimal algorithm MULTI-CLASS SAFE-DISTANCE
(Section 3.1), the generalization to k channels (Section 3.2) and the randomized algorithm (Sec-
tion 3.3). In Section 4 we reach the full level of generality by describing the adjustments to requests
with duration (Section 4.1) and to doubling metrics (Section 4.2). Finally, we conclude the paper
in Section 5 with some open problems.

2 A Simple Algorithm and a Lower Bound

In the following we first analyze the spatial aspect of the problem and assume that requests last
forever, i.e., for all requests ¢, t; = co. We begin by analyzing a simple online algorithm for the
case of a single channel and any polynomial power assignment. Subsequently, we show a general
lower bound. Our analysis of the online algorithm introduces a number of critical observations that
we use in later sections.

The main idea of the algorithm is to accept a new request only if it keeps a safe distance o
from every other previously accepted request. In particular, we accept incoming request ¢ only if
min{d,;,d;;} > o for every other previously accepted request j € S. We call this algorithm SAFE-
DiSTANCE. For the choice of o there is a conflict between correctness and competitive ratio. A
larger o blocks out a larger portion of the space, in which an optimal algorithm knowing the request
sequence might be able to accept requests. If o is too small, then at some point the interference at
an accepted request can get too large and the SINR constraint becomes violated.

We strive to choose ¢ as small as possible to ensure correctness of SAFE-DISTANCE. To bound
the interference at accepted requests we construct a worst-case scenario. We consider a receiver r;
from a single accepted request and bound the maximum number of senders that can be at a certain
distance from r;. In the following we show that for r € [0, 1] the choice of

o :max{zA,A.wd. ‘(/m}

is sufficient to yield the following result.

Theorem 2.1. SAFE-DISTANCE is O(A®)-competitive for any polynomial power assignment with
r € [0,1] and a single channel.

Proof. We first show that SAFE-DISTANCE is correct, i.e., for an accepted request i the SINR
constraint of 7 never becomes violated. In particular, we will underestimate the distances of accepted
senders of other requests to overestimate the interference at receiver r;. However, even under such
pessimistic conditions the SINR constraint at r; will remain valid.

Consider a receiver r; of an accepted request i. To estimate the interference at r; we have to
count how many senders may be placed at which distance. Using o > 2A and the choice rule of
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the algorithm it is straightforward to verify that senders of any two different accepted requests are
at least a distance of 0 — A > /2 apart. We segment all of R? into d-dimensional hypercubes with
length o /3d, which we call sectors. The greatest distance within a sector is 0d/3d = /3 < 0 /2.
Each sector can contain senders from at most one request, so there are at most 2 senders in every
sector. Without loss of generality, we assume that sectors are created such that r; lies in a corner
point of 2¢ sectors. We divide the set of sectors into layers. The first layer consists of the 2% sectors
incident to ;. The second layer are all sectors that are not in the first layer but share at least
a point with a sector from the first layer, and so on. In this construction there are exactly (2¢)%
sectors from layers 1 through ¢, and their union is a hypercube of side length 2¢o/3d with r; in the
center. Therefore, there are exactly 2¢(¢¢ — (¢ — 1)%) sectors in layer /.

Due to the algorithm there can be no sender at a distance smaller than ¢ from r;. The sector
of smallest layer that is at a distance at least o from r; can be reached along the volume diagonal
of the layer hypercubes. There can be no sender in all sectors from layers 1 through ¢, where ¢’
is bounded by o < ¢/(c/3), which yields ¢/ > 3. For bounding the interference assume that in all
sectors of layer £ > 3 there are 2 senders. Note that all senders in sectors from a layer £ have a
distance at least (¢ — 1)o/3d to r;. To bound the interference that is created at r;, we use the
following technical lemma.

Lemma 2.2. For o > d > 1 it holds that
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The assumption € > 0 yields a constant value for the expression, which is 62 - ({(1 +¢) — 1). We
estimate this value by Y 2, 717¢ < f;:l ¢=1=¢ = 1/e, which proves the lemma. O
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Note that the SINR constraint is satisfied if p;/d$; > A™/A%* > BI, or

a d
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This yields a lower bound for the distance of
o] 2364
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which can be verified to hold for our choice of o.

To bound the competitive ratio we need the following Density Lemma, which is an extension of
Lemma 3 in [1] to both senders and receivers, and to metric spaces of arbitrary dimension d. The
proof requires some adjustments from [1].

Lemma 2.3 (Density Lemma). Consider a sector A with side-length x > 1 and any feasible solution
with arbitrary power assignment. There can be only (d + 1)*(z + 1)%/B requests with a receiver in
A and only (d 4+ 1)*(z + 1)?/B requests with a sender in A.

Proof. We first assume & = 1 and consider the number of receivers and senders in A separately.

Receivers: We first prove the lemma for the receivers. Let us assume that the transmission powers
in the solution are such that there is a constant p such that the signal strength received by a
receiver p;/d; = P for any request with r; € A. Consider another request with r; € A. The
interference of j at r; is p;/dj; > p;/(d(ri,r;) +dj;)). Due to the size of the sector we have
that d(r,7;) < d. Also d;; > 1, which implies

Pj 1 pj o D

> . —_ .
(d(Ti,Tj) +djj)a ~ (d+ 1)~ d(;j ~ (d+ 1)~

Thus, if more than (d 4+ 1)*/8 such connections are present, the SINR constraint for all of
them is violated.

Now consider a solution with arbitrary powers. Here we artificially reduce powers such that
all connections experience a minimal signal strength p and then increase powers to their
original value. The increase lowers SINR ratios for the requests that continue to have a signal
strength of p. Hence, if more than (d + 1)*/ receivers are present in A, at least one SINR
constraint is violated.



Senders: For bounding the number of senders in A we use a similar approach. This time, however,
we first assume that all senders have the same power. For two requests ¢ and j this yields
pj/d5; = pj/(d(si, s5)+d;i)*. We have that d(s;, s;) < d. Alsodj; > 1,50 pj/(d(s;, si)+dii)* >
@ Jrll)a . % as before. Thus, for the SINR constraint it is necessary that

i1

pi_ B NP
g~ (d+1) Iy dg

Using p; = p; for all requests ¢ and j, there can be at most (d+1)®// senders in A, otherwise
the SINR constraint for all requests is violated. A similar observation as before generalizes
the argument to arbitrary powers.

This proves the lemma for x = 1. If x > 1, we overestimate A to a sector of side-length [z +1],
divide this into sectors of length 1, apply the above arguments, and the bound follows. O

The density lemma allows a simple way to bound the number of connections the optimum
solution can accept in the blocked area. First consider a sender s; of a request accepted by SAFE-
DisTANCE. The sender blocks a hypersphere of radius o for receivers of other requests. We
overestimate its size by a sector of side-length 20 centered at s;. By the density lemma, the
optimum solution can accept at most (d + 1)®(2¢ + 1)¢/8 requests, which is O(A9) for fixed «, 3,
and d. For the receiver r; there is a similar estimation. This time we bound the number of senders
in a hypersphere around r;, which is O(A?) for fixed «, 3, and d. Finally, note that o is chosen
to maximize conceptual simplicity and does not optimize the involved constants in the competitive
ratio. ]

We can use similar arguments to show a result for any other polynomial power assignment. As
safe distance we pick 07 = A" .o ifr > 1,and 0~ = Al™" . g if r < 0.

Corollary 2.4. SAFE-DISTANCE is O (Ad'max{’"vl_’"})-competitive for a polynomial power assign-
ment with r ¢ (0,1) and a single channel.

Proof. In the case r > 1 we note for correctness of the algorithm that the interference at an accepted
receiver r; is again bounded by

T

d:e 1 3d\¢ 6
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The SINR constraint now requires that p; /d$: = g\r—be > 1> BI. This yields a lower bound of

[ 1
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Bounding the competitive ratio can be done as before and proves the result for the case r > 1.
If r < 0, then the interference is maximized with requests of length 1 in each sector. The
interference is thus bounded by

=y Sy & < 2’<§_C—Z>a'a6dd'
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The SINR constraint now requires that p;/dS; = dg_l)a > A(r=Da > 3T This yields a lower bound

-/ 2364

o” > A" 3d-

The corollary follows. O

As it turns out, the competitive ratio of SAFE-DISTANCE is asymptotically best possible for
polynomial power assignments with r ¢ (0,1). This includes both the uniform and linear power
assignment. Next, we bound the competitive ratio for any deterministic online algorithm using
polynomial power assignments. This can be generalized to a lower bound for any distance-based
power assignment.

Theorem 2.5. FEvery deterministic online algorithm using polynomial power assignments has a
competitive ratio of €2 (Ad'max{’"vl_’"}). Every deterministic online algorithm is ) (Ad/ 2) -competitive
(1) using arbitrary power assignments in the case of undirected requests and (2) using distance-based
power assignments in the case of only directed requests.

Proof. The main observation in the proof is that every deterministic online algorithm has to accept
the first request that arrives, otherwise it risks having an unbounded competitive ratio. While this
is true only for strictly competitive algorithms, we can repeat the following instance sufficiently
often and keep a sufficiently large distance between the instances. In this way we can neglect the
constant a from the competitive ratio.

We first consider the case that all requests are directed and polynomial power assignment. Let
the first request have length A. From the SINR constraint we bound the minimum distance every
other successful request has to keep to sender s; or receiver r1. This yields a blocked area in which
the online algorithm is not able to accept any request. We then count the maximum number of
requests that can be placed into this area, and which the optimum solution can accept simultane-
ously. The next Proposition yields a bound on the minimum distance between two requests with a
polynomial power assignment.

Proposition 2.6. Consider two directed successful requests i and j with polynomial power assign-
ment. The distance between s; and r; must be at least d;; > B - dy; - d}j_’".

Proof. Consider the SINR constraint for request j when only requests i and j are accepted. It
reads

a(r—1 ro /) Jo
djj( ) > B(d; /di;) s

and rearranging yields the result. O

Now suppose the online algorithm has accepted the first request of length A. The adversary
subsequently presents requests of length 1. If the sender of one such request is closer than ¢/5-A"
to r1, the online algorithm cannot accept the request. The same holds if the receiver is closer than
/B - A" to s1. Thus, there are two hyperspherical areas blocked around sender and receiver of
request 1. Let us consider the case r < 0.5 and the hypersphere around the receiver. All subsequent
arguments follow similarly for » > 0.5 and the sender.

The adversary can place requests, all of equal length d;; = 1, into the hypersphere of radius
¢/B- A" around r;. Similar to the proof of Theorem 2.1 we divide the space into sectors of length

201, where
o1 = max {2, 18d - $/28/ (o — d)} .

9



We again assume that rq is located on the boundary of d sectors. How many sectors are completely
enclosed by the blocked hypersphere around 71?7 The side-length of the maximum hypercube that

is contained is 2A'"" ¢/B/d. There are at least % — 1 sectors along each dimension within

the hypercube, a number in ©(A'~"). This obviously yields a total number of Q(A1~")4) sectors,
in which the online algorithm must not accept any request. However, we observe that o7 is chosen
using the formula for o with ratio 1. It is possible to locate one request of length 1 in each sector
such that receivers and senders of two different requests are at least a distance of o1 apart. By
Theorem 2.1 it is possible to accept all these Q(A(l_r)d) small requests simultaneously, which proves
the theorem for case r < 0.5. For r > 0.5 we can place requests in the hypersphere around sy to
derive a similar result.

To extend the previous arguments to arbitrary distance-based power assignments, we ob-
serve that the previous lower bound uses only requests of length 1 and A. Let ¢ be the func-
tion of the distance-based power assignment, then ¢(A) is the power of the first request. The
lower bound for this power assignment behaves exactly as for a polynomial assignment with
r = (log 6(A))/(alog A).

Note that when a power assignment is not distance-based, it might assign different powers to
small requests based on whether they are near the sender or the receiver of the first request. This,
however, does not help if the requests are undirected. In this case we create the same instance
using only undirected requests. Then we get a blocked area of at least {2 (Ad/ 2) for any polynomial
power assignment around both points of the first request. Using the normalization of powers as
before we observe that there is a blocked area of size € (Ad/ 2) for any small request, no matter
which power we assign to it. This proves the theorem. O

3 Improved Competitive Ratios

3.1 A Near-Optimal Algorithm for the Square-Root Assignment

Algorithm 1 MULTI-CLASS SAFE-DISTANCE
1: Initialize accepted requests S = (.
2: while a new request ¢ arrives do
3 Set p; = \/Tg and temporarily accept S’ <~ S U1
for all j € S do
Let C; and C, be the length classes of requests 7 and j, respectively
if min{d;;,d;;} < min{o(C;),0(Cy)} then
decline request: S’ < S.
end if
end for
10:  Update: S < 5.
11: end while

In this section we extend algorithm SAFE-DISTANCE to achieve a competitive ratio, which is
close to the best-possible ratio for any distance-based power assignment. The algorithm uses the
square-root power assignment, and the main idea of the algorithm is to block areas based on the
distances of the involved requests. In particular, we classify requests into m length classes, where
class C, contains requests i with d;; € [A% A%-1] with a, = 1/2%, for x = 1,...,m — 1 and
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[1, A%n—1] for class Cy,. With each class we associate a safe distance o(C;) chosen as

0(Cy) = max {2A““, A%5Taz 18 . ‘\’/25771 : <2 + %) }

This yields the following result.

Theorem 3.1. For any constant € > 0, MULTI-CLASS SAFE-DISTANCE is O (Ad/2+€)—competz'tz've
for a single channel.

Proof. We first show that the algorithm is correct. We again treat a single accepted request and
bound the interference from other accepted requests. This time, however, we have to consider the
class the request is contained in. Suppose a request i is from class C,. To show that it is successful
we have to estimate the distances dj; for other requests. We will bound the interference from
requests of each class separately and apply the construction outlined in Theorem 2.1. For requests
of class C, we assume a worst-case placement and divide the space into sectors of side-length
o(Cy)/3d. This again shows that no sector can contain more than two senders. The consideration
of layers allows to bound the joint interference from all senders. For a class y > x, the minimum
distance from 7; to each sender is at least o(C,). Thus, there is no sender in layers 1 and 2, and
we can apply previous arguments to bound the interference. For classes with y < x the minimum
distance between r; and any sender from this class is only o(C;) < 0(Cy). Senders can be closer to
r; creating more interference. In particular, there can be senders in sectors of layers 1 and 2. For
these senders we explicitly bound the distance using o(Cy).

Oc/2 2y Y
A o/2 Aa/2
sy Y By ¥y
y=1j€Cy,j#i 92 y>r160y,ﬁéz ” y<~’UJECy ’Z
2A“/2”.< 3d >a A/ 2
; a(Cy) y§<;: ]gc:
I<z

Using Lemma 2.2, the definition of ¢(C;), and y > 1 we see that

s /2y 24 3d \“ 0 —(0-1)
I<r < 23 A ( x)a+<a(cy)> <4d 2dz (G ))

y<z
24 3d \° 6d
o (G () (1)
Z CATRRN( a—d
3d \“ 1
< QA2 6. (o4 -
N y§<;: < C:c)) 6 +a—d
Aa/2y
< Z o /2%
y<x5m,A/2+ /2
z—1
< -
= Bm- AV
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For the total interference we use x > 1 and bound as follows

3d \* 64 x—1
a/2v )
P T () oSt s

y>w
m—m+1+ r—1
~ Bm-AY2 " Bm . AY/Z
1
S A

As request ¢ is in class Cp, the minimum signal strength is p;/d > 1/ A¥?" > BI, which proves
correctness of the algorithm.

For bounding the competitive ratio we consider the number of requests from the optimum
solution that are blocked per accepted request. We consider blocked requests from each class
separately. Obviously, the largest blocked areas are generated by a request from class 1. It blocks a
hypersphere of radius o(C,) for requests from class C,, which we overestimate by the corresponding
sector of side-length 20(C;). We must take into account that requests from class C, are bounded
from below in distance. The proof of the density lemma can be adjusted to show that there can be
only (d+1)“/p receivers and senders in a sector of side-length h when each request has distance at
least dj; > h. There are only (d+1)®(x/h+1)%/ requests of minimum length & in a sector of side-
length . In the blocked area of C, we can schedule at most (d41)*(20(C,)/AY?" +1)¢/3 requests.
Assuming that d, «, and § are constants, this number is in O(mAd/Q) foreach x =1,...,m — 1.
For class C,, it is in O(mAd/ 2+d/ 2™). Hence, the total number of requests blocked per accepted
request is O(m2Ad/ 2+d/ 2™). In order to obtain a bound for a constant &, we apply MULTI-CLASS
SAFE-DISTANCE using m = log d/e length classes. This proves the theorem. O

3.2 Multiple Channels

In this section we show how to generalize the algorithms above to k channels and decrease their
competitive ratio. We propose a k-channel adjustment, in which we separate the problem by using
certain channels only for specific request lengths. All requests with length in [A(i_l)/ k A/ k] are
assigned to channel ¢, for ¢ = 1,...,k, where we assign requests of length Ak arbitrarily to
channel i or ¢+ 1. For each channel ¢ we apply an algorithm outlined above, which makes decisions
about acceptance and power of requests assigned to channel i. Using this separation, we effectively
reduce the aspect ratio to A* on each channel. If the optimum solution has to adhere to the same
length separation on the channels, this would yield a denominator k in the exponents of A of the
competitive ratios. Obviously, the optimum solution is not tied to our separation, but the possible
improvement due to this degree of freedom can easily be bounded by a factor k. This yields the
following corollary.

Corollary 3.2. MULTI-CLASS SAFE-DISTANCE with k-channel adjustment is O (kA(d/2k)+€)—com—
petitive using the square-root power assignment. SAFE-DISTANCE with k-channel adjustment is
(@) (k;Ad/k)—competz'tz've for any polynomial assignment with r € [0,1], and O (kAmaX{r’l_r}'d/k)—
competitive for r ¢ [0,1].

3.3 A Randomized Algorithm

In the previous section for k = ©(log A), the length differences on each channel reduce to a con-
stant factor, e.g., for suitable k the requests on channel j are of length [2/71,27]. This implies that
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we approximate the requests on each channel by a constant factor. Thus, we obtain an O(log A)-
competitive algorithm against an optimum that can use k = O(log A) channels. Similarly, if the
optimum was restricted to use only one channel, we would obtain a constant factor approxima-
tion algorithm. This is the main insight for designing our randomized algorithm RANDOM SAFE-
DISTANCE. We virtually set up ©(log A) channels, pick one channel uniformly at random, and
then run our algorithm restricted to this channel. This yields a O(log A)-competitive randomized
algorithm, even for the case of a single channel. Using an additional k-channel adjustment in this
case shows a similar result for £ channels. We have the following corollary.

Corollary 3.3. RANDOM SAFE-DISTANCE with k-channel adjustment is O(log A)-competitive for
any polynomial power assignment and any number k of channels.

Note that for polynomial assignments with » ¢ (0,1) and one channel the logarithmic ratio is
asymptotically optimal. This follows with a simple example from [8]. There are n = O(log A) nested
request pairs on the line with exponentially increasing distance. The optimum power assignment
can successfully schedule Q(log A) requests. Using any polynomial assignment with r ¢ (0, 1) there
can be only O(1) successful requests. Thus, using such a power assignment even an optimal offline
algorithm knowing all requests is Q(log A)-competitive. A similar observation holds with results
of [8] in the case of directed request sets and any distance-based power assignment. In this case,
however, the lower bound is only (loglog A). Closing this gap remains as an open problem.

4 Extensions

4.1 Requests with Duration

In the previous sections we assumed that requests last forever, analyzing only the spatial aspect of
the problem. We now show how our results extend when each request i has a duration t;. After
time t; an accepted request stops sending and leaves (thus, no longer causing interference).

We show the modification for the algorithm SAFE-DISTANCE for r € [0,1]. We adapt the
algorithm in the following way. It accepts a given request 7 if and only if the safe distance ¢ holds
to all previously accepted requests that are active at some point in time in ¢’s duration.

Our first observation is the following. If we consider a fixed point in time, an optimal solution
OPT can have at most O(Ad) more requests than our algorithm, as this corresponds to the spatial
problem. Now let i be a request accepted by SAFE-DISTANCE with smallest duration possible, that
is, t; = 1. Each request contained in an optimal solution that interferes with i is active at least
either when ¢ starts or when it stops sending. So it is sufficient to count the accepted requests
in OPT at both of these points in time to upper bound the number of requests blocked by i,
which is 2 - O(Ad). Furthermore, a request 7 with ¢; < I' can be split into at most I' requests
of duration 1, thus blocking at most (T' 4+ 1) - O(A%) requests. The argumentation is similar for
other polynomial power assignments and results in an additional factor of I" in all previously shown
bounds (c.f. Section 1.2).

In the case of multiple channels, for k¥ = &' - k", clustering of requests w.r.t. similar length
and duration values can be used to improve the ratio for our algorithm MULTI-CLASS SAFE-

DISTANCE to O (k- Fl/’“’A(d/%”)“). Choosing k = logT" - log A, RANDOM SAFE-DISTANCE be-
comes O (logT" - log A)-competitive.
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4.2 Doubling Metrics

All of our algorithms can be adjusted to work in more generalized metric spaces. In particular, we
consider doubling metrics [7]. Let (V,d) be a metric space and B(z,r) = {y € V | d(z,y) < r}
a ball of radius r around a point . Consider an e-covering of such a ball, i.e., a set of balls of
radius er such that their union contains B(z,7). The doubling dimension of a metric space is the
minimum number d such that for any ball B(z,2r) with € V and r > 0 there is a covering
with 27 balls of radius r. A metric with constant d is called a doubling metric. We again assume
that o and d are constants, and that we have a fading metric with o > d. A slight adjustment
of the constants involved in the definition of the safe distance then yields similar bounds on the
performance of SAFE-DISTANCE, MULTI-CLASS SAFE-DISTANCE, and RANDOM SAFE-DISTANCE
in this more general scenario.

Theorem 4.1. All bounds on the competitive ratios of SAFE-DISTANCE, MULTI-CLASS SAFE-
DISTANCE, and RANDOM SAFE-DISTANCE continue to hold for doubling fading metrics. In par-
ticular, for k = k' - k", algorithm MULTI-CLASS SAFE-DISTANCE with k-channel adjustment

is O <k:-F1/k/ . A(d/2k”)+5) -competitive for the square-root power assignment. RANDOM SAFE-

DISTANCE with k-channel adjustment is O(logT - log A)-competitive for any polynomial power as-
signment and any number k of channels.

Proof. We discuss the respective results mentioned in the theorem:

Algorithm SAFE-DISTANCE: Let us first consider an adjusted algorithm SAFE-DISTANCE that
uses the uniform power assignment and keeps a distance of at least

of 28
T:maX{2A,A‘20' m}

Then no two senders can be closer than 7/2. Thus, in a ball of radius 7/5 there can be at
most two senders. We first require correctness of the algorithm and derive a lower bound
on 7. We structure the space into balls of radius 2¢ - 7/5, for £ = 1,2,.... A ball of size ¢
can be covered by at most 2¢ many balls of layer £ — 1. Applying this argument recursively,
the ball can be covered by 2¢ of radius 7/10. Note that there can be at most 2+ many
different senders in such a ball, because the number of balls of radius r required for covering
is at most the number of points with mutual distance 2r that can be placed in an area. We
now overestimate the number of senders and at a distance by using concentric balls around a
receiver r;. We consider an annulus B(r;, 2 - 7/5) — B(r;, 2671 - 7/5), and assume that 2¢4+1
senders are located in this area, which all have a distance of 2°~! - 7/5 to r;. As there is a
minimum distance of 7 of any sender to r;, we start to count at £ = 2. This yields an upper
bound for the interference of

;- i o(L+1)d+1 vy 5 a.i@d—a)é
(2¢.7/5)« T

=2

< gd+l, <§>a <%> . (5)

For the last inequality we have used that a > d. This yields 24~ < 1, and the sum amounts
to less than 1/(1—297%). This allows to derive a lower bound of 7 on our safe distance, which
is satisfied by our choice, and proves correctness.

14



For bounding the competitive ratio we adjust the Density Lemma in a straightforward way
and note that in a ball of radius 1 there can be only 3%/3 many senders and receivers. To
cover a ball of radius 7, we need at most 21°82 714 many balls of radius 1. Thus, for a, S and
d being constants, there are at most O (Ad) many requests that are blocked in the optimum
by any accepted request of the online algorithm.

Note that the previous proof can be generalized easily to any polynomial power assignment,
resulting in similar bounds as shown in Corollary 2.4.

Algorithm MULTI-CLASS SAFE-DISTANCE: For algorithm MULTI-CLASS SAFE-DISTANCE we use
the same distribution of request lengths into classes C, for x = 1,...,m as before. The safe
distances 7(C;) used by the algorithm can be estimated similarly. In particular, we use

7(Cp) = max {2A““,A°'5+% +20 - f(/25m : <2 + ﬁ) }

The construction to show correctness is the same extension that we used to extend SAFE-
DISTANCE to MULTI-CLASS SAFE-DISTANCE as before. Here, however, we use the bounds of
equation (5), which yields

N 20 \* 1 o/ 1
1<) 2A /2y'<¢(cy)> 1 S A /2yzﬁ

y>x y<zx JEC, J?

<z

Using a minimum distance of 7(C,) for the requests from the smallest balls, we derive similarly

as before
d a o0 oH(L+1)d
I < 2;}“/%'<T<zx>a+<7<2@/>> '<4d+;222 ))
s <<Zd> ! <<2>> <4d = ;))
T () ste)

Thus, by using the definition of 7(C,) and noting y > 1 we see that [<* < W. For the

total interference we use x > 1 and bound as follows

20 \“ 1 rz—1 1
a/2y . <
I < Z2A (T(Cy)> 2a _ 9d + ﬁm . Aa/2ﬂ” — ﬁ . Aa/2ﬂ” )

y>z

which proves correctness of the algorithm. Estimation of the competitive ratio can be done
similarly as before. We use the adjustment of the Density Lemma outlined above for SAFE-
DISTANCE to bound the maximum number of connections from OPT blocked by MULTI-CLASS
SAFE-DISTANCE. This results in a competitive ratio of O (A(d/2)+5).

Channels and RANDOM SAFE-DISTANCE: The generalization to multiple channels and the ran-
domized algorithm are independent of the metric and apply directly without adjustment.

O
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5 Conclusion

In this paper we have studied a throughput optimization problem in wireless networks using the
physical interference model. The lack of information about arrival of requests in practice naturally
gives rise to the online scenario studied in this paper, where requests arrive iteratively over time
and must be scheduled or dropped. We here use competitive analysis to derive near-optimal de-
terministic online algorithms. We also show how our algorithms can be extended to requests with
duration and more generalized interference scenarios. In addition, we observe that randomized
algorithms can be significantly more powerful than deterministic ones.

A natural open problem that arises from our work is to obtain optimal randomized algorithms
for the problem. In particular, it would be interesting to see if the bound of log A is tight or can
be beaten using more intelligent algorithms with distance-based or arbitrary power assignments.

In addition, many of our lower bounds hold only with respect to arbitrary power assignments
but not with respect to approximating the problem within a given power assignment. For example,
can we obtain a smaller competitive ratio than O(log A) using, e.g., uniform power assignments if
we compare to the optimum using uniform power?

Finally, one could also consider adaptive adversaries that, e.g., adjust to the choice of request
class made initially in our randomized algorithm. While such adversaries are not necessarily of
practical relevance, showing good performance under these conditions can highlight the robustness
of an algorithm.
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