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Abstract. We study continuous opinion formation games with aggrega-
tion aspects. In many domains, expressed opinions of people are not only
affected by local interaction and personal beliefs, but also by influences
that stem from global properties of the opinions in the society. To cap-
ture the interplay of such global and local effects, we propose a model of
opinion formation games with aggregation, where we concentrate on the
average public opinion as a natural way to represent a global trend in
the society. While the average alone does not have good strategic prop-
erties as an aggregation rule, we show that with a reasonable influence
of the average public opinion, the good properties of opinion formation
models are preserved. More formally, we prove that a unique equilib-
rium exists in average-oriented opinion formation games. Simultaneous
best-response dynamics converge to within distance ε of equilibrium in
O(n2 ln(n/ε)) rounds, even in a model with outdated information on the
average public opinion. For the Price of Anarchy, we show a small bound
of 9/8+o(1), almost matching the tight bound for games without aggre-
gation. Moreover, some of the results apply to a general class of opinion
formation games with negative influences, and we extend our results to
the case where expressed opinions come from a restricted domain.

1 Introduction

The formation and dynamics of opinions are an important aspect in society and
have been studied extensively for decades (see e.g., [16]). Opinion formation is
based on information exchange, which is often local in the sense that socially
connected people (e.g., family, friends, colleagues) interact more often and af-
fect each other’s opinion more strongly. Moreover, opinion formation is often
dynamic in the sense that discussions and interactions lead to changes in the
expressed opinions. With the advent of the internet and social media, local and
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dynamic aspects of opinion formation have become ever more dominant. To cap-
ture opinion formation on a formal level, several models have been proposed (see
e.g., [9, 12, 15, 6, 13, 4] for continuous opinions and [10, 20, 5] for discrete ones).

Motivation and Opinion Formation Model. We build on the influential
model of Friedkin and Johnsen (FJ) [12] for continuous opinion formation, fol-
lowing the game-theoretic viewpoint of [6]. Each agent i holds an intrinsic be-
lief si ∈ [0, 1], which is private and invariant over time, and a public opinion
zi ∈ [0, 1]. Agent i selects her opinion so as to minimize the total (weighted)
disagreement of zi to her belief and to the opinions in her social neighborhood.
In a dynamic setting, the agents start with their beliefs and in each round t ≥ 1,
update their opinion zi(t) to the minimizer of their disagreement cost, given the
opinions of the others in round t − 1. The FJ model is extensively studied and
has nice algorithmic properties. It admits a unique equilibrium [12, 6], which is
approached quickly by the simultaneous best-response dynamics [13]. The Price
of Anarchy (PoA) is 9/8 for undirected social networks and Ω(n) for general di-
rected networks [6]. Moreover, tight PoA bounds can be obtained by an elegant
local smoothness argument both for undirected [4] and for directed [8] networks.

Despite these favorable properties, the FJ model disregards influences from
global properties of the opinions, and also the nature of the dynamics of consen-
sus formation. In many domains, public opinions are not only affected by local
interaction and personal beliefs, as in e.g., [9, 12, 6, 13, 4, 7], but also by influences
that stem from global properties of the opinions in the society. People are getting
exposed to global trends, societal norms, results from voting and polling, etc.,
which are usually interpreted as the consensus view of the society and may affect
opinion formation. Furthermore, groups of people (or networks of agents) often
need to agree on a common action, even if their beliefs and/or their expressed
opinions are totally different. This happens, e.g., when networked devices need
to implement a common action, when people vote over a set of alternatives, or
when a wisdom-of-the-crowd opinion is formed in a social network. In similar
situations, an aggregation rule maps the public opinions to a global opinion that
represents the consensus view on the issue at hand. E.g., in the FJ model, the
global opinion might be the average or the median of the equilibrium opinions.

In presence of aggregation, an agent can also anticipate the impact of its
chosen public opinion on the global one and might incorporate it in its choice.
Hence, the disagreement cost should also reflect the distance of an agent’s intrin-
sic belief to the global opinion. To address these issues, we consider a variant of
the opinion formation game of [12, 6, 13] with opinion aggregation. Each agent i
selects her opinion zi so as to minimize:

Ci(z) = wi(si − zi)2 +
∑
j 6=i

wij(zj − zi)2 + αi(aggr(z)− si)2 . (1)

In (1), z = (z1, . . . , zn) ∈ Rn is the public opinion vector, si ∈ [0, 1] is the belief
of agent i, and aggr(z) maps z to a global opinion aggr(z). The weights wij ≥ 0
quantify how much the public opinion of agent j influences i, wi > 0 quantifies
i’s self-confidence, and αi > 0 quantifies the appeal of aggr(z) to i.
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Motivated by previous work on the wisdom of the crowd (see e.g., [16,
Sec. 8.3], [14]), we concentrate on average-oriented opinion formation games,
where the aggregation rule aggr(z) maps z to its average avg(z) =

∑n
j=1 zj/n .

Then, the best response of each agent i to a public opinion vector z is:

zi =

(
wi + αi

n

)
si +

∑
j 6=i
(
wij − αi

n2

)
zj

wi + αi

n2 +
∑
j 6=i wij

. (2)

Contribution. The aggregation rule in (1) might significantly affect the dynam-
ics and the equilibrium of opinion formation. This becomes evident in (2), where
i’s influence from some opinions zj can be negative. Negative influence models
agent competition for dragging the average public opinion close to their intrin-
sic beliefs. An important side-effect is that the best-response (and equilibrium)
opinions may become polarized and be pushed towards opposite directions, far
away from the agent intrinsic beliefs. This is a significant departure from the FJ
model, where the equilibrium opinions lie between the minimum and maximum
intrinsic beliefs of the agents. Interestingly, we prove that the nice algorithmic
properties of the FJ model are not affected – neither by negative influence nor
by outdated information on the average opinion.

We show (Lemma 1) that average-oriented games admit a unique equilibrium,
and simultaneous best-response dynamics converges to it within distance ε > 0 in
O(n2 ln(n/ε)) rounds. For this result, all agents have access to the average public
opinion in each round. Since the average is global information and thus difficult
to monitor in large networks, we consider average-oriented opinion dynamics
with outdated information. Here the average public opinion is announced to all
the agents simultaneously every few rounds (e.g., a polling agency publishes this
information every now and then). We prove (Theorem 1) that opinion dynamics
with outdated information about the average converges to the unique equilibrium
within distance ε > 0 after O(n2 ln(n/ε)) updates on the average. Both these
results are proven for a more general setting with negative influence between the
agents and with partially outdated information about the agent public opinions.
The main point here is that negative influence and outdated information do not
introduce undesirable oscillating phenomena to opinion dynamics.

In Section 4, we bound the PoA of average-oriented opinion formation games.
We consider symmetric games, where wij = wji ≥ 0 for all agent pairs i 6= j, all
agents have the same self-confidence w and the same influence α from the average
(for non-symmetric games the PoA is Ω(n), even without aggregation, see [6,
Fig. 2]). We show (Theorem 2) that the PoA is at most 9/8 + O(α/(wn2)). In
general, this bound cannot be improved since for α = 0, 9/8 is a tight bound for
the PoA under the FJ model [6]. While the proof builds on [4], local smoothness
cannot be directly applied to symmetric average-oriented games, because the
function (avg(z) − si)

2 is not locally smooth. To overcome this difficulty, we
combine local smoothness with the fact that the average opinion at equilibrium
is equal to the average belief, a consequence of symmetry (Proposition 1).

A frequent assumption on continuous opinion formation is that agent beliefs
and opinions take values in a finite interval of non-negative real numbers. By
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scaling, one can then treat beliefs and opinions as numbers in [0, 1]. Here, we
also assume that agent beliefs si ∈ [0, 1]. However, due to negative influence, the
equilibrium opinions in our model may become polarized and end up far away
from [0, 1]. We believe that such opinion polarization is natural and should be
allowed under negative influence. Therefore, in Sections 3 and 4, we assume that
public opinions can take arbitrary real values. Then, in Section 5, we also consider
restricted average-oriented games with public opinions restricted to [0, 1], and
study how convergence properties and price of anarchy are affected.

Existence and uniqueness of equilibrium for restricted games follow from [18].
We prove (Theorem 3) that the convergence rate of opinion dynamics with neg-
ative influence and with outdated information is not affected by restriction of
public opinions to [0, 1]. As for the PoA of restricted symmetric games, we con-
sider the special case where wi = αi = 1, for all agents i, and show that the PoA
does not exceed (

√
2 + 2)2/2 +O( 1

n ) (Theorem 4). A technical challenge is that
partial derivatives of the agent cost functions in the local smoothness inequality
do not need to be 0 at equilibrium, due to the opinion restriction to [0, 1]. So,
we first show that if wij = 0 for all i 6= j, the PoA is at most 1 + 1/n2. Then
we combine the PoA of this simpler game with the local smoothness inequality
of [4] and obtain an upper bound on the PoA of the restricted game. Due to lack
of space, several proofs are omitted from this extended abstract.

Clearly, there are many alternative ways to model aggregation, which offer
interesting directions for future research. For example, a possible aggregation is
the median instead of the average. The median aggregation rule is prominent in
Social Choice (see e.g., [17, 3]). However, it turns out that the FJ model with me-
dian aggregation has significantly less favorable properties. There are examples
where median-oriented games lack exact equilibria (and, hence, convergence of
best-response dynamics), but they can be shown to have approximate equilibria.
A study of the median rule is beyond the scope of this paper.

Further Related Work. To the best of our knowledge, this is the first work
to analyze the convergence of simultaneous best-response dynamics of the FJ
model with negative influence and outdated information, or the price of anarchy
of the FJ model with average opinion aggregation. However, there is some recent
work on properties of opinion formation either with global information, or with
negative influence, or where consensus is sought. We concentrate here on related
previous work most relevant to ours. Discrete opinion formation is considered
in [11] in the binary voter model, where each agent i has a certain probability
of adopting the opinion of an agent outside i’s local neighborhood (this is con-
ceptually equivalent to estimating the average opinion with random sampling).
The authors analyze the convergence time and the probability that consensus is
reached. Necessary and sufficient conditions under which local interaction in so-
cial networks with positive and negative influence reaches consensus are derived
in [1]. Recently, a model of discrete opinion formation was introduced in [2] with
generalized social relations, which include positive and negative influence. The
authors show that generalized discrete opinion formation games admit a poten-
tial function, and thus, best-response dynamics converge to a Nash equilibrium.
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2 Model and Preliminaries

Notation and Conventions. We define [n] ≡ {1, . . . , n}. For a vector z, z−i
is z without its i-th coordinate and (z, z−i) is the vector obtained from z if we
replace zi with z. Let 0 ≡ (0, . . . , 0) and I be the n× n identity matrix. We use
capital letters for matrices and lowercase letters for their elements such that,
e.g., aij is the (i, j) element of a matrix A.
‖A‖ and ‖z‖ denote the infinity norms of matrix A and vector z, resp.

We repeatedly use the standard properties of matrix norms without explicitly
referring to them, i.e., (i) for any matrices A and B, ‖AB‖ ≤ ‖A‖ ‖B‖ and
‖A + B‖ ≤ ‖A‖ + ‖B‖; (ii) for any matrix A and any λ ∈ R, ‖λA‖ ≤ |λ| ‖A‖;
and (iii) for any matrix A and any integer `, ‖A`‖ ≤ ‖A‖`. Moreover, we use
that for any n× n real matrix A with ‖A‖ < 1,

∑∞
`=0A

` = (I−A)−1.

Average-Oriented Opinion Formation. We consider average-oriented opin-
ion formation games with n agents as introduced in Section 1. Wlog., we assume
that agent beliefs s ∈ [0, 1]n. For the public opinions z, we initially assume val-
ues in R. In Section 5, we explain what changes if we restrict them to [0, 1]. An
average-oriented game G is symmetric if wij = wji for all i 6= j, and wi = w and
αi = α for all agents i. G is nonsymmetric otherwise. If G is symmetric, we let
w = 1, by scaling other weights accordingly. Our convergence results hold for
nonsymmetric games, our PoA bounds hold only for symmetric ones.

A vector z∗ is an equilibrium of an opinion formation game G if for any
agent i and any opinion z, Ci(z

∗) ≤ Ci(z, z
∗
−i), i.e., the agents cannot improve

their individual cost at z∗ by unilaterally changing their opinions. The social
cost C(z) of G is C(z) =

∑
i∈N Ci(z). An opinion vector o is optimal if for

any z, C(o) ≤ C(z). An optimal vector exists because the social cost function
is proper. The Price of Anarchy of G (PoA(G)) is C(z∗)/C(o), where z∗ is the
unique equilibrium and o an optimal vector.

It will be convenient to write (2) in matrix form. Let Si = wi+
αi

n2 +
∑
j 6=i wij .

We always assume that Si > 0 so that Ci(z) is strictly convex in zi. We define
two n × n matrices A and B. Matrix A has aii = 0, for all i ∈ N , and aij =
(wij − αi

n2 )/Si, for all j 6= i. Matrix B is diagonal and has bii = (wi + αi

n )/Si, for
all i ∈ N , and bij = 0, for all j 6= i.

We assume that αi ≤ Si ≤ nwi, for all agents i (i.e., the agents neither are
overwhelmed by the average opinion nor have extremely low self-confidence).
This implies ‖A‖ ≤ 1− 2

n2 , which is crucial for the convergence of best response
dynamics. We term a matrix similar to A (i.e., with infinity norm less than 1
and 0s in its diagonal) influence matrix, and a matrix similar to B (i.e., diagonal
one with positive elements) self-confidence matrix.

The simultaneous best-response dynamics of an average-oriented game G
starts with z(0) = s and proceeds in rounds. In each round t ≥ 1, the public
opinion vector z(t) is:

z(t) = Az(t− 1) +Bs (3)

We refer to (3) and similar equations as opinion formation processes. An opinion
formation process {z(t)}t∈N converges to a stable state z∗ if for all ε > 0, there
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is a t∗(ε), such that for all t ≥ t∗(ε), ‖z(t) − z∗‖ ≤ ε. Iterating (3) over t (see
also [13, Sec. 2]) implies that for all rounds t ≥ 1,

z(t) = Az(t− 1) +Bs = · · · = Ats +

t−1∑
`=0

A`Bs . (4)

Outdated Information of the Average Opinion. We study opinion forma-
tion when the agents have outdated information about the average public opin-
ion. There is an infinite increasing sequence of rounds 0 = τ0 < τ1 < τ2 < · · ·
that describes an update schedule for the average opinion. At the end of round
τp, the average avg(z(τp)) is announced to the agents. We refer to the rounds
between two updates as an epoch, where rounds τp + 1, . . . , τp+1 comprise epoch
p. The length of each epoch p, denoted by kp = τp+1 − τp ≥ 1, is assumed to be
finite. The update schedule is the same for all agents, but the agents might not
be aware of it. They are only assumed to be aware of the most recent value of
the average public opinion provided to them.

In this case, we need to distinguish in (2) and (3) between the influence from
social neighbors, for which the most recent opinions z(t − 1) are used, and the
influence from the average public opinion, where possibly outdated information
is used. As such, we now rely on three different n×n matrices D, E and B. Self-
confidence matrix B is defined as before. Influence matrix D has dii = 0, for all
i ∈ [n], and dij = wij/Si, for all j 6= i, and accounts for the influence from social
neighbors. Influence matrix E has eii = 0, for all i ∈ [n], and eij = −αi/(n2Si),
for all j 6= i, and accounts for the influence from the average public opinion. By
definition, A = D + E. Moreover, ‖D‖ ≤ 1− 1/n and that ‖E‖ ≤ (n− 1)/n2.

At the beginning of the opinion formation process, z(0) = s. For each round
t in epoch p, τp + 1 ≤ t ≤ τp+1, the agent opinions are updated according to:

z(t) = Dz(t− 1) + Ez(τp) +Bs (5)

Note that at the beginning of each epoch p, every agent i can subtract zi(τp)
from n avg(z(τp)) and compute the term Ez(τp) as − αi

n2Si
(n avg(z(τp))−zi(τp)).

Opinion Formation with Negative Influence. An interesting aspect of
average-oriented games is that the influence matrix A may contain negative
elements. Motivated by this observation, we prove our convergence results for
a general domain of opinion formation games that may have negative weights
wij . Similarly to [6, 13], the individual cost function of each agent i is Ci(z) =
wi(zi − si)2 +

∑
j 6=i wij(zi − zj)2, and i’s best response to z−i is

zi =
wisi +

∑
j 6=i wijzj

wi +
∑
j 6=i wij

. (6)

The important difference is that now some wij may be negative. We require that
for each agent i, wi > 0 and Si = wi +

∑
j 6=i wij > 0 (and thus, Ci(z) is strictly

convex in zi). The matrices A and B are defined as before. Namely, aij = wij/Si,
for all i 6= j, and B has bii = wi/Si for all i. We always require that ‖A‖ < 1−β,
for some β > 0 (β may depend on n). Simultaneous best-response dynamics is
again defined by (3).
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3 Convergence of Average-Oriented Opinion Formation

For any nonnegative influence matrix A with largest eigenvalue at most 1 − β,
[13, Lemma 5] shows that (3) converges to z∗ = (I−A)−1Bs within distance ε in

O(ln(‖B‖εβ )/β) rounds. We generalize [13, Lemma 5] to average-oriented games,
where A may contain negative elements. Thus, we show the following lemma for
generalized opinion formation games with negative influence between the agents.

Lemma 1. Let A be any influence matrix, possibly with negative elements, with
‖A‖ ≤ 1 − β, for some β > 0. Then, for any self-confidence matrix B, any
s ∈ [0, 1]n and any ε > 0, the opinion formation process z(t) = Az(t− 1) +Bs

converges to z∗ = (I−A)−1Bs within distance ε in O(ln(‖B‖εβ )/β) rounds.

Since I−A is nonsingular, z∗ is the unique vector that satisfies z∗ = Az∗+Bs.
Thus, z∗ is the unique equilibrium of the corresponding opinion formation game.
Moreover, since for average-oriented games ‖A‖ ≤ 1 − 2/n2, Lemma 1 implies
that any average-oriented game admits a unique equilibrium z∗ = (I−A)−1Bs,
and for any ε > 0, (3) converges to z∗ within distance ε in O(n2 ln(n/ε)) rounds.

We next extend Lemma 1 to the case where the agents use possibly outdated
information about the average public opinion in each round. In fact, we establish
convergence for a general domain with negative influence between the agents,
which includes average-oriented opinion formation processes as a special case.

Theorem 1. Let D and E be influence matrices, possibly with negative ele-
ments, such that ‖D‖ ≤ 1 − β1, ‖E‖ ≤ 1 − β2, for some β1, β2 ∈ (0, 1) with
β1 +β2 > 1. Then, for any self-confidence matrix B, any s ∈ [0, 1]n, any update
schedule 0 = τ0 < τ1 < τ2 < · · · and any ε > 0, the opinion formation process

(5) converges to z∗ = (I − (D + E))−1Bs within distance ε in O(ln(‖B‖εβ )/β)
epochs, where β = β1 + β2 − 1 > 0.

Proof. We observe that z∗ = (I− (D +E))−1Bs is the unique solution of z∗ =
Dz∗+Ez∗+Bs (as in Lemma 1, since ‖E+D‖ ≤ 1−β, with β > 0, the matrix
I− (D+E) is non-singular). Hence, if (5) converges, it converges to z∗. To show
convergence, we bound the distance of z(t) to z∗ by a decreasing function of t
and show an upper bound on t∗(ε) = min{t : e(t) ≤ ε}.

As in the proof of Lemma 1, for each round t ≥ 1, we define e(t) = ‖z(t)−z∗‖
as the distance of the opinions at time t to z∗. For convenience, we also define

f(β1, β2, k) = (1− β1)k + (1− β2)
1− (1− β1)k

β1
.

For any fixed value of β1, β2 ∈ (0, 1) with β1 +β2 > 1, f(β1, β2, k) is a decreasing
function of k. Indeed, the derivative of f with respect to k is equal to ln(1−β1)(1−
β1)k(1− 1−β2

β1
), which is negative, because 1 > (1− β2)/β1, since β1 + β2 > 1.

We next show that (i) for any epoch p ≥ 0 and any round k, 0 ≤ k ≤ kp,
in epoch p, e(τp + k) ≤ f(β1, β2, k)e(τp); and (ii) that in the last round τp+1 =
τp + kp of each epoch p ≥ 0, e(τp+1) ≤ (1− β)e(τp). The first claim shows that
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the distance to equilibrium decreases from each round to the next within each
epoch, while the second claim shows that the distance to equilibrium decreases
geometrically from the last round of each epoch to the last round of the next
epoch. Combining the two claims, we obtain that for any epoch p ≥ 0 and any
round k, 0 ≤ k ≤ kp, in epoch p, e(τp + k) ≤ f(β1, β2, k)(1− β)pe(0). Therefore,
for any update schedule τ0 < τ1 < τ2 < · · · , the opinion formation process (5)
converges to (I− (D + E))−1Bs in O(ln(e(0)/ε)/β) epochs.

To prove (i), we fix any epoch p ≥ 0 and apply induction on k. The basis,
where k = 0, holds because f(β1, β2, 0) = 1. For any round k, with 1 ≤ k ≤ kp,
in p, we have that:

e(τp + k) = ‖Dz(τp + k − 1) + Ez(τp) +Bs− (Dz∗ + Ez∗ +Bs)‖
≤ ‖D‖ ‖z(τp + k − 1)− z∗‖+ ‖E‖ ‖z(τp)− z∗‖
≤ (1− β1)e(τp + k − 1) + (1− β2)e(τp)

≤ (1− β1)f(β1, β2, k − 1)e(τp) + (1− β2)e(τp) = f(β1, β2, k)e(τp) .

The first inequality follows from the properties of matrix norms. The second
inequality holds because ‖D‖ ≤ 1− β1 and ‖E‖ ≤ 1− β2. The third inequality
follows from the induction hypothesis. Finally, we use that for any k ≥ 1, (1 −
β1)f(β1, β2, k − 1) + 1− β2 = f(β1, β2, k).

To prove (ii), we fix any epoch p ≥ 0 and apply claim (i) to the last round
τp+1 = τp + kp, with kp ≥ 1, of epoch p. Hence, e(τp+1) = ‖z(τp + kp)− z∗‖ ≤
f(β1, β2, kp)e(τp).

We next show that f(β1, β2, kp) ≤ 2 − (β1 + β2) = 1 − β, which concludes
the proof of the claim. The inequality holds because for any integer k ≥ 1,
f(β1, β2, k) is a convex function of β1. For a formal proof, we fix any k ≥ 1 and

any β2 ∈ (0, 1), and consider the functions g(x) = (1−x)k+ 1−(1−x)k
x (1−β2) and

h(x) = 2−β2−x, where x ∈ [1−β2, 1] (since we assume that β1 ∈ (0, 1) and that
β1 > 1−β2). For any fixed value of β2 ∈ (0, 1), h(x) is a linear function of x with
h(1−β2) = 1 and h(1) = 1−β2. For any fixed value of k ≥ 1 and β2 ∈ (0, 1), g(x)
is a convex function of x with g(1−β2) = 1 = h(1−β2) and g(1) = 1−β2 = h(1).
Therefore, for any β1 ∈ [1− β2, 1], g(β1) ≤ h(β1) = 2− (β1 + β2).

To obtain an upper bound on e(0) = ‖s − z∗‖, we work as in the proof of
Lemma 1, using the fact that ‖D + E‖ ≤ 1− β, and show first that ‖(I− (D +
E))−1‖ ≤ 1/β and then that ‖z∗‖ ≤ ‖B‖/β. Since z(0) = s, we have that
e(0) = ‖s− z∗‖ ≤ 1 + ‖B‖/β. Using the fact that for each epoch p ≥ 0 and for
every round k, 0 ≤ k ≤ kp, in p, e(τp + k) ≤ f(β1, β2, k)(1− β)pe(0), we obtain

that t∗(ε) = O(ln(‖B‖εβ )/β) epochs. ut

For average-oriented games, D+E = A, ‖D‖ ≤ 1−1/n and ‖E‖ ≤ (n−1)/n2.
Hence, applying Theorem 1 with β ≥ 1/n2, we conclude that for any ε > 0,
the opinion formation process (5) with outdated information about avg(z(t))
converges to z∗ = (I−A)−1Bs within distance ε in O(n2 ln(n/ε)) epochs.
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4 The PoA of Symmetric Average-Oriented Games

We proceed to bound the PoA of average-oriented opinion formation games.
We now concentrate on the most interesting case of symmetric games, since
nonsymmetric opinion formation games can have a PoA of Ω(n), even if α = 0
(see e.g., [6, Fig. 2]). We recall that for symmetric games, wij = wji for all agent
pairs i, j, and wi = 1 and αi = α, for all agents i.

Our analysis generalizes a local smoothness argument put forward in [4,
Sec. 3.1]. A function C(z) is (λ, µ)-locally smooth [19] if there exist λ > 0 and
µ ∈ (0, 1), such that for all z,x ∈ Rn,

C(z) + (x− z)TC ′(z) ≤ λC(x) + µC(z) , (7)

where C ′(z) = (ϑC1(z)
ϑz1

, ϑC2(z)
ϑz2

, · · · , ϑCn(z)
ϑzn

) is the vector with the partial deriva-
tive of Ci(z) with respect to zi, for each agent i. At the equilibrium z∗, C ′(z∗) =
0. Hence, applying (7) for the equilibrium z∗ and for the optimal solution o,
we obtain that PoA ≤ λ/(1 − µ). For symmetric games without aggregation,
[4, Sec. 3.1] shows that for any s ∈ [0, 1]n, the cost function

∑n
i=1(zi − si)2 +∑

i∈N
∑
j 6=i wij(zi−zj)2 is (λ, µ)-locally smooth for any λ ≥ max{1/(4µ), 1/(µ+

1)}. Using λ = 3/4 and µ = 1/3, we obtain that the PoA of symmetric opinion
formation games without aggregation is at most 9/8 [4], which is tight [6, Fig. 1].

This elegant approach cannot be directly generalized to symmetric average-
oriented games, because the function

∑
i∈N (avg(z) − si)2 is not (λ, µ)-locally

smooth for any µ < 1. So, instead of trying to find λ, µ so that (7) holds for all
z ∈ Rn, we identify values of λ, µ such that (7) holds for all opinion vectors z
with avg(z) = avg(s). This suffices for bounding the PoA, since we need to apply
(7) only for the optimal opinion vector o and the equilibrium opinion vector z∗.
Moreover, the following proposition shows that for the equilibrium vector z∗, we
have that avg(z∗) = avg(s).

Proposition 1. Let z∗ be the equilibrium and s the agent belief vector of any
symmetric average-oriented opinion formation game. Then, avg(z∗) = avg(s).

Based on Proposition 1, we show that the PoA of symmetric average-oriented
games tends to 9/8, which is the PoA of symmetric opinion formation games
without aggregation.

Theorem 2. Let G be any symmetric average-oriented opinion formation game
with n agents and influence α ≥ 0 from the average public opinion. Then,
PoA(G) ≤ 9

8 +O( αn2 ).

Proof. We find appropriate parameters λ > 0 and µ ∈ (0, 1) such that (7) holds
for any x ∈ Rn and any z ∈ Rn with avg(z) = avg(s). Since the equilibrium z∗ of
any symmetric average-oriented game G has avg(z∗) = avg(s), by Proposition 1,
PoA(G) ≤ λ/(1− µ).

We divide agent’s i personal cost Ci(z) into three parts Ci(x) = Fi(z) +
Ii(z) +Ai(z), where Fi(z) =

∑
j 6=i wij(zi − zj)2, Ii(z) = (xi − si)2 and Ai(z) =

(avg(z)− si)2. Following the previous notation:
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F (z) =
∑
i∈N

Fi(z) =
∑
i∈N

∑
j 6=i

wij(zi − zj)2 = 2
∑
i,j:i 6=j

wij(zi − zj)2

I(z) =
∑
i∈N

Ii(z) =
∑
i∈N

(zi − si)2 = (z − s)T (z − s)

A(z) =
∑
i∈N

Ai(z) = α
∑
i∈N

(avg(z)− si)2 = α(avg(z)− s)T (avg(z)− s) .

Hence, the social cost is C(z) = F (z)+I(z)+A(z). We let F ′(z) = (ϑF1(z)
ϑz1

, · · · ,
ϑFn(z)
ϑzn

), I ′(z) = (ϑI1(z)ϑz1
, · · · , ϑIn(z)ϑzn

) and A′(z) = (ϑA1(z)
ϑz1

, · · · , ϑAn(z)
ϑzn

) be the
vectors with the partial derivatives of Fi(z), Ii(z) and Ai(z), respectively, with
respect to zi, for each agent i. Note that A′(z) = (2α/n)(avg(z) − s). The
following two propositions are proven in [4, Sec. 3.1].

Proposition 2 ([4]). For any symmetric matrix W = (wij), any z,x ∈ Rn,
and any λ > 0 and µ ∈ (0, 1) with λ ≥ 1/(4µ),

F (z) + (x− z)TF ′(z) ≤ λF (x) + µF (z) .

Proposition 3 ([4]). For any z,x, s ∈ Rn, λ > 0 and µ ∈ (0, 1) with λ ≥
1/(µ+ 1), it holds that I(z) + (x− z)T I ′(z) ≤ λI(x) + µI(z).

Using Proposition 1 and increasing the right-hand side by a small fraction of
I(x) and I(z), we can prove an upper bound on A(z) + (x− z)TA′(z).

Proposition 4. For any α > 0, any z,x, s ∈ Rn with avg(z) = avg(s), any
δ ≥ 0, and any λ > 0 and µ ∈ (0, 1) such that λµ ≥ α/n2,

A(z) + (x− z)TA′(z) ≤ δA(x) + µI(x) + (1− δ + 2λ)A(z) + µI(z) . (8)

Applying Propositions 2 and 3 with λ = 3/4 and µ = 1/3, and Proposition 4,
and summing up the corresponding inequalities, we obtain that for any δ ≥ 0,
and any λ > 0 and µ ∈ (0, 1) with λµ ≥ α/n2,

PoA(G) ≤ max{3/4, δ}+ µ

1−max{1/3, 1− δ + 2λ} − µ
(9)

If α/n2 is small enough, e.g., if α/n2 ≤ 1/2400, we use δ = 3/4, λ = 1/24 and
µ = 24α/n2 in (9) and obtain that PoA(G) ≤ 9/8 + O( αn2 ). Otherwise, we use
µ = 1/3, λ = 3α/n2 and δ = 6α/n2 +2/3, and obtain that PoA(G) = O( αn2 ). ut

5 Average-Oriented Games with Restricted Opinions

A frequent assumption in the literature on opinion formation is that agent beliefs
come from a finite interval of nonnegative real numbers. Then, by scaling we can
assume beliefs si ∈ [0, 1]. If the influence matrix A is nonnegative, then since
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bii +
∑n
j=1 aij = 1 for all i ∈ [n], we have that the equilibrium opinions are

z∗ = (I − A)−1Bs ∈ [0, 1]n. In contrast, for the more general domain we treat
here, an important side-effect of negative influence is that the best-response (and
equilibrium) opinions may not belong to [0, 1]. Motivated by this observation,
we consider a restricted variant of opinion formation games, where the (best-
response and equilibrium) opinions are restricted to [0, 1].

To distinguish restricted opinion formation processes from their unrestricted
counterparts, we use y(t) to denote the opinion vectors restricted to [0, 1]n . For
restricted average-oriented games and restricted games with negative influence,
the best-response opinion yi of each agent i to y−i is computed by (2) and (6),
respectively. But now, if the resulting value is yi < 0, we increase it to yi = 0,
while if yi > 1, we decrease it to yi = 1. Since the individual cost Ci(y) is a
strictly convex function of yi, the restriction of yi to [0, 1] results in a minimizer
y∗ ∈ [0, 1] of Ci(y,y−i). So, the restricted opinion formation process is

y(t) = [Ay(t− 1) +Bs ][0,1] , (10)

where [·][0,1] is the restriction of opinions y(t) to [0, 1]n. The influence matrix A
(and the influence matrices D and E for processes with outdated information)
and the self-confidence matrix B are defines as in unrestricted opinion formation.

We show a general result for restricted opinion formation processes that is
equivalent to Theorem 1. As in Section 3, we prove our result for the more
general setting of negative influence. Using Theorem 3, we can immediately
bound the convergence time for restricted average-oriented processes. The proof
of the following is similar to the proof of Theorem 1.

Theorem 3. Let D and E be influence matrices, possibly with negative ele-
ments, such that ‖D‖ ≤ 1 − β1, ‖E‖ ≤ 1 − β2, for some β1, β2 ∈ (0, 1) with
β1 + β2 > 1. Then, for any self-confidence matrix B, any s ∈ [0, 1]n, any up-
date schedule 0 = τ0 < τ1 < τ2 < · · · , the restricted opinion formation process
y(t) = [Dy(t− 1) +Ey(τp) +Bs ][0,1] converges to the unique equilibrium point
y∗ of y′(t) = [(D+E)y′(t− 1) +Bs ][0,1]. For any ε > 0, y(t) is within distance

ε to y∗ after O(ln( 1
ε )/β) epochs, where β = β1 + β2 − 1.

We also bound the PoA of restricted symmetric average-oriented games. Due
to opinion restriction to [0, 1], the average opinion at equilibrium may be far from
avg(s). Therefore, we cannot rely on Proposition 4 anymore. Moreover, the PoA
of restricted games increases fast with α (e.g., if s = (0, . . . , 0, 1/n), wij = 0
for all i 6= j, and α = n2, PoA = Ω(n)). Therefore, we restrict our attention
to the case where α = w = 1 and show that the PoA of restricted symmetric
average-oriented games remains constant. An interesting intermediate result of
our analysis is that if all agents only value the distance of their opinion to their
belief and to the average, i.e., if wij = 0 for all i 6= j, the PoA of such games is
at most 1 + 1/n2.

Theorem 4. Let G be any symmetric average-oriented opinion formation game
with n ≥ 2 agents, w = α = 1, and opinions restricted to [0, 1]. Then, PoA(G) ≤
(
√

2 + 2)2/2 +O( 1
n ), where (2 +

√
2)2/2 < 5.8285.
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