Utility-Function based Resource Allocation for Adaptable Applicationsin
Dynamic, Distributed Real-Time Systems

F. Drews, L. Welch, D. Juedes, and D. Fleeman
Center for Intelligent, Distributed, and Dependable Systems
School of Electrical Engineering and Computer Science
Ohio University
Athens, Ohio 45701 U.S.A.

{drews, welch, juedes, fleeman} @ohio.edu

A. Bruening, K.Ecker, and M. Hoefer
Department of Computer Science
Technical University of Clausthal

38678 Clausthal-Z€llerfeld, Germany

{bruening, ecker, mhoefer } @in.tu-clausthal.de

Abstract

This paper builds upon our previous work in which we
proposed an architecture and a general optimization frame-
work for dynamic, distributed real-time systems. Interesting
features of this model include the consideration of adaptive
applications and utility functions. We extend our earlier
work by formalizing the corresponding multi-criterial opti-
mi zation problem. Asthe most difficult part of this problem,
we identified the evaluation and comparison of the quality
of single allocations and sets of allocations, respectively.
To this end, we propose and examine metrics for measuring
the goodness of solutions within our general resource man-
agement framework. These metrics lay the basis for further
work on developing both online and off-line algorithms to
tackle the general optimization problem and provide an ef-
ficient adaptive resource manager for dynamic, distributed
real-time systems.

1 Introduction

The use of distributed computing technology in real-time
systems is increasing rapidly. For example, an important
aspect of the NASA Earth Science vision is its sensor-web,
an integrated, autonomous constellation of earth observing
satellites that monitor the condition of the planet through a
vast array of instruments. While this concept offers numer-
ous benefits, including cost reduction and grester flexibil-
ity, its full potential cannot be realized with today’s infor-
mation system technology. Common real-time engineering

approaches use "worst-case” execution times (WCETS) to
characterize task workloads a priori and allocate computing
and network resources to processes at design time. In satel-
lite applications, for example, such approaches may unnec-
essarily limit the functions that can be performed by space-
craft and limit the options that are available for handling
unanticipated science events and anomalies, such as over-
loading of system resources. These limitations can mean
loss of scientific data and missed opportunities for observ-
ing important terrestrial events. Characterizing workloads
of real-time systems using a priori worst-case execution
times can lead to poor resource utilization, and is inappro-
priate for applications that must execute in highly dynamic
environments.

Utility theory, the theory that provides mathematical
toolsto computetherelative value of different courses of ac-
tion, was originally developed by economists to model the
decisions made by consumers [11]. It has been addressed
by many researchers and used in diverse fields to determine
optimal decisions, i.e., to decide which action among sev-
eral isthe best one[8, 10, 9] (compare[9] for an overview).
It has been recently incorporated in adaptive resource man-
agement middleware (ARM) that optimizes the real-time
performance of sets of application software. The middle-
ware plans actions that include which software to run on
which resources to achieve the maximum system level ben-
efit. Our previous research in the field of ARM includes
static models for resource alocation of real-time systems
[3, 14] and dynamic modelsin [6, 5]. Applications of our
dynamic models [13, 12, 4] showed their effectiveness for
adaptive resource management. However, our previous ap-

proaches lacked the information needed to gracefully de-
grade performance in overload situations, did not support
feasibility analysis or allocation optimization, did not con-
sider security aspects, and did not include network hard-
ware. To overcome this drawback, we proposed a general
optimization framework for distributed, dynamic real-time
systems [1]. Interesting aspects of this model include dy-
namic environments, and utility and service levels, which
provide a means for graceful degradation in resource con-
strained situations. 1n [2] we proposed a hierarchical ARM
architecture based on our general framework and a heuristic
algorithmic approach based on a table lookup technique to
solve the corresponding resource allocation problem.

This paper introduces extends our previous work by for-
malizing the optimization problem and providing measures
for the goodness and comparision of allocations within the
ARM. The paper is organized as follows: section 2 presents
an overview on the ARM system framework presented in
[2, 1]. Section 3 proposes an architecture for an adaptive
resource manager. Section 4 formalizes the problem and
proposes metrics for evaluating the quality of allocations.

2 System Mode

In this section we will describe the system model asin-
troduced in [1, 2]. A dynamic rea-time system is com-
posed of a variety of software components, as well as
a variety of physical (hardware) components. Formaly,
the computational resources are a set of host computers
{h1,ha,...,h,} each of which can be further equipped
with a set of additional resources. It is generally assumed
that the properties of the computational resources and the
additional resources are known in advance. Regarding the
software components, there is a logical view that distin-
guishes several levels of abstraction (see [1]): The high-
est level represents the whole application software system.
This is often referred to as “system”, which, on the next
lower level, is considered as a collection of subsystems
{851,...,55,}. A subsystem represents some part that
can be logically separated from the total system. It isre-
sponsible for managing a part of the real-time system, such
asahardware component. A subsystem isafinite collection
of paths P = {Py,..., P}, each with a given period or a
maximum frequency, which is generally not known apriori.
Each path P; consistsof aset of tasks {7} 1,7} 2,. .., Ti, }
and a possible precedence relation <;C P; x P; between
them. The precedencesfor each path form apartial ordering
on the set of tasks belonging to the path. Tasks inherit the
period or maximum frequency from their paths. Moreover,
each task T; ; may be further characterized by aweight w; ;
which expresses the importance of the task.

Our model supports both periodic tasks and event-driven
tasks. Periodic tasksT; ; are assumed to have agiven period
;. Event-driven tasks T;; ; are characterized by a maximum

event-rate r; which is determined by the environment and
thus, in general, not known. Event-driven tasks are treated
as periodic tasks having a period 7; = Ti Note that by
treating event-driven applications as periodic tasks having a
period equal to the reciprocal of the (unknown) maximum
event-rate, we cover the worst case.

We can now define an allocation. An allocationisamap-
ping of tasks to hosts

alloc : {Tl,l, PN aTk,lk} — {hl, hg, ey hm}.

The execution of tasks, and consequently the system be-
havior is highly determined by the values of a number of
attributes. There are two types: (i) extrinsic attributes £ =
(e1,...,ep,), and (ii) service attributes S = (s1,..., Sx).

Extrinsic attributes express functional conditions or re-
quirements. Note that the elements of E and S are not nec-
essarily numeric; they can be from any linearly ordered set.
However, we make the foll owing assumptions regarding the
values for extrinsic attributes and service attributes: Each
extrinsic attribute e; is assumed to take values from aratio-
nal interval. Extrinsic attributes are either posed by the en-
vironment, or by the status of the system components. They
are set by external conditions and cannot be changed by the
system. An example of an extrinsic attribute dictated by the
environment “externally” is the period at which a control-
ling action has to be performed. An example of an “inter-
nal” extrinsic attribute, defined by the system, isthe current
availability of processors, buffers, or internal network band-
width. There is an important distinction between “current
values of extrinsic attributes’ and “manageable extrinsic at-
tributes’: Current values of extrinsic attributes characterize
the current status of the system as reported by the real-time
applications. They can change at any time. Manageable-
extrinsic attribute values describe operational limits within
which the system can feasibly operate. Given a specifica
tion of areal-time system, these values are fixed and do not
change over time. In contrast to the extrinsic attributes, the
service attributes® S = (s1,...,) ae entities that can
be changed at any time by the controlling system. If the
external conditions (represented by the extrinsic attributes)
change, appropriate settings of the service attributes allow
adaptation to the new conditions.

Tasks are allocated to hosts. In addition, we assume
that each host h, is characterized by profiling functions
describing the utilization of (local) resources attached to
it in terms of the values of the extrinsic and service at-
tributes for a given task 7; ;. There is at least a profil-
ing function assumed to be known. It describes the exe-
cution time of a task allocated to a given host. However,
other types of resources and profiling functions describing
resource utilization restrictions are possible. Processor uti-
lization profiling function P, (E, S, T; ;) that specifies the

*The term “service attributes’ basically corresponds to the notion of
“QoSlevels’

execution time of task 7; ; on host h, given the extrinsic
attributes F and settings of the service attributes S. Mem-
ory utilization profiling function M, (E, S, T; ;) that spec-
ifies the amount of memory required by task 7; ; on host
hs given the extrinsic attributes £ and settings of the ser-
vice attributes S. Additional Resource profiling functions
R, (E,S,T;;), R}, (E,S,T;;),.... Each profiling func-
tion represents an additional shared resource that can be
shared either temporally or spacialy. Moreover, the re-
sources can be shared either locally or globally.

Now we turn to the definition of feasibility of an al-
location. Given an allocation alloc and values of ex-
trinsic attributes £ = (es,...,e,) as well as settings
of service attributes S = (s1,...,s5). We define the
feasibility of alloc by means of a function feasible as
feasible(alloc, E,S) = TRUE if al the tasks fulfil all
of the resource restrictions. Correspondingly, we have that
feasible(alloc, E,S) = FALSE, otherwise.

We will now introduce our concept of utility functions
to express the user-perceived benefit of executing atask for
some setting of service attributes and for some settings of
extrinsic attributes. In order to define utility functions we
need to take into account the architecture of our adaptive
resource manager . Aswe will describe in the next section,
we associate a so-called meta agent with each subsystem.
The meta agents themselves are controlled by a centralized
global meta agent. Each meta agent can be considered as
alocal service-level optimizer. It reacts to variations of the
extrinsic attributes by adjusting the service levels of the ap-
plications belonging to the subsystem. In order to find ap-
propriate settings of service levels, we provide alocal util-
ity function U; (S, F) to each subsystem S.5;. Given val-
ues of extrinsic attributes E, function U;(S, E) describes
the user-perceived benefit from running the applications of
subsystem S.S; at settings of servicelevels specified by vec-
tor S. The globa meta agent is responsible for optimizing
the global utility rather than the local utility of each sub-
system. We provide a function describing the total system
utility U(S, E). A practica way is to compute U(S, E)
from the subsystem utilities by means of some aggregation
function

U(S,E) = AGGREGATION,_; ... mU;(S, E).

For example, for given numerical weights g1, s, - . ., gm.,
we may define

i=1

In this paper we make the general assumption that the util-
ity function U (S, E) is component-wise monotonically in-
creasing, i.e.,

S<S8 = U(SE)<U(S, E)

and
andE < E' = U(S,E) <U(S,E)

where “ <" between vectors S, S’, and respectively between
E, E’, isis meant component-wise. A careful analysis of
many utility functionsin practical use shows that thisisin-
deed a reasonable assumption.

3 ARM Architecture

Prior to formulating the optimization problem, we de-
scribethe general architecture of the adaptive resource man-
ager. The resource manager (RM) isresponsiblefor the cor-
rect operation of the whole system. As an input, it takes
the static characteristics of both the hardware system and
the software system, that is hardware specifications, subsys-
tems and their organization into paths and tasks, resource
profiling functions, and (local) utility functions as well as
the total system utility function. Based on these, it makes
resource allocation decisions and has the ability to modify
certain performance parameters such as service attributes.
The resource manager consists of

e an dlocation manager AM which, in case of major
changes of extrinsic requirements, chooses a new al-
location of application software to hosts,

e aglobal metaagent GMA which checksif reallocation
of application software to hosts is necessary. More-
over, it serves as a global service attribute optimizer
that tries to optimize the total system utility U(S, E),

e meta agents M A; each being responsible for control-
ling exactly one application subsystem SS;. They
function as local service attribute optimizers each of
which trying to optimize its subsystem utility based on
the local utility function U; (S, E).

There is a fundamental functional separation between the
AM and the GMA and M A;’s. The AM is responsible
for performing dynamic reallocations. The GMA and the
M A;'s are responsible for performing a service level opti-
mizations. We generally assume that a reallocation is con-
siderably more time consuming than changing service at-
tributes of tasks (e.g., in general, changing the compression
quality of a compression algorithm can be performed much
faster than migrating the compression application to a re-
mote host).

Going into detail, we start a discussion of the AM. One
of the main objectives of the AM isto find an optimal or
near-optimal alocation of the applicationsto hosts. Such an
allocation has to satisfy certain resource restrictions on the
hosts as expressed by the resource profiling functions. The
resource utilization of atask may not only depend on extrin-
sic and service attribute parameters, but also on the host the
task is assigned to. If the current extrinsic attribute values

change and exceed the operational limits of the current allo-
cation, the GMA triggersthe AM to select and install anew
allocation. The AM will then decide upon anew allocation
that is able to handle the new requirements Such an alloca
tion can be determined by applying an online-heuristic, or
chosen by alookup strategy from a so-called service table.

A service table can be provided by means of a pre-
runtime analysis or by way of an online optimization. It
contains a set of near-optimal “candidate” allocations, and
possible settings of service attributes along with the corre-
sponding maximum manageable extrinsic attributes. This
way the service table expresses the operational limits of the
system for each allocation. Given current extrinsic attribute
values as reported by the M A;’s, the AM can lookup the
service table in order to find afeasible allocation. For each
alocation stored in the table, the table entries are checked
to seeif in at least one of them the maximal manageable
extrinsic attribute values dominate the current extrinsic at-
tribute values. Such an alocation would alow keeping the
current values within the operational limits of the system,
and is therefore a candidate for a reallocation. Moreover,
for a selected candidate allocation there may exist several
several service table entries, each representing a service at-
tribute setting together with dominating maximum manage-
able attributes.

Since there may be severa feasible candidate alloca
tions, and for each severa possible table entries, the allo-
cation manager may further base its choice on some some
additional criteria, such as maximizing the utility associated
with each service table entry, and/or maximizing the max-
imum allowable increase in one ore more extrinsic param-
eters. Note that the utility associated with a service level
entry isa*“potential utility” sinceit is based on manageable
extrinsic attributes rather than current extrinsic attributes.
Once the AM has decided upon a new alocation and per-
formed the reallocation, a sub-table contain-ing all the en-
tries that belong to the allocation is sent from the AM to
the GMA.. Each entry in this sub-table contains a choice for
the service attribute settings and the maximum managesble
extrinsic attribute values.

An important design issue of the resource manager ap-
proach is the scalability of the total system. In order to
provide a scalable solution, we have to avoid (or reduce)
a possible bottleneck as in case of a centralized resource
manager. To this end, we alow for the total system to
be divided into subsystems that can be logically separated.
Rather than having one central instance for controlling all
the sub-systems, we provide each subsystem with a (local)
meta agent. The GMA serves as an interface between the
allocation manager and each M A;. Whenever the aloca
tion manager has selected a new alocation alloc and the
reallocation has been performed, the GMA receives a sub-
table of the service table containing al the entries that be-
long to the selected allocation by the AM. Each entry in this

sub-table contain a list of choices for the service attribute
settings along with the resulting maximum manageable ex-
trinsic attribute values for alloc.

After receiving a new sub-table from the AM, the GMA
is responsible for providing each meta-agent with a default
setting of the service attributes. To each M A;, the GMA
passes a part of the sub-table containing those extrinsic at-
tributes values the operating of M A; depends on. This
part contains the different possible attribute settings among
which the M A; may choose, along with the corresponding
manageable extrinsic attribute values. This part of the ta-
ble serves as a basis for the M A;’s local service attribute
optimization.

The service level optimization works as follows: After
receiving a sub-table from the AM, the GMA requests the
current values of extrinsic attributesfrom al M A;’s. Based
on these values, the GMA checks which service attribute
settings alow afeasible state of the system. This checking
is done by comparing the current extrinsic attribute values
against the manageable extrinsic attribute values and deter-
mining the corresponding service level settings. Those ser-
vice settings that optmize the total system utility function
U(S, F) are selected and sent to each M A;.

Thereal-time applications of each sub-system S'S; report
the current extrinsic attribute values to M A;. Each M A,
can use its own sub-table to find out whether the current
extrinsic attribute values are within the feasible operating
region. Based Based on these (instantaneous) current ex-
trinsic attribute values, each M A; checks at run-time if the
local utility values U; (.S, E) can be increased by changing
the setting of some service attributes. However, different
M A;’smay have overlapping service attributesin their own
sub-tables, which, when they try to optimize U; (.S, E), may
lead to conflicts.

For this reason, the GMA is needed as a central compo-
nent controlling and coordinating the M A;’s. If one of the
M A; sees a possibility to increase its local utility, it sends
a request to the GMA in order to obtain from the GMA a
new setting of service attributes that maximizestotal system
utility and maintains feasibility of al applications. Upon
each request from one of the M A;’'s, the GMA demands
all M A;’sto report the current extrinsic attribute values in
order to obtain an update of the actual system state. Subse-
guently, the GMA checks its service-table for service level
settings that keep all the applications feasible. Among these
possible settings it may choose one that maximizes total
system utility. Another case in which an M A; has to re-
guest anew setting of service level attributesiswhen one or
more paths of M A; report deadline violations. The GMA
can then check whether there is a new feasible setting for
the whole system or not. If not, it has to trigger the AM to
perform areallocation.

In the following section we will formalize the problems
associated with the proposed architecture.

4 Problem Statement

Our objective is to run the system in an optimal state,
i.e. an optimal combination of an allocation and service at-
tribute settings. The uncertainty in the extrinsic attributes
temporal behavior and the high reallocation cost give rise
to a multi-criterial optimization problem as a trade-off be-
tween the actual utility of the system, the expected devel-
opment of the utility, and the potential to react to changes
in the extrinsic attributes without the need for performing
reallocations.

Usually the temporal behavior of the extrinsic attributes
ishighly unpredictable. Therefore the second criteriacan be
reformulated as the average utility in some expected region
around the actual operating point.

Asstated in thelast section, the allocation manager isre-
sponsible for providing an initial allocation at the time the
systemisstarted, aswell as providing dynamic reallocations
at runtime. Regarding the determination of a proper alloca-
tion, the optimization framework supports both online op-
timization strategies, and a table-lookup strategy based on
off-line generated tables of promising candidate solutions.

After introducing the needed preliminaries we describe
the off-line approach, and then discuss details of the on-line
strategy.

We first introduce the notion of ” operating points’, "fea-
sible operating points’, " operating regions in terms of a ser-
vice attribute setting”, and " operating regions’. The notion
isamodification of the notion used in [7].

Definition 4.1 Given a vector of extrinsic attributes £ =
(e1,...,ep) and a setting of service attributes S =
(s1,...,84). The pair (E,S) is denoted as an operating
point.

An operating point (E, S) represents a system state. This
state is specified by the corresponding values of run-time
parameters.

Definition 4.2 For a given allocation alloc, an operating
point (S, E) issaid to be feasible if

feasible(alloc, S, E) = TRUE
holds.

Thus, given an alocation alloc, a feasible operating point
describes a state of the system under which the allocation is
feasible. Next, we define the “ operating regions’.

Definition 4.3 For a given allocation alloc and service
vector S, the operating region O,i,.(S) is defined as

Oaiioc(S) = {(E,S) | feasible(alloc, S, E) = TRUE}.

Thereby, given an alocation alloc, the operating region
OLuioc(S) describes the potentia of the system to be run

without changing the service level settings S or the allo-
cation. For describing the overall maximum manageable
extrinsic attributes of the system we define the " global op-
erating region”.

Definition 4.4 Given an allocation alloc, the global oper-
ating region O, is defined as the union of all operating
regions Ogioc(5):

Oalloc = U

SeS1X... xS,

Oalloc(S)~

In the following the off-line and on-line optimization ap-
proaches are presented.

At runtime, given current values of system parameters
as reported by the applications, the allocation manager can
check the feasibility of “ candidate-allocations’ by checking
the current values of extrinsic attributes agai nst the manage-
able extrinsic attribute values from the lookup-table. The
allocation manager may have the choice between severa
possible alocations. Moreover, different settings of service
attributes may be possible for each allocation. The motiva-
tion for this approach is, that we are dealing with real-time
applications working in highly dynamic environments. In
such environments, the allocation manager cannot use high
complexity optimization algorithmsto solve the NP-hard al -
location problem. Because the lookup-table can be created
off-line, i.e, at the time of the design of the system, the
problem of choosing a feasible allocation at run-time can
be reduced to perform alow-complexity table lookup.

Consequently for every alocation alloc considered in
the lookup-table, we need a discrete description of its oper-
ating regions O,;,.(S) for al the possible service attribute
settings S. Since extrinsic attributes possibly attain values
from a continuous interval, the set O,11,.(S) may contain
an infinite number of operating points. To obtain a finite
description we introduce the notion of domination between
operating points. It expressesthat an operating point is* bet-
ter” than another in the sense that it represents higher man-
ageable extrinsic attributes within the same service level
setting.

Definition 4.5 Given two operating points (e, s), (e’,s’).
(e, s) issaid to dominate (¢/, s’) if ¢/ < eand s’ < s where
“<” and“ <" are meant componentwise. When (e, s) dom-
inates (¢’, s") wedenotethisas(¢/, ') <4 (e, s). Otherwise
wewrite (¢/, s') £q (e, s)

Obviously, areasonable description of Oy (s) consists of
aset of feasible dominant operating pointswith their service
attributes set to s. Such a discrete description of Oaiz0c(5)
will be introduced as Oyy10(s). A description of an alloca-
tion alloc can be formulated as the set of Oyy50c(s) for dl
possible settings s € S of the service attributes an will be
denoted as alloc. Thereis no need to save all the operating
regions @alloc(s) for a description of alloc. There may be

several settings for the service level attributes that lead to
weak solutions. A domination for operating regions can be
defined as follows.

Definition 4.6 Given two descriptions of operating regions
Outoc(5), Oaioe(s') with s’ < s componentwise and s" #
s. Ouitoc(s) is said to dominate Ogyoc(s’) if for every
(¢/,5") € Ouanoc(s’) there exists a dominating operating
point (e,s) € Oauoc(s). We denote this by Oalloc(" <4
Oaitoc(s). Otherwise we write Ouiioc(s’) #a Oattoc(s).

For the description of an allocation alloc only the dominat-
ing operating regions need to be saved. They lead to higher
utility values because of the monotony of the utility func-
tion. Now we are able to define domination for allocations.

Definition 4.7 Given two allocations alloc, alloc’ and de-
scriptions of their operating regions alloc, alloc’. alloc is
said to dominate alloc’ if for every setting S of the service
attributes Oui10c(s") <a Ouiioc(s) holds. We denote this as
alloc’ <4 alloc. Otherwise we write alloc’ +4 alloc.

We are now able to formalize the optimization problem. An
optimal lookup-tablewould consist of all non-dominated al-
locations. However, due to memory constraints, it is gener-
aly not possible to incorporate al non-dominating alloca-
tionsin the lookup table. Therefore achoice hasto be made,
i.e. aset of allocations for providing the allocation manager
with a lookup-table that allows at least near optimal deci-
sions. Obvioudly, a reduction of the lookup table would
greatly influence the decision quality of the allocation man-
ager. In order to see how the size of the lookup table can be
reduced without too much loss, a formal description of the
decision making processis needed

As stated above, there are several aspects that influence
this choice. An important criterion is the feasibility of the
operating point for an alocation alloc. If the lookup-table
does not contain an all ocation for which afeasible operating
point exists, we choose an alocation alloc that is (i) feasible
for minimum service settings sq € S under the actual ex-
trinsic attribute e, and (ii) for which the Euclidean distance
between the points of @a”oc(so) and the operating point
(so,€) isminimal. Otherwise, if there exist allocations that
assure feasibility, we choose one by following some crite-
ria. We describe a measure for the quality of an allcoation
that is based on three functions g1, g», and gs. Notice, that
the criteria given here are examples and can be adapted by
the user.

1. Choose a feasible service attribute setting s that max-
imizes the actual utility, i.e., that maximizes the func-
tion g1 (alloc, e) = maxses U(s, e).

2. Function g, aims at considering the development of
the utility as the extrinsic attributes change over time.
Since there is no way to predict this development, we

consider the maximal overall utility in aregion R C
E = E, x ... x E, that includes the actual extrinsic
attribute e. For calculating the maximal overall utility
in the region R, we identify for every vector e € R
the optimal service attribute setting for gaining optimal
utility. We define eval(alloc, R) =

et
asan exact evaluation measure. That is, eval(alloc, R)

returns the overal utility over R with respect to the
optimal service level settings.

Although the utility U is component-wise monotonic
in S and FE, this exact value is difficult to calculate.
The reason is that an optimal service attribute setting
for one e € F may not be optimal for another element
of E. Therefore optimal service attribute settings have
to be calculated separately for each e € E. For prac-
tical reasons, we therefore need an approximation of
eval(alloc, R). We first define a domination criterion
for service level settings on agiven region R C E.

e) | feasible(alloc, s,e) = TRUE} dE

Definition 4.8 Given a region R C FE, service at-
tribute settings s, s’ € .S and an allocation alloc with
feasible(alloc,s,e) = TRUE for al e € R. sis
saidtodominate s’ on R and allocif s’ # sand s’ < s
where “ <" is meant componentwise. s’ is dominated
by default if feasible(alloc, s’,e) = FALSE for all
e€R.

If a service attribute setting s € S dominates another
setting s’ € S onaregion R C E for agiven alocation
alloc we have that

U(s',e) < Ul(s,e)

for every e € R and feasible(alloc, s,e) = TRUE.
Therefore the non-dominated service level settings on
R and alloc are the best pair-wise not comparable ser-
vice level settings for which the system can be kept
feasible in the whole region R under the chosen allo-
cation alloc.

As an approximation measure for the maximal overall
utility we suggest

Yoses JrUl(s,€)dE
|57 ’

g2(alloc, R) =

where, for a given alocation alloc, S’ C S isthe set
of non dominated service level settingsin R. Note that
the region R can be adapted online with respect to the
latest development in the extrinsic attributes, i.e., if
there is an increase in a certain extrinsic attribute E;
this can be taken into account by increasing the exten-
sion of R inthe i*" direction. If the system triggers a

reallocation when a threshold of increase or decrease
in the extrinsic attributes is reached, than an extension
of R beyond this threshold makes no sense and should
be avoided.

It may occur that the set S’ of all non-dominated ser-
vicelevel settingsisempty for someallocations. These
allocations are not considered for the choice of areal-
location. In the special case that there is no alloca-
tion with a non-empty set .S/, we suggest to first in-
clude in R all alocations that guarantee the feasibil-
ity of the system for the actual extrinsic attributes e.
For each candidate allocation R is then scaled down
until s € S is non-dominated. Hence we receive
for each candidate allocation alloc a different region
Raiioe- Weset S = {so} and choose the alocation
for which go(alloc, Rai0.) reaches the highest value.
Note again that the latest devel opment of the extrinsic
attributes can be taken into account when adapting the
region R to the different candidate allocations.

3. The third function g5 takes into account the maximal
potential to react to a change in the extrinsic attributes
without the need for a reallocation. For this purpose
we consider the“minimal servicelevel setting” sg € S
and thesize

gs(alloc) = / U(so,€)de
Ouitoc(s0)

of the associated description of the operating region

Oalloc(SO)-

Now we are able to define a measure for the quality of an
allocation alloc considering the actual extrinsic attributes
e € F and their latest devel opment described by the region
R C FE around e by taking the weighted mean value

g(alloc, e, R) = a1 g1 (alloc, e)+aszga(alloc, R)+asgs(alloc)

with 2% o, = 1. This enables the user to adapt the im-
portance of the presented criteriato his special needs.

To create a lookup-table, we have to develop a measure
of goodness for sets of alocations. This measure is influ-
enced by the reallocation costs and the reallocation trig-
ger. In this paper we presume the reallocation costs to be
time consuming and thus endangering the system of miss-
ing deadlines, hence we try to run the system with the same
alocation as long as possible. Due to the highly dynamic
environment this may lead to weak service level settings.

The system triggers a reallocation when a threshold of
increase or decrease in the extrinsic attributes is reached.
If there exists an allocation in the lookup-table which leads
to a service level setting that justifies the high reallocation
cost, this allocation may be chosen. A realocation is aso
triggered when the system reaches an unfeasible state with
the “minimal service level setting” sq € S.

In consideration of these aspects we suggest the follow-
ing criteria for a measure of quality of sets of allocations.
To measure the quality of a set of allocations, we introduce
afunction h, that is composed of two components h; and
ho that are defined next.

1. Once an allocation alloc is chosen, we try to avoid re-

allocation as long as possible due to the high reallo-
cation costs. When the system triggers a reallocation
because of reaching the threshold of change in the ex-
trinsic attributes, a reallocation can be avoided if the
current allocation still provides arelatively good qual-
ity in terms of the measure presented above. Therefore
we try to avoid including “specialized allocations’ in
the lookup-table, i.e., alocations that provide a very
high utility for some small region of extrinsic attribute
values and weak utility otherwise. Hence we want to
apply only allocations with ahigh overal utility in or-
der to avoid reallocation as long as possible.
In analogy to the measure for a region R C
E an exact measure for the overal utility of
an dlocation alloc is given by eval(alloc) =
f@a”DC(SO) maxses{U(s,e) | feasible(alloc,s,e) =
TRUE} dE. Again an approximation has to be made.
For a single allocation we propose the measure

ZseS’ féalloc(s) U<S7 e) dE
571

eval’ (alloc) =

where | 5’| isthe set of not dominated service level set-
tings for which the operating regions O,;0.(s), s €
S are not dominated. This is the overall utility
f@a”oc(s) U(s,e)dE of all not-dominated operating
regions of alloc.

Since we consider a set of allocations A, we have to
calculate the average of the different overall utilities of
the dlocations alloc € A in order to obtain a measure,
i.e
ZS s/ ‘].()a 0(‘<5) U(S,E) dE
D alloced —— Bk
|A|

ha(A) =

2. Since we expect the system to run most of the time
in an overloaded state, the maximal extrinsic attributes
require a specia consideration. In order to evaluate a

set of alocations A = {allocy, . .., alloc,}, we con-
sider the union of the descriptions of the operating re-
gions

@A(So) = U @alloc(so)v

alloce A

that is O 4(so) describes the union of the operating
regions Ogioc(s0). Note that dominated operating
points can be deleted from O 4 (so).

A reasonable measure for this union is the size of the
described volume

hl(A):/@(ar.

Due to memory constraints of the lookup-table one
might take the number of alocationsin A into account,
which leads usto

in(d) = /@A(so> " <1 - a(|f11(|)0_1))

with « as a user chosen parameter. The term
(1 - %) results in a linear reduction of the

evaluation value by «(|A| — 1) percent. For example,
aset A consisting of two allocations therefore obtains
an evaluation value o percent lower than a single al-
location describing the same operational limits of the
system.

Combining the two measurements with a weight 5 we ob-
tain

h(A) = Bh1(A) + (1 = B)h2(A)
as ameasure of quality for a set of allocations.

5 Concluding Remarks

This paper extends our previous work in which weintro-
duced a genera optimization framework and model for dis-
tributed, dynamic real-time systems. We described and for-
malized the proposed architecture of an adaptive resource
manager. Moreover, we formalized and formulated the
whole optimization problem. Our proposed architecture is
based on a table-lookup approach. We identified the prob-
lem of evaluating solutions (i.e. allocations) as the most
difficult problem. Several different metrics to measure the
quality of allocations were proposed and discussed. This
encourages the development of online and off-line opti-
mization algorithms.

References

[1] K. Ecker, D. Juedes, L. Welch, F. Drews, and D. Chel-
berg. An optimization framework for dynamic, dis-
tributed real-time systems. In 11th International
Workshop on Parallel and Distributed Real-Time Sys-
tems (WPDRTS2003), to appear.

[2] F. Drewsetal. Anarchitecture and agenera optimiza-
tion framework for resource management in dynamic,
distributed real-time systems. In IEEE International
Workshop on Object-Oriented Real-Time and Depend-
able Systems, to appear, 2003.

[3] J. Verhoosel et a. A model for scheduling of object-
based, distributed real-time systems. Journal of Real-
Time Systems, 8(1):5-34, 1995.

[4] L.Welch et al. Adaptive resource management for on-
board image processing systems. Journal of Parallel
& Distributed Computing Practives — Special Issue on
Parallel and Distributed Real-Time Systems, page to

appear.

[5] L. Welch et a. Specification and modelling of dy-
namic, distributed real-time systems. In IEEE Real-
Time Technology and Applications Symposium, pages
72-81, 1998.

[6] L. Welch et al. Adaptive gos and resource manage-
ment using a posterioori workload characterizations.
In |EEE Real-Time Technology and Applications Sym-
posium, pages 266275, 1999.

[7] S. Gertphol, Y. Yu, S. B. Gundala, V. K. Prasanna,
S. Ali, J-K. Kim, A. A. Macigiewski, and H. J.
Siegel. A metric and mixed-integer-programming-
based approach for resource alocation in dynamic
real-time systems. In Proceedings of the 16th Interna-
tional Parallel and Distributed Processing Symposium
(IPDPS2002), 2002.

[8] R.Howard and J. Matheson (eds.). The Principlesand
Applications of Decision Analysis. Strategic Decision
Group, 1984.

[9] K. Ottoand E. Antonsson. The method of imprecision
compared to utility theory for design selection prob-
lems. Design Theory and Methodology ASME, pages
167-173, 1993.

[10] H. Raiffaand R. Kennez. Decision with Multiple Ob-
jectives: Preferencesand Value Tradeoffs. Wiley, New
York, 1976.

[11] J. von Neumann and O. Morgenstern. Theory of
games and economic behaviour. Princeton University
Press, 1947.

[12] L. Welch, B. Pfarr, and B. Tjaden. Adaptive resource
management technol ogy for satellite constellations. In
Second Earth Science Technology Conference (ESTC-
2002), 2002.

[13] L. Welch and B. Shirazi. A dynamic real-time bench-
mark for assesment of gos and resource mangement
technology. In IEEE Real-Time Technology and Ap-
plications Symposium, pages 3645, 1999.

[14] L. Welch, A. Stoyenko, and T. Marlowe. Modeling
resource contention among distributed periodic pro-
cesses specified in cart-spec. Control Engineering
Practice, 3(5):651-664, 1995.

