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Scheduling in Wireless Networks
with Rayleigh-Fading Interference

Johannes Dams, Martin Hoefer, Thomas Kesselheim

Abstract—We study approximation algorithms for optimization of wireless spectrum access with n communication requests when
interference conditions are given by the Rayleigh-fading model. This model extends the deterministic interference model based on the
signal-to-interference-plus-noise ratio (SINR) using stochastic propagation to address fading effects observed in reality. We consider
worst-case approximation guarantees for the two standard problems of capacity maximization and latency minimization. Our main result
is a generic reduction of Rayleigh fading to the deterministic non-fading model. It allows to apply existing algorithms for the non-fading
model in the Rayleigh-fading scenario while losing only a factor of O(log∗ n) in the approximation guarantee. This way, we obtain
the first approximation guarantees for Rayleigh fading and, more fundamentally, show that non-trivial stochastic fading effects can be
successfully handled using existing and future techniques for the non-fading model. We generalize these results in two ways. First, the
same results apply for capacity maximization with variable data rates, when links obtain (non-binary) utility depending on the achieved
SINR. Second, for binary utilities, we use a more detailed argument to obtain similar results even for distributed and game-theoretic
approaches. Our analytical treatment is supported by simulations illustrating the performance of regret learning and, more generally,
the relationship between both models.

Index Terms—wireless network, transmission scheduling, SINR, Rayleigh fading.
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1 INTRODUCTION

In wireless networks, throughput can be significantly
increased when using efficient algorithms and protocols
to coordinate and schedule transmissions. In many cases,
however, the problem of scheduling transmissions to
maximize throughput or minimize delay poses optimiza-
tion problems that are computationally hard to solve.
In this case, we can only hope to obtain approximate
solutions in reasonable time.

A standard criterion in algorithmic research to bench-
mark optimization algorithms computing approximate
solutions is the notion of approximation factor: For each
given problem instance, the value of the computed so-
lution is compared to the value of the optimal solution.
The approximation factor of an algorithm is then taken
to be the maximum factor obtained on any problem
instance. For optimizing wireless interference, we often
have additional information about structural properties
in realistic instances that can be used to improve this
worst-case perspective, such as, structure of transmission
powers, distances between communication requests, or
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other structural properties related to, e.g., underlying
metric spaces. In these cases, it is often possible to give
more informative bounds on approximation factors that
are parameterized in terms of structural properties.

Most algorithmic research dealing with wireless inter-
ference uses rather simple interference models, which are
often based on graphs. Since the seminal work of Mosci-
broda and Wattenhofer [2], however, attention turned
to more realistic models based on constraints involving
the signal-to-interference-plus-noise ratio (SINR). This
resulted in a variety of insights into the algorithmic
challenges and limitations [3], [4]. Particularly, it turned
out that significantly different techniques than in graph-
based models have to be applied to get any non-trivial
approximation factors.

While these SINR models represent a significant im-
provement over previous approaches, they still use a
limited view of signal propagation. The main assump-
tion is that any signal transmitted at power level p is
always received after distance d with strength p/dα, for
some α > 0. In contrast, in reality signal propagation
is by no means deterministic. For instance, the SINR
model does not account for short-term fluctuations such
as fading. There exist advanced models using stochas-
tic approaches that take fading effects into account.
Most prominently, in the Rayleigh-fading model, signal
strength is modeled by an exponentially distributed
random variable with mean p/dα. Stochastic propagation
represents a major technical complication in the defini-
tion of interference models, and this may be a reason that
– up to our knowledge – there are no general algorithmic
results for request scheduling in this model or even for a
direct comparison between the non-fading and Rayleigh-
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fading model.
In this paper, we examine the relationship between

the non-fading SINR model and the Rayleigh-fading
model. Our first main result is a fundamental relation
between the models for instances of the same topology.
It is based on a detailed analysis of the success proba-
bility in the Rayleigh-fading model, and it turns out to
allow a surprisingly simple handling of the complicated
stochastic propagation. This allows us to transfer existing
algorithms and their performance bounds in the SINR
model to the Rayleigh-fading model.

Our second main result uses a more detailed re-
duction to show that a similar result applies even for
distributed capacity maximization via distributed regret-
learning techniques. As the considered sequences gener-
alize Nash equilibria, this result transfers the respective
game-theoretic studies [5]. Our analytical results are
supported by simulations illustrating the performance
of regret learning and, more generally, the relationship
between both models.

On a more fundamental level, our results highlight
the inherent robustness of the techniques and bounds
derived for the non-fading SINR model. The rather direct
adaptation of existing algorithms to Rayleigh fading
raises the hope that algorithms and their analyses can
also be applied accordingly to interference models cap-
turing further realistic properties.

1.1 Our Contribution
For a set of n communication requests in the non-fading
model, we consider the two prominent problems of
capacity maximization (maximizing the number of simul-
taneously successful requests in a single slot) and latency
minimization (minimizing the number of slots such that
every request has been successful at least once). In the
Rayleigh-fading model, interference becomes stochastic,
and thus capacity maximization becomes maximizing
the expected number of successful requests in a sin-
gle slot. Similarly, in latency minimization we strive
to minimize the expected number of slots until every
request has been successful at least once. In this sense,
we adapt a similar perspective as in worst-case analysis
of randomized algorithms – we strive to bound the
expected performance of the algorithms in an arbitrary
(worst-case) topology.

In fact, for our analysis we consider a more advanced
approach to capacity maximization that goes beyond a
binary valuation for transmission. Instead, each request
is assumed to obtain a data rate depending on the
transmission quality or, more specifically, its obtained
SINR. We capture this scenario using a suitable utility
function for each request that depends on the obtained
SINR. Then, the capacity is given by the sum of utilities
of the requests. In this way, we can address the optimiza-
tion of Shannon capacity in the network, among many
other things. Thus, our results clearly stretch beyond the
standard notion of capacity maximization considering a
fixed SINR threshold.

Our first main result characterizes the probability of a
request to reach a certain SINR in the Rayleigh model.
This probability is never 0, and thus requests can still be
successful if in the non-fading model this is completely
impossible (e.g., due to extremely large noise). For a
meaningful comparison in terms of approximation fac-
tors, we thus focus on interference-dominated scenarios
with reasonable noise conditions (for a formal definition
see below). Under these conditions, we show in Section 3
that for every set of successful requests reaching a
certain SINR with respect to the non-fading model, in
the Rayleigh model in expectation a constant fraction
of these requests remains successful. Hence, we can use
algorithms for capacity optimization in the non-fading
model and lose only a constant factor when translating
the output to Rayleigh fading. To bound approximation
factors, however, we have to relate this to the Rayleigh-
fading optimum, i.e., the maximum expected number
of successful requests for any subset of transmitting
requests. Here we show in Section 5 that this expected
number can only be a factor of O(log∗ n) larger1 than
the maximum number of successful requests in the non-
fading model. This allows to use existing algorithms
and their bounds to derive approximation factors in
the Rayleigh-fading model. For capacity maximization,
we show, e.g., an O(log∗ n)-approximation with power
control based on [6] and with distance-based power as-
signments based on [7]. For latency minimization similar
arguments can be applied for algorithms that use re-
peated single-slot success maximization [8] or ALOHA-
style protocols [9] in the non-fading model. For instance,
we obtain an O(log∗ n · log n)-approximation for uniform
power assignments based on [8]. The algorithms for
latency minimization allow to directly apply multi-hop
scheduling techniques as in [6], [9], [10]. The transforma-
tion does not modify transmission powers or depend on
metrical properties of the distances. Thus, the respective
properties of the algorithms and also the lower bounds,
e.g., on power control [3], [4] are preserved.

In Section 6 we consider distributed approaches
for capacity maximization, namely regret-learning algo-
rithms [11]. Here we are not able to plug in the results
for the non-fading model in a similar black-box fashion.
Instead, we have to argue in a more detailed way to
show that for uniform power assignments the expected
number of successful requests is only a constant factor
smaller than the size of the non-fading optimum. The
bound is again completed using previous arguments,
and we obtain a O(log∗ n)-factor with respect to the
Rayleigh-fading optimum. Note that log∗ n is essentially
“almost constant”. However, deriving a (provable) con-
stant bound remains open.

Finally, we conduct a number of experiments that
highlight the relation between the two models and the

1. Recall that log∗ denotes the iterated-logarithm function. For an
introduction to the O/Θ/Ω notation capturing asymptotic behavior
of functions, we refer to, e.g., any standard textbook on design and
analysis of algorithms.
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performance of regret learning. In particular, we observe
that with probabilistic spectrum access, the curve for
success probability in the Rayleigh-fading model can
be seen as a smoothed variant of the success curve in
the non-fading model. We observe that the non-fading
model predicts more success if total interference is small,
while Rayleigh fading allows more requests to become
successful if interference is large. Regret-learning algo-
rithms show fast convergence and good performance
in both models, and the number of successful requests
predicted by the non-fading model is somewhat larger.

1.2 Related Work

In a seminal paper, Gupta and Kumar [12] study the
capacity of a wireless peer-to-peer network with a ran-
dom topology based on non-fading SINR constraints.
This brought about a lot of further work in randomly
distributed networks [13]–[15]. Similar studies have been
carried out for the case of regular topologies [16], [17].
Partly, this kind of research has also been generalized
to networks with fading channels. For example, Liu and
Haenggi [18] consider the capacity of square, triangle,
hexagon, and random networks under Rayleigh-fading
interference. More often Rayleigh fading is only used
to model effects of noise, and interference inside the
network itself is neglected [19], [20]. This represents
an orthogonal approach because we concentrate on the
particular problem of coordinating simultaneous trans-
missions. To the best of our knowledge, a direct compari-
son between the non-fading and Rayleigh-fading model
like it is done in this paper has not been discussed in
literature yet.

Real-world networks are typically neither random nor
regular. This motivates the study of arbitrary topolo-
gies, as first done by Moscibroda and Wattenhofer [2].
Following this work, approximation algorithms in the
non-fading SINR world were treated quite intensively,
especially for the pure scheduling problems. Important
milestones for capacity maximization are constant-factor
approximations for uniform transmission powers [8]. A
more sophisticated approach is selecting powers based
on the distance between the sender and the respective re-
ceiver [7]. For uniform power assignments a distributed
algorithm has also been developed [11] that uses re-
gret learning. For latency minimization a distributed,
ALOHA-like protocol has been analyzed [9], [21]. It
yields an approximation factor of O(log n) with high
probability.

The probably most natural extensions are the com-
bined problems of scheduling and power control. This is,
power levels are not fixed but have to be selected by the
algorithm. This offers an additional freedom to the opti-
mal solution as well. Using uniform transmission pow-
ers yields an O(log ∆)-approximation factor [5]. Here,
∆ denotes the ratio of the maximal and the minimal
distance between a sender and the respective receiver.
One gets O(log log ∆+log n)-approximations when using

square-root power assignments [4], i.e. a link of length
d is assigned a transmission power proportional to

√
dα.

The given approximation factors have been shown to be
asymptotically almost optimal when restricting to these
power assignments. However, for non-oblivious power
assignments, where the power does not depend on the
length of the link, even a constant-factor approximation
exists [6].

2 FORMAL MODEL DESCRIPTION

We assume that our network consists of n communica-
tion links (s1, r1), . . . , (sn, rn), each consisting of a sender
and a receiver. In general, we do not make any assump-
tions on the geometry or distribution of the network
nodes.

For the propagation, we consider Rayleigh-fading
channels. That is, if a signal is transmitted by sender sj ,
it is received by receiver ri at a strength of Sj,i. Sj,i is
an exponentially distributed random variable with mean
S̄j,i. As usual, we assume this stochastic process to be
independent for different (j, i) and different time slots.

The transmission between sender si and receiver ri
achieves a data rate depending on the SINR γRi , which
is given by

γRi =
Si,i∑

j 6=i Sj,i + ν
.

Here, ν ≥ 0 is a constant denoting ambient noise.
Each link obtains a utility from achieving a data rate.

In particular, as the data rate is proportional to the SINR
γRi , we assume utility is given by a function ui

(
γRi
)
≥ 0.

The objective of the capacity-maximization problem is to
maximize the expected sum of utilities E

[∑
i ui
(
γRi
)]

.
The simplest case of capacity maximization studied fre-
quently in the theoretical computer science literature is
recovered by assuming binary utilities as

ui(γ
R
i ) =

{
1 if γRi ≥ β
0 otherwise

This implies that the (only) goal of every link is to obtain
any data rate corresponding an SINR above the global
constant threshold β.

In the standard non-fading propagation model the
received signal strength is always (deterministically) S̄j,i.
To distinguish SINRs in both models we denote the
SINR for the non-fading propagation model by γnf

i . More
formally,

γnf
i =

S̄i,i∑
j 6=i S̄j,i + ν

.

The corresponding optimization problem in the non-
fading model is then to maximize the (deterministic)
sum of utilities

∑
i ui
(
γnf
i

)
.

We compare the value of approximate solutions and
optima for the corresponding optimization problems in
Rayleigh and non-fading models. As one can easily see,
this comparison might be quite unfair, even for binary
utilities. Suppose a large noise value ν dominates all
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signal strength means S̄i,i. In this case, the transmission
cannot reach any reasonable SINR values in the non-
fading model, even in the absence of interference. In the
Rayleigh-fading model in contrast, a small probability to
reach any SINR remains. Thus, the value of any solution
in the non-fading model is very close to or exactly 0.
This implies that the Rayleigh model is infinitely better,
as the relative approximation factor to the solution value
in the Rayleigh model becomes arbitrarily large.

This problem occurs only with large noise. In contrast,
our focus is to analyze scheduling algorithms and the
impact of interference. Therefore, we focus on the more
interesting case, in which the noise is not too large. Put
differently, we assume that for every link i the signal
strength S̄i,i is large enough to obtain an SINR against
the noise that yields significant utility. Equivalently, we
formulate this condition as a requirement on the utility
function. ui is allowed to be small only for SINR values
up to a suitable threshold, and then is non-decreasing
and concave with growing SINR. Formally, we restrict
our attention to valid utility functions given as follows.

Definition 1. For a link i in a given network, a non-negative
function ui : R≥0 → R≥0 is a valid utility function if there
exist a constant ci > 1 such that ui is non-decreasing and
concave on the interval [S̄i,i/(ciν),∞).

Observe that these utility functions encompass most
of the capacity maximization problems considered in the
literature. To highlight this property we consider three
prominent examples.

• The binary utilities outlined above constitute valid
utility functions for a tuple (c, β), where c > 1 is
some constant and β ≤ mini ¯Si,i

cν . Then ui is constant
in the interval [β,∞), which is non-decreasing and
concave and includes the interval in the definition.
Using these utilities we recover the standard objec-
tive to maximize the number of successful transmis-
sions, where a success is a transmission attempt of
a link with SINR above β.

• For link-weighted capacity maximization we use the
same (c, β) and ui(x) = wi ≥ 0 for all x ≥ β.
This yields optimization of successful transmissions,
where the successes of link i are weighted by wi.

• For utilities representing Shannon capacity we as-
sume ui(γ

R
i ) = log(1 + γRi ) throughout. This func-

tion is non-decreasing and concave over the whole
interval [0,∞) and thereby directly fulfills the defi-
nition. This results in maximizing the total Shannon
capacity of the network.

Approximation guarantees for algorithms in the non-
fading model usually rely on signal strengths S̄j,i being
tied to an underlying geometry of link nodes. For exam-
ple, a popular assumption is S̄j,i = pj/d(sj , ri)

α, where
pj is the transmission power and d(sj , ri) the distance
between sj and ri. In contrast, our connection between
Rayleigh-fading and non-fading models shown below
applies in a more general scenario, without any assump-

tions on the values of the (expected) signal strength
S̄j,i – except non-negativity and the relation to noise
as detailed above. In particular, this implies that our
reduction between the models holds for arbitrary power
assignments, path-loss exponents, requests located in
metric spaces, etc. For proving bounded approximation
factors, however, algorithms for the non-fading model
usually rely heavily on S̄j,i being characterized by these
parameters. Consequently, our “black-box” translation of
these algorithms and their approximation factors also
applies only to instances of the Rayleigh model that have
expected values S̄j,i with the same characteristics.

3 PROBABILITIES IN THE RAYLEIGH-FADING
MODEL

In this section, we consider the following situation under
Rayleigh-fading constraints. Assuming each sender si
transmits with probability qi, we bound the probability
to reach an SINR above a certain threshold β. We de-
note this probability by Qi(q1, . . . , qn, β). Fortunately, in
contrast to the non-fading model, the success probability
can be given in a closed-form expression.

Theorem 1. The probability that receiver ri receives the
signal from si with at least an SINR of β is

Qi(q1, . . . , qn, β) = qi · exp

(
− βν
S̄i,i

)∏
j 6=i

1− βqj

β +
¯Si,i
¯Sj,i

 .

The proof of this expression is mainly due to Liu
and Haenggi [18]; it can be found in the appendix.
The expression has the advantage of being an exact
probability. However, in order to compare the probability
to the one in the non-fading channel model, we need
upper and lower bounds.

Lemma 1. The probability for link i to reach an SINR of β
is at least

Qi(q1, . . . , qn, β) ≥ qi · exp

− β

S̄i,i

ν +
∑
j 6=i

S̄j,iqj

 .

The probability for link i to reach an SINR of β is at most

Qi(q1, . . . , qn, β)

≤ qi · exp

− βν
S̄i,i
−
∑
j 6=i

min

{
1

2
,
βS̄j,i
2S̄i,i

}
qj

 .

Proof: The proof of this lemma is based on the fol-
lowing observation concerning the exponential function.

Observation 1. For all x ∈ R, q ∈ [0, 1], we have

exp(−xq) ≤ 1− q
1
x + 1

,

and for all x ∈ (0, 1], q ∈ [0, 1], we have

1− q
1
x + 1

≤ exp

(
−1

2
xq

)
.
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Proof: We show the first inequality using the fact that
exp(y) ≥ 1 + y for all y ∈ R. Setting y = xq yields

exp(−xq) =
1

exp(xq)
≤ 1

1 + xq
= 1− q

1
x + q

≤ 1− q
1
x + 1

.

Setting y = − q
1
x+1

, we get

1− q
1
x + 1

≤ exp

(
− q

1
x + 1

)
= exp

(
− xq

1 + x

)
.

Furthermore, we have for all x ∈ (0, 1] that x
x+1 ≥

1
2x.

This yields the second bound.
Setting now q = qj and x = βS̄j,i/S̄i,i in this observa-

tion, we get

exp

(
−β S̄j,i

S̄i,i
qj

)
≤ 1− βqj

β + S̄i,i/S̄j,i
,

and setting x = min
{

1,
β ¯Sj,i

¯Si,i

}
yields

1− βqj
β + S̄i,i/S̄j,i

≤ exp

(
−1

2
min

{
1,
βS̄j,i
S̄i,i

}
qj

)
.

Theorem 1 now yields the claim.

4 TRANSFORMING SCHEDULING
ALGORITHMS

The bounds given in the previous section immediately
allow us to estimate the performance of algorithms for
the non-fading model in a Rayleigh-fading environment
after some minor modifications.

In particular, we can take an arbitrary approxima-
tion algorithm for capacity maximization. For example,
we can use the algorithm that achieves an O(log n)-
approximation [22] for the case of general utility func-
tions. If utility functions are threshold functions, we
might also use the constant-factor approximations for
the setting with uniform transmission powers [8] or
monotone transmission powers [7], or even for the case
in which the algorithm has to choose the transmission
power itself [6]. In any case, making exactly the links
transmit with probability 1 (without changes of the
transmission powers), Lemma 2 yields that the expected
utility under Rayleigh-fading interference is at least a
1/e-fraction of the utility in the non-fading model.

Lemma 2. Consider the solution for capacity maximization in
the non-fading model. Let the SINR that link i reaches in this
solution be denoted by γnf

i . Making the same senders transmit
with the same transmission powers, we have

E

[∑
i

ui
(
γRi
)]
≥ 1

e

∑
i

ui

(
γ

nf
i

)
.

Proof: Having a solution for capacity maximization
in the non-fading model, we can simply transfer this
solution to the fading model by making the same senders
transmit. That is, we set qi = 1 if link i transmits in the
non-fading solution and qi = 0 otherwise.

Let S ⊆ [n] be the set of links transmitting in the non-
fading solution. The SINR of link i in the non-fading
model is given by

γnf
i =

S̄i,i∑
j∈S S̄j,i + ν

.

Using Lemma 1, we can deduce that in the Rayleigh-
fading model Qi(q1, . . . , qn, γ

nf
i ) ≥ 1

e for all i ∈ S.
In combination, this means that for the resulting algo-

rithm

E
[
ui
(
γRi
)]
≥ ui

(
γnf
i

)
·Qi(q1, . . . , qn, γ

nf
i ) ≥ ui

(
γnf
i

)
· 1

e
.

This directly proves the lemma by summing over all
links i.

In terms of our objective function “capacity” this
means that we are at most a 1/e-factor worse in ex-
pectation. In combination, this means that the result-
ing algorithm will compute transmission probabilities
yielding an expected capacity that is at most a constant
factor worse than the optimally achievable capacity in
the non-fading model. However, it remains to show that
the theoretical optimum in the Rayleigh-fading model
cannot be much better than the one in the non-fading
model. This will be carried out in Section 5.

Existing approximation algorithms to minimize la-
tency can in general be divided into two classes. On the
one hand, there are many algorithms actually attempting
to maximize the utilization of the first time slot and then
apply this procedure recursively on the remaining links.
For these kinds of algorithms and analyses exactly the
same argumentation as for capacity maximization can
be applied. On the other hand, ALOHA-style protocols
have been proposed. Here, in each time slot, each link is
assigned a (small) transmission probability, which we as-
sume to be smaller than 1/2. If it is successful, the sender
stops transmitting, otherwise it continues running the
algorithm. In order to transform such algorithms to the
Rayleigh-fading model, we let each (randomized) step
be executed 4 times. Due to repeating those independent
random choices, we can increase the probability that at
least one of the 4 transmissions reaches an SINR of β.
This yields a success probability that is at least as large as
in the non-fading model. If p is the probability to reach
a certain SINR threshold β in the non-fading model,
Lemma 1 yields this probability for the Rayleigh-fading
model being at least p · 1/e. In 4 independent repeats
the probability of reaching β at least once is therefore
at least 1− (1− p/e)4. This is at least p if the transmission
probability (and therefore the success probability) is at
most 1/2.

For multi-hop scheduling algorithms [6], [9], the
single-hop transformations mentioned above can di-
rectly be generalized. In this setting a transmission can
be sent via intermediate nodes forwarding the respective
data. Here, in fact, the resulting multi-hop schedule
can also be considered as a concatenation of single-hop
schedules. Transforming each of them in the described
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way, we still only lose constant factors. More precisely
speaking, those multi-hop scheduling algorithms yield a
schedule for every single time slot. Using the transfor-
mation on every single schedule (and possibly executing
each step 4 times) yields the bounds on the utility and
the success probability of a transmission discussed above
for every such schedule. In total, the multiple schedules
yield the same constant factors discussed above in terms
of utility or success.

5 TRANSFORMING THE
RAYLEIGH-FADING OPTIMUM

The performance of all algorithms constructed in Sec-
tion 4 were measured in terms of the value of the optimal
solution in the non-fading model. However, in order to
derive approximation guarantees for the Rayleigh-fading
model, the value of the computed solution has to be
compared within the Rayleigh-fading model. Here, the
optimal solution could potentially be much better than
the non-fading one. In this section, we give a possibly
surprising result that this indeed cannot happen.

More formally, we will show that for both capacity
maximization and latency minimization the Rayleigh-
fading optimum can be at most an O(log∗ n)-factor better
than the non-fading optimum, where log∗ is the iterated
logarithm. This being a small number even for quite
large n yields basically a constant factor in practical
terms. Thus, in settings with realistic network size the
difference between the non-fading optimum and the
Rayleigh-fading optimum can be considered almost con-
stant.

Theorem 2. Given an assignment of transmission probabili-
ties q1, . . . , qn, there is a (potentially different) assignment of
transmission probabilities q′1, . . . , q′n such that

E

[∑
i

ui

(
γ

nf
i

)]
≥ Ω

(
1

log∗ n

)
E

[∑
i

ui
(
γRi
)]

,

where γnf
i is the non-fading SINR achieved by link i when

using transmission probabilities q′1, . . . , q′n.

Proof: To show the theorem, we “simulate” the single
random trial with O(log∗ n) independent steps in the
non-fading model, in which different assignments of
transmission probabilities are used. We will come to
the conclusion that the expected sum of utilities a link
achieves in all simulation steps combined is at least as
large as in the single Rayleigh-fading step divided by
a constant. Therefore, taking the best one of these steps
shows the theorem.

To focus on the main argument, we assume that ci ≥ 3
for all i. The general proof idea, however, is applicable
for any constants ci after only modifying the involved
constants. We define the sequence (bk)k∈N recursively by
setting b0 = 1/4, bk+1 = exp(bk/2). The simulation works
as follows. For each k ≥ 0 with bk < n, we let each sender
transmit with probability q

(k)
i := qi/4bk for 19 times

independently at random. As (bk)k∈N is an iterated ex-
ponential sequence, bk ≥ n for some k = O(log∗ n). This
means that we make O(log∗ n) transmission attempts in
total.

Algorithm 1: Formal description of the simulation.

1 k := 0, b0 := 1/4;
2 while bk < n do
3 for 19 times do
4 transmit with probability q

(k)
i := qi/4bk;

5 bk+1 := exp(bk/2), k := k + 1;

Let us first turn to the case of low SINR values. These
are mainly determined by interference. We achieve the
following probability bound.

Lemma 3. For each link i ∈ [n], the probability to reach any
fixed SINR thresholds β ≤

¯Si,i
2ν in the non-fading model in at

least one of the simulation steps is at least Qi(q1, . . . , qn, β)
for each link i.

Proof: Consider an arbitrary i ∈ [n]. We claim: The
probability of achieving SINR of at least β in the non-
fading model during one of the O(log∗ n) repeats is at
least Qi(q1, . . . , qn, β).

We set Ai =
∑
j 6=i min

{
1, βS̄j,i/S̄i,i

}
· qj . Observe that

0 ≤ Ai ≤ n. In order to bound the success probability,
we only take the kth iteration of the while loop into
account, where bk ≤ exp(Ai/2) ≤ exp(bk/2). We will
show that in this iteration, the probability of a successful
transmission in the non-fading model is at least as
large as the original one in the Rayleigh-fading model.
Lemma 1 yields Qi(q1, . . . , qn) ≤ qi · exp

(
− βν

¯Si,i
− Ai

2

)
.

Using this, we observe that the probability of success in
the Rayleigh-fading model is at most qi

eAi/2
≤ qi

bk
.

Let us first consider a single one of the 19 in-
dependent iterations. Let Xj be a 0/1 random vari-
able indicating if sender sj transmits in this iteration.
By definition E [Xj ] = q

(k)
j . Furthermore, set Zi =∑

j 6=i min
{

1, βS̄j,i/S̄i,i
}
·Xj .

To make the transmission successful in the non-
fading model, we have to have Xi = 1 and S̄i,i ≥
β(
∑
j 6=i S̄j,iXj+ν). To bound the probability of the latter

event, we use the assumption that S̄i,i ≥ 2βν. With
this, we get β(

∑
j 6=i S̄j,i/S̄i,iXj + ν/S̄i,i) ≤ Zi + 1/2.

Therefore it suffices to have Z < 1/2 for this to yield
S̄i,i ≥ β(

∑
j 6=i S̄j,iXj + ν).

This allows to estimate the probability of this event by
Markov’s inequality using

Pr
[
Zi ≥

1

2

]
≤ 2E [Zi] = 2

∑
j 6=i

min

{
1, β

S̄j,i
S̄i,i

}
E [Xj ]

= 2
∑
j 6=i

min

{
1, β

S̄j,i
S̄i,i

}
· qj

4bk
≤ 2

Ai
4bk

. (1)

For the remaining considerations, we distinguish be-
tween the two cases k = 0 and k ≥ 1.
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In the case k ≥ 1, we use the fact that Ai ≤ bk to get
that the success probability in the non-fading model in
a single iteration is at least

q
(k)
i ·

(
1− 2

Ai
4bk

)
≥ q

(k)
i

2
=

qi
8bk

.

We use now the facts that k ≥ 1 and therefore bk ≥
exp(1/8) and furthermore that for all 0 ≤ x ≤ exp (−1/8)
we have 1 − (1 − x/8)19 ≥ x. We can easily derive this
claim by rearranging the inequality to (1−x)1/19 ≥ 1−x/8.
The lefthand side is concave and monotone decreasing
in [0, 1]. Thus, (1− x)1/19 and the linear function 1− x/8
can be equal in at most 2 points. One such intersection is
x = 0. The other one is between x = exp(1/8) and x = 1 as
(1−x)1/19 = 0 < 1−x/8 for x = 1 and (1−x)1/19 > 1−x/8
for x = exp(1/8). Due to continuity of the functions, this
proves the inequality stated above.

Having qi/bk ≤ 1/bk ≤ exp(−1/8) yields that in 19
independent repeats, we get a total success probability
of at least

1−
(

1− qi
8bk

)19

≥ qi
bk
≥ qi exp

(
−Ai

2

)
.

As we have already seen, the success probability in the
Rayleigh-fading model is at most qi exp(−Ai/2).

For the case k = 0, we use that the probability
that the transmission is not successful within a single
iteration of the inner loop is at most qi(1 − 2Ai). This
results from Equation 1, which bounds the probability
for an unsuccessful transmission assuming i transmits
by 1 − 2Ai for k = 0. The probability that at least one
of the 19 independent repeats is successful is at least
1− (1− qi(1− 2Ai))

19 ≥ qi exp(−Ai/2) for all 0 ≤ qi ≤ 1
because Ai ≤ 1/4.

Now, let γnf,t
i be the SINR that is achieved in the tth

transmission attempt of sender i, i.e., in the tth overall
iteration of the for loop. In this notation, Lemma 3 shows
Pr
[
maxt γ

nf,t
i ≥ β

]
≥ Pr

[
γRi ≥ β

]
for all β ≤

¯Si,i
2ν .

To show the theorem, we need to upper-bound
E
[
ui(γ

R
i )
]

in terms of E
[
ui(maxt γ

nf,t
i )

]
. For this pur-

pose, we use the following decomposition:

E
[
ui(γ

R
i )
]

= Pr
[
γRi <

S̄i,i
2ν

]
E
[
ui(γ

R
i )

∣∣∣∣ γRi <
S̄i,i
2ν

]
+ Pr

[
γRi ≥

S̄i,i
2ν

]
E
[
ui(γ

R
i )

∣∣∣∣ γRi ≥ S̄i,i
2ν

]
.

Defining ũi by ũi(γ) = ui(γ) for γ ≤
¯Si,i
2ν and ũi(γ) =

ui(
¯Si,i
2ν ) for γ >

¯Si,i
2ν , we have

Pr
[
γRi <

S̄i,i
2ν

]
E
[
ui(γ

R
i )

∣∣∣∣ γRi <
S̄i,i
2ν

]
= Pr

[
γRi <

S̄i,i
2ν

]
E
[
ũi(γ

R
i )

∣∣∣∣ γRi <
S̄i,i
2ν

]
≤ E

[
ũi(γ

R
i )
]
≤ E

[
ui(max

t
γnf,t
i )

]
,

where the last step is due to Lemma 3. Furthermore, by
concavity of ui on

[
¯Si,i
3ν ,∞

)
, we have

E
[
ui(γ

R
i )

∣∣∣∣ γRi ≥ S̄i,i
2ν

]
≤ ui

(
E
[
γRi

∣∣∣∣ γRi ≥ S̄i,i
2ν

])
.

We can bound E
[
γRi

∣∣∣ γRi ≥ ¯Si,i
2ν

]
by using that for any

fixed Sj,i we have

E
[
γRi

∣∣∣∣ γRi ≥ S̄i,i
2ν

and fixed Sj,i for j 6= i

]

=
1∑

j 6=i Sj,i + ν
E

Si,i
∣∣∣∣∣∣ Si,i ≥ S̄i,i

2ν

∑
j 6=i

Sj,i + ν

 .

As Si,i is exponentially distributed, this term is equal to

1∑
j 6=i Sj,i + ν

S̄i,i +
S̄i,i
2ν

∑
j 6=i

Sj,i + ν


=

1∑
j 6=i Sj,i + ν

S̄i,i +
S̄i,i
2ν

≤ S̄i,i
ν

+
S̄i,i
2ν

≤ 3S̄i,i
2ν

.

For any concave function f(x), it holds 6/7 · f(x/3) + 1/7 ·
f(3x/2) ≤ f(6x/21 + 3x/14) = f(x/2). Thus, using concavity
once again, we get ui

(
¯Si,i
2ν

)
≥ 6

7ui

(
¯Si,i
3ν

)
+ 1

7ui

(
3 ¯Si,i
2ν

)
≥

1
7ui

(
3 ¯Si,i
2ν

)
yielding

ui

(
E
[
γRi

∣∣∣∣ γRi >
S̄i,i
2ν

])
≤ ui

( ¯3Si,i
2ν

)
≤ 7ui

(
S̄i,i
2ν

)
.

Using Lemma 3 another time, we get Pr
[
γRi ≥

¯Si,i
2ν

]
≤

Pr
[
maxt γ

nf,t
i ≥

¯Si,i
2ν

]
and this yields

Pr
[
γRi ≥

S̄i,i
2ν

]
ui

(
S̄i,i
2ν

)
≤ E

[
ui(max

t
γnf,t
i )

]
.

In combination, we get

E
[
ui(γ

R
i )
]
≤ 8E

[
ui(max

t
γnf,t
i )

]
This completes the proof.

This way, we see that we lose at most an O(log∗ n)
factor in all approximation guarantees of non-fading
algorithms. In particular, the constant-factor capacity-
maximization algorithms of the non-fading case provide
without any further modification O(log∗ n) approxima-
tions in the Rayleigh-fading case.

When considering latency minimization under
Rayleigh-fading conditions, the optimum should rather
be considered as an algorithm itself that assigns
different transmission probabilities in each step, because
the optimum consists of a different schedule in every
time step. This assignment may arbitrarily depend
on previous successes and may be computed using
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arbitrary computation power. However, Theorem 2
shows for this case that even the perfect algorithm
computes schedules that are at most an O(log∗ n) factor
shorter than the non-fading optimum, because we could
replace each times lot by the described simulation,
increasing the schedule length by a factor of at most
O(log∗ n).

6 REGRET LEARNING FOR CAPACITY
MAXIMIZATION
Most of the existing algorithms for capacity maximiza-
tion are centralized. A notable exception is the round-
based distributed approach presented by Dinitz [11] us-
ing regret-learning techniques. This approach works for
binary utilities with a global threshold β (c.f. Section 2),
and we assume that we have binary utilities throughout
this and the next section. Thus, we focus on the number
of successful transmissions, which are all transmission
attempts of a link that achieve an SINR above β. In
addition, we use the notion of a feasible set, which is
a subset of links such that they can all simultaneously
transmit successfully.

The idea behind the regret-learning approach is that
a sequence of action vectors is computed in a decen-
tralized way. In each step t, every user i decides which
action a(t)

i to take. Together those chosen actions form an
action vector a(t). After taking the action, he gets a reward
hi(a

(t)
1 , . . . , a

(t)
n ) depending on his own choice and the

one of the other users in step t. The choice of which
action to choose then depends on the history of rewards
experienced before. The external regret is defined as the
difference between the reward of the best single action
in hindsight and the summed rewards experienced by
the algorithm.

Definition 2. The (external) regret of user i at time T given
a sequence of action vectors a(1), . . . , a(T ) is

max
a′i∈Ai

T∑
t=1

hi(a
(t)
1 , . . . , a′i, . . . , a

(t)
n )−

T∑
t=1

hi(a
(t)) ,

where Ai is the set of possible actions of user i.

The user regrets what he might have won by switching
to one single action for all time steps in hindsight instead
of using the algorithm. An algorithm has the no-regret
property if the average regret per time step converges
to 0 for the number of time steps T going to ∞. Similar
to previous work, our approach relies on algorithms that
achieve the no-regret property for a single user with high
probability after a number of steps polynomial in n. Such
algorithms are known in the literature [23], [24].

To adapt this framework to capacity maximization, we
assume that each link i is a user who has two actions in
each step t – namely to send (qi = 1) or not to send
(qi = 0). The reward function hi(q1, . . . , qn) is set to be 1
when a user i sends and is successful (SINR above β),
to be −1 when user i sends and is not successful, and 0
if a user does not send.

Using this setup, Ásgeirsson and Mitra [24] showed
for the non-fading model that if each user applies a
no-regret algorithm the average number of successful
transmissions over time converges to the optimum up
to a constant factor. This result relies on distance-based
interferences and uniform transmission powers. More
formally, the result applies when S̄j,i = pj/d(sj , ri)

α,
where pj = 1 is the transmission power and d(sj , ri)
the distance between sj and ri in some metric space.

Unfortunately, our black-box transformation cannot
be directly applied here. This is due to the sequential
nature of the algorithm: In each round, a user’s reaction
depends on the fact if transmissions were successful
in earlier rounds. As success of transmissions is now
stochastic, the effects on the dynamic algorithm are not
immediately clear. Luckily, we can nevertheless repro-
duce the necessary results without altering the regret-
learning algorithms. Thus, we are able to prove a similar
result showing that the expected number of successful
transmissions in the Rayleigh model converges to the
non-fading optimum up to a constant factor. In particu-
lar, we prove the following theorem.

Theorem 3. If all users apply no-regret algorithms with
respect to rewards functions hi, the average number of suc-
cessful transmissions per round converges to Ω(|OPT|), for
OPT being a largest feasible set in the non-fading model with
distance-based interference and uniform transmission powers.

In the Rayleigh-fading model, the reward function
itself is stochastic. However, as we will see, any no-regret
algorithm with respect to the stochastic reward functions
hi is also has the no-regret property with respect to the
(deterministic) reward functions h̄i, which are defined as
the respective expectation of hi. To define h̄i formally, let
us recall the possible outcomes of hi. Whenever a link i
does not try to transmit, it gets a reward of 0. In time
steps with transmission attempt, link i gets a reward
of 1 if the transmission is successful for link i. This
happens with probability Qi (q1, . . . , qn, β). Otherwise
the reward is −1. In total the expected reward of a time
step with transmission attempt of link i evaluates to
2 ·Qi (q1, . . . , qn, β)− 1. So, the expected reward of user
i is

h̄i(q1, . . . , qn) = E [hi(q1, . . . , qn)]

=

{
0 if qi = 0,
2 ·Qi (q1, . . . , qn, β)− 1 if qi = 1.

We approach the proof of Theorem 3 as follows. Con-
sider a joint run of the no-regret algorithms for all users
for T rounds in hindsight. Assume that the regret for
some user i with respect to hi is ε′·T for a constant ε′ < 1.
Note that each user runs an algorithm that has this prop-
erty for him individually with probability (1− 1/Ω(n)))
after a number of rounds T that is polynomial in n, and
1/ε′. Under the assumption that a user has regret ε′ · T
for hi, we show in the subsequent Lemma 4 that with
probability at least (1− 1/T 2) the regret for user i of the
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same action sequence against rewards given by h̄i is at
most ε · T , where ε < 1 becomes arbitrarily small when
T gets sufficiently large (but polynomial in n and 1/ε).
Hence, as T > n, with probability at least (1 − 1/Ω(n)),
a single user i has regret ε ·T for hi. Thus, using a union
bound, with constant probability this condition holds for
all users simultaneously. For sequences that give all users
low regret simultaneously, we show in Theorem 4 that
the throughput can be related to the optimum, which
directly implies the constant factor in Theorem 3.

Lemma 4. Fix some user i ∈ [n] running a no-regret
algorithm with respect to hi and some round T ∈ N. Let Rh
and Rh̄ be the user’s regret with respect to reward functions hi
and h̄i, respectively. Then with probability at least (1−1/T 2)
we have Rh̄ ≤ Rh +O(

√
T lnT ).

Proof: For a ∈ {0, 1}, t ∈ [T ], let us define the random
variable Y at by

Y at =
(
h̄i(a, q

(t)
−i)− h̄i(q

(t))
)
−
(
hi(a, q

(t)
−i)− hi(q

(t))
)
.

Observe that −2 ≤ Y at ≤ 2 and that, conditioned on any
outcomes of Y a1 , . . . , Y at−1, the expectation is always 0.
Therefore, we can apply Hoeffding’s inequality to get

Pr

[
T∑
t=1

Y at ≥
√

16T lnT

]
≤ exp

(
−2(16T lnT )

16T

)
=

1

T 2

So, with probability at most 1
T 2 , we have

∑T
t=1 Y

a
t ≥√

16T lnT for a = 0 and a = 1. In return, this implies,
Rh̄ ≤ Rh+

√
16T lnT with probability at least (1−1/T 2).

Based on Lemma 4, we now assume that we have a
fixed sequence of length T in which each user’s regret
with respect to the expected rewards h̄i is at most ε ·
T . We will show that in this sequence, on average per
round, the expected number of successful transmissions
is Ω(|OPT|).

Theorem 4. Consider a sequence q(1), . . . , q(T ) of action vec-
tors such that each user i has regret at most ε ·T with respect
to reward function h̄i. Then the average number of successful
transmissions over the T time steps is in Ω(|OPT| − εn),

Theorem 4 directly follows from Lemma 5 and
Lemma 6, which we will prove in the remaining part
of this section. For any no-regret algorithm we get ε
converging to 0 after a sufficient amount of time steps.
To be precise, when ε < 1/n we can guarantee a factor in
Ω(|OPT|). We assume here that the no-regret algorithm
converges in a polynomial fashion (depending on the
number of available actions) yielding this guarantee with
high probability after a time polynomial in n.

Note that this theorem together with Theorem 2 yields
a factor of O(log∗ n) in comparison to the Rayleigh-
fading optimum. Our analysis extends the one for the
non-fading case [11], [24]. The results from [24] also
show that the number of successful transmissions is
bound in Ω(|OPT|) for regret learning in the non-fading

model. This highlights the close relationship between the
models.

In the following, we consider a sequence q(1), . . . , q(T )

that exhibits external regret ε · T for every user i =

1, . . . , n. We define fi = 1
T

∑
t q

(t)
i as the fraction of

time steps the user chooses qi = 1. Let F =
∑
i fi.

We define xi to be the average success probability per
time step with xi = 1

T

∑
tQ

(t)
i

(
q

(t)
1 , . . . , q

(t)
n , β

)
, and we

set X =
∑
i xi. That is, X is the expected number of

successful transmissions on average per round.
We examine such sequences and at first bound the

expected number of successful transmissions on average
per round. It turns out that for ε approaching 0 half of the
transmissions are successful in the long run. Besides this
result, we will show that the average number of trans-
mitting nodes F is in Ω(|OPT|). This together shows that
the expected number of successful transmissions X on
average per round is in Ω(|OPT|).

Lemma 5. X ≤ F ≤ 2X + εn

Proof: The first inequality follows by definition. For
the second inequality, we use the fact that for each user
i the regret is at most ε. Therefore, always using action
qi = 0 can increase the average reward per step by at
most ε. Formally this means 2 · xi − fi ≥ −ε. Taking
the sum over all i, we get 2X − F ≥ −εn. This yields
F ≤ 2X + εn.

As we have seen that X = Θ(F ), it suffices now to
show that F is in Ω(|OPT|).

Lemma 6. Let OPT denote a largest feasible set in the non-
fading model under uniform transmission powers, then F =
Ω(|OPT|).

Proof: In the following a(j, i) denotes the affectance
defined as follows (cf. the definition in [25]). The af-
fectance of link j on link i for uniform powers is

a(j, i) = min

1,
β · d(si,ri)

α

d(sj ,ri)
α

1− β · ν · d (si, ri)
α

 .

We will denote the summed affectance from other links
on link i by

a(t)(i) =
∑
j∈[n]

q
(t)
j =1

a(j, i) .

Note that by definition for a link i the SINR constraint
is fulfilled iff a(t)(i) ≤ 1.

Let Pi be the fraction of steps in which a(t)(i) ≤
1
2 and let â(i) = 1

T

∑
t a

(t)(i). We define the
sets OPT′ =

{
i ∈ OPT: fi <

1
2 − ε

}
and OPT′′ ={

i ∈ OPT′ :
∑
j∈OPT′ a(i, j) ≤ 2

}
. So all links in OPT′′

attempt to transmit in less than a 1
2 − ε fraction of the

time and affect others doing so by at most 2.
If |OPT \OPT′| > |OPT|/2, then F would be at least(

1
2 − ε

)
· |OPT \OPT′| and therefore in Ω(|OPT|).
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So we consider |OPT′| ≥ |OPT|/2 for the rest of the
proof. The choice of OPT′ directly corresponds to the
choice of L′ in [24, Lemma 8] stated as follows.

Lemma 7 (Lemma 8 in [24]). Let L be a feasible set. Define
the set L′ =

{
u ∈ L

∣∣ ∑
v∈L a(u, v) ≤ 2

}
. Then |L′| ≥ |L|/2.

Using this, we see |OPT′′| ≥ |OPT|/4. Therefore, it is
sufficient to show F = Ω(|OPT′′|) and so we just need
to consider links i ∈ OPT′′.

We consider the reward gain for link i by switching to
action qi = 1 throughout every step. In an fi fraction of
the steps nothing changes. In at least a Pi − fi fraction
of the steps, link i could have been successful but did
not transmit in the original sequence. As the affectance
is at most a(t)(i) ≤ 1/2, we conclude by easy calculus∑
j

1/d(sj ,ri)
α + ν ≤ 1/2βd(si,ri)

α. From Lemma 1 we can
then conclude that the success probability in these steps
is at least exp(−1/2). For the remaining steps, we estimate
the probability simply by 0. Therefore, the reward gain
is at least (pi − fi) · 2 exp(−1/2)− (1− fi) ≤ ε.

This yields for all i ∈ OPT′′ and ε ≤ 0.04 that

pi ≤ fi +
ε+ 1− fi

2 exp(−1/2)

≤ 1

2

(
1 +

exp(1/2)

2

)
+
ε · exp(1/2)

2
≤ 19

20
,

because fi ≤ 1/2. For â(i), we now get by definition of qi

â(i) ≥ Pi · 0 + (1− Pi) ·
1

2
≥ 1

20
· 1

2
=

1

40
.

Hence, we have

â(i) =
∑
j∈[n]

fja(j, i) ≥ 1

40
for all i ∈ OPT′′.

Taking the sum of all resulting inequalities, we get∑
i∈OPT′′

∑
j∈[n]

fja(j, i) ≥ |OPT′′|
40

or, equivalently,∑
j∈[n]

fj

( ∑
i∈OPT′′

a(j, i)

)
≥ |OPT′′|

40
.

Lemma 8 (Lemma 11 in [24]). Assume R is a feasible set
under uniform power, such that for all z ∈ R,

∑
v∈R a(z, v) ≤

2. Then for any other link u,
∑
v∈R au(v) = O(1).

With Lemma 8 we have that
∑
i∈OPT′′ a(j, i) = O(1)

for all j ∈ [n] and hence∑
j∈[n]

fj = Ω(|OPT′′|) .

Lemma 5 and 6 together yield that for any no-regret
algorithm the expected number of successful transmis-
sions converges to a constant fraction of the non-fading
optimum. This directly proves Theorem 4. Together with
the results from Section 5 we have proven an O(log∗ n)-
approximation factor for no-regret learning for capacity
maximization.

7 SIMULATION RESULTS

In the sections before, we showed a close relation be-
tween the Rayleigh-fading and the non-fading models in
theory. While bounds are given asymptotically for worst-
case instances, our theoretical results can also be verified
in simulations.

In particular, we consider Rayleigh and non-fading
models with distance-based interferences and binary
utilities based on a global feasibility threshold β for
the SINR. We examine the performance of an ALOHA-
like protocol and the no-regret capacity-maximization
algorithm. Simulations are carried out on random net-
works constructed by randomly placing receivers on a
1000× 1000 plane. Each corresponding sender is placed
by choosing the angle and the distance to the receiver
uniformly at random from a fixed interval. This way, a
minimal and a maximal distance between sender and
receiver can be specified.

Comparing the Rayleigh-fading and the non-fading
model the simulations show that the number of suc-
cessful transmissions under uniform powers behave sim-
ilarly when the sending probabilities are chosen uni-
formly, see Figure 1. The simulation was done (and the
results averaged) over 40 different networks with 100
links each. For each network we considered 25 different
seeds for the randomizer to determine whether a link
transmits. The SINR parameters were set to β = 2.5,
α = 2.2, and ν = 4 · 10−7. The power for the uniform
power assignment was set to pi = 2 for all links i. For the
square-root power assignment we set pi = 2

√
d(si, ri)2.2.

For the Rayleigh-fading channel we additionally used
10 different seeds to determine whether a transmission
is successful. The distance between a sender and the
corresponding receiver was chosen between 20 and 40.

Figure 1 shows the number of successful transmissions
averaged over all those runs. It assumes that the set of
transmitting links is determined randomly with the same
probability for each links to be transmitting. Neither
the Rayleigh-fading model nor the non-fading model
always predicts more success than the other one. The
Rayleigh probability distribution leads to a smoothed
curve compared to the non-fading model. This is due to
the fact that even when the SINR constraint is not ful-
filled in the non-fading model, the success probability in
the Rayleigh-fading model still remains positive. On the
other hand, when a transmission is definitely successful
in the non-fading SINR model there is some probability
for being not successful in the Rayleigh-fading model.
The general characteristics of the curves are the same
and show that the Rayleigh-fading and the non-fading
model behave alike.

Choosing the optimal set of sending links under
uniform powers, we reach on average 49.75 successful
transmissions in those networks.

The similarity can also be seen when taking a look at
no-regret algorithms. Here we analyzed a version of the
Randomized Weighted Majority Algorithm of Littlestone
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Fig. 1. Number of successful transmissions for different
transmission probabilities under square-root and uni-
form power assignment and under the Rayleigh-fading
and non-fading SINR model.

10 20 30 40 50 60 70 80 90 100

10
20
30
40
50
60
70
80
90

Su
cc

es
sf

ul
tr

an
sm

is
si

on
s

Time steps

Non-fading
Non-fading optimum
Fading

Fig. 2. Number of successful transmissions under the
Rayleigh-fading and non-fading model when applying a
no-regret algorithm.

and Warmuth [26]. The weights are initialized with 1 and
multiplied by (1− η)

li in every time step, where li is the
loss of not sending (i = 0) or sending (i = 1). The loss
for sending and not being received is 1 and the loss of
not sending at all is 0.5. In all other cases the loss is 0.
These losses correspond to the utility function used in
Section 6. The factor η starts with

√
0.5 and is multiplied

by
√

0.5 every time the number of time steps is increased
above the next power of 2.

For the simulation shown in Figure 2 we used different
networks with 200 links, distances between 0 and 100,
β = 0.5, α = 2.1, and ν = 0. The other settings remained
as before.

The results behave in the same way as observed
by Ásgeirsson and Mitra [24] in their simulations. The
Rayleigh-fading model shows more fluctuations due to
its stochastic nature. We can also see that the no-regret
algorithm converges quite quickly near the optimum of
the non-fading model. The number of time steps needed
for convergence depends on the specific instance, but a
good performance can already be seen after 30 to 40 time
steps.

8 DISCUSSION AND OPEN PROBLEMS

In this paper we showed that from an algorithmic point
of view, the non-fading and the Rayleigh-fading model
behave similarly in theory as well as in simulations. We
regard this as a promising result because it indicates that
existing results on approximation algorithms within non-
fading models seem to apply more generally. Turning
to a different, more realistic scenario does not create
a fundamentally new situation as was the case when
shifting from graph-based interference models to SINR-
based ones.

Future research could take two different directions
from this point. On the one hand, it could focus on
the similarities, e.g., by improving the obtained bounds.

Considering a particular situation, the O(log∗ n)-factor
in Theorem 2 might be reduced to a constant, which
we were not able to prove in general. Furthermore,
the similarities could be exploited to take the best of
the two worlds, in order to derive more sophisticated,
hopefully distributed algorithms. On the other hand,
also the differences could be taken into account. For
example, the regret-learning simulation in the Rayleigh-
fading model reaches a smaller capacity. It would be
interesting to see if this is a general effect of the stochastic
model or under which conditions this behavior can be
observed.
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