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Abstract We consider capacity maximization algorithms for wireless
networks with changing availabilities of spectrum. There are n sender-
receiver pairs (called links) and k channels. We consider an iterative
round-based scenario, where in each round the set of channels available
to each link changes. Each link independently decides about access to
one available channel in order to implement a successful transmission.
Transmissions are subject to interference and noise, and we use a general
approach based on affectance to define which attempts are successful.
This includes recently popular interference models based on SINR.
Our main result is that efficient distributed algorithms from sleeping-
expert regret learning can be used to obtain constant-factor approxima-
tions if channel availability is stochastic and independently distributed
among links. In general, sublinear approximation factors cannot be ob-
tained without the assumption of stochastic independence among links.
A direct application of the no-external regret property is not sufficient
to guarantee small approximation factors.

1 Introduction

One of the most important problems in the development of wireless networks
is to overcome spectrum scarcity resulting from the static allocation schemes
currently used by national regulators. This poses a variety of important regula-
tory and, in particular, algorithmic challenges. The idea is that licensed primary
users open up their spectrum bands temporarily in local areas where it is un-
used. This creates spectrum opportunities for secondary users and results in
much more efficient usage. A prominent approach that is currently discussed in
industry is based on a database that records which channels are currently avail-
able for secondary usage in which areas. Primary users announce whether the
channel is available to secondary users via this database organized by regulatory
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authorities. In this case, secondary users obtain information about the channels
available to them querying the database and then decide independently about
channel access.

In this paper, we study an underlying algorithmic problem in this scenario
and analyze the performance of distributed regret-based learning algorithms. In
our model, there are k channels and n secondary users represented by links, i.e.,
by sender-receiver pairs located in a metric space. We consider a round-based
approach, where in each round the set of channels available to each link can
change, e.g., due to changing usage of the licensed primary users. Each link gets
informed about the channels available to him and then decides about making a
transmission attempt on an available channel. Transmissions are subject to inter-
ference and noise, and the success of a transmission attempt depends on conflicts
defined using an interference model. Instead of relying on a particular model,
we use a general approach to define conflicts based on a notion of affectance.
This approach encompasses a variety of graph-based interference models, like
disk graphs or the protocol model, as well as more realistic models based on the
signal-to-interference-plus-noise-ratio (SINR).

We consider distributed learning algorithms that are executed for each link
independently. The algorithms receive as input in each round the set of avail-
able channels and, in case they decide to transmit, a binary feedback if the
transmission was successful or not. In particular, they do not need to know the
exact SINR or whether and which other links made a (successful) transmission
attempt. The decision for transmission follows an evaluation based on a natural
utility function, which rewards previous successful transmissions and punishes
failed attempts. Each no-regret algorithm aims at optimizing these utilities in
a unilateral fashion, and therefore this scenario also has connections to game-
theory.

While each link uses a no-regret algorithm to optimize his own successful
transmissions, the obvious overall goal is capacity maximization, i.e., to maximize
the total number of successful transmissions in the system. Our main result is
that if all links use algorithms that satisfy a no-regret property resulting from
a sleeping expert learning model [3], the number of successful transmissions
converges to a constant-factor approximation for capacity maximization. For
example, the surprisingly simple protocol of [12] can be used to obtain this
result with high probability after a polynomial number of rounds. The analysis
is based on a novel formulation of distributed capacity maximization using linear
programming duality.

All our algorithms require channel availabilities to be stochastic and indepen-
dently distributed for each link. This includes as a special case also the natural
deterministic variant, where each link has a subset of available channels that
does not change over time. We show that independence of the availability distri-
butions among links is necessary, because the no-regret properties do not suffice
to guarantee similar bounds when distributions are correlated. In addition, we
show that a direct application of no-external regret as in previous work [6] does
not provide similar results.



1.1 Contribution and Related Work

Capacity maximization, i.e., the task of maximizing the number of simultaneous
transmissions, has been a prominent algorithmic problem over the last decade,
e.g., in graph-based interference models [7, 16, 18]. With the seminal work of
Moscibroda and Wattenhofer [15] attention has shifted to more realistic settings
based on signal-to-interference-plus-noise-ratio (SINR).

We consider no-regret learning algorithms to solve capacity maximization
with stochastic channel availabilities. As our main result, we show in Section 3
that no-ordering-regret algorithms converge to a constant-factor approximation
for capacity maximization if availabilities are drawn independently at random for
each link. Our analysis is based on a conflict graph representation of the interfer-
ence model and, in particular, on a notion of a C-independence. C-independence
turns out to be a key parameter for the performance of no-ordering-regret al-
gorithms in this setting. If channel availabilities are stochastically independent
for each link, the Sleeping-follow-the-perturbed-leader algorithm of [12] guaran-
tees polynomial convergence time. This also holds when for each single link the
availabilities of the different channels are arbitrarily correlated.

In contrast to this result for no-ordering-regret, we observe in Section 4 that
for a direct application of the simpler no-external-regret condition, the successful
transmissions can on average still be a factor of Ω(k) or Ω(n) smaller than in
the optimum, where k is the number of channels and n the number of links. In
addition, we highlight that without independence of channel availabilities among
different links, there exist examples where even the no-ordering-regret property
guarantees only a Ω(n)-factor, as well.

Our main result is shown using a novel technique to analyze the performance
of regret learning algorithms based on linear programming. This approach ex-
tends related works on capacity maximization on a single channel with uniform
powers in SINR [1, 9] and Rayleigh-fading models [5], for which no-external re-
gret algorithms are known to converge to constant-factor approximations [2,5,6].
Closest to our approach is our companion paper [4], in which we introduce a gen-
eral framework based on the LP technique to study no-external regret learning
with adversarial jamming on a single channel. The jammer yields more restrictive
feedback, as availability of the channel remains unknown. Instead, an unavail-
able channel yields the same feedback to the link as being unsuccessful because
of interference.

In this paper, we make a first step towards capacity maximization with mul-
tiple channels. For static availability, it is easy to see that previous results on
no-external regret learning in [2, 5] directly extend to multiple channels. When
we consider varying availabilities, however, multiple channels represent a sig-
nificant complication. For a single channel and availabilities, our LP technique
can be applied using no-external regret algorithms and the more challenging
jammer feedback [4]. The main idea is to repeat a chosen action sufficiently
long in order to obtain a “representative” feedback. For multiple channels, a
similar approach is unlikely to work as we must learn on some channels while
others are unavailable. This changes the regret and feedback conditions, and the



connection between regret, feedback, and optimal solution value becomes more
intricate to establish. In this paper, we resort to a stronger notion of no-ordering
regret and use stochastic independence assumptions among links to obtain a
constant-factor approximation. Omitting the independence assumptions consti-
tutes a major open problem. Still, our work is a strong indication that efficient
capacity maximization with availabilities and multiple channels is achievable in
practice.

Action availabilities are the subject of a recent line of literature in online
learning [12–14]. The actions of a game (or the experts in the learning setting) are
not always available, and availability is based on adversarial decisions or random
coin flips. The stochastic availabilities in our setting are similarly defined, and
we use no-regret learning algorithms from the sleeping-experts setting to design
a protocol for capacity maximization. Designing learning algorithms for sleeping
expert settings started with Blum [3] and Freund et al. [8]. For definition of
regret many works in this area do not use the best single strategy in hindsight.
Instead, they resort to the best ordering of actions in hindsight [12–14], where
unavailable actions can be accounted for. This has led to the design of multiple
no-ordering-regret learning algorithms for the sleeping-experts setting. We will
use ordering regret in our analysis as well.

2 Formal Description

2.1 General Problem Statement

We assume our network to consist of a set V of n wireless links `v = (sv, rv) for
v ∈ V , each consisting of a sender and a respective receiver. We denote the set
of channels by K and the number of channels by k. In each step, the availability
of a channel κ ∈ K to a link `v is the result of a random trial. We will assume
throughout that the distributions for the random availabilities are independent
among the links. However, among the channels of a link the availabilities can
be arbitrarily correlated in our model. We justify this assumption by giving a
lower bound, where we assume channel availabilities correlated among the links,
in Section 4.

In a specific time step t and a specific link `v, some subset of channels is
available. For any subset of channels M we define pv,M to be the probability
that at least one channel out of M is available to `v. Then the random variable
P

(t)
v,M is defined to be 1 if and only if at least one channel out of the set M is

available to link `v in time slot t. Let pmin = min {pv,M | v ∈ V,M 6= ∅, pv,M > 0}
be the minimal probability of a channel to be available. We can define pmin
such that pmin > 0 as channels which are never available to `v can be removed
from consideration because they are neither available to the optimum nor the
algorithm.

In each step t, each link first gets to know the outcome of the random trial and
his set of available channels. It then has to decide whether and on which channel
to send. Thus, a link can either not attempt transmission or transmit on one



chosen channel. Success of transmissions can be defined in various ways, e.g., us-
ing the SINR model. In fact, our proofs rely on a more general condition which is
also fulfilled by other interference models, e.g., based on bounded-independence
graphs like unit-disk graphs [17].

In particular, we formally rely on conflict graphs to model interference (see,
e.g., [11]). A conflict graph is a directed graph G = (V,E) consisting of the
links as vertices and weights bv(w) for any edge (v, w) ∈ E. We assume the
weights to be defined such that a link `w can transmit successfully if and only if∑
v∈L bv(w) ≤ 1, where L is the set of other links transmitting. We consider the

conflict graph to be the same for all channels. Actually, this is only to simplify
notation. It is easy to observe that our proofs also hold when the conflict graph
is different in different channels. A subset of links is called feasible (on a channel)
if all links in this set can transmit simultaneously (i.e., fullfil the condition above
on that channel). The overall goal in this setting is to do capacity maximization
in every single time step. That is to select for every time step depending on the
availabilities a maximal cardinality subset of links and one available channel for
those link such the sets of links are feasible on their respective channel.

We define the following notion of C-independence inspired by [2] as a key
parameter to identify the connection between the specific interference model
and the performance of our algorithm.
Definition 1 (cf. [2]). A conflict graph is called C-independent if for any fea-
sible set L there exists a subset L′ ⊂ L with |L′| = Ω (|L|) and

∑
v∈L′ bu(v) ≤ C

for all u ∈ V .
C-independence generalizes the bounded-independence property popular in the
distributed computing literature. To embed the SINR model into this frame-
work, let us outline how we can construct such a conflict graph. Let φv be the
transmission power of link `v. Success of transmissions is defined in the SINR
model as follows. Each sending link w emits a signal from sender sw. This signal
is received by receiver rv at a strength of φw

dαw,v
, where dw,v is the distance from

sender sw to receiver rv and α > 0 the path-loss exponent. The receiver rv can
successfully decode the signal transmitted by its sender sv, if the SINR is above
a certain threshold β. Using a constant ν ≥ 0 to denote ambient noise, the SINR
condition formally reads

φv
dαv,v∑

w 6=v
φw
dαw,v

+ ν
≥ β .

To turn this condition into appropriate edge weights of a conflict graph, we can
use the notion of affectance as a measure of interference. It was defined for the
SINR model in [10] as follows.

Definition 2. The affectance a(w, v) of link `v caused by another link `w is

a(w, v) = min

1, β
φw
dαw,v

φv
dαv,v
− βν

 .



If all links use the same uniform power for transmission, this results in C-
independence with a constant C. This was proven by Ásgeirsson and Mitra [2].
Using affectance it is straightforward to construct the corresponding conflict
graph by simply setting weights bu(v) = a(u, v).

For simplicity we will assume that the conflict graphs satisfy C-independence
for constant C throughout the paper. Nevertheless, losing a factor of C in the
approximation guarantee our main theorem on the performance of regret learning
can be directly generalized to arbitrary conflict graphs.

2.2 No-Regret Learning

We apply no-regret learning algorithms to solve capacity maximization. The
links independently decide in every time slot whether and on which channel
to transmit using appropriate learning algorithms. Every algorithm adjusts its
decisions based on the outcome of its previous decisions. To measure the quality
of an outcome every link i uses an utility function ui(ai, a−i) depending on
action ai chosen by player i and a−i, the vector of actions of all other players.
Throughout this paper we define the utility of a link i as follows. This utility
function was already used for a single channel case where the channel is always
available by Andrews and Dinitz [1] and later by Ásgeirsson and Mitra [2].

ui(ai, a−i) =


1 if i transmits successfully,
−1 if i attempts and the transmission fails,
0 otherwise.

This utility reflects that the best a link can achieve in one time slot is successful
transmission, for which is rewarded with a utility of 1. The worst that can happen
is an unsuccessful attempt, which is penalized by a utility of −1. This strikes a
balance between reducing interference on other links (when not being successful)
and increasing the number of transmissions (when being successful).

For our utility functions we can consider different notions of regret. The
easiest notion is external regret given as follows.
Definition 3. Let a(1), . . . , a(T ) be a sequence of action vectors. The external
regret of this sequence for link i is defined by

max
a′
i
∈A

T∑
t=1

ui(a′i, a
(t)
−i)−

T∑
t=1

ui(a(t)
i , a

(t)
−i) ,

where A denotes the set of actions.
This notion of regret can only be used if the utilities are defined also for actions
that are not available in a time slot. We assume that choosing an unavailable
channel is equivalent to choosing not to send at all, which is an action that we
assume to be always available. This allows to directly apply no-external-regret
algorithms in our scenario.

In addition, let us also consider a different notion of regret from sleeping
experts learning. This notion of regret is introduced by Kanade et al. [12].



Definition 4 (Kanade et al. [12]). Let a(1), . . . , a(T ) be a sequence of action
vectors. The ordering regret of this sequence for link i in the sleeping experts
setting is defined as

max
σ∈SA

E

[
T∑
t=1

ui(σ(A(t)), a(t)
−i)
]
−

T∑
t=1

ui(a(t)
i , a

(t)
−i) ,

where the expectation is over the random availabilities. Here, A denotes the set
of actions, SA the set of all permutations on A, and σ(A(t)) the action ordered
topmost in σ of the actions available in time slot t.

In contrast to external regret, ordering regret does not measure the utility dif-
ference to the best action in hindsight but to the utility resulting from the best
ordering in hindsight. The utility for an ordering is computed by assuming that
in every step the topmost available action in the ordering is played. Additionally,
the expectation over the availabilities is considered for comparison. Note that we
do not consider the expectation in this definition to be taken over the random
choices of the algorithm as, e.g., in [14]. Considering the expectation this way
is possible due to the stochastic independence assumption. Thus, we can keep
the choices of other players and also their availabilities fixed and just take the
expectation over the availabilities of one player i.

An infinite sequence of actions or an algorithm has the no-external regret
property if external regret grows in o(T ). We analogously define the no-ordering-
regret property. Throughout this paper we will, whenever it is clear from context,
use regret as a synonym for either ordering regret or external regret.

3 Convergence with No-Ordering-Regret Learning

In this section we show our main result that using no-ordering-regret algorithms
the number of successful transmissions converges to a constant-factor approxi-
mation of the optimal capacity. As discussed before, the optimum is different in
different time slots depending on available channels. Let us denote by OPT (t)

κ the
set of links transmitting on channel κ in time slot t in the optimal solution. Thus,
we compare the number of successful transmissions of the no-regret algorithms to
the empirical average capacity of all optima, i.e., |OPT | = 1

T

∑
t

∑
κ∈K |OPT

(t)
κ |.

For simplicity we assume that conflict graphs are O(1)-independent and high-
light the places at which the factor C comes into play if this assumption does
not hold. Note that, in particular, conflict graphs resulting from the SINR model
under uniform power yield constant C [2].

Theorem 1. If all links use no-ordering-regret algorithms, the average number
of successful transmissions becomes a constant-factor approximation for capacity
maximization after a number of time steps polynomial in n and linear in k with
high probability, i.e., with probability at least 1 − 1

nc for any constant c. More
generally, in C-independent conflict graphs the same result holds for convergence
to an O(C)-approximation.



While the overall approach is in the spirit of previous work, our setting is
quite different and the notion of regret also differs. Similar to [2,6], our analysis
starts with the observation that a constant fraction of all transmission attempts
are successful. Afterwards, we combine this with the result that the number
of transmission attempts is in Ω

(
|OPT |

)
. Especially the proof of this latter

statement in Lemma 2 below needs more advanced techniques. Together both
statements prove our theorem.

In the remainder of this section, we denote the fraction of time slots in which
link `v transmits on channel κ by qv,κ. The sum over the channels is denoted by
qv =

∑
κ qv,κ. The fraction of time slots in which link `v transmits successfully

is denoted by wv,κ, and the sum over channels by wv. In the following, we will
denote the fraction of all time steps in which link `v (no matter whether it
attempted to transmit) would not be able to be successful on channel κ by fv,κ
no matter if κ was actually available to link `v. Throughout this section, we
assume that for each link the ordering regret after T time slots is at most ε · T .

First of all, let us bound the number of successful transmissions by the num-
ber of transmission attemps.
Lemma 1 (cf. [2, 5]). It holds wv ≤ qv ≤ 2 · wv + ε and

∑
v wv ≤

∑
v qv ≤

2 ·
∑
v wv + εn.

Proof. The first inequality follows by definition. For the second inequality, we
use the fact that for each link v the average regret is at most ε. Therefore, not
to send at all can increase the average utility per step by at most ε. Formally
this means (qv − wv) − wv = qv − 2wv ≤ ε. Taking the sum over all v we get∑
v qv − 2 ·

∑
v wv ≤ εn. This yields the claim. ut

Lemma 1 shows that the number of successful transmissions and the number
of transmission attempts only differ by a constant factor. Together with the
following lemma this proves Theorem 1.

Lemma 2. Every sequence of length T ∈ Ω
(

1
pmin

(lnn+ k)
)
with ordering re-

gret at most ε · T < 1
4n · T yields

∑
v qv = Ω

(
|OPT |

)
with high probability.

To prove Lemma 2, we use a primal-dual approach using an appropriately defined
linear program. Recall that pmin = min {pv,M | v ∈ V,M 6= ∅, pv,M > 0} is the
minimal availability probability of all the channels.

Let us start by showing in Lemma 3 that for a number of time slots T ∈
Ω
(

1
pmin

(lnn+ k)
)
with high probability the empirical fraction of slots P̄v,M in

which at least one channel out of M was available to link `v is close to the
probability pv,M , for every set of channels M and every link `v. Afterwards,
we will use this result to draw a connection between transmission attempts,
availabilities, and experienced affectances in Lemma 4 finally proving Lemma 2.

Lemma 3. After a number of time steps T ∈ Ω
(

1
pmin
· (lnn+ k)

)
it holds

|P̄v,M − pv,M | ≤ 1
2 P̄v,M for all sets of channels M and all links `v with high

probability.



Proof. Consider the random variable P (t)
v,M ∈ {0, 1} indicating whether any chan-

nel of the setM is available for link `v in time slot t. Let Y =
∑
t P

(t)
v,M . Thus, we

need |E(Y )−Y | < 1
2Y to hold, because this directly yields |P̄v,M−pv,M | ≤ 1

2 P̄v,M
by division with T . Equivalently we need 1

2Y < E(Y ) < 3
2Y to hold.

As the channel availabilities are drawn independently in every time slot, we
can apply a Chernoff bound. This yieldsPr [Y ≥ (1 + δ)E(Y )] ≤ exp

(
−δ2

3 E(Y )
)

and Pr [Y ≤ (1− δ)E(Y )] ≤ exp
(
−δ2

2 E(Y )
)
for every δ ∈ [0, 1].

Using this we get Pr [Y ≥ 2E(Y )] ≤ exp
(
− 1

3E(Y )
)
and Pr

[
Y ≤ 2

3E(Y )
]
≤

exp
(
− 1

18E(Y )
)
. With a union bound, the probability that |P̄v,M−pv,M | ≤ 1

2 P̄v,M
does not hold for a particular set M is

Pr
[
|P̄v,M − pv,M | >

1
2 P̄v,M

]
≤ exp

(
−pv,MT3

)
+ exp

(
−pv,MT18

)
.

This is at most 2 · exp
(
− 1

18pv,MT
)
. Applying another union bound yields∑

v∈V

∑
M⊆K

Pr
[
|P̄v,M − pv,M | >

1
2 P̄v,M

]
≤ 2kn · 2 · exp

(
− 1

18pmin · T
)

.

Setting T ≥ 18
pmin

((c+ 1) lnn+ (k + 1) · ln 2) shows that the probability that for
any arbitrary set of channels M the property |P̄v,M − pv,M | ≤ 1

2 P̄v,M does not
hold is at most n−c. ut

Consider the set of channels with a low congestion where a link will be
unsuccessful in a small fraction of time slots. For these channels we will show that
the number of transmission attempts yields an upper bound on the availabilities.
This fact will be used in the proof of Lemma 2.

Lemma 4. Let M be any set of channels such that for every channel κ ∈M it
holds fv,κ ≤ 1

4 . If regret is at most ε and |P̄v,M − pv,M | ≤ 1
2 P̄v,M , then it follows

4
∑
κ∈K

qv,κ + 4ε ≥ P̄v,M .

Proof. The expected utility of the best ordering in hindsight is obviously at least
as high as the expected utility of the ordering in which all κ ∈ M are ordered
above the action ’not sending’ followed by all other channels.

First, we consider just one channel. On any channel κ ∈ M link `v is not
successful in an fv,κ-fraction of all time steps. That leaves T ·(1−fv,κ) time steps
possibly successful each yielding a utility of +1 for choosing κ if it was available.
Choosing κ in contrast also yields −1 as a utility in T · fv,κ time steps if κ was
available. Thus ordering only κ before not sending yields a total expected utility
of pv,κ (T · (1− fv,κ)− T · fv,κ). We extend this argument to the set M such
that it depends on pv,M instead of pv,κ in the following way.

For any ordering with all κ ∈ M ordered above not sending (and all other
channels below), we get in expectation at least the utility of the worst channel



κ ∈M if any channel ofM is available. This only holds due to the independence
of the availabilities between different links as we can fix the actions of other links.
This way, considering the expectation over `v’s own availabilities we yield at least
minκ ((1− fv,κ)− fv,κ) for time steps where any channel in M is available. For
the expected utility of the best ordering in hindsight this yields

max
σ∈SA

E

[
T∑
t=1

uv(σ(A(t)), a(t)
−v)
]
≥ min

κ
((1− fv,κ)− fv,κ) pv,M · T .

Note that as discussed above we can only bound the expected utility by that of
one channel due to the availabilities of channels between links being stochasti-
cally independent. Otherwise those could be correlated in such a way that the
expected unsuccessful time steps are not at most T ·maxκ fv,κpv,M but could be
worse. This is due to correlation, for example, being able to force all interference
of other links on a channel (even if it occurs in few time steps in total) occur in
available time steps only.

This yields 1
T maxσ∈MA E

[∑T
t=1 uv(σ(A(t)), a−v)

]
≥
( 3

4 −
1
4
)
pv,M = 1

2pv,M .
Using |P̄v,M − pv,M | ≤ 1

2 P̄v,M we can easily bound this from below by 1
4 P̄v,M .

With the fact that the regret is at most ε and that the utility is at most qv we
get 1

4 P̄v,M ≤ qv + ε. ut

This connection between the availability of a set, its interference, and the
actions played now allows us to prove Lemma 2.

Proof (Proof of Lemma 2). Recall the definition of C-independence. Note that
the conditions given in Definition 1 can be transfered for each channel κ from
the single time steps to all time steps by averaging as follows. Let OPT ′(t)κ be L′

out of Definition 1 when setting L = OPT
(t)
κ yielding |OPT ′(t)κ | ≥ Ω

(
|OPT (t)

κ |
)

and
∑
v∈OPT ′(t)

κ
bu(v) ≤ C for every time step t. By averaging over all time steps

this is

1
T

∑
t

|OPT ′(t)κ | ≥ Ω

(
1
T

∑
t

|OPT (t)
κ |

)
and 1

T

∑
t

∑
v∈OPT ′(t)

κ

bu(v) ≤ C .

As C-independence holds in the given network for any feasible set on each chan-
nel, it also holds in this averaged variant for the optimum on each channel.

We will prove our lemma with the following primal-dual approach. For the
following primal LP we will essentially consider the optimum averaged over all
time steps and utilize C-independence. The above result is this way useful to
show feasibility of the primal solution.



Max.
∑
v∈V

∑
κ∈K

xv,κ

s.t.
∑
v∈V

bu(v)xv,κ ≤ C ∀u ∈ V, κ ∈ K∑
κ∈M

xv,κ ≤ P̄v,M ∀v ∈ V,M ⊆ K

xv ≥ 0 ∀v ∈ V

Observe that xv,κ = |{t|v∈OPT ′(t)
κ }|

T represents a feasible solution to this LP.
The first constraint is fulfilled as C-independence is fulfilled for every single time
slot. The second constraint is fulfilled due to the fact that at most one channel is
used at a time. Thus, we get

∑
v∈V

∑
κ∈K xv,k ≥ Ω

(
|OPT |

)
by the definition

of C-independence for the single-slot optima.
Constructing the dual to this primal LP yields

Min.
∑
v∈V

∑
κ∈K

C · yv,k +
∑
v∈V

∑
M⊆K

P̄v,M · zv,M

s.t.
∑
u∈V

bu(v)yu,κ +
∑

M :κ∈M
zv,M ≥ 1 ∀v ∈ V, κ ∈ K

yv,κ, zv,M ≥ 0 ∀v ∈ V, κ ∈ K,M ⊆ K

We construct the following dual solution that gives an upper bound to the so-
lution of the primal LP. LetMv =

{
κ ∈ K

∣∣ fv,κ ≤ 1
4
}
, where fv,κ again denotes

the fraction of all time steps in which link `v would not be able to transmit suc-
cessfully on channel κ. SoMv represents the set of channels with low congestion.
We set yv,κ = 4 · qv,κ, zv,Mv

= 1, and zv,S = 0 for all S 6= Mv.
First, let us observe that this is a feasible solution and the constraints are

fulfilled. Recall the definition of fv,κ being the fraction of time steps `v would
have been unsuccessful on channel κ no matter whether the channel was available
to `v. Thus, for any channel κ in which fv,κ ≥ 1

4 , it holds
∑
u∈V bu(v)qu,κ ≥ 1

4 .
So
∑
u bu(v) · yu,κ ≥ 1 with the chosen yu,κ. For the other case with fv,κ < 1

4 we
set zv,Mv

= 1 and by definition κ ∈Mv. Therefore, the constraint is fulfilled.
Using Lemma 4 leads to an upper bound on the objective function of the

dual LP of ∑
v

(
4Cqv + P̄v,Mv

)
≤
∑
v

(4Cqv + 4qv) + 4εn .

Combined with the primal LP this yields
∑
v qv = Ω

(
|OPT |

)
for ε < 1

4n .
In particular, for arbitrary C-independence the last derivation obviously implies
C ·
∑
v qv = Ω

(
|OPT |

)
and directly yields an approximation factor in O(C). ut

We have seen that after a number of time slots linear in k and logarithmic in n a
sequence with low regret converges to a constant-factor approximation with high
probability. Additionally, this time bound depends on the minimal probability
of the availabilities pmin. It is clear that a similar parameter must occur in the



convergence time as links may not learn in time slots in which they have no
channel available at all.

Theorem 1 and Lemma 2 show that the no-ordering-regret property allows
to converge to constant-factor approximations. The algorithms in [12] have this
property, which allows to directly use them for capacity maximization in our
scenario. The sleeping-follow-the-perturbed-leader algorithm of [12] yields an
ordering regret of at most

√
T log k in expectation after T time slots. While this

algorithm runs in the full-information model getting feedback also for actions
not chosen, Kanade et al. also propose an algorithm yielding low regret roughly
the size (k · T · log T )4/5 in the partial-information model, where only feedback
for chosen actions is given. To reach ε < 1

4n we therefore need only an additional
factor polynomial in n for the number of time slots.

4 Lower Bounds

In this section, we show that a direct application of no-external-regret algorithms
does not necessarily yield a constant-factor approximation. In fact, we will give
an example that shows approximation factors in Ω(k) and Ω(n). Note that these
factors can already be reached by algorithms where just one channel is utilized or
just one link transmits, respectively. Additionally, we show that our assumption
of stochastic independence in the availabilities among links is necessary. All
our lower bound constructions can trivially be embedded into 1-independent
conflict graphs. Thus, they establish linear lower bounds even in cases, where
no-ordering-regret obtains constant-factor approximations.

Theorem 2. For every number of channels k there is an instance such that for
a sequence yielding 0 external regret the number of successful transmissions is at
least a factor of k smaller than in an optimal schedule.

Proof. Let us assume that all n links can be successful simultaneously on every
channel. This allows us to consider only a single link. We first consider a sequence
of deterministic availabilities in which channel κ is available in time slots t with (t
mod k+ 1) = κ. Here there is a 0-external-regret sequence in which exactly one
channel is chosen. The link will transmit only in every k-th time step, choosing
exactly one channel. In contrast, in the optimum the link can simply choose
another channel in every single time step. This yields the factor of k.

To reproduce the same arguments with stochastic availability, we set the
probabilities for each channel availability to 1

k . This yields the same structure.
Again, if the link chooses only a single channel for transmission, it will encounter
vanishing external regret as in the long run all channels have the same availability
and success. However, it will only transmit in an 1

k -fraction of all time slots. In
contrast, in expectation in every time slot there is at least one channel available.
This implies that in the long run a factor of k. ut

This result also implies an Ω(n) bound by setting k = n. Therefore, using no-
external regret in this direct way does not imply a constant-factor approximation.



Corollary 1. For every number of links n there is a network such that for a
sequence yielding 0 external regret the number of successful transmissions is at
least a factor of n smaller than in an optimal schedule.

In contrast to directly applying the no-external-regret property, one might
consider using multiple such no-external-regret algorithms. It is an interesting
open problem if this allows to establish similar properties as for the sleeping-
follow-the-perturbed-leader algorithm leading to a constant-factor approxima-
tion.

In the previous sections, we have assumed that the channel availabilities
of different links are independent. We will use a similar example as in the
proof above to see that this assumption is necessary to achieve convergence
to a constant-factor approximation, even for no-ordering-regret algorithms.

Theorem 3. For every number of links n there exists a network with correlated
availabilities such that for a sequence yielding 0 ordering regret the number of
successful transmissions is at least a factor of n smaller than in an optimal
schedule.

Proof. Suppose there is only one channel. We construct the network as follows.
No pair of links can transmit simultaneously on the channel. This can easily
be achieved be placing links (almost) in the same location and constructing the
interference appropriately.

The channel is either available for all n links simultaneously or for only one
single link `v with v ∈ {2, . . . , n}. The probability for each of these n cases is 1

n .
We construct a 0-ordering-regret sequence by scheduling link `1 to send when-

ever the channel is available to him. All other links choose not to send at all.
The dependence of the availabilities implies that the expected utility of the best
response in hindsight for all links `2, . . . , `n becomes 0 because, in the long run,
for each of these links every second available slot is occupied by `1.

In contrast, in the optimum letting every link `2, . . . , `n transmit when the
channel is available to him alone yields a successful transmission in every time
slot. This proves the theorem. ut

The one-or-all structure of availabilities used in the proof of Theorem 3 can
still occur with a very low probability if we do not assume correlation and instead
let the channel be available to each link independently with probability 1

n . In
this case, however, the transmission choices in the proof of Theorem 3 do not
yield 0 ordering regret.

With a slight adjustment of the one-or-all structure, it is possible to show
even slightly stronger lower bounds close to 3n/2. We proved our positive results
under the assumption that availabilities of links are independent and encounter
no correlation at all. In contrast, the lower bound in Theorem 3 heavily relies
on correlation. It is an interesting open problem to characterize influence of
correlation of availability distributions on the performance of no-regret learning
algorithms (e.g., when correlation results from a locality structure of primary
and secondary users).
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