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ABSTRACT

We study algorithms for wireless spectrum access of n com-
munication requests when interference conditions are given
by the Rayleigh-fading model. This model extends the re-
cently popular deterministic interference model based on the
signal-to-interference-plus-noise ratio (SINR) using stochas-
tic propagation to address fading effects observed in reality.
We consider worst-case approximation guarantees for the
two standard problems of capacity maximization (maximize
the expected number of successful transmissions in a sin-
gle slot) and latency minimization (minimize the expected
number of slots until all transmissions were successful). Our
main result is a generic reduction of Rayleigh fading to the
deterministic SINR model. It allows to apply existing al-
gorithms for the non-fading model in the Rayleigh-fading
scenario while losing only a factor of O(log™ n) in the approx-
imation guarantee. This way, we obtain the first approxi-
mation guarantees for Rayleigh fading and, more fundamen-
tally, show that non-trivial stochastic fading effects can be
successfully handled using existing and future techniques for
the non-fading model. Using a more detailed argument, a
similar result applies even for distributed and game-theoretic
capacity maximization approaches. For example, it allows to
show that regret learning yields an O(log™ n)-approximation
with uniform power assignments. Our analytical treatment
is supported by simulations illustrating the performance of
regret learning and, more generally, the relationship between
both models.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design— Wireless Communication, Distri-
buted Networks; F.2.2 [Analysis of Algorithms and

*Supported by DFG grant Ho 3831/3-1.

TSupported by DFG through UMIC Research Centre at
RWTH Aachen University.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SPAA’12, June 25-27, 2012, Pittsburgh, Pennsylvania, USA.

Copyright 2012 ACM 978-1-4503-1213-4/12/06 ...$10.00.

Problem Complexity]: Nonnumerical Algorithms and Prob-
lems

General Terms
Algorithms, Theory

Keywords

wireless network, transmission scheduling, SINR, Rayleigh
fading

1. INTRODUCTION

Effective communication in wireless networks depends on
successful reception in the presence of interference and noise,
which have to be modeled realistically. Since the seminal
work of Moscibroda and Wattenhofer [18], attention shifted
from simple graph-based interference models to a more re-
alistic model using SINR. This resulted in a variety of non-
trivial insights into the algorithmic challenges and limita-
tions of request scheduling [5, 11].

While the SINR model represents a significant improve-
ment over previous approaches, it still uses a limited view
of signal propagation. The main assumption is that any
signal transmitted at power level p is always received after
distance d with strength p/d®, for some a > 0. In contrast,
in reality signal propagation is by no means deterministic.
For instance, the SINR model does not account for short-
term fluctuations such as fading. There exist advanced mod-
els using stochastic approaches that take fading effects into
account. Most prominently, in the Rayleigh-fading model,
signal strength is modeled by an exponentially distributed
random variable with mean p/d®. Stochastic propagation
represents a major technical complication in the definition
of interference models, and this may be a reason that — up
to our knowledge — there are no general algorithmic results
for request scheduling in this model or even for a direct com-
parision between the non-fading and Rayleigh-fading model.

In this paper, we examine the relationship between the
non-fading SINR model and the Rayleigh-fading model. Our
first main result is a fundamental relation between the mod-
els for instances of the same topology. It is based on a de-
tailed analysis of the success probability in the Rayleigh-
fading model, and it turns out to allow a surprisingly simple
handling of the complicated stochastic propagation. This
allows us to transfer existing algorithms and their perfor-



mance bounds in the SINR model to the Rayleigh-fading
model.

Our second main result uses a more detailed reduction
to show that a similar result applies even for distributed
capacity maximization via distributed regret-learning tech-
niques. As the considered sequences generalize Nash equilib-
ria, this result transfers the respective game-theoretic stud-
ies [1]. Our analytical results are supported by simulations
illustrating the performance of regret learning and, more
generally, the relationship between both models.

On a more fundamental level, our results highlight the
inherent robustness of the techniques and bounds derived
for the non-fading SINR model. The rather direct adapta-
tion of existing algorithms to Rayleigh fading raises the hope
that algorithms and their analyses can also be applied ac-
cordingly to interference models capturing further realistic
properties.

1.1 Our Contribution

For a set of n communication requests in the non-fading
model, we consider the two prominent problems of capac-
ity mazimization (maximizing the number of simultaneously
successful requests in a single slot) and latency minimization
(minimizing the number of slots such that every request
has been successful at least once). In the Rayleigh-fading
model, interference becomes stochastic, and thus capacity
maximization becomes maximizing the expected number of
successful requests in a single slot. Similarly, in latency
minimization we strive to minimize the expected number
of slots until every request has been successful at least once.
In this sense, we adapt a similar perspective as in worst-
case analysis of randomized algorithms — we strive to bound
the expected performance of the algorithms in an arbitrary
(worst-case) topology.

Our first main result characterizes the success probabil-
ity of a request in the Rayleigh model. This probability
is never 0, and thus requests can still be successful if in
the non-fading model this is completely impossible (e.g.,
due to extremely large noise). For a meaningful compar-
ison in terms of approximation factors, we thus focus on
interference-dominated scenarios with reasonable noise con-
ditions (for a formal definition see below). Under these
conditions, we show in Section 3 that for every set of suc-
cessful requests with respect to the non-fading model, in
the Rayleigh model in expectation a constant fraction of
these requests remains successful. Hence, we can use algo-
rithms for capacity optimization in the non-fading model
and lose only a constant factor when translating the output
to Rayleigh fading. To bound approximation factors, how-
ever, we have to relate this to the Rayleigh-fading optimum,
i.e., the maximum expected number of successful requests
for any subset of transmitting requests. Here we show in
Section 5 that this expected number can only be a factor
of O(log™ n) larger than the maximum number of successful
requests in the non-fading model. This allows to use ex-
isting algorithms and their bounds to derive approximation
factors in the Rayleigh-fading model. For capacity maxi-
mization, we show, e.g., an O(log™ n)-approximation with
power control based on [14] and with distance-based power
assignments based on [13]. For latency minimization similar
arguments can be applied for algorithms that use repeated
single-slot success maximization [7] or ALOHA-style proto-
cols [15] in the non-fading model. For instance, we obtain

an O(log™ n-logn)-approximation for uniform power assign-
ments based on [7]. The algorithms for latency minimization
allow to directly apply multi-hop scheduling techniques as
in [6, 15, 14]. The transformation does not modify trans-
mission powers or depend on metrical properties of the dis-
tances. Thus, the respective properties of the algorithms
and also the lower bounds, e.g., on power control [5, 11] are
preserved.

In Section 6 we consider distributed approaches for ca-
pacity maximization, namely regret-learning algorithms [4].
Here we are not able to plug in the results for the non-
fading model in a similar black-box fashion. Instead, we
have to argue in a more detailed way to show that for uni-
form power assignments the expected number of successful
requests is only a constant factor smaller than the size of the
non-fading optimum. The bound is again completed using
previous arguments, and we obtain a O(log" n)-factor with
respect to the Rayleigh-fading optimum. Note that log* n is
essentially “almost constant”, however, deriving a (provable)
constant bound remains open.

Finally, we conduct a number of experiments that high-
light the relation between the two models and the perfor-
mance of regret learning. In particular, we observe that with
probabilistic spectrum access, the curve for success probabil-
ity in the Rayleigh-fading model can be seen as a smoothed
variant of the success curve in the non-fading model. We
observe that the non-fading model predicts more success if
total interference is small, while Rayleigh fading allows more
requests to become successful if interference is large. Regret-
learning algorithms show fast convergence and good perfor-
mance in both models, and the number of successful requests
predicted by the non-fading model is somewhat larger.

1.2 Related Work

In a seminal paper, Gupta and Kumar [9] study the capac-
ity of a wireless peer-to-peer network with a random topol-
ogy based on non-fading SINR constraints. This brought
about a lot of further work in randomly distributed net-
works [8, 21, 3]. Similar studies have been carried out for
the case of regular topologies [20, 22]. Partly, this kind of
research has also been generalized to networks with fading
channels. For example, Liu and Haenggi [17] consider the
capacity of square, triangle, hexagon, and random networks
under Rayleigh-fading interference. More often Rayleigh
fading is only used to model effects of noise, and interference
inside the network itself is neglected [19, 10]. This represents
an orthogonal approach because we concentrate on the par-
ticular problem of coordinating simultaneous transmissions.
To the best of our knowledge, a direct comparision between
the non-fading and Rayleigh-fading model like it is done in
this paper has not been discussed in literature yet.

Real-world networks are typically neither random nor reg-
ular. This motivates the study of arbitrary topologies, as
first done by Moscibroda and Wattenhofer [18]. Follow-
ing this work, approximation algorithms in the non-fading
SINR world were treated quite intensively, especially for
the pure scheduling problems. Important milestones for ca-
pacity maximization are constant-factor approximations for
uniform transmission powers [7]. A more sophisticated ap-
proach is selecting powers based on the distance between the
sender and the respective receiver [13]. For uniform power
assignments also a distributed algorithm has been devel-
oped [4] that uses regret learning. For latency minimization



a distributed, ALOHA-like protocol has been analyzed [15,
12]. It yields an approximation factor of O(logn) with high
probability.

The probably most natural extensions are the combined
problems of scheduling and power control. This is, power
levels are not fixed but have to be selected by the algo-
rithm. This offers an additional freedom to the optimal so-
lution as well. Using uniform transmission powers yields
an O(log A)-approximation factor [1]. Here, A denotes the
ratio of the maximal and the minimal distance between a
sender and the respective receiver. One gets O(loglog A +
log n)-approximations when using square-root power assign-
ments [11], i.e. a link of length d is assigned a transmission
power proportional to v/d®. The given approximation fac-
tors have been shown to be asymptotically almost optimal
when restricting to these power assignments. However, for
non-oblivious power assignments even a constant-factor ap-
proximation exists [14].

2. FORMAL MODEL DEFINITION

We assume that our network consists of n possible com-
munication links (s1,71),...,(Sn,7Tn), each consisting of a
sender and the respective receiver. In general, we do not
make any assumptions on the geometry or distribution of
the network nodes.

For the propagation, we consider Rayleigh-fading chan-
nels. This is, if a signal is transmitted by sender sj;, it is
received by receiver r; at a strength of Sj;;, which is a ran-
dom variable. Sj; is exponentially distributed with mean
Sji. As usual, we assume this stochastic process to be in-
dependent for different (7,7) and from timeslot to timeslot.

The receiver r; can successfully decode the signal trans-
mitted by its sender s;, if the SINR is above a certain thesh-
old 3, this is

Sii
> i Sji+v
Here, v > 0 is a constant denoting ambient noise.

We compare this channel model to the standard non-
fading propagation model. Here, the received signal strength
is always (deterministically) Sj;. As one can easily see, this
comparison might not be fair. In the case of very low trans-
mission powers, the mean received signal strength is already
exceeded by the noise. Therefore, the transmission cannot
be successful at all in the non-fading model, even in the ab-
sence of interference. In the Rayleigh-fading model in con-
trast, a small success probability remains. Therefore, as we
focus on the impact of interference, we assume that S;l is al-
ways a constant factor higher than Sv. To simplify notation,
this factor is assumed to be 2, i.e. S;; > 28v.

When considering approximation algorithms in the non-
fading model, it is usually very important that the signal
strengths S;; are not arbitrary but determined by certain
model parameters. That is for example S;,; = p;/d(s;,7:)*
where p; is the transmission power and d(s;, ;) the distance
between s; and r;. In contrast, our connection between
Rayleigh-fading and non-fading models shown below applies
in a more general scenario, without any assumptions on the
values of the (expected) signal strength S;,; — except non-
negativity and the relation to noise as detailed in the para-
graph above. In particular, this implies that our reduction
between the models holds for arbitrary power assignments,
path-loss exponents, requests located in metric spaces, etc.

2B .

For proving bounded approximation factors, however, algo-
rithms for the non-fading model usually rely heavily on S ;
being characterized by these parameters. Consequently, our
“black-box” translation of these algorithms and their approx-
imation factors also applies only to instances of the Rayleigh
model that have expected values S;Z with the same charac-
teristics.

3. SUCCESS PROBABILITY

In this section, we consider the following situation un-
der Rayleigh-fading constraints. Assuming each sender s;
transmits with probability ¢;, we bound the probability of a
successful reception that we refer to as Qi(q1,...,qn). For-
tunately, in contrast to the non-fading model, the success
probability can be given in a closed-form expression.

THEOREM 1. The probability that receiver r; can success-
fully receive the signal from s; is

S G

The proof of this expression is mainly due to Liu and
Haenggi [17]; it can be found the appendix. The expression
has the advantage of being an exact probability. However,
in order to compare the probability to the one in the non-
fading channel model, we need upper and lower bounds.

LEMMA 2. The success probability for link i is at least

Qi(ql,. ..

,dn) > qi - exp —Sé_ v+ Siig
vt i

The success probability for link i is at most

153 _
v qn) < qi - exp —q v+ > S
B i

PRrROOF. The proof of this lemma is based on the following
observation concerning the exponential function.

Qilqr, .

OBSERVATION 3. For all z € (0,1], q € [0,1], we have

q 1
Ty =P (‘5”)

PROOF. We show the first inequality using the fact that
exp(y) > 14y for all y € R. Setting y = xq yields

exp(—zq) <1—

1 1 q q
exp(—zq) = < =1 <1-—
p(==9) exp(zq) ~ 1+ aq lig™" 141
Setting y = f%ﬂ, we get

1—

q q rq
< — - _
%Jrl—eXp( %+1) eXp( l+m>
Furthermore, we have for all x € (0,1] that 75 > 1. This

yields the second bound. [

Setting now ¢ = ¢; and x = (5;,/5:,; in this observation,
we get

S;i Ba; 1 S; i
L <1 - — Y < ——pf—=q; ] .
eXP( BSi,iq]) =1 B+ Sii/S; = o Qﬁanj

)

Theorem 1 now yields the claim. []



As a first result, this gives us the following relation be-
tween the success probability in the Rayleigh-fading channel
compared to the one in the non-fading channel.

COROLLARY 4. If a set S C [n] is feasible in the non-
fading channel model, setting q; =1 for alli € S and g; =0
for alli & S, we have Qi(q1,...,qn) > e for alli € S.

If g; € {0,1} for alli € [n] and the Rayleigh success prob-
ability is at least 1/+/e for each link, the set of all links with
qi = 1 is feasible in the non-fading channel model.

4. TRANSFORMING SCHEDULING
ALGORITHMS

The bounds given in the previous section immediately al-
low us to estimate the performance of algorithms for the non-
fading model in a Rayleigh-fading environment after some
minor modifications.

In particular, we can take an arbitrary approximation al-
gorithm for capacity maximization. This might be one of
the constant-factor approximations for the setting with uni-
form transmission powers [7] or monotone transmission pow-
ers [13], or even for the case in which the algorithm has
to choose the transmission power itself [14]. In any case,
a set of links is returned that is feasible in the non-fading
model. Making exactly these links transmit with probability
1 (without changes of the transmission powers), Corollary 4
yields that each of them will be successful with probability
at least /e. In terms of our objective function “capacity”
this means that we are at most a !/e-factor worse in expec-
tation. In combination, this means that the resulting algo-
rithm will compute transmission probabilities yielding an ex-
pected capacity that is at most a constant factor worse than
the optimally achievable capacity in the non-fading model.
However, it remains to show that the theoretical optimum
in the Rayleigh-fading model cannot be much better than
the one in the non-fading model. This will be carried out in
Section 5.

Existing approximation algorithms to minimize latency
can in general be divided into two classes. On the one hand,
there are many algorithms actually attempting to maximize
the utilization of the first time slot and then apply this pro-
cedure recursively on the remaining links. For these kinds
of algorithms and analyses exactly the same argumentation
as for capacity maximization can be applied. On the other
hand, ALOHA-style protocols have been proposed. Here, in
each time slot, each link is assigned a (small) transmission
probability, which we assume to be smaller than 1/2. If it is
successful, the sender stops transmitting, otherwise it con-
tinues running the algorithm. In order to transform such al-
gorithms to the Rayleigh-fading model, we let each (random-
ized) step be executed 4 times. This yields a success proba-
bility that is at least as large as in the non-fading model. If
p is the success probability in the non-fading model, Corol-
lary 4 yields the Rayleigh-fading success probability is at
least p - !/e. In 4 independent repeats the probability of at
least one success is therefore at least 1 — (1 — »/c)*. This is
at least p if the transmission probability (and therefore the
success probability) is at most 1/2.

For multi-hop scheduling algorithms [15, 14], the single-
hop transformations mentioned above can directly be gen-
eralized. Here, in fact, the resulting multi-hop schedule can
also be considered as a concatination of single-hop sched-

ules. Transforming each of them in the described way, we
still only lose constant factors.

S. TRANSFORMING THE
RAYLEIGH-FADING OPTIMUM

The performance of all algorithms constructed in Section 4
were measured in terms of the value of the optimal solution
in the non-fading model. However, in order to derive ap-
proximation guarantees for the Rayleigh-fading model, the
value of the computed solution has to be compared within
the Rayleigh-fading model. Here, the optimal solution could
potentially be much better than the non-fading one. In this
section, we give a possibly surprising result that this in-
deed cannot happen in an interference-dominated environ-
ment. To be more precise, we take an arbitrary assignment
of transmission probabilities. In the Rayleigh-fading model
this yields a particular success probability for each link. We
then simulate this single transmission with O(log™ n) inde-
pendent steps in the non-fading model. In the end, for each
link the success probability is at least as large as in the single
Rayleigh-fading step.

This yields that for both considered scheduling problems,
the Rayleigh-fading optimum can be at most an O(log* n)-
factor better than the non-fading optimum. For capacity
maximization this holds because we find O(log™ n) sets that
are all feasible in the non-fading sense. In expectation, their
summed value is at least as large as the one of the Rayleigh-
fading optimum. This means that the best one can be at
most an O(log™ n) factor worse.

When considering latency minimization under Rayleigh-
fading conditions, the optimum should rather be considered
as an algorithm itself that assigns transmission probabilities
in each step. This assignment may arbitrarily depend on
previous successes and may be computed using arbitrary
computation power. However, our theorem shows for this
case that even the perfect algorithm computes schedules that
are at most an O(log* n) factor shorter than the non-fading
optimum, because we could replace each timeslot by the
described simulation, increasing the schedule length by a
factor of at most O(log™ n).

THEOREM 5. For each assignment of transmission proba-
bilities qu, . . ., qn there is a simulation using O(log™ n)-steps
such that the non-fading success probability in these steps is
at least Qi(q1,-..,qn) for each link i.

PROOF. We define (by)ren recursively by setting by = 1/4,
bi+1 = exp(bx/2). The simulation works as follows. For each
k > 0 with by < n, we let each sender transmit with proba-
bility ql(k) := q; /4by, for 19 times independently at random.

Algorithm 1: Formal description of the simulation.
1 k:=0,bp:=1/4;
2 while b, < n do
for 19 times do

L transmit with probability ql(k) = q; /4bx;

b1 :=exp(br/2),k ==k + 1;

(LI N

Consider an arbitrary i € [n]. We claim: The probability
of success during the O(log* n) repeats in the non-fading
model is at least Qi(q1,...,qn).



We set A = Zj# min {1,51551/5’;1} - gj. Observe that
0 < A < n. In order to bound the success probability, we
only take the kth iteration of the while loop into account
where b, < exp(A/2) < exp(br/2).We will show that in
this iteration, the probability of a successful transmission in
the non-fading model is at least as large as the original one
in the Rayleigh-fading model. Using Lemma 2, we observe
the probability of success in the Rayleigh-fading model is at
most 5 < -,

Let us ﬁrst consider a single one of the 19 independent
iterations. Let X; be a 0/1 random variable indicating if
sender s; transmits in this iteration. By definition E [X;] =
q](k) Furthermore, set Z = 3, min {1,8:85,i/S::} - X;.

To make the transmission successful in the non-fading
model, we have to have X; = 1 and S;; > &(Zﬁéi S;,in +
v). To bound the probability of the latter event, we use the
assumption that S:Z > 2B;v. Therefore it suffices to have
Z < /2, allowing to estimate the probability of this event
by Markov’s inequality using

LIS

_2 min < 1, 8; =L°
> i {1,

J#i

A
= E m il 4 o9 2
=2 m{l,B Z} 1br Qbk

J#i Si

Pr{ZZ%} <2E[Z

For the remaining considerations, we distinguish between
the two cases k =0 and k > 1.

In the case k > 1, we use the fact that A < by to get that
the success probability in the non-fading model in a single
iteration is at least

(k) )
$>O—zi>>% _

4by, 2 8bx

We use now the facts that k > 1 and therefore by > exp(1/s)
and furthermore that for all 0 < z < exp(—1/8) we have
1 — (1 —=/8)'? > x. This yields that in 19 independent
repeats, we get a total success probability of at least

p 19 q A
1- 2 > > —-=
(-di) zhzaer(3)

As we have already seen, the success probability in the
Rayleigh-fading model is at most g; exp(—A/2).

For the case kK = 0, we use that the probability that the
transmission is not successful within a single iteration of the
inner loop is at most ¢;(1—2A). This is, the probability that
at least one of the 19 independent repeats is successful is at
least 1—(1—qi(1—2A))*° > g exp(—A/2) forall 0 < ¢; < 1
because A < /4. [

Taking this theorem into account, we see that we lose
at most an O(log*n) factor in all approximation guaran-
tees of non-fading algorithms. In particular, the constant-
factor capacity-maximization algorithms of the non-fading
case provide without any further modification O(log* n) ap-
proximations in the Rayleigh-fading case.

6. REGRET LEARNING FOR CAPACITY
MAXIMIZATION

Another very useful approach to solve capacity maximiza-
tion was presented by Dinitz [4]. This approach provides

a distributed way to solve the problem based on regret-
learning techniques. The idea behind regret-learning algo-
rithms is that the algorithm gets feedback in terms of utility
depending on the chosen actions of all users and chooses its
next action according to this feedback. In the model intro-
duced by Dinitz each user ¢ has in each step the option to
attempt a transmission or not. This is, his actions ¢; are to
send (g; = 1) or not to send (g; = 0). When sending a user
gets a utility of 1 for being successful and —1 for not being
successful. Not sending at all yields a utility of 0.

For this model, Asgeirsson and Mitra [2] showed that in
the non-fading model the average number of successful trans-
missions converges to the optimum up to a constant factor.
Unfortunately, due to the sequential computation, our trans-
formation cannot be applied here. However, we are able to
prove a similar result showing that the expected number of
successful transmissions converges to the non-fading opti-
mum up to a constant factor.

Generally, in regret learning, a sequence of action vec-
tors is computed in a decentralized way. In each step, every
user ¢ decides which action a; to take. Depending on his
own choice and the one of the other users, he gets a util-
ity wi(a1,...,an). The choice which action to choose then
depends on the history of utilities experienced before. The
external regret is defined as the difference between the util-
ity of the best single action in hindsight and the summed
utility experienced by the algorithm.

DEFINITION 1. The external regret of user i at time T
given a sequence of action vectors a(1>, ey a™ is

T
aa’iw"aa"(rlt)) 72114(0,(”) ’
t=1

where A; is the set of possible actions of user .

max E Ui al e
aeA,t 7

So the user regrets what he might have won by switching
to one single action for all time steps instead of using the
algorithm. An algorithm has the no-regret property if the
average regret per time step converges to 0 for the number
of time steps T going to co. One famous such algorithm
is Randomized Weighted Majority due to Littlestone and
Warmuth [16]. For this class of algorithms we prove the
following theorem.

THEOREM 6. Consider a sequence q(l), e q of action
vectors such that each user has regret at most e-I'. Then the
average number of successful transmissions is in Q(OPT —
en), for OPT being the size of the largest feasible set in the
non-fading model under uniform transmission powers.

Theorem 6 directly follows from Lemma 7 and Lemma 8,
which we will prove in the remaining part of this section.
Note that this theorem together with Theorem 5 yields a
factor of O(log* n) in comparison to the Rayleigh-fading op-
timum. Our analysis extends the one for the non-fading case
by Asgeirsson and Mitra [2] which in some parts relies on
Dinitz [4]. The results from [2] also show the F' = Q(OPT)
bound for regret learning in the non-fading channel. This
highlights the close relationship between the models.

In the Rayleigh-fading model, the utility function itself
is stochastic and therefore hard to deal with. In addition,
no-regret algorithms must use internal randomization, thus
we consider expected utilities and the expected regret here.



We adapt the utility function from Dinitz for an analy-
sis in expectation. It depends on the success probability
Qi(q1,-..,qn) of link i. Formally, we define the utility of
user ¢ to be

ui(Q1>~ . ~7Qn) = {

2~Qi(q1,...,qn)—1 ifqi:L

In the following, we consider a sequence gV, ..., ¢ that
exhibits external regret e - T for each user i = 1,...,n.
We define f; = % > qlm as the fraction of time steps the

user chooses ¢; = 1. Let F = ZZ fi. We define x; to be
the average success probability per time step with x; =

5, Ql(.t) (qp7 . ,q,(f)), and we set X = x;.

We examine such sequences and at first bound the aver-
age number of successful transmissions. It turns out that
for € approaching 0 half of the transmissions are success-
ful in the long run. Besides this result, we will show that
the average number of transmitting nodes F is in Q(OPT).
This together shows that the average number of successful
transmissions X is in Q(OPT).

LEMMA 7. X < F <2X +en

PrOOF. The first inequality follows by definition. For the
second inequality, we use the fact that for each user i the
regret is at most €. Therefore, always using action ¢; = 0 can
increase the average utility per step by at most e. Formally
this means 2 - x; — f; > —e. Taking the sum over all i, we
get 2X — F > —en. This yields F < 2X +en. [

We have shown a bound for the average number of suc-
cessful transmissions that depends on the average number
of transmitting nodes F. This allows us next to see that F’
is in Q(OPT).

LEMMA 8. Let OPT denote the size of the largest feasi-
ble set in the non-fading model under uniform transmission
powers, then F' = Q(OPT).

PROOF. In the following a(j,i) denotes the affectance of
link 7 on link 4 for uniform powers with
L d(sg,ry)?
B d(sJ-,7'i)a
’ 1—,3-Ij'd(si,7‘i)a

a(j,i) =min ¢ 1

We will denote the summed affectance from other links on
link i by

a?@) = > alji) .

Let p; be the fraction of steps in which a® (i) < 1 and let

a(i) = £ 32, a ().
We define the sets OPT' = {2 € OPT: fi < % — e} and

OPT” = {i € OPT': 5, opy alisj) < 2}. So all links in

OPT" attempt to transmit in less than a & — e fraction of
the time and affect others doing so by at most 2.

If |OPT \ OPT’| > |OPT|/2, then F would be at least
(3 —€) -|OPT \ OPT’| and therefore in Q(OPT).

So we consider |OPT’| > |OPT|/2 for the rest of the proof.
Using [2, Lemma 8], we see |[OPT”| > |OPT|/4. Therefore,

it is sufficient to show F' = Q(|OPT”|) and so we just need
to consider links i € OPT”.

We consider the utility gain for link i by switching to
action ¢; = 1 throughout every step. In an f; fraction of the
steps nothing changes. In at least a p; — f; fraction of the
steps, link 7 could have been successful but did not transmit
in the original sequence. As the affectance is at most 1/2,
we conclude from Lemma 2 that the success probability in
these steps is at least exp(—1/2). For the remaining steps, we
estimate the probability simply by 0. Therefore, the utility
gain is at least (p; — fi) - 2exp(—1/2) — (1 — fi) <e.

This yields for all i € OPT” and € < 0.04 that

6+1—fi
i < fit o~
= I e
1 exp(1/2) e-exp(l/2) 19
< = < —
= 3 (1+ 2 )T 2 a0

because f; < 1/2. For a(i), we now get by definition of g;
1 1 1 1
a(7) > q; - —g) => — == — .
a()) 20+ -a) 52355 = 35
Hence, we have
o . 1 )
a(i) = Z fia(4,1) > o for all i € OPT".
J€[n]
Taking the sum of all resulting inequalities, we get

>3 sata > O

i€cOPT/ je[n]

or, equivalently,
. |OPT”|
Yo 3 aa) =0
j€ln] i€OPT"
With [2, Lemma 11] we have that 7, oppr a(j, 1) = O(1)
for all j € [n] and hence

> f=(orT”) . O

j€ln]

Due to Lemma 7 and 8, for any no-regret algorithm the
number of successful transmissions needs to converge to a
constant fraction of the non-fading optimum. This proves
Theorem 6.

7. SIMULATION RESULTS

In the sections before, we showed a close relation between
the Rayleigh-fading and the non-fading models in theory.
While bounds are given asymptotically for worst-case in-
stances, our theoretical results can also be verified in simu-
lations.

In particular, we consider the performance of an ALOHA-
like protocol and the no-regret capacity-maximization al-
gorithm. Simulations are carried out on random networks
constructed by randomly placing receivers on a 1000 x 1000
plane. Each corresponding sender is placed by choosing the
angle and the distance to the receiver uniformly at random
from a fixed interval. This way, a minimal and a maximal
distance between sender and receiver can be specified.

Comparing the Rayleigh-fading and the non-fading model
the simulations show that the number of successful trans-
missions under uniform powers behave similarly when the
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Figure 1: Number of successful transmissions for
different transmission probabilities under square-
root and uniform power assignment and under the
Rayleigh-fading and non-fading SINR model.

sending probabilities are chosen uniformly, see Figure 1.
The simulation was done over 40 different networks with
100 links each and 25 different seeds for the randomizer to
determine which links transmit. The SINR parameters were
set to B =2.5, « =22, and v = 4-1077. The power for
the uniform power assignment and the power from which
the square-root power assignment scales was set to 2. For
the Rayleigh-fading channel we additionally used 10 differ-
ent seeds to determine whether a transmission is successful.
The distance between a sender and the corresponding re-
ceiver was chosen between 20 and 40.

Figure 1 shows the number of successful transmissions
averaged over all those runs. Neither the Rayleigh-fading
model nor the non-fading model always predicts more suc-
cess than the other one. The Rayleigh probability distribu-
tion leads to a smoothed curve compared to the non-fading
model. This is due to the fact that even when the SINR con-
straint is not fulfilled in the non-fading model, the success
probability in the Rayleigh-fading model still remains posi-
tive. On the other hand, when a transmission is definitely
successful in the non-fading SINR model there is some prob-
ability for being not successful in the Rayleigh-fading model.
The general characteristics of the curves are the same and
show that the Rayleigh-fading and the non-fading model be-
have alike.

Choosing the optimal set of sending links under uniform
powers, we reach on average 49.75 successful transmissions
in those networks.

The similarity can also be seen when taking a look at no-
regret algorithms. Here we analyzed a version of the Ran-
domized Weighted Majority Algorithm of Littlestone and
Warmuth [16]. The weights are initialized with 1 and mul-
tiplied by (1 —7)" in every time step, where [; is the loss of
not sending (¢ = 0) or sending (i = 1). The loss for sending
and not being received is 1 and the loss of not sending at
all is 0.5. In all other cases the loss is 0. These losses corre-
spond to the utility function used in Section 6. The factor
7 starts with /0.5 and is multiplied by /0.5 every time the
number of time steps reaches the next power of 2.

For the simulation shown in Figure 2 we used different
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Figure 2: Number of successful transmissions under
the Rayleigh-fading and non-fading model when ap-
plying a no-regret algorithm.

networks with 200 links, distances between 0 and 100, 5 =
0.5, « = 2.1, and v = 0. The other settings remained as
before.

The results behave in the same way as observed by As-
geirsson and Mitra [2] in their simulations. The Rayleigh-
fading model shows more fluctuations due to its stochastic
nature. We can also see that the no-regret algorithm con-
verges quite quickly near the optimum of the non-fading
model. The number of time steps needed for convergence
depends on the specific instance, but a good performance
can already be seen after 30 to 40 timesteps.

8. DISCUSSION AND OPEN PROBLEMS

In this paper we showed that from an algorithmic point of
view, the non-fading and the Rayleigh-fading model behave
similarly in theory as well as in simulations. We regard this
as a promising result because it indicates that existing re-
sults on approximation algorithms within non-fading mod-
els seem to apply more generally. Turning to a different,
more realistic scenario does not create a fundamentally new
situation as was the case when shifting from graph-based
interference models to SINR-based ones.

Future research could take two different directions from
this point. On the one hand, it could focus on the similar-
ities, e.g., by improving the obtained bounds. Considering
a particular situation, the O(log® n)-factor in Theorem 5
might be reduced to a constant, which we were not able
to prove in general. Futhermore, the similarities could be
exploited to take the best of the two worlds, in order to
derive more sophisticated, hopefully distributed algorithms.
On the other hand, also the differences could be taken into
account. For example, the regret-learning simulation in the
Rayleigh-fading model reaches a smaller capacity. It would
be interesting to see if this is a general effect of the stochas-
tic model or under which conditions this behavior can be
observed.
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APPENDIX
A. PROOF OF THEOREM 1

ProoF. Two events have to occur for successful transmis-
sion. On the one hand, sender s; has to decide to transmit.
By definition this probability is g;. On the other hand, the
SINR for the transmission must be large enough. For the
latter event, Liu and Haenggi [17] derived a formula, which
can be generalized to our model as follows.

The cumulated interference our transmission is exposed
to is given by I; = >, Sj.i - X;, where X; denotes the 0/1
random variable whether sender s; makes a transmission
attempt. The transmission is successful if S;; > B(L; +
v). Fixing I;, we can use the fact that S;; is expontially
distributed to get

Pr[Si; > B(L +v) | I; = ] = exp (_@)

Taking the expectation over I;, we get

Pr[S;: > B(L; + v)]

el

=E |exp (_5(2#1. Sjj S V)>
Sii
B-v B-8i-X
= exp <— 5 E Hexp (— ézl J)




Since S;,; and X; are independent, we have

B (5]
=q;-E {exp (—%)} +(1—q) -

1,1

Using now the fact that S;; is exponentially distributed, we
get

This yields that Pr[S;; > 8(I; + v)] is

exp (—ﬁs—y) IIle- — L ia-a) .

Sji
b /) Gk 1+ ﬁr;,i

yielding the claim. [




