IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 30, NO. 11, DECEMBER 2012 1

Convergence Time of Power-Control Dynamics

Johannes Dams, Martin Hoefer, and Thomas Kesselheim

Abstract—We study convergence of distributed protocols for
power control in a non-cooperative wireless transmission sce-
nario. There are n wireless communication requests or links that
experience interference and noise. To be successful a link must
satisfy an SINR constraint. Each link is a rational selfish agent
that strives to be successful with the least power that is required.
A classic approach to this problem is the fixed-point iteration due
to Foschini and Miljanic [1], for which we prove the first bounds
on worst-case convergence times — after roughly O(nlogn)
rounds all SINR constraints are nearly satisfied. When agents
try to satisfy each constraint exactly, however, links might not
be successful at all. For this case, we design a novel framework
for power control using regret learning algorithms and iterative
discretization. While the exact convergence times must rely on
a variety of parameters, we show that roughly a polynomial
number of rounds suffices to make every link successful during
at least a constant fraction of all previous rounds.

Index Terms—

I. INTRODUCTION

KEY ingredient to the operation of wireless networks

is successful transmission in spite of interference and
noise. Usually, a transmission is successful if the received
signal strength is significantly stronger than the disturbance
due to interfering signals of simultaneous transmissions and
ambient noise. This condition is frequently expressed by the
signal-to-interference-plus-noise ratio (SINR). An important
aspect that can be considered in these models is power control,
i.e., the ability of modern wireless devices to allow their
transmission powers to be set by software. Power control has
several main advantages. On the one hand, battery life can
be increased by using minimal powers that are necessary to
guarantee reception. On the other hand, reduced transmission
power causes less interference, and thereby the throughput of a
wireless network can increase significantly when using power
control. So power control is also in the interest of wireless
devices as it leads to lower energy consumption and increased
battery life.

In this paper, we study spectrum access with power control
in a non-cooperative network of wireless devices. We consider
a network consisting of n links, i.e., sender/receiver pairs. Each
sender is a selfish rational agent and attempts a successful
transmission to its corresponding receiver using a transmission
power. The chosen power has to be large enough to compen-
sate the interference and ambient noise. In contrast, choosing
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a smaller transmission power is desirable as it results in less
energy consumption. We investigate distributed protocols for
power control executed by all senders in parallel that allow to
find transmission powers in order to make a link successful
as quickly as possible. A standard assumption in the analysis
of power-control problems of this kind is the existence of
a solution, in which all transmissions are successful. For
networks, in which this assumption does not hold, it is
possible to combine power-control protocols with approaches
that solve the additional scheduling problem. However, for
algorithms proposed for these problems either do not provide
provable performance guarantees [2] or require a strong central
authority managing the access of all devices to the spectrum
[3] — thereby neglecting the distributed and non-cooperative
nature of many wireless transmission scenarios.

A simple and beautiful protocol for the power-control
problem is the fixed-point iteration method leading to a pure
Nash equilibrium by Foschini and Miljanic [1]. In each step,
every sender sets his power to the minimum power that
was required to overcome interference and noise in the last
round. It is natural that this is the most desirable solution
for the sender and thus his utility function has a unique
maximum at this power level. Hence, in game-theoretic terms,
this protocol implements concurrent best-response dynamics.
It can be shown that this protocol converges to a feasible
assignment, even if best responses by the senders are not
chosen simultaneously [4]. The obtained power assignment
is a fixed point in the sense that it is a Nash equilibrium and
component-wise smaller than all other feasible assignments.
In this way, the fixed point is the most desirable assignment
of the system. It is known that the Foschini-Miljanic (FM)
iteration converges at a geometric rate [5] in a numerical sense.
However, to the best of our knowledge, no results in the sense
of quantitative worst-case convergence times have been shown,
neither for this nor for other distributed protocols.

In this paper, we investigate two classes of distributed
protocols for non-cooperative power control and analyze the
dependencies of running time and solution quality on several
parameters of the structure of the instance. For example, our
analysis of the FM fixed-point iteration in Section II uses
the largest eigenvalues of the normalized gain matrix and the
degree, to which the SINR constraint is fulfilled. Assuming
that both these parameters are constant, our first main result
(Theorem 1) shows that the FM iteration achieves polynomial
convergence time to a state where all SINR constraints are
nearly satisfied. In particular, starting from all powers set to
0, for any constant § > 0 we reach in O(nlogn) steps a
power assignment that satisfies the SINR constraint of every
link by a factor of at least 1 — 9.

It is easy to see that the FM iteration might never reach the
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fixed point if we start with all powers set to 0, as all links will
raise their powers to fulfill the SINR constraint. So if one starts
from all powers set to 0, and insists on all links satisfying
the SINR constraints exactly via § = 0, we get an infinite
convergence time during which all links remain unsuccessful.
To overcome this problem, in Section III we introduce a
novel technique to compute power assignments employing
distributed regret-learning algorithms. This has the desirable
property of being compatible with selfish behavior as no-regret
sequences converge to correlated equilibria of the respective
game. Furthermore, in our case for algorithms that guarantee
no swap regret [6], we can show convergence to the fixed
point, which in this scenario coincides with the unique mixed
and pure Nash equilibrium and the correlated equilibrium.
The convergence properties rely on our analysis of the FM
iteration and depend additionally on the position of the fixed
point compared to noise vector and maximum allowed power.
Assuming these ratios are bounded by a constant, our second
main result (Theorem 8) is that for every constant ¢ > 0 after a
polynomial number of steps, we can reach a situation in which
every link has been successful with respect to the exact SINR
constraint during at least a (1 — €) fraction of the previous
steps. Our regret learning technique has the advantage of being
applicable also to instances, in which not all links can be
successful simultaneously. In these cases, we can fall back on
the respective results for capacity maximization [7], [8].

A. Formal Problem Statement

We consider transmissions in general interference models
based on SINR. If the sender of link j emits a signal at
power p;, then it is received by the receiver of link ¢ with
strength g; ; - p;, where g; ; is called the gain. This includes
the well-known special case of the physical model, where the
gain depends polynomially on the distance between sender
and receiver. The transmission within link ¢ is successful if
the SINR constraint
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is fulfilled, i.e., the SINR is above some threshold (3. Here, v
denotes the ambient noise. In the power-control problem, our
task is to compute a feasible power assignment such that the
SINR constraint is fulfilled for each link. Furthermore, each
link should use the minimal possible power. More formally,
let the normalized gain matrix C be the n X n matrix defined
by O’L'L =0foralli € [n] = {1, . ,n} and Ci,j = 6913/911
for ¢ # j. The normalized noise vector n is defined by n;
Bv/gii. A feasible assignment is a vector p such that p
C - p + 7. Note that throughout this paper, we use < and
to denote the respective component-wise inequality.

The set of all feasible power assignments is a convex
polytope. If it is non-empty, there is a unique vector p*
satisfying p* = C - p* + 7. In a full-knowledge, centralized
setting, this fixed point p* can simply be computed by solving
the linear equation system p* = C - p* + 7. However,
a wireless network consists of independent non-cooperative
devices with distributed control and the matrix C' is not
known. We assume the devices can only make communication
attempts at different powers and they receive feedback in the
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form of the achieved SINR or (in an advanced scenario) only
whether the transmission has been successful or not.

We consider this scenario as a normal-form game as fol-
lows. Each sender ¢ is a selfish agent and picks a transmission
power as strategy. We first assume that the achieved SINR
becomes known after each transmission attempt, in which case
sender ¢ has a utility function u; depending on his chosen
power p; and the achieved SINR. Furthermore, we assume
u; has a unique maximum at the power level that sets his
SINR to exactly 3, but can otherwise be completely arbitrary.
The FM iteration is p**tY) = C . p® 4+ 5 where t is the
time step. In this context it implements a concurrent best-
response dynamic. Note that the achieved and the target SINR
are needed to run this iteration. Foschini and Miljanic showed
that the sequence of vectors p®) converges to p* as t goes
to infinity. Obviously, p* is a Nash equilibrium in which no
sender wants to unilaterally change his transmission power.
One can show that the existence of p* > 0 with p* > C-p*+n
implies that the modulus of all eigenvalues of C' must be
strictly less than 1. In our analyses, we will refer to the
maximal modulus of an eigenvalue as Ay ax.

For the regret-learning technique we assume that each link
i chooses his power out of an interval [0, p[*®*]. Here p{"®* is
the maximal power level user ¢ can use. The utility functions
u; are of a natural form defined more precisely in Section III
below. Let ® be a set of departure measurable functions such
that each ¢ € ® is a deviating map ¢: [0, p*®*] — [0, p®X].
Given a sequence of power vectors p(1), ... p(T) | the ®-regret
link 4 incurs is

T
RP(T) = sup y ui(@(p("),p) — wi(p(”,p") .

PeP
For our analyses, we consider two cases for the set ®. For
external regret each ¢ € ® maps every power value to a single
power pg. In contrast, to define swap regret, ® contains all
measurable functions. An infinite sequence is called no-®-
regret if RY(T) = o(T). An algorithm producing a no-®-
regret sequence is a no-®-regret algorithm.

We will see that for our utility functions, there are dis-
tributed no-®-regret algorithms as will be explained in Sec-
tion IV. To evaluate the utility, it suffices for each sender
to only know after each transmission attempt if it has been
successful.

B. Related Work

Foschini and Miljanic [1] were the first to solve the power-
control problem using the iterative distributed protocol out-
lined above. They showed that their iteration converges from
each starting point to a fixed point if it exists. Extending this,
Yates [4] proved convergence for a general class of iterative
algorithms including also a variant for limited transmission
powers and an iteration, in which users update powers asyn-
chronously. Besides this, Huang and Yates [5] proved that all
these algorithms converge geometrically, i.e., that the norm
distance to the fixed point in time step ¢ is given by a® for
some constant a < 1. However, this is only a bound on the
convergence rate in the numerical sense and does not imply
a bound on the time until links actually become successful.



DAMS et al.: CONVERGENCE TIME OF POWER-CONTROL DYNAMICS

Apart from our work the only bound based on the network
parameters is derived by Lotker et al. [9] for a special case.
More complex iterative schemes have been proposed in the
literature. For a general survey about these algorithms and the
power-control problem, see Singh and Kumar [10].

In order to reflect the individual rationality of each agent,
the power control problem has also been considered in game-
theoretic scenarios. For example, the results by Yates can be
extended to games involving selfish agents with certain utility
functions [11], [12].

The approach of Foschini and Miljanic can be transferred to
a game-theoretic utility function by considering the distance to
a target SINR. This can be done by penalizing the quadratic
error to the target [13] or using a non-continuous function
[14], which is zero when the target SINR is not reached
and decreasing otherwise. In either case, the unique Nash
equilbrium corresponds to the fixed point of the FM iteration.

A different approach is to consider the link capacity (de-
pending on the SINR) as the utility function. To model
the trade off between capacity and energy consumption, the
used power is subtracted from this utility [15], [16], [17]
or considered in some other way [18], [19]. This, however,
neglects the necessity of a minimal SINR for certain applica-
tions. More sophisticated utility functions can be derived from
considering the bit-error rate [20], [21], [22]. Here, the utility
is proportional to the “information received per Joule”, i.e.,
the ratio of the probability of a successful transmission and
the used power. This results in a function that abruptly inclines
left of a maximum and slowly decreases right of it. Apart from
having no discontinuity left of the maximum, these functions
resemble the ones considered in this paper.

II. CONVERGENCE TIME OF THE FM ITERATION

In this section, we analyze the convergence time of the FM
iteration with p(*) = C - p*=Y 4 5. It will turn out to be
helpful to consider the closed-form variant

t—1
p =t p@ 4>ty (1)
k=0

The iteration will never actually reach the fixed point, although
getting arbitrarily close to it. During the iteration the SINR
will converge to the threshold 3. For each § > 0, there is some
round 7" from which the SINR will never be below (1 — ¢)S.
Since maximizing the SINR is the main target, we strive to
bound the time 7" until each transmission is “almost” feasible.
That is, the SINR is above (1 — §)3. For this purpose, it is
sufficient that the current vector p satisfies (1 — §)p* < p <
(14 0)p*.

As a first result, we bound the convergence time in terms
of m when starting from 0. We will see that the time is
independent of the values of p* or n. The only parameter
related to the instance is Ay ax the maximum eigenvalue of C,
which has to occur as for Ay,ax = 1 no fixed point can exist at
all. Assuming it to be constant, we show that after O(nlogn)
rounds we reach a power assignment that satisfies the SINR
constraint of every link by a factor of at least 1 — 4.

Theorem 1. Starting from p®) = 0 after t > logg’ix :

log(3n) rounds, for all p) we have (1 — §)p* < p() < p*.

Proof: Define the following auxiliary matrix M = C™,
where m = ﬂog % /log /\maxw. As we can see, the modulus
of all eigenvalues of M is bounded by % Furthermore,
defining n = 27" C*n, we have p(™) = Z::_Ol Mk
This also implies p* = > p M*'.

Now we consider the characteristical polynomial of M in
expanded as well as in factored form:

n—1 n
xm(z) =a" + Z a;z" = H(:r —bj)
i=0 j=1

The (possibly complex) b; values correspond to the eigenval-
ues. Therefore, we have |b;| < - forall j € [n]. The modulus
of the a; values can be expressed in terms of the b; values by

W > Tmi<(,")) (%)

SCln] jes
This yields the following bound for their sum

|S|=n—1
n—1 n k n
n 1 1 1
s —) —1=(1+—) —1<=.
Z'Cl'—z:(k)(?m) <+3n> =3
=0 k=0
We now use the fact that xp/(M) = 0. This is, M" =
— 5" L a; M. Since all M*y are non-negative, the follow-
ing inequality holds
M"p* — Z Mk,r]/

k=n
k 0o n—1
MFqy' (—Zm) + ZM’“n' <—Zai>
=0 k=n =0
n—1 00 00
< (Z'ai|> ZM%/ < %ZMIC ' %p* .

k=0 k=0

Now consider t > m-n-log +. We have p* —p(¥) = Ctp* <
Mn1°g 5 p* < §p*. This proves the theorem. []

One can see that this bound is almost tight as there are
instances where 2(n) rounds are needed. For example, let C'
be defined by C;11,; = 1 for all ¢ and all other entries 0, n =
(1,0,...,0). The only eigenvalue of this matrix is 0. However,
it takes n rounds until the first component 1 has propagated
to the nth component and the fixed point is reached.

These instances require a certain structure in the values of
p* and 1. As a second result, we would like to present a bound
independent of 7 and for every possible starting point p(®) that
takes p* and 7 into consideration.

Theorem 2. Starting from an arbitrary p®, we have (1-
d)p* < pl) < (L+8)p* for all t > T with

©)

log § — log max;e|y| % — 1}
T = &
log max;ep, |1 — %

Proof: We consider the weighted maximum norm, which
has been used by Huang and Yates [5] before. We use the
entries of p* as weights by defining |z = max;cy %
The induced matrix norm of a matrix M is now given by

[M]| = maxie(n) % Eje[n] |M; 4] - Dj-
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Fig. 1. FM iteration in an example.

In particular, we have for matrix C' that Cp* +n = p*, that
is (Cp*); = pf — n;. This yields for the matrix norm of C'

Z Ci,jp;-c = max

jem] 1€[n]

i
p;

1
O] = max &
i€[n] p;

If t > T, using Equation 1 we get ||p() —p*|| = ||C*(p'®) —
P < NCIIpO—p || = O maxieq [l /7 — 1| < 6.

So, for all i € [n], we have |p§t) —pf| < op;. [ |

As assumed for the original FM iteration, we also focused
on the case that powers can be chosen arbitrarily high so far.
However, our bounds directly transfer to the case where there
is some vector of maximum powers p™?*. In this setting, all
powers are projected to the respective interval [0, pi*®*] in
each round [4]. One can see that this can only have a positive
effect on the convergence time since the resulting sequence
is component-wise dominated by the sequence on unlimited
powers.

III. POWER CONTROL VIA REGRET LEARNING

The fixed-point approach analyzed above has some major
drawbacks. For example, in many sequences — in particular
the ones starting from O — the target SINR is never reached,
because all powers increase in each step and therefore they are
always too small. An examplary run with two links is shown
in Figure 1. The light grey regions depict the possible power
choices where at least one link can transmit successfully. The
darker region refers to states where both links are successful.
All points choosen by the FM iteration lie in the white region.

Another drawback of the FM iteration is that, in order to
adapt the power correctly, the currently achieved SINR has to
be known. A last disadvantage to be mentioned is its lack of
robustness. We assume a fixed point pure Nash equilibrium to
exist for the power control game. If for some reason this does
not hold the iteration might end up where some powers are
or p™®* even if the transmission is not successful.

In order to overcome these drawbacks, we design a different
approach based on regret learning. As these algorithms are
randomized, each player can transmit successfully already in
the first time steps. This is in contrast to the FM iteration
never becoming successful at all. An example run of such a
no-swap-regret algorithm is shown in Figure 2. It shows that it
converges towards the region where both links are successful.

Besides the advantage of having successful transmissions,
we also use the no-swap-regret algorithm to overcome the
other drawbacks of the FM iteration. There is no need to know

Fig. 2. Last 100 of 1000 iterations of no-swap regret learning.

the achieved SINR and it is robust against scenarios where no
fixed point exists.

Again, we assume each user to be aiming at having a
successful transmission but using the least power possible.
The decision which power p; € [0, pi™®*] to use is based on
the following kind of utility functions. We assume that each
user gets zero utility if the SINR is below the threshold and
a positive one otherwise. This utility increases when using a
smaller power. Formally, we assume utility functions of the
following form:

) fi(p;) if user i is successful with p; against p_;
Us; =
i 0 otherwise

where f;: [0,p**] — [0,1] is a continuous and strictly
decreasing function for each i € [n]. With p_; we denote
the powers chosen by all users but user .

The utility functions have to be considered this way in
order to capture the SINR constraint appropriately. On the one
hand, each user’s maximum is at the point where the SINR
condition is exactly met. This way a best response dynamic
corresponds to the FM iteration. On the other hand and at least
as important, for each user having a successful transmission is
always better than an unsuccessful one. This property cannot
be modeled by a continuous function.

As a consequence, we can ensure that all no-swap-regret
sequences converge to the optimal power vector p*. Further-
more, the fraction of successful transmissions converges to 1.
This is in contrast to the FM iteration, where starting from
p(© = 0 all transmissions stay unsuccessful during the entire
iteration.

As a first result, we can see that the only possibility that
all links encounter zero swap regret is the sequence only
consisting of p*.

Proposition 3. Given any sequence p™V, ... pT) with the
swap regret for each user being 0, then p\*) = p* for all t.

Proof: For each user i let p; = max;c[p pz(.t). Now
assume that p < p* does not hold. This means there is some
user ¢ for which p, := (C'-p+n); < p;. This user encounters
non-zero swap regret because he could always use p; instead
of p;. The user would still be successful in the same steps as
before but get a higher utility each time he chose p;. Since
this is a contradiction we have p < p*.

Now let p; = ming¢(r pgt). We can argue analogously as
before to get p; > p*. In total, we have that both p < p* and
p > p*, yielding p = p = p*. [ |
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In contrast, zero external regret does not suffice. Although
there is a fixed point p* at which all links are successful, a
no-external regret sequence might make only 2 of the n links
successful at all.

Proposition 4. For suitable functions f;, there is an instance
with a fixed point and a no-external-regret sequence in which
only a 2/n fraction of all links is ever feasible.

Proof (Sketch): We consider a “nested pairs” instance
(c.f. [23]) appropriately scaled to allow a fixed point. Here,
we replace the innermost link by two smaller links (of about
half the length) such that the instance still has a fixed point and
their distance is chosen appropriately. The maximum power is
P with pi*** = p™®* for all links <.

Now we consider the following sequence: All links except
for the two inner ones always play action p; = 0. In odd
steps, the two inner links play action p™?*, in even steps they
play p™#*/2. We claim that the regret for each player is at
most 0. For the outer links this is clear as they cannot get
through at all. The inner links have some smallest action p’
allowing them to be feasible in all steps. We have p™a*/2 <
p’ < p™3*, The regret compared to this action after T steps is
f®)T—5(f(p™™)+ f(3p™*))T. Note that this can evaluate
to 0 by a suitable choice of f. [ ]

IV. COMPUTING NO-SWAP-REGRET SEQUENCES

The reason to study no-regret sequences is that they can
be computed in a distributed way. Mostly, the case of a finite
action space has been studied. For example, for the case of
N actions, the algorithm devised by Blum and Mansour [6] is
able to guarantee that after 7" round the expected regret of a
user is at most O(y/T'N log N). This algorithm is randomized
and uses multiplicative weights updates. That is, each user
has a probability distribution over all possible actions. After
each step, he updates this distribution based on the previously
observed utilities.

Unforunately, this and similar algorithms [24] require a
finite number of actions, while in our case the action space
contains all real numbers within [0, p{***]. Standard ap-
proaches for infinite action spaces are not applicable either
as they require convex action spaces and continuous utility
functions [25], [26]. In order to capture the SINR threshold
appropriately, however, the utility functions have to be mod-
eled as non-continuous.

In this section, we show that no-regret sequences can be
computed in a distributed way nevertheless. This is achieved
by applying no-swap-regret algorithms for finite action spaces
on a suitable finite subset of the powers. This finite subset
is constructed by dividing the set of powers into intervals of
equal length and using the right borders as the input action set
for the algorithm. This discretization, however, is not chosen
in a fixed way but iteratively refined to guarantee that the
no-swap-regret property holds.

Theorem 5. Let A be any no-swap-regret algorithm for
arbitrary finite action spaces, whose swap regret after T
rounds in case of N actions is at most O(T® - N°), where
a and b are suitable constants with 0 < a <1, b> 0.

Then A can be used to construct an algorithm for power
control on infinite action spaces achieving swap regret at most
a+b
O(T7+v).

Proof: We exploit the structure of our utility func-
tions. Consider the utility function w;(-,p—;) of some user
¢ provided that the other strategies are fixed. We cut the
set of strategies [0, p***] into N intervals of equal length.
Now observe that the utility at the right border of each
interval is at most S;p"**/N worse than the maximum in
the respective interval, where S; = maxp, » W.
This is for all € [kpi*®*/N, (k + 1)p*®*/N], we have
ui(z, p—i) < ui((k + 1)pi"™ /N, p—i) + Sip***/N.

If the number of steps 7' is known in advance this
allows us to construct the following algorithm. We set
N = Tll_Tg—‘ and run A using only the finite strategy set
{p"ax /N, 2p»ax /N ... pP@*} of size N. If optimal strate-
gies were also restricted to this finite set, the resulting swap
regret would be at most O(T'* N?). Due to the restriction to the
finite set, we additionally lose at most S;pi"®* /N in each step.
So the resulting regret is at most O(T*N®) + T'S;pa* /N =

a+b
O(T ).

If T is not known in advance the “doubling trick” also
works for our algorithm. Starting with an estimate 7" = 1, the
algorithm is executed for 7" steps with the respective estimate
T, which is doubled afterwards. This way only a constant
factor is lost in comparison to the case where the exact 1" is
known. ]

Theorem 5 provides a framework to use different suitable
existing no-swap-regret algorithms. Depending on the specific
algorithm used, it yields different regret bounds. In particular,
if each link knows after each step which powers would have
made it successful, we can use the O(y/TNlogN) full-
information algorithm proposed by Blum and Mansour [6] for
the following result.

Corollary 6. There is an algorithm achieving swap regret
O(T%).

If each link only gets to know if the transmission at the
actually chosen power suffices, it can nevertheless compute the
value of the utility function for the chosen power. Therefore,
in this case we are in the partial-feedback model. Here, we can
apply the O(N+/T log N) algorithm by Blum and Mansour [6]
to build the following algorithm.

Corollary 7. There is an algorithm achieving swap regret

4 . . .
O(T5) that only needs to know if the transmissions carried
out were successful.

V. CONVERGENCE OF NO-SWAP-REGRET SEQUENCES

So far, we have seen how to compute no-swap-regret
sequences. In this section, the result is complemented by a
quantitative analysis of a no-swap-regret sequence. We see
that not only convergence to the optimal power vector p* is
guaranteed but also the fraction of rounds in which each link
is successful converges to 1. In contrast, in the FM iteration
there are starting vectors such that no transmission is ever
successful at all.
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Theorem 8. For every sequence pD e ™) with swap
regret at most € - T and for every 6 > 0 the fraction of steps
in which user i sends successfully is at least

Q.1 ((L+9)p;) _ €
fil=0)p;)  filL=0)p;)

where @ denotes the fraction of rounds in which a power
vector p with (1 — 6)p* <p < (14 0)p* is chosen.

Given a sequence with swap regret at most e¢-7', Theorem 8
gives a lower bound for the number of steps in which a
user can send successfully. The bound depends on the utility
function and the fraction of rounds in which a power vector
between (1 — J)p* and (1 4 §)p* is chosen. We bound this
fraction in Lemma 10 and Lemma 11 later on. Altogether The-
orem 8, Lemma 10, and Lemma 11 yield a bound converging
to 1 as the swap regret per step approaches 0.

In order to prove this theorem, we will use the fact that no-
swap-regret sequence correspond to approximate equilibria.
Similar to a mixed Nash equilibrium, an e-correlated equilib-
rium is a probability distribution over strategy vectors (in our
case power vectors) such that no user can unilaterally increase
his expected utility by more than €. In contrast to mixed Nash
equilibria the choices of the different users do not need to be
independent. Formally, an e-correlated equilibrium is defined
as follows.

Definition 1. An e-correlated equilibrium is a joint probability
distribution m over the set of power vectors Py X --- X Py,
where P; = [0, pi*®¥|, such that for any user i and measurable
Sfunction ¢;: P; — P;, we have

Epor [ui(6i(pi), p—i)]

This is, in an e-correlated equilibrium, no user can increase
his expected utility by operations such as “each time 7 says
I play A, I play B instead”. This kind of operations are
exactly the ones considered in the definition of no-swap-
regret sequences. Therefore each sequence pM L pT) of
swap regret at most R corresponds to an R/T-correlated
equilibrium. Using this notion, we can rewrite Theorem 8 to
the following proposition.

—Epr [ui(pi,p—i)] <€ .

Proposition 9. For every e-correlated equilibrium m and for
every 6 > 0 the probability that user i sends successfully is
at least

o Fl0m)
fil(t=0)p7)  fi((L=0)p)
where Q = Prpr [(1—0)p* <p < (1+9)p*].

Proof: Consider the following switching operation. In-
stead of the powers in the interval [(1 — §)p}, (1 + 6)p;] user
i could always choose (1 4 J)p}. Since 7 is an e-correlated
equilibrium, this operation can increase the expected utility by
at most e. We now bound the change of the expected utility
due to this switching operation.

Let £ be the event that a vector p is chosen with p; €
[(1—9)pf, (14 6)p;] then the expected utility gain is

Epr [wi((1+0)p;,p—i) | €] = Epr [ui(p) | €]

o @

Now let us bound the two expectations in this sum.

When using the power (1 + 4)pf, user ¢ will al-
ways be successful if the other users use a power vector
p—i < (14 0)p*,. So when applying this switch oper-
ation, user 7 gets an expected utility conditioned on the
event £ of By [us((L+0)pf.p—) | €] > fi((1+ 0)pi) -
Pr, . [p—i < (1+6)p*, | €], which yields

Pr (€] - Epr [ui((1 + 0)p;,p—i) | €]
> fi((L4+0)p;) - Prpr [(1=90)p" <p<(1+0d)p*] . (3)

On the other hand, we have E, [u;(p) | €] < fi((1 —
0)pF)-Prpr [S | €], where S is the event that the transmission
is successful. This yields

Pr[E]Ep r [ui(p) | €] < fi((1 = 0)pi) - Prper [S] . (4)

Combining Equations 2, 3, and 4, we get f;((1 +
0)p;) - Prpun [(1 = 0)p* <p < (1 +d)p*] — fi((1 — 0)p]) -
Pr, - [S] < e. This yields the claim. |

It remains to bound Pr,..[(1—d)p* <p < (1+9)p*].
For this purpose, we bound the probability mass of states
p with p £ (1 + 0)p* in Lemma 10 and of the ones with
p? (1 —9)p* in Lemma 11.

The general proof ideas work as follows. In order to bound
Pr, - [p £ (1 + d)p*], we consider which probability mass
can at most lie on vectors p such that for some user i, we
have p; > (C' - p™™* + (14 §/2) - n),. This probability mass
is bounded, because user ¢ could instead always use power
(C-p™® +mn),, as this is the maximum power needed to
compensate the interference in the case that p_; = p™&*. We
then proceed in a similar way always using the bound obtained
before until we reach a point component-wise smaller than
(1 + 0)p*. The bound on Pr,., [p # (1 — 0)p*] works in a
similar way.

First, we consider how much probability mass can at most
lie on states p € (1 + d)p*. Afterwards, we will do the same
for p 2 (1 — §)p*. In the following only the key lemmas are
presented. The proofs are omitted and can be found in the full
version.

Lemma 10. Let ® be an e-correlated equilibrium for some
€ > 0. Then for all § > 0, we can bound the probability that
p £ (14 0)p* is chosen by

T+1
n
. Lt 51l < n 2 )
el £ 0] < (G 2)
6 p’qf?ba(ﬂ
log 3 — logmaxie(n) | 77y,
where T = 7
log maXie[n] - 1%

and s; denotes the minimal absolute value of the difference
quotient of f; at any point p; and p; + %m.

The probability that vectors below (1 —d)p* are chosen
can be bounded in similiar ways yielding Lemma 11.

Lemma 11. Given an e-correlated equilibrium and assuming
ui(p"*?) > r = § for all i € [n]. Then for every § > 0 the
probability Pry,.. [p 2 (1 — 0)p*] is at most

€ <2 + (% + 2>T+1> (2n)7

max
i€ln] Sin;
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with T' = log : and T defined as in Lemma 10.
1- 7
Pq

log max;e[n)

Combining Lemma 10 and 11, we get an upper bound on
Pr, - [(1 —d)p* <p < (1+ &)p*]. For appropriately chosen
d, this bound and Proposition 9 yield that the success proba-
bility converges to 1 as e approaches 0. This also yields that
in each no-swap-regret sequence for each user the limit of
the fraction of successful steps is 1. Furthermore, the chosen
powers also converge to p*.

VI. DISCUSSION AND OPEN PROBLEMS

In this paper, we studied two distributed power control
protocols compatible with individual rational behavior. We
obtained the first quantitative bounds on how long it takes
for best repsonse dynamics respectively the FM iteration until
the SINR is close to its target value. Furthermore a novel
approach based on regret learning was presented. It overcomes
some major drawbacks of the FM iteration. It is robust against
users that deviate from the protocol and is still applicable
in a partial-information model, where the achieved SINR is
not known. If all users follow no-swap-regret algorithms, the
convergence is guaranteed.

Considering general no-swap-regret sequences is only a
weak assumption and therefore the obtained bounds are not
as good as the ones of the FM iteration. By adapting the
regret-learning approach presented in this paper and tailoring a
protocol specifically to power control one could achieve faster
and better algorithms.

Another aspect to be considered in future work could be
discretization of the power levels. The standard assumption
is that users can choose arbitrary real numbers as powers. In
realistic devices this assumption might not be applicable. To
the best of our knowledge, the additional challenges arising
in this case have not been considered so far.
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