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Abstract

We study two (classes of) distributed algorithms for power control in a general
model of wireless networks. There are n wireless communication requests or [links
that experience interference and noise. To be successful a link must satisfy an SINR
constraint. The goal is to find a set of powers such that all links are successful si-
multaneously. A classic algorithm for this problem is the fixed-point iteration due to
Foschini and Miljanic [8], for which we prove the first bounds on worst-case running
times — after roughly O(nlogn) rounds all SINR constraints are nearly satisfied. When
we try to satisfy each constraint exactly, however, convergence time is infinite. For this
case, we design a novel framework for power control using regret learning algorithms
and iterative discretization. While the exact convergence times must rely on a variety
of parameters, we show that roughly a polynomial number of rounds suffices to make
every link successful during at least a constant fraction of all previous rounds.

1 Introduction

A key ingredient to the operation of wireless networks is successful transmission in spite
of interference and noise. Usually, a transmission is successful if the received signal
strength is significantly stronger than the disturbance due to decayed signals of simul-
taneous transmissions and ambient noise. This condition is frequently expressed by the
signal-to-interference-plus-noise ratio (SINR). Over the last decade, a large amount of
research work has studied the problem of throughput or capacity mazimization, i.e., deter-
mining the maximum number of wireless transmissions that can be executed successfully
in a network in parallel. Very recently, algorithms for capacity maximization are starting
to receive interest also from an analytical and theoretical point of view. Most of the algo-
rithms proposed and analyzed so far require a strong central authority managing the access
of all devices to the spectrum. In addition, most works neglect power control, i.e., the abil-
ity of modern wireless devices to allow their transmission powers to be set by software.
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Power control has two main advantages. On the one hand, battery life can be increased
by using only minimal powers that are necessary to guarantee reception. On the other
hand, reduced transmission power causes less interference, and thereby the throughput of
a wireless network can increase significantly when using power control.

In this paper, we study spectrum access with power control in a network of wireless
devices. We consider a network consisting of n links, i.e., sender /receiver pairs. Each sender
attempts a successful transmission to its corresponding receiver using a transmission power.
The chosen power has to be large enough to compensate the interference and ambient noise.
In contrast, choosing a smaller transmission power is desirable as it results in less energy
consumption. We investigate distributed algorithms to find transmission powers in order to
make links successful as quickly possible. A standard assumption in the analysis of power-
control problems of this kind is the existence of a solution, in which all transmissions are
successful. For networks, in which this assumption does not hold, it is possible to combine
the algorithms with approaches that solve the additional scheduling problem [13].

A simple and beautiful distributed algorithm for the power-control problem is the fixed-
point iteration due to Foschini and Miljanic [8]. In each step every sender sets his power
to the minimum power that was required to overcome interference and noise in the last
round. It can be shown that powers converge to a feasible assignment, even if updates
are not simultaneous [17]. The obtained power assignment is minimal in the sense that
it is component-wise smaller than all other feasible assignments. It is known that this
algorithm converges at a geometric rate [12] in a numerical sense. However, to the best
of our knowledge, no convergence results in the sense of quantitative worst-case running
times have been shown, neither for this nor for other distributed algorithms.

In this paper, we investigate two classes of distributed algorithms for power control and
analyze the dependencies of running time and solution quality on several parameters of the
structure of the instance. For example, our analysis of the Foschini-Miljanic fixed-point
iteration in Section 2 uses the largest eigenvalues of the normalized gain matrix and the
degree, to which the SINR constraint is fulfilled. Assuming that both these parameters
are constant, our first main result (Theorem 1) shows that the FM iteration achieves
polynomial convergence time. In particular, starting from all powers set to 0, for any
constant 6 > 0 we reach in O(nlogn) steps a power assignment that satisfies the SINR
constraint of every link by a factor of at least 1 — 4.

It is easy to see that the FM iteration might never reach the fixed point if we start with
all powers set to 0. Thus, if we insist on links satisfying the SINR constraint exactly, we
get an infinite convergence time during which all links remain unsuccessful. To overcome
this problem, in Section 3 we introduce a novel technique to compute power assignments
employing distributed regret-learning algorithms. For algorithms that guarantee no swap
regret [4], we can also guarantee convergence to the fixed point. The convergence properties
rely on our analysis of the FM iteration and depend additionally on the position of the
fixed point compared to noise vector and maximum allowed power. Assuming these ratios
are bounded by a constant, our second main result (Theorem 8) is that for every constant
€ > 0 after a polynomial number of steps, we can reach a situation in which every request



has been successful with respect to the exact SINR constraint during at least a (1 — €)
fraction of the previous steps. Our regret learning technique has the advantage of being
applicable also to instances, in which not all links can be successful simultaneously.

1.1 Formal Problem Statement

We consider transmissions in general interference models based on SINR. If the sender of
link j emits a signal at power p;, then it is received by the receiver of link 7 with strength
9ij - Pj, where g;; is called the gain. This includes the well-known special case of the
physical model, where the gain depends polynomially on the distance between sender and
receiver. The transmission within link ¢ is successful if the SINR constraint

i " Pi > 3
> j£ibij PjtV
is fulfilled, i.e., the SINR is above some threshold 5. In the power control problem, our
task is to compute a feasible power assignment such that the SINR constraint is fulfilled for
each link. Furthermore, each link should use the minimal possible power. More formally,
let the normalized gain matriz C be the n x n matrix defined by C;; = 0 for all i € [n] and
Ci; = Bgij/9i: for i # j. The normalized noise vector n is defined by n; = pv/g;;. The
task is to find a vector p such that p > C' - p+ 7. Note that throughout this paper, we use
< and > to denote the respective component-wise inequality.

The set of all feasible power assignments is a convex polytope. If it is non-empty,
there is a unique vector p* satisfying p* = C - p* + 7. In a full-knowledge, centralized
setting, the optimal power vector p* can simply be computed by solving the linear equation
system p* = C - p* + 1. However, a wireless network consists of independent devices with
distributed control and the matrix C is not known. We assume the devices can only
make communication attempts at different powers and they receive feedback in the form
of the achieved SINR or (in an advanced scenario) only whether the transmission has been
successful or not.

For the scenario in which the achieved SINR is known after each transmission attempt,
the FM iteration is ptt) = C - p(® + 1, where the achieved and the target SINR are
needed to run this iteration. Foschini and Miljanic showed that the sequence of vectors
p® converges to p* as t goes to infinity. One can show that the existence of p* > 0 with
p* < C - p* implies that the modulus of all eigenvalues of C' must be strictly less than 1.
In our analyses, we will refer to the maximal modulus of an eigenvalue as Apax-

For the regret-learning technique we assume that each link 7 uses a no-regret learning
algorithm to select from a suitably defined discrete subset power values in an interval
[0, p"®*].  So pi"®* is the maximal power level user i might choose. Let ® be a set of
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measurable functions such that each ¢ € ® is a map ¢: [0,p"**] — [0,pi"**]. Given a

sequence of power vectors p™), ..., p(T), the ®-regret link i encounters is

T
RY(T) = sup > wi(é(p”), ) — wi(p”, p1) |
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where u; is a suitable utility function defined below. For our analyses, we consider two
cases for the set ®. For external regret each ¢ € ® maps every power value to a single
power py. In contrast, to define swap regret, ® contains all measurable functions. An
infinite sequence is called no ®-regret if RY(T) = o(T). An algorithm that produces a no
d-regret sequence is a no-P-regret algorithm.

We will see that under the utility functions we assume, there are distributed no-®-regret
algorithms. It suffices for each user to only know after each transmission attempt if it has
been successful.

1.2 Related Work

For about two decades, wireless networks with power control have been extensively stud-
ied. While at first research focused on engineering aspects, recently the topic has attracted
interest among computer scientists. Algorithmic research so far focused on scheduling
problems, where for a given network of senders and receivers the goal is to select a max-
imum feasible subset (the “independent set” problem) or to partition the links into the
minimal number of feasible subsets (the “coloring” problem). Allowing a scheduling algo-
rithm to choose powers has a significant impact on size and structure of links scheduled
simultaneously in practice, as was shown by [15].

As a consequence, much effort has been put into finding algorithms for scheduling
with power control. More recently, theoretical insights on the problem are starting to de-
velop [9, 14, 6]. In particular, the independent set problem with power control has been
shown to be NP-hard [1]. In most related work, however, the algorithmic power control
problem is neglected by setting powers according to some “oblivious” schemes, e.g., using
some polynomial depending on distance between sender and receiver. For independent set
and coloring problems in metric spaces, usually the mean or square-root function achieves
best results [7, 10, 11]. In addition, there are distributed approaches for the indepen-
dent set problem using no-regret learning and uniform power [5, 3]. In general, there
are strong lower bounds when using oblivious power, as algorithms provide only trivial
Q(n)-approximations in instances with n links of greatly varying length [7]. Power control
can significantly improve this condition as exemplified by the recent centralized constant-
factor approximation algorithm for the independent set problem by Kesselheim [13]. Being
a centralized combination of scheduling and power control, this algorithm is rather of fun-
damental analytical interest and of minor relevance in heavily distributed systems like
wireless networks.

Distributed algorithms exist especially for the power control problem without the
scheduling aspect. In this case, a feasible power assignment is assumed to exist that
makes all links feasible. The goal is to find feasible power levels with minimal power con-
sumption. This problem can be seen as a second step after scheduling and can be solved
in a centralized fashion by solving a system of linear equations as noted above. Foschini
and Miljanic [8] solved the problem using a simple iterative distributed algorithm. They
showed that their iteration converges from each starting point to a fixed point if it exists.



Extending this, Yates [17] proved convergence for a general class of iterative algorithms
including also a variant for limited transmission powers and an iteration, in which users
update powers asynchronously. Besides this, Huang and Yates [12] proved that all these
algorithms converge geometrically. This means that the norm distance to the fixed point
in time step t is given by a' for some constant a < 1. However, this is only a bound on
the convergence rate in the numerical sense and does not imply a bound on the time until
links actually become successful.

In addition, more complex iterative schemes have been proposed in the literature. For
a general survey about these algorithms and the power control problem, see Singh and
Kumar [16].

2 Convergence Time of the Foschini-Miljanic iteration

In this section, we analyze the convergence time of the Foschini-Miljanic iteration with
p®) = C - pt=1 4. Tt will turn out to be helpful to consider the closed form variant

t—1
p=ctp O+ 3"y (1)
k=0

The iteration will never actually reach the fixed point, although getting arbitrarily close
to it. However, during the iteration the SINR will converge to the threshold 8. For
each 0 > 0, there is some round 7' from which the SINR will never be below (1 — J)43.
Since maximizing the SINR is the main target, we strive to bound the time 7" until each
transmission is “almost” feasible. That is, the SINR is above (1 — §)3. For this purpose,
it is sufficient that the current vector p satisfies (1 — d)p* < p < (1 + 0)p*.

As a first result, we bound the convergence time in terms of n when starting from 0.
We will see that the time is independent of the values of p* or 1. The only parameter
related to the instance is Apax the maximum eigenvalue of C', which has to occur as for
Amax = 1 no fixed point can exist at all. Assuming it to be constant, we show that after
O(nlogn) rounds we reach a power assignment that satisfies the SINR constraint of every
link by a factor of at least 1 — 6.

Theorem 1. Starting from p© = 0 after t > loéoifax -n - log(3n) rounds, for all p® we
have (1 — &)p* < p®) < p*.

Proof. Define the following auxiliary matrix M = C™, where m = [log 3% /log )\max—‘. As
we can see, the modulus of all eigenvalues of M is bounded by % Furthermore, defining
n =S C*n, we have pmt’) = ZZ;& MP¥1'. This also implies p* = 322, M*n'.

Now we consider the characteristical polynomial of M in expanded as well as in factored
form:

n—1 n
xm(z) =2" + Z a;z' = H(x —bj) .
i=0 j=1



The (possibly complex) b; values correspond to the eigenvalues. Therefore, we have |b;| <
?%n for all j € [n]. The a; values can be computed from the b; values using

=2 I

SC[n] j€S
|S|=n—i

For the modulus this gives us

wl< Y H|b\<( " ) (L)

SC[n] j€S
|S|=n—i

This yields the following bound for their sum

L e S

We now use the fact that yar (M) = 0. This is, M® = — 7" a; M. Since all M*y/
are non-negative, the following inequality holds

o n—1 k 00 n—1

k=n k=0 =0 k=n =0
n—1 00 1 00 1
=0 k=0 k=0

Now consider t > m - n -log$. We have p* — pl) = Clp* < M8 5% < §p*. This
proves the theorem. O

One can see that this bound is almost tight as there are instances where ©(n) rounds
are needed. A simple example can be given as follows. Let C' be defined by Cj11,; =1
for all ¢ and all other entries 0, n = (1,0,...,0). The only eigenvalue of this matrix is 0.
However, it takes n rounds until the 1 of the first component has propagated to the nth
component and the fixed point is reached.

These instances require a certain structure in the values of p* and 1. As a second result,
we would like to present a bound independent of n and for every possible starting point
() that takes p* and 7 into consideration.

Theorem 2. Starting from an arbitrary p©, we have (1 — §)p* < p® < (1 +6)p* for all
t > T with

(0)

pT _ 1‘

log & — log max¢ [,

T =

log max;e ) ’1 - ’7—;1




Proof. We consider the weighted maximum norm, which has been used by Huang and
Yates [12] before. We use the entries of p* as weights

The induced matrix norm of a matrix M is now given by

I3 = - 3 (Mgl
J€[n]

In particular, we have for matrix C' that Cp* + n = p*, that is (Cp*); = pj — n;. This

yields for the matrix norm of C

1 1
|C]| = max — g C'm-p] = max —(Cp )i = max
i ; i€[n] P i€[n]

If ¢t > T, using Equation 1 we get for the distance of p(*) and p*

(0)
* * * p;
I = Il = 16" = PO < NI - 1™ = p*ll = ICII - max |\ = — 1 <6
So, for all i € [n], we have ]pz(t) —pf| < dp;. Thisis (1 —d)p; < pz(t) < (1+9)p;. O

As assumed for the original FM iteration, we also focused on the case that powers can
be chosen arbitrarily high so far. However, our bounds directly transfer to the case where
there is some vector of maximum powers p™*. In this setting, all powers are projected to
the respective interval [0, pi***] in each round [17]. One can see that this can only have
a positive effect on the convergence time since the resulting sequence is component-wise
dominated by the sequence on unlimited powers.

3 Power Control via Regret Learning

The fixed-point approach analyzed above has some major drawbacks. For example, in
many sequences — in particular the ones starting from 0 — the target SINR is never reached,
because all powers increase in each step and therefore they are always too small. Another
drawback is that, in order to adapt the power correctly, the currently achieved SINR has
to be known. A last disadvantage to be mentioned is its lacking robustness. We assumed
the fixed-point to exist. If for some reason this does not hold the iteration might end up
where some powers are 0 or p™®* even if the transmission is not successful.

In order to overcome these drawbacks, we design a different approach based on regret
learning. Here each link is a user striving to have a successful transmission but using the
least power possible. The user is assumed to decide which power p; € [0, pi*®*] to use based



on an utility function. In particular, we assume that each user gets zero utility if the SINR
is below the threshold and a positive one otherwise. However, this utility increases when
using a smaller power. Formally, we assume utility functions of the following form:

) fi(pi) if user i is successful with p; against p_;
ui(p) =
i 0 otherwise

where f;: [0,p"**] — [0, p"**] is a continuous and strictly decreasing function for each
i € [n]. With p_; we denote the powers chosen by all users but user 3.

The utility functions have to be considered this way in order to capture the SINR
constraint appropriately. On the one hand, each user’s maximum is at the point where the
SINR condition is exactly met. On the other hand and at least as important, for each user
having a successful transmission is always better than an unsuccessful one. This property
cannot be modeled by a continuous function.

As a consequence, we can ensure that all no-swap-regret sequences converge to the
optimal power vector p*. Furthermore, the fraction of successful transmissions converges
to 1. This is in contrast to the FM iteration, where starting from p(®) = 0 all transmissions
stay unsuccessful during the entire iteration.

As a first result, we can see that the only possibility that all links encounter zero swap
regret is the sequence only consisting of p*.

Proposition 3. Given any sequence pV, ... p(T) such that the swap regret for each user
is 0, then pY) = p* for all t.

Proof. For each user i let p; = max;¢r) pgt). Now assume that p < p* does not hold. This
means there is some user 4 for which p} := (C'-p+n); < p;. This user encounters non-zero
swap regret because he could always use pj instead of p;. The user would still be successful
in the same steps as before but get a higher utility each time he chose p;. Since this is a
contradiction we have p < p*.

Now let p; = mingep pgt). Assume that p > p* does not hold. This implies that for
some user p; < (C'-p+n);. So user i is never successful when using power p; but would
always be with p} (since p < p*). This is again a contradiction because user i would
encounter a non-zero swap regret.

In total, we have that both p < p* and p > p*, yielding p = p = p*. O

In contrast, zero external regret does not suffice. Although there is a fixed point p* at
which all links are successful, a no-external regret sequence might make only 2 of the n
links successful at all.

Proposition 4. For § > 1, p"®* < oo and fi(p"**) > %, there is an instance with a fixed
point and a no-external-regret sequence in which only a 2/n fraction of all links is ever
feasible.



Proof. (Sketch) We consider a “nested pairs” instance (c.f. [7]) appropriately scaled to
allow a fixed point. Here, we replace the innermost link by two smaller links (of about half
the length) such that the instance still has a fixed point and that their distance is chosen
appropriately. The maximum power is p™** with p;"** = p™®* for all links 7.

Now we consider the following sequence: All links except for the two inner ones always
play action p; = 0. In odd steps, the two inner links play action p™®*, in even steps they play
p™* /2. We claim that the regret for each player is at most 0. For the outer links this is clear
because they cannot get through at all, even not with p™#*. For the inner links there is some
smallest action p’ allowing them to be feasible in all steps. We have p™a*/2 < p/ < p™max,
The regret compared to this action after T steps is f(p')T — 5 (f(p™*) + f(3p™*))T. Note

that this can evaluate to 0 by a suitable choice of f. O

4 Computing No-Swap-Regret Sequences

Observe that in our case, the users are given an infinite number of possible choices. Fur-
thermore, in order to capture the SINR threshold appropriately the utility functions have
to be modeled as non-continuous. Unfortunately, this yields standard no-swap-regret algo-
rithms cannot be used in this scenario because, to the best of our knowledge, they require
a finite number of actions [2] or convex action spaces and continuous and concave utility
functions [18].

Luckily, no-regret sequences can be computed in a distributed way nevertheless. In
order to achieve swap regret €-7', we execute an arbitrary existing no-swap-regret algorithm
on a finite subset of the available powers, which is chosen depending on €. This finite subset
is constructed by dividing the set of powers into intervals of equal length and using the right
borders as the input action set for the algorithm. Bounding the loss due to the restriction
on the right borders, we can prove the following theorem.

Theorem 5. Let Algorithm A be a no-swap-regret algorithm for finite action spaces achiev-
ing swap regret at most O(T*-N°) after T rounds in case of N actions for suitable constants
0<a<1,b>0. Then A can be used to compute a no-swap-regret sequence for power

a+b
control, achieving swap-regret at most O(T'1+0) in T steps.

Proof. We exploit the structure of our utility functions. Consider the utility function
u;(-,p—;) of some user ¢ provided that the other strategies are fixed. We cut the set of
strategies [0, pi®®*] into N intervals of equal length. Now observe that the utility at the
right border of each interval is at most S;p;"** /N worse than the maximum in the respective
interval, where S; = maxy, p, W. This is for all z € [kp*®* /N, (k4 1)p"®*/N], we
have w;(z, p—i) < u;i((k + 1)pi"®*/N,p_;) + Sip"**/N.

If the number of steps 7" is known in advance this allows us to construct the following
algorithm. We set

v= [



and run A using only the finite strategy set {p"**/N,2p"**/N,...,pi"**} of size N. If
optimal strategies were also restricted to this finite set, the resulting swap regret would
be at most O(T*N®). Due to the restriction to the finite set, we additionally lose at
most S;p"** /N in each step. So the resulting regret is at most O(T*N?) + T'S;p"a* /N =
O(TTH).

If T is not known in advance the “doubling trick” also works for our algorithm. Starting
with T = 1, it is executed for T steps with the respective 1" value, which is doubled
afterwards. This way only a constant factor is lost in comparison to the case where T is
known. O

In particular, if each link knows after each step which powers would have made it
successful, we can use the O(yv/T'Nlog N) full-information algorithm proposed by Blum
and Mansour [4] for the following result.

Corollary 6. There is an algorithm achieving swap regret O(T%).

If each link only gets to know if the transmission at the actually chosen power suffices, it
can nevertheless compute the value of the utility function for the chosen power. Therefore,
in this case we are in the partial-feedback model. Here, we can apply the O(N+/T log N)
algorithm by Blum and Mansour [4] to build the following algorithm.

Corollary 7. There is an algorithm achieving swap regret O(T%) that only needs to know
if the transmissions carried out were successful.

5 Convergence of No-Swap-Regret Sequences

So far, we have seen how to compute no-swap-regret sequences. In this section, the result
is complemented by a quantitative analysis of a no-swap-regret sequence. We see that not
only convergence to the optimal power vector p* is guaranteed but also the fraction of
rounds in which each link is successful converges to 1. In contrast, starting from certain
vectors in the FM iteration no transmission is ever successful at all.

Theorem 8. For every sequence p(o), cee ,p(T) with swap regret at most € - T and for every
6 > 0 the fraction of steps in which user i sends successfully is at least
(TR B
fil=0)p;)  fi((L=08)p;)
where @ denotes the fraction of rounds in which a power vector p with (1 — §)p* < p <
(14 6)p* is chosen.

Given a sequence with swap regret at most e-7', Theorem 8 gives a lower bound for the
number of steps in which a user can send successfully. The bound depends on the utility
function and the fraction of rounds in which a power vector between (1—0)p* and (14 4)p*

10



is chosen. For this we give a bound in Lemma 11 and Lemma 13 later on. Altogether
Theorem 8, Lemma 11, and Lemma 13 yield a bound converging to 1 as the swap regret
per step approaches 0.

In order to prove this theorem, we will switch to a more convenient notation from game
theory, namely correlated equilibria. Similar to a mixed Nash equilibrium, an e-correlated
equilibrium is a probability distribution over strategy vectors (in our case power vectors)
such that no user can unilaterally increase his expected utility by more than €. In contrast
to mixed Nash equilibria the choices of the different users do not need to be independent.
Formally, an e-correlated equilibrium is defined as follows.

Definition 1. An e-correlated equilibrium is a joint probability distribution ™ over the set
of power vectors Py x -+ - X Py, where P; = [0, p"®*], such that for any user i and measurable

1
function ¢;: P, — P;, we have

Esr [ui(9i(pi); p—i)] — Esr [ui(pi, p—i)] < € .

This is, in an e-correlated equilibrium no user can increase his expected utility by
operations such as “each time 7 says I play A, I play B instead”. These kinds of operations
are exactly the ones considered in the definition of no-swap-regret sequences. Therefore
each sequence pM, ..., p(0) of swap regret at most R corresponds to an R/T-correlated
equilibrium.

Using this notion, we can rewrite Theorem 8 to the following proposition.

Proposition 9. For every e-correlated equilibrium m and for every 6 > 0 the probability
that user i sends successfully is at least

fi(L+0)py) €
fi(@=0)p)  fi((1=0)p})

Proof. Consider the following switching operation. Instead of the powers in the interval
[(1 —&)p!, (1 4 6)p;] user i could always choose (1 + d)p}. Since 7 is an e-correlated
equilibrium, this operation can increase the expected utility by at most e. We now have to
bound the change of the expected utility due to this switching operation.

Let € be the event that a vector p is chosen with p; € [(1 — d)p}, (1 + d)p}] then the
expected utility gain is

Pr,r [(1— )5 <p < (1+0)p7]

Prpr [€] - (Bpr [ui((1 4 0)p7, p—i) | €] = Epar [ui(p) [ €]) <€ . (2)

Now let us bound the two expectations in this sum.

When using power (1 + 0)p}, user ¢ will always be successful if the other users use a
power vector p_; < (1 + d)p*,. So when applying the switch operation, user ¢ gets an
expected utility conditioned on £ of

Epr [ui((1 4 0)pi,p—i) | €] 2 fi((1 4 0)p7) - Prpr [pi < (1 4+ 0)p%; | €]

11



which yields
Pr (€] Bypor [wi((1+ 8)p,ps) | €] > [i((140)p]) Prper [(1— 6)p" < p < (14+6)57] - (3)
On the other hand, we have
E,r [ui(p) | €] < fi((1 = 6)p;) - Prpr [transmission 4 is successful | £]
yielding
Pr €] Epr [ui(p) | €] < fi((1 = 9)p;) - Prpr [transmission ¢ is successful] . (4)
Combining Equations 2, 3, and 4, we get

Jil(L+6)p7) - Prpur [(1 = 8)p™ <p < (14 6)p7]
— fi((1 = 0)p;) - Prpr [transmission ¢ is successful] < e .

This yields the claim. O

It remains to bound the probability Pr,. [(1 — §)p* < p < (1 + §)p*]. For this purpose,
we bound the probability mass of states p with p £ (14 0)p* in Lemma 11 and of the ones
with p 2 (1 — 0)p* in Lemma 13. This way, we get the desired bound by

Prp . [(1—6)p* <p < (1+0)p']
=1=Prpor[p? (1 = 0)p*] = Prpur [p £ (14 0)p”]

The general proof ideas work as follows. In order to bound Pr,. [p £ (14 0)p*], we
consider which probability mass can at most lie on vectors p such that for some user i,
we have p; > (C'- p™** + (14 6/2) - n),;. This probability mass is bounded, because user i
could instead always use power (C - p™** 4 n),, as this is the maximum power needed to
compensate the interference in the case that p_; = p™#*. We then proceed in a similar
way always using the bound obtained before until we reach a point component-wise smaller
than (14 60)p*. The bound on Pry. [p # (1 — 0)p*] works in a similar way.

To see which probability mass lies on states by a factor § away from the fixed point p*,
we will now consider how much probability mass can at most lie on states p £ (1 + J)p*.
Afterwards, we will do the same for p #? (1 — §)p*. For the proofs the following general
observation on recursively defined sequences turns out to be helpful.

Observation 10. Consider a sequence (a)ien Satisfying the recursive inequality a; <
bzz;lo ar + c. Then we have
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Proof. In order to prove the bound, we define the following auxiliary sequence (z;)ien by
z:=(b+1) Zi;_:lo z, for t > 0 and zg = ¢. Observe now that this sequence dominates the
“real” sequence (a;)ien, this is ay < z; for all £ € N.

Furthermore, we have that z; < ¢(b+ 2)!. This can be proven by induction. For ¢t = 0
this is clear. Now observe

DS < eb ) S B2t < epr 1) D gy
2= (b+ )kzzjozk_c( + )kz::O( +2)" <e(b+ )m—c( +2)" .

This yields for the sum

t t
241 c t+1

E a <E 2 < < b+ 2 .

k=0 k_kzok_b+1_b+1( )

We now turn to the proofs of the key lemmas.

Lemma 11. Let m be an e-correlated equilibrium for some € > 0. Then for all 6 > 0, we
can bound the probability that p £ (1 + 6)p* is chosen by

, 9 T+1
Pryr[p £ (L+0)p"] <e (5 e s 2)

maz
2z
(1+5)pf

log max;cpy ‘1 - g—:

log % — log max;e [y

where T =

where s; denotes the minimal absolute value of the difference quotient of f; at any point p;
and p; + Sm;
i T 57

Proof. To prove this lemma, we will iteratively bound the probability mass which lies right
of p®, where p®) is given by the following iteration starting from p(® := p™a*_ For every

user i we define
o+ () )

This iteration is the FM iteration shifted by a factor of 1+ g. It shows the same behaviour
as the fixed-point iteration starting from p™®* with the noise vector being (1 + %) 7 instead
of n. The fixed point of this iteration then is p’ := (1 + g) p*. Let p” := (14 6)p*. Note
that p” > p'.

Now let be qp := Prpr [p Z p(o)} and g1 := Prp, [p % p(tH)} — Prpor [p £ p(t)].
We will bound these probabilities by considering the marginal distributions. This is,

13



for each user i we consider qp; = Prpr [pi > pl(-o)} and giy14 = Prpr {pi > pgtﬂ)] —

Pr, . [pi > pl(-t)] In this notation ¢ < >7%; g¢;.

Now fix some user ¢. We can bound gp; by the following observation. This user could

always use power (Cp™®* + n); instead of the powers between p(l) and pgo)

i . No matter
which powers the other users use, the transmission would still always be successful. Since
7 is an e-equilibrium this switching operation can only yield an expected utility gain of e.
Therefore it holds g; - go; < €, where g; = % -85 T

For t > 0, we can adapt this observation. We again consider the operation that always
uses power (C’p(t) +1n); instead of the powers between pE U and p( ) Unfortunately, under
this operation the transmission can become unsuccessful, but only if a vector p with p £ p®
has been chosen. This is user ¢ might lose all utility obtained by power vectors “cut off”
before. So we get

“qtyi Z qr < €,
or equivalently
1
qti < P <6+ Z%)
l

Summing up over all users then leads to
noq t—1 n 2 t—1
@<y — e+qu :25 e+qu
i—1 9 - " S5l
< 2n max + Z + Z
—_— 6 pr—
=75 , dk € dk

v 8§ min; g;

Using Observation 10 here yields for all t > 1

3 n—-= t+1
> gk < ,{mnijjl< = +2) §e<

min; g;

t+1
+2)

The iteration given here only deviates from the FM iteration by changing the noise
vector accordingly. So we can directly deduce the number of iteration steps to reach a
state p(I) < p” from Theorem 2. This is

min; g;

ma;L
1+

log max;e(y) ’1 - g—

i

log 9 7 — logmaxc(,

t>T =

Altogether it is now possible to bound the sum of all ¢; for ¢ > T as needed. O
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The probability that vectors below (1 — d)p* are chosen can be bounded in similiar
ways. For this, we define » = min; r;, and r; is a lower bound on the utility of user i at
(1+0)p*, ie., r < minep, fi((1+0)p;).

Lemma 12. Let 7 be an e-correlated equilibrium for some € > 0. Then for all § > 0, we
can bound the probability that p 2 (1 — 0)p* is chosen by

Proclo 2 (- 00 < (1 4 Pz (e o)) (1)

1
where T' = 089

log max;e [y ‘1 — I

Proof. We consider the same iteration steps as they are used in the fixed-point iteration
starting with p0) =0, ptt) = ¢ . p® 4 1. We now recursively “cut off” the probability
mass for vectors p ¥ p®

In order to bound the probability mass ¢; := Pr [p 7 p(t)} —Pr [p 7 p(tfl)} in the tth

step, we will recursively bound ¢; and ¢;; := Pr [pz- < p(t)

; } — Pr {pi < pgt_l)} similiar to
the proof of Lemma 11.

A user can gain r; - g;; utility by shifting the probability mass left of p® to (1+6)p*
But he might lose utility up to 1 —r; from states p £ (14 0)p* and from states that where
“cut off” before.

This is, we have

t—1

i Qi — (1 —1y) (p +) Qk> < e, where p = Pry; [p £ (1+6)p*],

k=0

and therefore i
e+ (1—=ri)p+ 33—l —1i)gk
ri

Qi <

Summing over all users j gives us

n . t—1 o
o < Ze+(1 ri)p+ 2 p—o(l — 73)qk

ri

1
n(e+(1—r +Z <_1)

Using again Observation 10 to solve the recursion, we can bound the sum of all ¢; for

t=0,....T by
e (Pa-me) < (1540 ()

ZQt

.

IN
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Having already found a bound for Pr,.. [p £ (1 + 6)p*] in Lemma 11, we can directly
conclude the following.

Lemma 13. Given an e-correlated equilibrium and u;(p™**) > r = for alli € [n]. Then
for every 6 > 0 the probability that a vector p 2 (1 — 0)p* is chosen is at most

T+1
Prp..[p? (1-0)p*] <e (2 T (” max —— + 2) ) (2n)T*1

0 i€ln] 8;in;
log § log% — log mMaX;e p] ﬁ
with T" = — and T = _2 L
log max;epy ‘1 ;7—% log max;e ) ‘1 - %

Combining Lemma 11 and 13, we get an upper bound on Pry,. [(1 — d)p* < p < (14 6)p*].
For appropriately chosen 4, this bound and Proposition 9 yield that the success probability
converges to 1 as e approaches 0. This also yields that in each no-swap-regret sequence for
each user the limit of the fraction of successful steps is 1. Furthermore, the chosen powers
also have to converge to p*.

6 Discussion and Open Problems

In this paper, we studied two distributed power control algorithms. We obtained the first
quantitative bounds on how long it takes in the FM iteration until the SINR is close to
its target value. Furthermore a novel approach based on regret learning was presented.
It overcomes some major drawbacks of the FM iteration. It is robust against users that
deviate from the protocol and it still converges in a partial-information model, where the
achieved SINR is not known. For no-swap-regret algorithms the convergence of the regret-
learning approach is guaranteed.

Considering general no-swap-regret sequences is only a weak assumption and therefore
the obtained bounds are not as good as the ones of the FM iteration. This yields a
perspective for possible future work. An algorithm particular for power control could be
designed based on the regret-learning approach presented in this paper.

Another aspect to be considered in future work could be discretization of the power
levels. The standard assumption is that users can choose arbitrary real numbers as powers.
In realistic devices this assumption might not be applicable. To the best of our knowledge,
the additional challenges arising in this case have not been considered so far.
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