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Abstract

The secretary model is a popular framework for the analysis of online admission problems beyond
the worst case. In many markets, however, decisions about admission have to be made in a distributed
fashion. We cope with this problem and design algorithms for secretary markets with limited information.
In our basic model, there are m firms and each has a job to offer. n applicants arrive sequentially in
random order. Upon arrival of an applicant, a value for each job is revealed. Each firm decides whether
or not to offer its job to the current applicant without knowing the actions or values of other firms.
Applicants accept their best offer.

We consider the social welfare of the matching and design a decentralized randomized thresholding-
based algorithm with a competitive ratio of O(logn) that works in a very general sampling model. It can
even be used by firms hiring several applicants based on a local matroid. In contrast, even in the basic
model we show a lower bound of Ω(logn/(log log n)) for all thresholding-based algorithms. Moreover, we
provide a secretary algorithm with a constant competitive ratio when the values of applicants for different
firms are stochastically independent. In this case, we show a constant ratio even when we compare to the
firm’s individual optimal assignment. Moreover, the constant ratio continues to hold in the case when
each firm offers several different jobs.

1 Introduction

In the secretary problem [15, 36] a firm interviews a set of applicants who arrive in an online fashion.
When an applicant arrives, his non-negative value is revealed, and the firm needs to make an immediate
and irrevocable decision on whether to make an offer to the applicant, without knowing the values of
future potential applicants. The objective is to maximize the (expected) value of the hired applicant. As a
fundamental online hiring scenario, this problem is well studied both in social science and computer science.
It is well known that the secretary problem, with an adversarial order, does not admit an algorithm with
any bounded competitive ratio. However, if applicants arrive in uniform random order, there is an online
algorithm that hires the best applicant with optimal probability approaching 1/e (see, e.g., [7]). For a more
detailed discussion on the secretary problem, we refer to, e.g., [3, 19].

The secretary problem constitutes a popular basis to study online admission scenarios with various
applications. In many of these scenarios, however, there are multiple firms that make offers and accept
applicants in a distributed fashion with limited information and without central coordination (e.g., online
resource allocation problems in large networks, hiring in job markets, online dating, school admission, casting
shows like ”The Voice”, etc.). Surprisingly little is known about how decision makers can successfully
coordinate in such scenarios to achieve an allocation that is good – from an individual or a social point of
view.
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In this paper, we study a natural generalization of the secretary problem from one firm to multiple firms
and from one hire to multiple hires. Applicants arrive sequentially in random order. Firms are decision
makers; that is, there is no centralized authority, and every firm can choose different hiring strategies (based
on observed information). Upon arrival of a new applicant, each firm can only observe its local information,
i.e., it has no knowledge about the values of other (firm, applicant)-pairs and the selected strategies of other
firms. Firms decide simultaneously about whether to make an offer to the applicant, and the applicant
accepts the offer of the most preferred firm. Our goal is to design and analyze strategies for the firms in such
a decentralized environment that allow the firms to obtain good allocations. The algorithms are evaluated
globally: We hope the outcomes achieve good social welfare (i.e., the total value obtained by all firms). Thus,
we measure the competitive ratio compared to the social welfare of the optimal allocation in hindsight.

We provide a strategy to approximate social welfare within a logarithmic factor, and we show almost
matching lower bounds on the competitive ratio for a very natural class of algorithms inspired by the
classic secretary algorithm. Since overcoming the obstacles posed by the lower bound seems difficult given
the limited feedback of our decentralized setting, our results give some evidence that, in the general case,
centralized control seems to be necessary to achieve good social welfare. Moreover, we identify a natural
setting that admits algorithms with small constant competitive ratio both globally and individually (with
respect to the best set of applicants for each firm). This implies that in some cases, algorithms can obtain
a good allocation, despite decentralized control and very limited feedback.

We stress that this work focuses on the challenges introduced by the distributed setting of a natural
online admission problem in the presence of multiple firms. In particular, we study how to obtain good
allocations even under limited information. In contrast, related work [9, 24, 25, 27] views firms as strategic
and self-interested entities, and aims to characterize properties of equilibrium behavior in secretary online
markets. Unfortunately, this is a highly intricate task, and such results have been restricted mostly to quite
special cases: all firms have the same preference over applicants, all applicants have the same preference
over firms, each firm can fully observe the strategies employed by every other firm, and each firm strives to
hire only the best applicant (for a review of the literature, see Section 1.3 below). In our setting, however,
information about values and strategies played by other firms is revealed only very indirectly. Moreover,
each (firm, applicant)-pair has a possibly arbitrary non-negative value and our algorithms generalize even
to firms having multiple positions.

As suggested by the proof of our lower bound, particularly the limited feedback provides a major challenge
to improve upon our main algorithm: Only if a firm makes an offer that is rejected by the applicant, this
firm could, in principle, deduce some information about the existence and the number of other firms in the
market (as well as their values for the applicants, or possibly even their strategies used for hiring) – this is
the only time when the existence of other firms makes a notable difference in the feedback of a given firm.
However, learning such information appears to require a minimum number of job positions for systematic
testing of possible competition in the market. A firm would have to increase the number of early offers to
obtain information about competition, at the expense of offering the job to possibly many bad applicants
and a high chance of terminating the learning/hiring process early with very suboptimal results. Whether
such strategies may lead to better allocations remains an interesting question for further work.

1.1 Model

We first outline our basic model, a decentralized online scenario for hiring a single applicant per firm with
random arrival. There is a complete bipartite graph G = (U, V,w) with sets U = {u1, u2, . . . , um} and
V = {v1, v2, . . . , vn} of firms and applicants, respectively. We assume that each firm can hire at most one
applicant.

There is a value or weight function w : U ×V → R+. The weights describe an implicit preference of each
individual to the other side. Each firm u ∈ U prefers applicants according to the decreasing order of w(u, ·)
of the edges incident to u; similarly, each applicant v ∈ V prefers firms according to the decreasing order of
w(·, v) of the edges incident to v. Note that in this definition, the preferences are symmetric: applicants and
firms use the same weights to determine their preference. A canonical more general preference setting would
specify an additional weight function w′ : V × U → R+, such that applicant v has a preference w′(v, u) to
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firm u that is possibly different from u’s preference w(u, v) to v. Since already the symmetric weights setting
provides a natural scenario to study the challenges raised by the decentralized setup, we do not consider
the more general case in the present paper and leave it open for further research. Furthermore, for ease of
presentation, we assume that no two edges have the same weight; for our results, this assumption can easily
be lifted, e.g., when the algorithm internally applies a tiny random perturbation to each weight.

Applicants in V arrive one by one to the market. Upon the arrival, each applicant v reveals to each firm
u the corresponding edge weight w(u, v). Each firm immediately decides whether to make an offer to the
applicant or not; after collecting all job offers, the applicant then picks the one that she prefers the most, i.e.,
the one with the largest weight. Note that each firm u can only see its own weights w(u, ·) for the applicants
arrived so far. It has no information about future applicants; in addition, all decisions cannot be revoked.
A firm can make multiple offers over time until it succeeds to hire an applicant. In this paper, we mostly
concentrate on the random permutation model, i.e., weights are fixed by an adversary but applicants arrive
in a uniformly random order. We also briefly mention extensions of our results to other standard models,
such as the iid model (weights drawn iid from known distributions), prophet-inequality model (different
known distributions, adversarial arrival), and more general models based on different mixtures of stochastic
and adversarial elements.

Our goal is to design decentralized algorithms that enable each firm to make decisions based only on its
own previously seen information, without any centralized authority that coordinates different firms. Due to
the online arrival some performance loss is unavoidable, and there are two natural objectives to quantify this
loss. The standard benchmark is the social welfare, defined to be the total weight of assigned firm-applicant
pairs. Formally, let M be a matching in G and define w(M) =

∑
(u,v)∈M w(u, v). For an algorithm A, we

say that the algorithm has a competitive ratio of α if, for all instances, we have w(M∗)/E
[
w(MA)

]
≤ α,

where M∗ is the maximum weight matching in G, and MA is the matching returned when every firm runs
algorithm A. Here the expectation is taken over the random permutation and, if the algorithm is randomized,
over its internal random bits. In addition, we examine the individual optimum for each firm (i.e., the value
of its best applicant) and the possibilities to obtain a constant competitive ratio for this benchmark. This
goal is obviously much more demanding than social welfare. It can be impossible, e.g., if there is a single
applicant that is extremely valuable for every firm, while all others are not valuable at all. Consequently, a
constant competitive ratio for individual optima can be achieved only in domains with additional structure.
In this paper, we obtain them when applicant values result from a stochastic process with a sufficient degree
of independence among firms.

1.2 Motivation, Contribution and Techniques

The starting point of our work is the observation that some interesting online hiring scenarios should not
be regarded as isolated instances of the secretary problem. Consider, for instance, job markets with “public
performance displays”: In these markets, we have performers and sponsors. In a performance, each performer
publicly demonstrates his or her qualities. Interested sponsors have to decide whether or not to make
them offers. Such hiring markets can be time-critical, thus we assume that this decision should be made
immediately. It is not hard to see that this setting closely fits our basic model, which thus provides an
avenue to study especially the aspect that all sponsors are influenced by the offers of other sponsors as well
as of the decision of the performers. In particular, as we shall see below, viewing the decentralized problem
as isolated secretary problems may quickly lead to globally unsustainable allocations in the market.

Specifically, in our basic model consider the case where every firm runs the classic secretary algorithm [15,
36]. In this algorithm, each firm u samples the first r(u) applicants, records the best weight seen in the
sample, and then makes an offer to every applicant that exceeds this threshold (see Algorithm 1 for a formal
description). Here, r(u) is a parameter chosen freely by firm u. In the classic secretary problem, i.e., if
only a single firm is present, its optimal choice (based on the number of applicants) is well known to satisfy
r(u) = Θ(n), and r(u) ≈ n/e when n becomes large.

It turns out that such a strategy fails miserably in a decentralized market, even if we allow each firm
ui to run the classic algorithm with a possibly different parameter r(ui) ∈ {1, 2, . . . , n}. The proof is based
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Algorithm 1: The classic secretary problem algorithm for firm u.

Parameter: Sample size r(u) ∈ {1, 2, . . . , n}
1 Reject the first r(u) applicants, denote the set of these applicants by R(u)
2 Tu ← maxj∈R(u) w(u, vj)
3 for applicant vt arriving in round t = r(u) + 1, . . . , n do
4 if w(u, vt) > Tu then
5 Make an offer to vt, stop if vt accepts

on two instances. If there is at least one firm ui with parameter r(ui) ≤
√
n, then the adversary presents

an instance that effectively reduces the problem to finding the best applicant for the single firm ui. Due to
the short sampling period, the probability of this event becomes small. Otherwise, if all parameters satisfy
r(ui) ≥

√
n, the adversary presents an instance with many applicants that are “bad” for all firms and only a

few (Θ(
√
n log n)) applicants that are “good” for all firms. With high probability, there will be at least one

“good” applicant in the common sampling period. Then all firms compete over the “good” applicants later
on, but at most O(

√
n log n) firms can hire one of them. In contrast, to achieve an optimal social welfare

each firm should hire an applicant.

Proposition 1. For every choice of parameters r : U → {1, 2, . . . , n}, when each firm ui uses the classic
secretary algorithm with parameter r(ui), the resulting assignment has a competitive ratio of Ω(

√
n/ log n).

Proof. Suppose there are n applicants and m = n firms. First, if there is a firm ui with r(ui) ≤
√
n, then we

consider an instance in which the best applicant for firm ui has weight 1 for firm ui. We let all other (firm,
applicant)-pairs have distinct weights in the interval [0, ε], for some sufficiently small ε > 0, in such a way
that every applicant has the largest weight for firm ui. Thus, every applicant prefers to join firm ui. Observe
that by choosing ε sufficiently small, the competitive ratio is dominated by the inverse of the probability
that firm ui hires its best applicant. Let jk be the k-th best applicant for firm ui, for k ≥ 1. Suppose the
best applicant in the sample set R(ui) is jk+1. Then the probability that the algorithm of firm ui hires j1 is
1/k. By iteratively drawing the positions for the best applicants, we see that

Pr [j1 hired] =

n−r(ui)∑
k=1

Pr [j1 hired | jk+1 best in R(ui)] ·Pr [jk+1 best in R(ui)]

=

n−r(ui)∑
k=1

1

k
·

r(ui)
n
·
k−1∏
j=0

n− r(ui)− j
n− 1− j

 ≤ r(ui)

n
·
n∑
k=1

1

k
= O

(
log n√
n

)
.

Otherwise, if r(ui) >
√
n for all firms ui, then we consider an instance in which applicants come in two

types: ng = d 12
√
n lnne ‘good’ applicants with weight 2 for all edges incident to them, and the remaining

‘bad’ applicants with weight 1 for all edges incident to them. (Recall that to avoid ties, we can add a small
perturbation εu,v on all pairs). Regardless of the permutation of the applicants, we have w(M∗) = m+ ng.
Next, we consider the matching MA returned by the algorithm and give an upper bound on E

[
w(MA)

]
.

Let r = d
√
ne, then in the first r rounds, the probability that no good applicant arrives is

p =

r∏
j=0

n− ng − j
n− j

≤
(

1− ng
n

)r
≤ e−

ng
n r ≤ e

− 1
2 ·

r√
n
·lnn ≤ n−

1
2 .

by the choices of ng and r.
Since each firm ui samples r(ui) ≥ r applicants, a “good” applicant arriving in the first r rounds is

observed by all firms. Additionally, since a good applicant is good for all firms, all thresholds will be set to
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2, and no ‘bad’ applicant can be hired. Hence, E
[
w(MA)

]
≤ p(m+ ng) + (1− p) · 2ng ≤ p(m+ ng) + 2ng.

We conclude that

E
[
w(MA)

]
w(M∗)

≤ p+
2ng

m+ ng
≤ n− 1

2 +
2d 12
√
n lnne

n+ d 12
√
n lnne

= Θ

(
log n√
n

)
.

Thus, an attempt to cope with the decentralized setting by using an optimal algorithm for isolated
secretary problems may be unacceptable both globally and individually. In this article, we study alternatives
to the classical secretary algorithm which (when followed by all participating firms) overcome the distributed
nature of the scenario and manage to provide reasonably competitive solutions.

In particular, in Section 3 we present an O(log n)-competitive solution based on sampling and thresholds.
Interestingly, the algorithmic approach we use here was devised by Babaioff, Immorlica and Kleinberg [4]
for a different extension of the secretary problem, namely to obtain a logarithmic guarantee for the matroid
secretary problem. We give a novel analysis of this approach in our decentralized setting. The main obstacle
we face are correlations between decisions of different firms, since all firms are presented the same, yet
random, arrival order. Roughly speaking, the key tool to overcome these difficulties is an abstraction that
bundles all stochastic decisions (due to the random arrival order) in a way that allows us to treat correlations
among firms conveniently using linearity of expectation. The remaining effects of applicant preferences and
competition can then be analyzed in a pointwise, worst-case fashion.

This algorithm can be applied very generally beyond the basic model. In fact, we prove the guarantee
in a more general scenario in which each firm ui has a private matroid Si and can accept any subset of
applicants that forms an independent set in Si. Furthermore, as shown in Appendix B, our analysis extends
to a general sampling model due to Göbel et al. [20] that encompasses the secretary model (random arrival,
worst-case weights), prophet-inequality model (worst-case arrival, stochastic weights), as well as a variety of
other mixtures of stochastic and worst-case assumptions.

Returning to the basic model, we contrast this upper bound with an almost matching lower bound for
thresholding-based algorithms. A thresholding-based algorithm samples a number of applicants, determines
a threshold, and then makes offers to every remaining applicant that has a weight above the threshold.
Although such algorithms are optimal in the centralized setting, every thresholding-based algorithm must
have a competitive ratio of at least Ω(log n/ log log n) in the decentralized setting. This shows that Babaioff et
al.’s approach is an almost optimal way to obtain such a threshold in the decentralized setting. Furthermore,
it illustrates the obstacles we need to overcome to obtain constant-competitive solutions. In particular, in
the proof of the lower bound, we carefully construct a challenge to guess how many firms contribute to the
social welfare, which is necessary to avoid overly high concentration of offers on a small number of valuable
applicants. Given the extremely limited feedback about the presence of other firms in our model, this seems
hardly possible in the general case.

In Section 4, however, we show that this challenge can be overcome if there is stochastic independence
between the weights of an applicant to different firms. We study this property in a generalization of our
basic model, namely decentralized secretary matching : here, each firm ui has ki different jobs to offer. Upon
arrival, an applicant reveals ki weights for each firm ui, one for each position. If each firm uses a variant
of the optimal e-competitive algorithm for bipartite matching [28], we prove that independence between
weights of different firms yields a constant competitive ratio. Moreover, each firm even manages to recover a
constant fraction of the individual optimum matching, and therefore almost plays a best response strategy.

Finally, we conclude in Section 5 with a discussion of open problems.

1.3 Related Work

The secretary model is a classic domain of stopping and online admission problems [15, 36]. The classic
algorithm results from analyzing and optimizing a recurrence that strives to optimize the probability of
hiring the best applicant. If n grows to infinity, the optimal probability approaches 1/e. There has been a
very large research interest in the secretary problem and its variants. For much of the earlier related work we
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refer to standard surveys [3, 19]. Here we discuss only directly related work on algorithms with competitive
ratios for secretary problems with combinatorial structure.

This work prominently addresses secretary models for packing problems with random arrival of elements.
This domain became prominent especially for the case of the matroid secretary problem [4], where elements
of a weighted matroid arrive in random order and reveal their weight upon arrival. The first algorithm for
this problem was O(log k)-competitive, where k is the rank of the matroid. More recently, the ratio was
reduced to O(log log k) [16, 35]. Constant-factor competitive algorithms have been obtained for numerous
special matroid classes, such as graphic [32], co-graphic [38], transversal [11], laminar [26], regular and
decomposable [12] and more [23,30]. More recently, these algorithms have also been adjusted and extended
to submodular objective functions [6,18,21]. It remains a fascinating open problem whether a constant-factor
competitive algorithm exists for all matroids or not.

Another popular domain is bipartite matching in the secretary model, where the firm has multiple
positions. This problem was first studied as transversal matroid, in which the firm needs to commit on the
allocation of applicants to positions only in the end of the hiring process. More recently, there has also been
interest in variants where the firm must commit on a specific a position at the time when hiring an applicant.
There have been several constant-factor algorithms for this problem [11,32]. Some of them apply specifically
when applicant values for positions have a product-form, which is common in ad-auctions [2]. In Section 4
we use an algorithm that applies to general non-negative weight and achieves an optimal approximation
factor of e [28]. Ideas for bipartite matching are also useful for solving secretary versions of packing linear
problems [10, 29, 37]. The ratios then depend asymptotically on the number of non-zero entries in each
column and the minimum ratio between right-hand-side value and constraint coefficients.

Secretary problems with multiple firms have started to attract attention recently in a game-theoretic
direction [9, 24, 25, 27]. These works assume that firms have full information about all arrived applicants,
their preferences, the preferences of all firms with respect to arrived applicants, and their hiring strategies.
Moreover, the existing works address the case with a uniform preference of firms over applicants and a
uniform preference of applicants over firms. In their setting, each firm has a single job, and the goal is to
hire the best applicant (and not necessarily the expected value of an applicant). In [25] a continuum of
arriving agents is studied, and earliest offering times in a Nash equilibrium are analyzed. A finite variant
and Nash equilibria of this problem are studied in [9], whereas algorithms for computing subgame-perfect
equilibria are given in [27]. In a slightly different direction, in dueling scenarios with two players the goal is
to hire a better applicant than the competitor [24]. In contrast, our work studies markets with significantly
different assumptions, since we explore markets with both decentralized control and restricted feedback.
Moreover, in our study firms can have several positions to offer, and preferences of firms and applicants can
be highly non-uniform.

Other variants of secretary problems with multiple decision makers are, e.g., variants where the goal is
to minimize blocking pairs of firms and applicants [5], or secretary problems with k queues [17]. Moreover,
secretary variants of combinatorial packing problems with ordinal feedback have been studied recently [22].

A related domain of work addresses the slightly different prophet inequality model [33, 34]. Here each
applicant has a known probability distribution for its value. The realization becomes known only upon arrival,
and arrival order is adversarial. In the basic model with a single job, there is an optimal stopping rule that
yields a 2-approximation. This factor 2 can, in fact, be extended to arbitrary matroids, and a constant-factor
guarantee exists even for polymatroids [14] or a intersection of a constant number of matroids [31]. Recently,
there has been increased interest in this work, especially in the context of Bayesian mechanism design and
posted-price mechanisms [1]. We also refer to [13] for current state-of-the-art approximation guarantees in
this domain.

Our analysis of the algorithm for the general case applies in a unifying sampling model recently proposed
as a framework for online maximum independent set in graphs [20]. It encompasses many stochastic adver-
sarial models for online optimization – the secretary model, the prophet inequality model, and various other
mixtures of stochastic and worst-case adversaries.

A preliminary version of this paper was published as an extended abstract in the proceedings of ICALP
2015 [8].
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2 Preliminaries

In this section, we give a more detailed account of our basic model and introduce further concepts to adapt
this model later on.

2.1 Basic Model

Our basic model consists of three components: the decentralized setting, random arrival order of worst-case
weights and measuring the global performance of algorithms by the social welfare. We remark that while all
of our results hold for this basic model, we generalize all upper bounds to more general settings and show
our lower bound already for a specialization of this model.

Decentralized Setting. We are given a complete and weighted bipartite graph G = (U, V,w), where
U = {u1, . . . , um} denotes the set of firms, V = {v1, . . . , vn} denotes the set of applicants and w : U×V → R+

denote the set of weights or preferences. There is a (possibly random) arrival order of the applicants; by a
slight abuse of notation, we name the applicants such that v1, . . . , vn always denotes the sequence of arriving
applicants.

An algorithm A, when running for firm ui, receives as input a sequence of weights w(ui, v1), . . . , w(ui, vn)
and decides upon arrival of vj whether or not ui makes an offer to vj . This decision must be based solely
on the following information: (1) the weights of all w(ui, v1), . . . , w(ui, vj) as well as (2) for all previous
applicants v`, ` < j for which A has decided to make an offer, v`’s decision of whether or not v` accepts the
offer.

Let A := (Ai)i∈[m] be a collection of algorithms. We denote by MA the allocation returned by the
following process: For each j = 1, . . . , n, the applicant vj receives the set S ⊂ [m] of offers, i.e., the
set of all i ∈ [m] such that ui makes an offer to vj , where each firm ui, i ∈ [m] runs its corresponding
algorithm Ai. Among this set, vj accepts the offer maximizing vj ’s preference, i.e., vj accepts the offer of
argmaxi∈Sw(ui, vj). Then MA is the set of all pairs (ui, vj) such that vj accepts the offer of ui. Observe
that by this definition, MA is always a matching in G.

The weight w(M) of any matching M in G is defined as the total weight
∑

(ui,vj)∈M w(ui, vj) of all

matched firm-applicant pairs. The social welfare of the collection of algorithms A is the weight w(MA) of
the allocation obtained by the firms running A.

Arrival Order and Preference Generation. We consider different possibilities to specify the preferences
between applicants and firms. In our basic model, an adversary specifies worst-case weights w(ui, vj). In
more specialized settings, we let the preferences be randomly generated, e.g., (1) each applicant vj draws
an independent applicant weight w(vj) from an applicant weight distribution Dj and is assigned the same
preference w(ui, vj) = w(vj) for all firms ui (independence among applicants), or (2) for each applicant vj ,
the weights {w(ui, vj)}i∈[m] could be drawn independently from potentially different distributions for each
firm (independence among firms). These alternatives are studied in Sections 3.2 and Sections 4, respectively.

As a realistic input assumption, our basic model assumes the classical secretary model : the applicants
arrive in a uniform random order.

Competitive Ratio. For a collection of algorithms A := (Ai)i∈[m], we say that A has a competitive ratio

of α if for all instances, we have w(M∗)/E
[
w(MA)

]
≤ α, where the expectation is taken over the internal

randomness of all algorithms Ai and the random arrival order. In Sections 3.2 and 4, where we consider
instances with randomly generated weights, we extend this notion canonically: in this case, the criterion
changes to E[w(M∗)]/E[w(MA)] ≤ α, where the expectations are taken over the randomly generated weights
in addition to the algorithms’ internal randomness and the random arrival order. We make this more formal
in the corresponding sections.
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2.2 Further Concepts and Conventions

Let [n] := {1, . . . , n}. Generally, there are two types of randomness occurring in our analysis: Internal random
bits of an algorithm A, and randomness inherent to the input instance I (which includes the random arrival
order of applicants and the possibly random weight generation process). Whenever we intend to stress the
distinction, we write EA[·] and EI [·] to denote the expectation over A’s internal random bits and the random
generation process of I, respectively. Similarly, when arguing over a distribution I over instances I, we write
EI [·] = EI←I [EI [·]] to take the expectation over first sampling an instance I and then generating weights
and an ordering of the applicants according to I.

In Section 3, we use the notion of matroids to generalize our basic model, which enables us to strengthen
our results. A matroid S = (E, I) consists of a non-empty ground set E and a non-empty family of
independent sets I ⊆ E satisfying the following two properties: (1) for any B ∈ I and A ⊆ B, we have A ∈ I
and (2) for any A,B ∈ I, if |A| < |B|, there exists an element x ∈ B \A such that A ∪ {x} ∈ I.

3 General Preferences

For general weights w : U × V → R+, Proposition 1 shows that the classic secretary algorithm may perform
poorly in a decentralized market. A reasonable strategy has to be more careful in adopting a threshold to
avoid extensive competition over a few applicants. We overcome this obstacle with a randomized thresholding
strategy similar to [4], and we analyze it in a very general distributed matroid scenario. In Appendix B,
we show that our bounds apply even within a general sampling model [20] that encompasses the secretary
model, the prophet-inequality model, and many other approaches for stochastic online optimization.

For the combinatorial structure of the scenario, we consider the case that each firm ui holds a possibly
different matroid Si over the set of applicants. In this setting, firm ui may accept an applicant as long as
the set of accepted applicants forms an independent set in Si. Special cases include hiring a single applicant
or any subset of at most ki many applicants. As the canonical generalization of the objective in the basic
model, each firm now strives to maximize the sum of the weights of hired applicants. In our algorithms, the
structure of Si does not have to be known in advance. It suffices that firm ui has an oracle to test if a set
of arrived applicants is an independent set in Si.

As a simple baseline, we can trivially obtain the following guarantee. Suppose there is an α-competitive
algorithm A’ for a single firm. We assume that every firm ui executes A’ in exactly the same way as if it was
the only firm in the market. In particular, if ui would actually be alone in the market and A’ would make an
offer to an applicant vj , then vj will accept it. Based on this, A’ possibly makes subsequent offers to another
applicant vj′ later on. Since ui is typically not alone in the market, the offer by A’ to vj could be turned
down. This would have an impact on the subsequent offers that A’ makes to vj′ (and other applicants).
However, for the following guarantee we assume this is not the case – for the decision about whether to offer
a position to an applicatn, A’ pretends that all previous offers were accepted (even though, in reality, some
applicants might actually have turned ui down). This serves to ensure that throughout each firm viewing
its applicant values acts exactly as if it would be alone in the market.

Proposition 2. Let algorithm A’ be any α-competitive algorithm for a single firm. Suppose every firm ui
runs a version A that pretends every applicant getting an offer from ui also accepts it. Then algorithm A is
mα-competitive.

Proof. For each firm ui, consider the individual optimum M∗i in hindsight. Clearly, there is one firm ui′ for
which this individual optimum has w(M∗i′) ≥ w(M∗)/m. Using A’, ui′ makes offers to a set of applicants
that constitute an α-approximation to the individual optimum. If an applicant decides against the offer of
ui′ , it accepts a better offer from a different firm, so it secures an even larger weight in the solution MA.
Hence, E[w(MA)] ≥ w(M∗i′)/α ≥ w(M∗)/(mα).

For general matroids it implies a competitive ratio of O(m log log kmax) using the currently best algo-
rithm [16, 35], where kmax is the maximum rank of any of the matroids Si. In the following section, we
describe an algorithm that significantly improves upon this trivial guarantee when m grows large.
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Algorithm 2: Thresholding algorithm for ui with matroids.

1 k ← Binom(n, 1/2)

2 Reject the first k applicants, denote this set by V Si
3 mi ← arg maxvj∈V S

i
w(ui, vj)

4 Xi ← Uniform(0, 1, . . . , dlog2 be+ 1), where b ≥ |M∗|
5 ti ← w(ui,mi)/2

Xi , Mi ← ∅
6 for all remaining vj over time do
7 if w(ui, vj) ≥ ti and Mi ∪ {vj} is independent set in Si then
8 make an offer to vj
9 if vj accepts then Mi ←Mi ∪ {vj}

3.1 Logarithmic Approximation

Algorithm 2 is executed in parallel by all firms ui. We first sample a fraction of k ← Binom(n, 1/2)
applicants and determine a random threshold based on the maximum weight seen by firm ui in its sample.
Firm ui then greedily makes an offer only to those applicants whose values are above the threshold. This
idea and extensions have been successful for approximating combinatorial secretary problems with a single
firm [4,16,32,35].

In line 4, the algorithm relies on an upper bound b ≥ |M∗|. A simple example is b = n, which is always
known and results in an O(log n)-competitive algorithm. In case there is additional knowledge about the
cardinality of the optimum solution, the guarantee can be improved. For example, if all firms know the
number of firms m and the maximum rank kmax of the matroids, then with b = mkmax the algorithm is
O(logm + log kmax)-competitive. In particular, if all firms know m in the basic model, the algorithm is
O(logm)-competitive.

Theorem 1. Algorithm 2 is 32(dlog2 be+ 2)-competitive.

Proof. We denote by V Si the set of applicants in the sample and by V Ii the other applicants. To ease the
analysis, we simulate the algorithm as follows: first, we assign every vj independently and uniformly to
V Si or V Ii , then compute ti, and finally consider applicants from V Ii in random order1. To see that this is
correct, one uses the principle of deferred decisions: Fix any set S ⊆ V . When running Algorithm 2, we
first use the internal randomness of (a) choosing k and (b) determining the prefix of the first |S| elements
of the random arrival order to obtain Pr[V Si = S] = Pr[k = |S|] · Pr[v1, . . . , v|S| is a permutation of S] =(
n
|S|
)
2−n ·

(
n
|S|
)−1

= 2−n. Then, the permutation of the remaining n − |S| elements in the random arrival

order is chosen independently and uniformly at random. Thus, V Si is chosen uniformly among all subsets
of applicants, and V Ii is a random permutation of the remaining applicants. This is equivalent to the above
described generation process. Note that in particular, the event vj ∈ V Si is independent of vj′ ∈ V Si for all
other applicants j′ 6= j, and occurs with probability Pr

[
vj ∈ V Si

]
= Pr

[
vj ∈ V Ii

]
= 1/2.

Let vmax
i = argmaxvjw(ui, vj) and v2ndi = argmaxvj 6=vmax

i
w(ui, vj) be the best and second best applicant

for firm ui, respectively. In addition, we denote by wmax
i = w(ui, v

max
i ) and w2nd

i = w(ui, v
2nd
i ) their weights

for firm ui. For most of the analysis, we consider another weight function, the capped weights w̃(ui, vj),
based on the thresholds ti set by the algorithm. Intuitively, the capped weights give a sufficiently good
lower bound on the actual weights while at the same time, from firm ui’s perspective, equalizing the weights
of many applicants. Roughly speaking, by arguing that our algorithm provides ui with a large-cardinality
independent set among a subset of applicants of equal capped weights, we can then bound the solution
quality in terms of the optimal solution.

1Such a simulation is used for the analysis of secretary algorithms in, e.g., [20, 32].
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Formally, we define the capped weights as follows

w̃(ui, vj) =


wmax
i if vj ∈ V Ii , ti = w2nd

i , and w(ui, vj) > w2nd
i ,

ti else, if vj ∈ V Ii and w(ui, vj) ≥ ti,
0 otherwise.

Observe that the definition of w̃ relies on several random events, namely, vj ∈ V Ii and the choice of the
thresholds ti. For any outcome of these events, however, we have that w̃(ui, vj) ≤ w(ui, vj) for all pairs
(ui, vj), since if ti = w2nd

i and w(ui, vj) > w2nd
i , then vj = vmax

i (recall that we assume no ties in w).
By the following lemma, in expectation over all the correlated random events, an optimal offline solution

with respect to w̃ still gives an approximation to the optimal offline solution with respect to w.

Lemma 1. Denote by w(M) and w̃(M) the weight and capped weight of a solution M , respectively. Let M̃∗

and M∗ be optimal solutions for w̃ and w, respectively. Then,

E
[
w̃(M̃∗)

]
≥ 1

16(dlog2(b)e+ 2)
· w(M∗).

Proof. Let (ui, vj) ∈ M∗ be an arbitrary pair. First, assume that vj maximizes w(ui, vj), i.e., vj = vmax
i .

With probability at least 1/4, we have vj ∈ V Ii and v2ndi ∈ V Si . For any such outcome, we have with probabil-
ity 1/(dlog2(b)e+2) that ti = w2nd

i and w̃(ui, vj) = wmax
i . This yields E [w̃(ui, vj)] ≥ w(ui, vj)/(4(dlog2(b)e+

2)).
Second, for any vj 6= vmax

i with w(ui, vj) > wmax
i /(2b), we know that vj ∈ V Ii and vmax

i ∈ V Si with

probability 1/4. Furthermore, there is some 1 ≤ k′ ≤ dlog2(b)e+1, with w(ui, vj) > wmax
i /2k

′ ≥ w(ui, vj)/2.
Under vmax

i ∈ V Si , we have with probability 1/(dlog2(b)e+ 2) that Xi = k′ and w̃(ui, vj) = ti ≥ w(ui, vj)/2.
Thus, with probability 1/(4(dlog2(b)e + 2)), we have vj ∈ V Ii and w̃(ui, vj) ≥ w(ui, vj)/2, which yields
E [w̃(ui, vj)] ≥ w(ui, vj)/(8(dlog2(b)e+ 2)).

Finally, we denote by M> the set of pairs (ui, vj) ∈M∗ for which w(ui, vj) > wmax
i /(2b). The expected

weight of the best assignment with respect to the capped weights is thus

E
[
w̃(M̃∗)

]
≥

∑
(ui,vj)∈M∗

E [w̃(ui, vj)] ≥
∑

(ui,vj)∈M>

w(ui, vj)

8(dlog2(b)e+ 2)

=
1

8(dlog2(b)e+ 2)
· (w(M∗)− w(M∗ \M>))

≥ 1

16(dlog2(b)e+ 2)
· w(M∗),

where the last inequality results from
∑

(ui,vj)∈M∗\M> wmax
i /(2b) ≤ maxi w

max
i /2 ≤ w(M∗)/2.

The previous lemma bounds the weight loss due to using the capped weights. In particular, by losing
only a logarithmic factor, we arrive in a setting where all applicants accepting an offer from ui contribute
the same value to the social welfare. The next lemma bounds the remaining loss due to random arrival of
elements in V Ii . Crucially, we relate the result of the algorithm under the actual weights to the optimal
solution under the capped weights.

Lemma 2. Suppose subsets V Ii and thresholds ti are fixed arbitrarily and consider the resulting weight
function w̃. Let MA be the feasible solution resulting from Algorithm 2 using the thresholds ti, for any
arbitrary arrival order of applicants in

⋃
V Ii . Then w(MA) ≥ w̃(M̃∗)/2.

Proof. We show w̃(M̃∗) ≤ 2 ·w(MA) by the following accounting scheme: We charge the weight of each edge
(ui, vj) ∈ M̃∗ under w̃ to the original weight w(ui′ , vj′) of a pair (ui′ , vj′) ∈ MA, using each pair in MA at
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most twice. W.l.o.g., we may assume w̃(ui, vj) > 0 for all (ui, vj) ∈ M̃∗, which implies that w(ui, vj) ≥ ti.
Consider any firm ui. We classify all applicants vj receiving an offer from ui by defining the condition

vj gets a better offer from another firm ui′ 6= ui with w(ui′ , vj) > w(ui, vj). (*)

First, consider the set of all edges (ui, vj) ∈ M̃∗ for firm ui, for which (*) holds. Then, each such vj is
assigned to some other firm ui′ that makes a better offer. Hence, (ui′ , vj) ∈MA with w(ui′ , vj) ≥ w(ui, vj) ≥
w̃(ui, vj), and we can charge (ui, vj) to (ui′ , vj).

Now consider the set of all edges (ui, vj) ∈ M̃∗ for firm ui, for which (*) does not hold. We denote
their number by ki. More generally, consider the superset Etii of all edges (ui, vj) (in or not in M∗) with
w(ui, vj) ≥ ti such that (*) does not hold. These are all edges with w̃(ui, vj) > 0 that firm ui can obtain
uncontested by other firms – we want to bound the value of the independent set in Si that ui chooses among
them. To this end, consider a maximum-cardinality independent set in matroid Si that uses only edges
from Etii . Denote this maximum cardinality by `i. Obviously, `i ≥ ki, since M̃∗ is feasible for firm i.
Moreover, firm ui accepts in MA at least `i applicants, irrespective of the arrival order. This is a simple
consequence of the exchange property of matroid Si. Thus, for each of the ki edges (ui, vj) ∈ M̃∗, for which
(*) does not hold, there is some edge (ui, vj′) ∈MA with w(ui, vj′) ≥ w̃(ui, vj′) = w̃(ui, vj) to which we can
charge it. This step can be done in such a way that it defines an injective mapping fi that maps j to j′ iff.
(ui, vj) ∈ M̃∗ ∩ Etii is charged to (ui, vj′) ∈MA.

Finally, consider an arbitrary edge (ui′ , vj′) ∈ MA. In the above accounting scheme, this edge can only

be charged by edge (ui, vj) ∈ M̃∗ if either vj = vj′ , in which case i is uniquely defined since j can only be
matched to one firm, or ui = ui′ , in which case j is uniquely defined since the mapping fi constructed above
is injective. Thus, (ui′ , vj′) is used at most twice. This proves w̃(M̃∗) ≤ 2 · w(MA).

Combining the insights of Lemmas 1 and 2, we see that that w(M∗) ≤ 32(dlog2 be + 2) · E
[
w(MA)

]
,

which proves the theorem.

In Appendix B we extend the result of this theorem to a general sampling model that includes the
secretary model, the prophet-inequality model and other models that combine stochastic and worst-case
adversarial elements.

3.2 Lower Bounds

Our general upper bound results from a thresholding-based algorithm. We contrast this result with a lower
bound for thresholding-based algorithms in the basic model (in which every firm wants to hire only a single
applicant). This shows that among all thresholding-based approaches, Algorithm 2 is close to optimal.
Furthermore, this demonstrates a major obstacle to obtain significantly sublogarithmic competitive ratios,
as the lower bound carefully constructs a challenge to determine information about the number of “relevant”
firms. Learning such information in our decentralized settings with restricted feedback appears hardly
possible: A firm only obtains information about the presence of other firms if it makes an offer to an
applicant who rejects in favor of another firm.

Formally, an algorithm A is called thresholding-based if during its execution A rejects applicants for
some number of rounds τ , then determines a threshold T and afterwards enters an acceptance phase. In the
acceptance phase, it makes an offer to exactly those applicants whose weight exceeds threshold T . Note that
the number of rejecting rounds τ in the beginning and the threshold T can be chosen arbitrarily at random
on the basis of the observed information. More formally, when running A for firm u we require that (1) τ is
a stopping time – also called Markov time – with respect to the sequence w(u, v1), w(u, v2), . . . , and (2) the
threshold T is a random variable depending only on w(u, v1), . . . w(u, vτ ).

In Section 3.2.1, we consider the case in which the number of firms is unknown to an algorithm. Here, we
show a lower bound even for a class of identical-firm instances, in which for each applicant vj all firms have
the same weight, i.e., there is w(vj) ≥ 0 such that w(ui, vj) = w(vj) for every firm ui. The main challenge
here is to guess the right number of firms m in order to concentrate on the most profitable class of applicants.
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Note that in this class of instances we always have m ≤ n. Still, we manage to show a lower bound that
depends on n, since m remains unknown and the best upper bound on |M∗| that is known to the firms is n.

In Section 3.2.2, we consider the alternative case in which the number of firms present is public knowledge.
More formally, for any fixed m, we consider an arbitrary collection of thresholding-based algorithms for these
m firms and bound the competetive ratio of the allocation obtained by this collection. To do so, we adjust
the instance for oblivious algorithms to contain an unknown number of firms that contribute only negligibly
to the social welfare. In fact, here we ensure that our instance satisfies m = n, and hence the lower bound
can be expressed as Ω(logm/(log logm)). This almost matches our upper bound in the basic model for the
case that firms know m. More generally, one can always add more dummy applicants with weight 0 for all
firms. This shows that the lower bound in m continues to hold even more generally when m ≤ n for the case
that m is known to the firms.

3.2.1 Oblivious Algorithms

For algorithms oblivious to m, we prove the lower bound in the (identical-firm) iid model, which is a special
case of the prophet-inequality model, and effectively can be interpreted a special case of the secretary model.
Here, we consider instances restricted to identical firms: each applicants has a global weight w(ui) and all
firms ui have equal preference w(ui, vj) = w(vj) to this applicant. In the identical-firm iid model, we draw the
weight w(vj) for each vj independently at random from a single distribution D. Since each applicant value
is drawn independently from the same distribution, a random arrival order is equivalent to an adversarial
arrival order. Note that an instance is completely specified by the number of applicants n, the applicants’
weight distribution D and the number of firms m.

As usual, since the optimal allocation M∗ becomes a random variable, we relate the expected quality
of the algorithm’s allocation to the expected optimum: An algorithm A has competitive ratio α, if for all
instances I = (n,m,D), we have E[w(M∗)]/E[w(MA)] ≤ α, where M∗ is the optimal offline solution, MA

is the allocation returned when all firms run algorithm A and the expectation is taken over the randomly
generated preferences and A’s internal randomness.

We give a lower bound of Ω(log n/(log log n)) using an idea similar to the one underlying the proof of
Proposition 1. Recall that in this proof, there are two classes of ‘good’ and ‘bad’ applicants. Instead, here
we construct an instance with logarithmically many classes of applicants. The weights of applicants in larger
classes is decreasing, but the total number of applicants in these classes is increasing. In total, the applicants
in larger classes can generate more welfare – if there are enough firms to hire them. However, if the number
of firms is too small, then offering to applicants from higher classes with lower weights is a bad strategy.
These applicants generate small total weight, and since their numbers are significantly larger, the probability
to hire an applicant from a lower class with high weight is very small. Thus, guessing the right order of
magnitude of m represents the inherent difficulty on which the lower bound is based.

Theorem 2. Let A be a thresholding-based algorithm oblivious to the number of firms m. Then there is an
infinite family of instances I = (n,m,D) in the identical-firm iid model in which m ≤ n and the allocation
obtained by every firm running algorithm A has a competitive ratio of Ω(log n/(log log n)). This lower bound
also holds in the secretary model.

Proof. For every t ∈ N, t ≥ 3, we construct an instance I = (n,m,D) on n =
∑t
j=1 t

2j = (t2t−1)·t2/(t2−1) =

(1 + o(1)) · t2t applicants. Since t2t < n < t2t(1 + o(1)), this yields t = Θ(log n/(log log n)). To define the
distribution D over the applicants’ weights w(vj), we set Prw←D[w = t−j ] = t2j/n for j = 1, . . . , t. Observe
that by definition of n, this indeed yields a probability distribution.

The crucial part is to define the number of firms m. To obtain the desired number via an averaging
argument, we analyze the threshold-setting behavior of A – note that A’s threshold is not influenced by
other firms, as A makes no offers (and learns no feedback about other firms) before determining a threshold.
In particular, consider the threshold that A sets when presented with n applicants with weights drawn iid
from D. We may assume without loss of generality that it chooses a threshold among {t−1, . . . , t−t}, since
all other choices are equivalent to one of these with regard to the set of applicants receiving an offer. Let
pj be the probability (over the randomness of the applicants’ weights and the random choices of A) that
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A picks threshold t−j . Clearly, there is some 1 ≤ k ≤ t with pk ≤ 1/t. Setting the number of firms

to m =
∑k
j=1 t

2j < (9/8)t2k finally concludes the definition of the instance I. Intuitively, to obtain a

competitive solution in this instance, most firms should choose a threshold of t−k, yet by our choice of k,
few firms do so (in expectation).

We now analyze the social welfare obtained when all firms run A in the above constructed instance. Let
Fj be the number of firms with threshold t−j . Note that while the thresholds chosen by different firms may
be correlated, we have E [Fj ] = mpj by linearity of expectation. Thus, E [Fk] ≤ m/t by choice of k, which is
the main property we exploit below.

We define classes C1, . . . , Ct, where class Cj consists of all applicants vj′ with value w(vj′) = t−j . Let
us furthermore denote by Ti the threshold chosen by firm ui. We categorize the contribution of each firm-
applicant pair (ui, vj) (of the algorithm’s allocation) to the social welfare into one of three types: (T1) ui
has a threshold of Ti ≥ t−k and vj belongs to an applicant class C1, . . . , Ck−1, (T2) ui has the threshold
Ti = t−k and vj belongs to applicant class Ck and (T3) ui has a threshold of Ti ≤ t−(k+1). Observe that

each matched pair corresponds to exactly one category, since each firm ui with threshold Ti = t−k
′

only
accepts candidates among C1, . . . , Ck′ .

Consider the contribution of all pairs of type (T1): trivially, the total contribution is at most
∑k−1
j=1 |Cj |t−j ,

since each applicant in C1, . . . , Ck−1 can be matched at most once. To bound the expectation of this
term, consider iid random variables Yj′ that take the value of the j′-th candidate if it falls into classes
C1, . . . , Ck−1 and 0 otherwise. Formally, Yj′ ∈ [0, 1] are iid with Pr[Yj′ = t−j ] = t2j/n for j = 1, . . . , k − 1
and Pr[Yj′ = t−j ] = 0 for j = k, . . . , t. Then, since t ≥ 3,

E

k−1∑
j=1

|Cj |t−j
 = E

 n∑
j′=1

Yj′

 =

k−1∑
j=1

tj < (3/2)tk−1 . (1)

We turn to the type-(T2) pairs. Their total contribution is bounded by Fk · t−k, since only firms with
threshold t−k can participate in such a pair (contributing a value of t−k in this case) and each such firm can
be matched to at most one applicant. By the choice of k, we have

E [Fk] t−k ≤ m/(tk+1) < (9/8)tk−1. (2)

Finally for type (T3), consider any firm with threshold Ti = t−k
′

with k′ ≥ k + 1. Let Wi be the value
of an applicant matched to firm ui (or zero, if ui remains unmatched). We argue that Wi is stochastically
dominated by the random variable wcond ← D conditioned on wcond ∈ {t−1, . . . , t−k

′}, using the principle
of deferred decisions: to condition on ui having threshold t−k

′
, we first only need to reveal the value of all

applicants in the sample. For all remaining applicants, we draw their weight at the moment they arrive.
Whenever an applicant vj arrives, we draw its value w(vj) from D, resulting either in w(vj) < t−k

′
in which

case ui makes no offer, or w(vj) ∈ {t−1, . . . , t−k
′} and ui makes an offer. If an offer is made and vj accepts

it, then the value contributed by (ui, vj) is distributed exactly as wcond, as desired. Otherwise, no offer is
made or an offer is made but declined by vj in favor of another firm, and we turn to the next applicant (if
available). This process terminates either with an applicant matched to ui, contributing a value distributed
as wcond, or with no applicant matched to ui, yielding a contribution of 0 ≤ wcond, yielding the claim.

We define S =
∑k′

j=1 t
2j . Since the expectation of Wi is bounded from above by the expectation of wcond,

we obtain

E[Wi] ≤
k′∑
j=1

t2j

S
· t−j <

3tk
′

2t2k′
≤ (3/2)t−(k+1). (3)

Using (1), (2) and (3), we can thus bound the expected contribution of all types to the social welfare by

EI,A[w(MA)] ≤ E

k−1∑
j=2

|Cj |t−j
+ E [Fk] t−k + E

[
m∑
i=1

Wi

]
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≤ (3/2)tk−1 + (9/8)tk−1 + (3/2)mt−(k+1)

< (3/2)tk−1 + (9/8)tk−1 + (27/16)tk−1

= (69/16)tk−1.

It remains to give a lower bound of Ω(tk) on the expected weight of the optimal solution. To this end, we
bound |Ck| using a standard Chernoff bound. We have, over I,

Pr[|Ck| < (1/2)t2k] ≤ exp(−t2k/8) .

Hence, with probability at least (1 − exp(−t2k/8)) there exists a matching that includes at least t2k/2
applicants of class Ck. Since t ≥ 3 and k ≥ 1, the optimum solution M∗ has expected value at least

EI [w(M∗)] ≥ t−k · t
2k

2
·
(

1− e− t2k

8

)
> tk/3 .

Recall that t = Ω(log n/ log log n). Thus, in the iid model, the ratio of expectations is at least

EI [w(M∗)]

EI,A[w(MA)]
>

(1/3)tk

(69/16)tk−1
> t/13 = Ω

(
log n

log log n

)
.

Note that we did not optimize any constants, since we only intend to show that the asymptotics do not hide
large constants. In fact, since the constants result from bounding exponential series and tail bounds, they
can be expressed as functions of t that approach 1 quickly as t grows large.

Finally, let us connect the result to the secretary model: observe that EI [w(M∗)] is the average of w(M∗)
over all randomly generated random weights, while EI,A[w(MA)] is the average over EA[w(MA)] (where the
randomness is taken over A’s internal randomness and the uniform random arrival order) weighted over all
randomly generated weights. As a simple consequence of standard calculus there must be a choice of weights
with competitive ratio

w(M∗)

EA[w(MA)]
≥ EI [w(M∗)]

EI,A[w(MA)]
= Ω

(
log n

log log n

)
.

3.2.2 Algorithms with Knowledge of m

We extend the previous result to the case in which each firm knows m. In this case, we do not give an
identical-firm instance, but introduce a second category of firms that we call non-valuable. Formally, we use
the following, slightly more general 2-category iid model : Partition the set of firms U into two disjoint subsets
U1 and U2. Analogously to the identical-firm case, there are two distributions D1 and D2 over applicant
weights. For every applicant vj , we draw his applicant values w`(vj) ← D`, ` ∈ {1, 2} independently and
set w(ui, vj) = w`(ui, vj) for each ui ∈ U`, ` ∈ {1, 2}. Thus, any instance in the 2-category iid model is
completely specified as I = (n,U1, U2, D1, D2).

Consider any number of firms and fix, for each firm ui, a thresholding-based algorithm Ai. We aim
to show that already in the 2-category iid model, the collection of algorithms A := (Ai)i∈[m] is only
Ω(logm/(log logm))-competitive. Note that we call the collection (Ai)i∈[m] α-competitive, if for all instances,
the competitive ratio E[w(M∗)]/E[w(MA)] is bounded by α, where M∗ is the optimal offline solution and
MA is the allocation returned when each firm ui runs its corresponding thresholding-based algorithm Ai.
For our lower bound, we may even allow the firms to use shared random bits.

We first sketch the difference to the previous lower bound: Consider any number of firms m and let Ai
be a thresholding-based algorithm for firm ui. We create an instance with n = m applicants. Here, the
adversary picks a number m′ as the number of valuable firms which depends on the set of algorithms A used.
For every non-valuable firm, every applicant value is multiplied with ε� t−t. Hence, the non-valuable firms
contribute negligibly to the value of any matching. As before, m′ is chosen such that the few valuable firms
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have to pick the desired threshold to obtain a good allocation. Thus, the lower bound continues to hold in
this setting. Since m = n, this also implies a lower bound of Ω(logm/(log logm)).

The following theorem makes the above proof sketch formal.

Theorem 3. There is some c > 0 such that for any sufficiently large m and any collection of thresholding-
based algorithms A := (Ai)i∈[m], there is an instance I in the 2-category iid model such that A has a
competitive ratio of at least c · logm/(log logm). This lower bound also holds in the secretary model.

Proof. We first construct a distribution over instances I = (n,U1, U2, D1, D2) with n = m = |U1| + |U2|
as follows. Let t be the largest integer with

∑t
j=1 t

2j ≤ m. Since t2t < m < (t + 1)2(t+1)(1 + o(1)), this
yields t = Θ(logm/(log logm)). At the moment, we only define the valuable-firms distribution D1 over the
applicants’ weights w(vj) by setting Prw←D1 [w = t−j ] = t2j/n for j = 1, . . . , t.

Analogously to the proof of Theorem 2, consider the thresholds determined by the firms when presented
with applicants with weights sampled from D1. Without loss of generality, we may assume that each Ai
picks a threshold among {t−1, . . . , t−t}. Let Xij be an indicator variable that equals 1 if and only if firm ui
picks threshold t−j . Let Fj =

∑m
i=1Xij be the number of firms picking threshold t−j . Clearly, there is some

1 ≤ k ≤ t such that E[Fk] ≤ m/t. This determines the number of desired valuable firms m′ =
∑k
j=1 t

2j .
This allows us to define a distribution I over instances I as follows. We sample U1 ⊆ [m] uniformly

at random from the set of all subsets of size m′ of [m]. We obtain the distribution D2 by scaling each
value sampled from D1 by a sufficiently small constant ε > 0, i.e., Prw←D2

[w = εw′] = Prw←D1
[w = w′].

It remains to show that EI [w(M∗)]/EI,A[w(MA)] ≥ c logm/(log logm) – it is straightforward to conclude
then that there is an instance I in the support of I with EI [w(M∗)]/EI,A[w(MA)] ≥ c logm/(log logm).

In particular, for every I in the support of I, let Iiid = (n,m′, D1) be the identical-firm iid instance
obtained by ignoring all non-valuable firms. We have EI←I [EIiid [w(MA)]] ≤ (69/16)tk−1 by reworking the
analysis of the proof of Theorem 2: The bounds on the contribution of all type-(T1) and type-(T3) applicant-
firms pairs, given in (1) and (3), hold pointwise for all Iiid with I in the support of I. For the bound (2)
on all type-(T2) pairs, we no longer necessarily have EIiid [Fk] ≤ m/t, however, EI←I [EIiid [Fk]] ≤ m/t still
holds. Thus, by combining the bounds on the expected contribution (over Iiid with I ← I) for all three
types, we obtain the claim verbatim as in the proof of Theorem 2.

There is a negligible loss by ignoring all non-valuable firms: By choosing a sufficiently small ε > 0, we
can ensure that each weight in the support of D2 is strictly smaller than the weights in the support of D1.
Thus for every I in the support of I, the contribution of all valuable firms to the social welfare is at most
EIiid [w(MA)]. Indeed, whenever a valuable firm makes an offer, the applicant never rejects the offer in favor
of a non-valuable firm. Thus, the allocation of valuable firms is correctly simulated by the identical-firm iid
instance Iiid. Furthermore, the total contribution of non-valuable firms to the social welfare is bounded by
mε/t, which can be made arbitrarily small by choosing ε sufficiently small.

Finally, we observe that the lower bound EI [w(M∗)] ≥ EI←I [EIiid [w(M∗)]] ≥ tk/3 can be shown verbatim
as in the proof of Theorem 2. Combining the arguments above, we obtain

EI [w(M∗)]

EI,A[w(MA)]
≥ (1/3)tk

(69/16)tk−1 +mε/t
> t/13 = Ω

(
logm

log logm

)
,

for sufficiently small ε > 0, yielding the desired claim for m = n. We sketch how to show that this lower
bound in m also holds for n ≥ m: Simply modify the distribution D1 to Prw←D1 [w = t−j ] = t2j/n for
j = 1, . . . , t, where the remaining probability mass is assigned to Prw←D1

[w = 0] = 1 −
∑t
j=1 t

2j/n. It is
straightforward to adapt the proof to this case.

Finally, the connection to the secretary model follows analogously to the proof of Theorem 2.

4 Independent Preferences

In this section, we show a constant competitive ratio for decentralized matching in the secretary model when
the preferences are independent among firms. In particular, for each firm the preference over applicants can
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be adversarial, but the preference profiles for different firms are composed independently. This contrasts our
lower bound from the previous section, where for each firm the preferences over applicants were iid, but the
preference profiles for different firms were composed in an adversarial way.

Independent Preferences in the Basic Model. The basic model with independent preferences is a
special case of the basic model (which is characterized by adversarial weights and uniform random arrival
order). In this special case, the adversary specifies a separate set Pi of n applicant values for each firm ui.
In round t, when a new applicant vt arrives, we pick one remaining value pit ∈ Pi for each firm ui ∈ U
independently and uniformly at random. The weight for firm ui is then given by w(ui, vt) = pit. We pick
values from Pi uniformly at random without replacement.

Special cases of this model are, e.g., when all weights for firms are independently sampled from a certain
distribution. In particular, let each firm ui have some weight distribution Di, and sample, upon arrival of
vt, all weights w(ui, vt) independently from Di; then this yields a special case of the basic model where for
each applicant the preferences over each firm are independent.

Firms with Multiple Positions. We conduct the analysis in a more general domain when each firm has
several positions. We generalize the basic model to a decentralized secretary matching model: Instead of
maintaining a single position (or, as in Section 3.1, independent sets in a matroid Si), firms may have more
than a single position available and each applicant has different qualifications, i.e., weights for each individual
position. More formally, we assume firm ui has a set Ui of ki positions available. Whenever an applicant
arrives, each firm must make an immediate decision whether or not to make an offer to the applicant, and
if so, to which position uij ∈ Ui. If an applicant accepts the offer, position uij is irrevocably filled by the
applicant.

Consider first the case with multiple positions per firm, adversarially chosen weights w(uij , vt) for all
positions uij ∈ Ui for each firm ui and each applicant vt, and random-order arrival of applicants. This is a
generalization of the basic model studied in the previous section, so the logarithmic lower bound of Theorem 2
applies. Moreover, a straightforward O(log n)-competitive algorithm is to run Algorithm 2 separately for
each position of each firm. View every position of a firm as an independent subfirm simulating Algorithm 2:
Whenever an applicant arrives, each regular firm ui collects all offers of its subfirms, forwards only the
highest-weight offer to the applicant and gives feedback about rejection/acceptance to the subfirms. Since
applicants always choose the highest offer they receive, the allocation returned is the same as in an instance
of the basic model consisting of all independent subfirms. Since in such an instance the social welfare for
all subfirms is identical to the social welfare for all firms in the original instance, the competitive ratio of
O(log n) of Algorithm 2 transfers directly, and the claim follows.

Independent Preferences and Multiple Positions. Instead of completely adversarial weights w(uij , vt)
for all positions uij ∈ Ui for each firm ui and each applicant vt, we consider the following case of independently
chosen preferences: An adversary specifies a separate set Pi of n applicant profiles for each firm ui. An
applicant profile p ∈ Pi is a function p : Ui → R+. In round t, when a new applicant vt arrives, we pick
one remaining profile pit ∈ Pi for each firm ui ∈ U independently and uniformly at random. The weight
for position uij ∈ Ui is then given by w(uij , vt) = pit(uij). We pick profiles from Pi uniformly at random
without replacement.

In this case, when n ≥
∑m
i=1 ki and ki ≤ αn for all i ∈ [m] and some constant α ∈ (0, 1), we can achieve a

constant competitive ratio using Algorithm 3. This algorithm resembles an optimal algorithm for secretary
matching with a single firm [28]. Each firm rejects a number of applicants and enters an acceptance phase.
In this phase, it maintains two virtual solutions: (1) an individual virtual optimum M∗i,t with respect to
applicants that arrived up to and including round t, and (2) a virtual solution M ′i where all applicants are
assumed to accept the offers of ui. If the newly arrived applicant vt is matched in M∗i,t, it is offered the same
position unless this position is already filled in M ′i .

Note that for a single firm in the basic model, this algorithm reduces to the standard e-competitive
algorithm discussed in the introduction. As such, our approach here is exactly the one we outlined above

16



Algorithm 3: Matching algorithm for firm ui for independent weights

1 Reject the first r − 1 applicants
2 Mi,M

′
i ← ∅

3 for applicant vt arriving in round t = r, . . . , n do
4 Let M∗i,t be optimum matching for firm ui and applicants {v1, . . . , vt}
5 if vt is matched to position uij in M∗i and uij is unmatched in M ′i then
6 Make an offer for position uij to vt
7 M ′i ←M ′i ∪ {(uij , vt)}
8 if vt accepts then
9 Mi ←Mi ∪ {(uij , vt)}

in Proposition 2. The main point is to show that under the conditions on n and ki, the properties of this
specific algorithm combined with the independence among firms avoid the increase of a factor of m in the
competitive ratio.

Theorem 4. Algorithm 3 achieves a constant competitive ratio for firms with multiple positions and inde-
pendent preferences.

Proof. Fix a firm ui. The matching M ′i is constructed by assuming that ui is the only firm in the market,
i.e., every applicant accepts the offer of firm ui. Consider the individual optimum M∗i,n in hindsight. Then,
by repeating the analysis of [28, Section 2] and replacing the sampling size of dn/ee by r − 1, the expected
value of M ′i becomes

E [w(M ′i)] ≥
n∑
`=r

r − 1

`− 1
·
w(M∗i,n)

n
≥ r − 1

n
ln

(
n

r − 1

)
· w(M∗i,n) = f(r) · w(M∗i,n) ,

where we denote the ratio by f(r). Recall that ki ≤ αn and set r = βn for some constant β ∈ (0, 1) such
that β > α. This ensures that f(r) is bounded by a constant.

Let us now analyze the performance of the algorithm in the presence of competition. Consider applicant
vt in round t and the following events: (1) P (ui, vt) is the event that ui sends an offer to vt, and (2) A(ui, vt)
is the event that ui sends an offer to vt and he accepts it. ui’s decision to offer depends only on M∗i,t and
M ′i , but not on the acceptance decisions of earlier applicants. vt for sure accepts an offer from ui if ui offers
and no other firm offers. Offers from other firms ui′ occur only if ui′ is matched in M∗i′,t. More formally,
A(ui, vt) occurs (at least) if P (ui, vt) and none of the P (ui′ , vt) occur. Since the profiles for different firms
are combined independently

Pr [A(ui, vt) | P (ui, vt)] ≥
∏
i 6=i′

(1−Pr [P (ui′ , vt)]) .

Consider the probability that vt is matched in M∗i′,t. Since the order of profiles for ui′ is independent
of the order for ui, we can imagine again choosing t profiles uniformly at random. After choosing these t
profiles, we pick the one for vt uniformly at random. The t profiles determine M∗i′,t, which matches min(t, ki′)
profiles. Since the profile of the last applicant is determined at random, the probability that vt is matched
in M∗i′,t is at most min(1, ki′/t). As t ≥ r = βn > αn ≥ ki′ , we have

Pr [P (ui′ , vt)] ≤

{
0 if t ≤ r − 1,

ki′/(βn) otherwise.

Thus, for t ≥ r

Pr [A(ui, vt) | P (ui, vt)] ≥
∏
i 6=i′

(1−Pr [P (ui′ , vt)]) ≥ exp

(
m∑
i=1

ln

(
1− ki

βn

))
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≥ exp

(
−

m∑
i=1

1

1− (α/β)
· ki
βn

)
≥ exp

(
− 1

β − α

)
.

The third inequality follows since ki ≤ αn implies (1 − ki/(βn)) ≥ 1 − α/β. Furthermore, it holds that
ln(1− x) ≥ − x

1−x for all x ∈ (0, 1) (see Fact 1 in the Appendix). The last inequality is due to n ≥
∑
j kj .

Consequently, E [w(Mi)] recovers at least a constant fraction of E [w(M ′i)], which represents a constant
factor approximation to the individual optimum M∗i,n for i in hindsight. By linearity of expectation, the
algorithm achieves a constant competitive ratio for the expected weight of the optimum matching.

5 Conclusion and Open Problems

In this paper, we study online secretary problems with n applicants, m firms, and local information. We ana-
lyze thresholding-based algorithms and show how to obtain a competitive ratio of O(log n), even if firms can
accept sets of applicants based on a local matroid. Moreover, we show a lower bound of O(log n/(log log n)) if
all firms use thresholding-based algorithms. These bounds continue to hold in terms of m if every firm knows
the number of firms in the market. For a more structured domain, we show that a constant competitive
ratio can be achieved.

It is an interesting open problem if our bounds can be improved, in general and for other meaningful
special cases. For the general case, a crucial issue is to determine the right order of magnitude of firms that
contribute significantly to social welfare. In the basic model, if a firm makes no offer, then the firm does
not obtain feedback that allows it to learn the number of firms competing in the market. Feedback about
the number of (better) firms is generated only by accepted and rejected offers. Crucially, to circumvent the
lower bound that thresholding-based algorithms face, we would need to use this feedback to learn information
about the number of (better) firms or deduce other market parameters. Such information might then be
helpful in designing better algorithms.
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for weighted bipartite matching and extensions to combinatorial auctions. In Proc. 21st European Symp.
Algorithms (ESA), pages 589–600, 2013.
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A Useful Facts

Fact 1. For all x ∈ [0, 1) it holds that

ln(1− x) ≥ − x

1− x
.

Proof. For x = 0 we have equality. The derivative of the left and right hand sides are −(1 − x)−1 and
−(1 − x)−2, respectively. Hence, the right-hand side drops faster when x > 0 grows towards 1, so the
inequality holds for the entire interval.

B Extension to the Sampling Model

In this section, we extend our logarithmic approximation to a general sampling model presented in [20]. This
model extends the secretary model (adversarial values, random-order arrival), the prophet-inequality model
(stochastic values from known distributions, adversarial arrival) as well as other mixtures of stochastic and
worst-case aspects.

Formally, in the sampling model we have two values for each firm-applicant pair (ui, vj), a non-negative
sample value wS(ui, vj) and a non-negative input value wI(ui, vj). The sample and input values are both
drawn from possibly different, unknown distributions. For a single applicant vj the sample and input
distributions can be arbitrarily correlated among different firms and among each other. However, there is
no correlation among distributions of different applicants. This defines a probability space over a class of
instances I.

The arrival process proceeds as follows. First, the adversary draws all values wS(ui, vj) and wI(ui, vj)
for all pairs (ui, vj). It then reveals to firm ui all drawn sample values wS(ui, vj), for all applicants vj .
Subsequently, depending on the drawn values wI it chooses a worst-case arrival order of applicants. Upon
arrival, an applicant vj reveals its “real” value wI(ui, vj) to firm ui. The algorithm A for firm ui decides
whether to make an offer to vj , and applicant vj accepts an offer that maximizes wI(ui, vj). Then the
next applicant arrives. Decisions made in earlier rounds cannot be revoked. The goal of the algorithm is
to maximize the social welfare, i.e., to generate an assignment MA that minimizes the competitive ratio
EI [wI(M∗)]/EI,A[wI(MA)].

Clearly, if sample values are completely unrelated to input values, no algorithm A can obtain a bounded
competitive ratio. Towards this end, we assume that for each value k, there is a similar probability that wI

and wS have value k for pair (ui, vj). We here restrict attention to discrete distributions over integers. It
is straightforward to show that our results hold for general distributions, but this minor extension does not
justify the notational and technical overhead it will add to the presentation. More formally, we assume

• Stochastic similarity : Suppose c > 1 is a fixed constant. For every pair (ui, vj) and every integer
k > 0, we assume that Pr

[
wI(ui, vj) = k

]
≤ c · Pr

[
wS(ui, vj) = k

]
and Pr

[
wS(ui, vj) = k

]
≤ c ·

Pr
[
wI(ui, vj) = k

]
.

• Stochastic independence: For every pair (ui, vj), the weights wI(ui, vj) and wS(ui, vj) do not depend
on the weights wS and wI of other candidates vj′ 6= vj .

For further discussion of the sampling model and an exposition how to formulate the secretary and prophet-
inequality models within this framework, see [20].

Consider Algorithm 4, which is an extension of Algorithm 2 to the sampling model. It can be applied
when every firm has a local matroid Si that determines the set of applicants the firm can hire simultaneously.
It is executed in parallel by all firms ui. The algorithm first simplifies the structure of the input and sample
values by assuming that no candidate has wS(ui, vj) > 0 and wI(ui, vj) > 0. This loses a factor of at
most 2 in the expected value of the solution. Analogous to our proof in the secretary model, we assume
that every firm knows an upper bound on the maximum cardinality of optimal solutions. More precisely,
define nmax as the maximum cardinality of a legal assignment of applicants to firms (i.e., an assignment
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Algorithm 4: Thresholding algorithm for firm ui for general weights and matroids.

1 For each vj flip a fair coin: if heads wI(ui, vj)← 0, if tails wS(ui, vj)← 0

2 mi ← arg maxvj w
S(ui, vj)

3 Xi ← Uniform(0, 1, . . . , dlog2 be+ 1), where b ≥ nmax

4 ti ← wS(ui,mi)/2
Xi

5 Mi ← ∅
6 for all vj over time do
7 if wI(ui, vj) ≥ ti and Mi ∪ {vj} is independent set in Si then
8 make an offer to vj
9 if vj accepts then

10 Mi ←Mi ∪ {vj}

such that the set of hired applicant’s of firm ui is an independent set in ui’s matroid Si). Note that in
general, nmax ≤ min{n,

∑m
i=1 ki}, where ki denotes the rank of Si, but nmax can also be significantly smaller

depending on the structure of the matroids. Using the parameter nmax, we determine a random threshold
based on the maximum weight seen by firm ui in its simplified sample. Then the algorithm greedily makes
an offer only to those applicants whose simplified input values are above the threshold.

Theorem 5. Algorithm 4 is 16(c+ 1)2(dlog2 be+ 2)-competitive in the sampling model.

Proof. The proof follows largely the one presented for the secretary model in Section 3 above. At first,
however, we use arguments similar to [20] to capture the relation between sample and input values and to
transform the scenario into a simpler domain.

The first line of our algorithm implements an adjustment of weights, so that at most one of the two
weights for an applicant and a firm is positive. Let us assume w.l.o.g. that this condition holds already for
the initial weights wI and wS . Formally, we denote

ŵ(ui, vj) = max{wI(ui, vj), wS(ui, vj)}

and assume that (wI(ui, vj), w
S(ui, vj)) ∈ {(0, ŵ(ui, vj)), (ŵ(ui, vj), 0)}. This preserves stochastic indepen-

dence and similarity properties of the sampling model. Moreover, it lowers the expected value of the optimum
solution by at most a factor of 2, i.e.,

EI [wI(M∗)] ≤ 2EI [ŵ(M∗)] ≤ 2EI [ŵ(M̂∗)] ,

where M∗ and M̂∗ are optimal solutions for wI and ŵ, respectively.
We condition on properties of the applicant with the largest and second largest value for firm ui. To

cope with the resulting correlations, we introduce a conditional probability space. For each applicant vj we
assume that ŵ(ui, vj) is fixed arbitrarily. For simplicity, we drop applicants from consideration for which
ŵ(ui, vj) = 0. Let V Ii = {vj | wI(ui, vj) > 0} and V Si = {vj | wS(ui, vj) > 0}. Stochastic similarity implies

Pr
[
wI(ui, vj) = ŵ(ui, vj)

]
≥ (1/c) ·Pr

[
wS(ui, vj) = ŵ(ui, vj)

]
and

Pr
[
wS(ui, vj) = ŵ(ui, vj)

]
≥ (1/c) ·Pr

[
wI(ui, vj) = ŵ(ui, vj)

]
.

Since V Ii ∩ V Si = ∅, we have

Pr
[
vj ∈ V Ii

]
≥ 1

c+ 1
and Pr

[
vj ∈ V Si

]
≥ 1

c+ 1
(4)

for each applicant vj , independent of the outcome of weights of other applicants. In particular, (4) holds for
every vj , independently of vj′ ∈ V Si or not for all other applicants j′ 6= j.

We now execute the proof of the theorem, which proceeds very similarly to the proof of Theorem 1 above.
We make two assumptions that make the analysis easier but do not hurt the overall result.
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1. Based on our reformulation on a conditional probability space, we assume all ŵ(ui, vj) are fixed ar-

bitrarily. Furthermore, we assume M̂∗ is an optimum solution when all applicants are in V Ii for all

firms ui. As such, we assume that both ŵ and M̂∗ are deterministic. Our analysis is based only
on the randomization expressed by the sampling inequalities (4) and the randomized choice of ti in
Algorithm 4.

2. To avoid technicalities, we again assume that for each firm ui, the values ŵ(ui, vj) of all applicants are
mutually disjoint.

Let vmax
i = argmaxjŵ(ui, vj) and v2ndi = argmaxj 6=vmax

i
ŵ(ui, vj) be the best and second best applicant

for firm ui, respectively. Let wmax
i = ŵ(ui, v

max
i ) and w2nd

i = ŵ(ui, v
2nd
i ) denote the corresponding weights.

For most of the analysis, we again work with capped weights w̃(ui, vj), based on thresholds ti set by the
algorithm as follows

w̃(ui, vj) =


wmax
i if vj ∈ V Ii , ti = w2nd

i , and ŵ(ui, vj) > w2nd
i ,

ti else, if vj ∈ V Ii and ŵ(ui, vj) ≥ ti,
0 otherwise.

The definition of w̃ relies on random events, i.e., vj ∈ V Ii and the choice of thresholds ti. For any outcome of
these events, however, w̃(ui, vj) ≤ ŵ(ui, vj) for all pairs (ui, vj). The following lemma adapts Lemma 1 and
shows that, in expectation over all the correlated random events, an optimal offline solution with respect to
w̃ gives a logarithmic approximation to the optimal offline solution with respect to ŵ.

Lemma 3. Denote by ŵ(M) and w̃(M) the weight and capped weight of a solution M . Let M̃∗ and M̂∗ be
optimal solutions for w̃ and ŵ, respectively. Then

E
[
w̃(M̃∗)

]
≥ 1

4(c+ 1)2(dlog2 be+ 2)
· ŵ(M̂∗).

Proof. Let (ui, vj) ∈ M̂∗ be an arbitrary pair. First, assume that vj maximizes ŵ(ui, vj), i.e., vj = vmax
i .

By (4) with probability at least 1/(c + 1)2, we have vj ∈ V Ii and v2ndi ∈ V Si . For any such outcome, we
have with probability 1/(dlog2 be + 2) that ti = w2nd

i and w̃(ui, vj) = wmax
i . This yields E [w̃(ui, vj)] ≥

ŵ(ui, vj)/((c+ 1)2(dlog2 be+ 2)).
Second, for any vj 6= vmax

i with wmax
i /(2b) < ŵ(ui, vj) ≤ wmax

i , by (4) we know vmax
i ∈ V Si is an

independent event which happens with probability at least 1/(c+1). Then, there is some 0 ≤ k′ ≤ dlog2 be+1,
with ŵ(ui, vj) > wmax

i /2k
′ ≥ ŵ(ui, vj)/2. With probability 1/(dlog2 be + 2), we have that Xi = k′ and

w̃(ui, vj) = ti ≥ ŵ(ui, vj)/2. This yields E [w̃(ui, vj)] ≥ ŵ(ui, vj)/(2(c + 1)2(dlog2 be + 2)), since vj ∈ V Ii
with probability at least 1/(c+ 1) by (4).

Finally, we denote by M̂> the set of pairs (ui, vj) ∈ M̂∗ for which ŵ(ui, vj) > wmax
i /(2b). The expected

weight of the best assignment with respect to the threshold values is thus

E
[
w̃(M̃∗)

]
≥

∑
(ui,vj)∈M̂∗

E [w̃(ui, vj)] ≥
∑

(ui,vj)∈M̂>

ŵ(ui, vj)

2(c+ 1)2(dlog2 be+ 2)

=
1

2(c+ 1)2(dlog2 be+ 2)
· (ŵ(M̂∗)− ŵ(M̂∗ \ M̂>))

≥ 1

4(c+ 1)2(dlog2 be+ 2)
· ŵ(M̂∗),

since
∑

(ui,vj)∈M̂∗\M̂> wmax
i /(2b) ≤ maxi w

max
i /2 ≤ ŵ(M̂∗)/2. Here we use b ≥ nmax ≥ |M̂∗|, which holds

since M̂∗ is a legal assignment and consequently, its cardinality is bounded by the maximum cardinality nmax

of any legal assignment.
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The previous lemma bounds the weight loss due to (1) all random choices inherent in the process of input
generation and threshold selection and (2) using the capped weights. The next lemma is essentially identical
to Lemma 2 and bounds the remaining loss due to adversarial arrival of elements in V Ii , exploiting that
w̃ equalizes equal-threshold firms. Note that in Lemma 2 we already prove the result for arbitrary arrival,
arbitrary weights w, and arbitrary thresholds based on w. Moreover, we define thresholds ti based on ŵ
in exactly the same way as they we did based on w for Lemma 2. Hence, the lemma and its proof can be
applied literally when using ŵ instead of w.

Lemma 4. Suppose subsets V Ii and thresholds ti are fixed arbitrarily and consider the resulting weight
function w̃. Let MA be the feasible solution resulting from Algorithm 4 using the thresholds ti, for any
arbitrary arrival order of applicants in

⋃
V Ii . Then ŵ(MA) ≥ w̃(M̃∗)/2.

Combining these insights we see that that

EI [wI(M∗)] ≤ 2EI [ŵ(M̂∗)]

≤ 8(c+ 1)2(dlog2 be+ 2)EI,A[w̃(M̃∗)]

≤ 16(c+ 1)2(dlog2 be+ 2)EI,A[ŵ(MA)]

≤ 16(c+ 1)2(dlog2 be+ 2)EI,A[wI(MA)] .

This proves the theorem.
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