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Peihan Miao ¶

Abstract

The secretary model is a popular framework for the analysis of online admission problems beyond
the worst case. In many markets, however, decisions about admission have to be made in a decentralized
fashion and under competition. We cope with this problem and design algorithms for secretary markets
with limited information. In our basic model, there are m firms and each has a job to offer. n applicants
arrive iteratively in random order. Upon arrival of an applicant, a value for each job is revealed. Each
firm decides whether or not to offer its job to the current applicant without knowing the strategies,
actions, or values of other firms. Applicants decide to accept their best offer.

We consider the social welfare of the matching and design a decentralized randomized thresholding-
based algorithm with ratio O(logn) that works in a very general sampling model. It can even be used
by firms hiring several applicants based on a local matroid. In contrast, even in the basic model we
show a lower bound of Ω(logn/(log log n)) for all thresholding-based algorithms. Moreover, we provide
secretary algorithms with constant competitive ratios, e.g., when values of applicants for different firms
are stochastically independent. In this case, we can show a constant ratio even when each firm offers
several different jobs, and even with respect to its individually optimal assignment. We also analyze
several variants with stochastic correlation among applicant values.

1 Introduction

The Voice is a popular reality television singing competition to find new singing talent contested by aspiring
singers. The competition employs a panel of coaches; upon the arrival of a singer, every coach critiques the
artist’s performance and determines in real time if he/she wants the artist to be on his/her team. Among
those who express “I want you”, the artist selects a favorite coach. What strategy of picking artists should
coaches adopt in order to select the best candidates?

This problem is a reminiscent of the classic secretary problem [9,24]: A firm interviews a set of applicants
who arrive in an online fashion. When an applicant arrives, his non-negative value is revealed, and the firm
needs to make an immediate and irrevocable decision on whether to make an offer to the applicant, without
knowing the values of future potential applicants. The objective is to maximize the (expected) value of the
hired applicant. The secretary problem is well studied in social science and computer science. It is well
known that the problem, in the worst case, does not admit an algorithm with any guaranteed competitive
ratio. However, if applicants arrive in uniform random order, there is an online algorithm that hires the
best applicant with optimal probability 1/e (see, e.g., [4]). For a more detailed discussion on the secretary
problem see, e.g., [2, 12].

The scenario of The Voice is a generalization of the secretary problem from one firm to multiple firms and
from one hire to multiple hires. Such a generalization yields several fundamental changes to the problem:
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Firms (i.e., coaches) are independent and compete with each other for applicants. Thus, each firm may
determine on their own the strategy to adopt. Firms are decision makers; that is, there is no centralized
authority and every firm can choose different strategies on its own (based on observed information). Each firm
can only observe its local information, i.e., it has no knowledge about the values of other (firm, applicant)-
pairs and the selected strategies of other firms. Hence, adopting a best-response strategy in a game-theoretic
sense might require learning other strategies and payoffs. Given the limited feedback this can be hard or
even impossible. The same issues occur in many other decentralized markets, e.g., online dating and school
admission, where entities behave individually and have to make decisions based on a very limited view of
the market, the preferences, and the strategies used by potential competitors.

In this paper, we design and analyze strategies for all firms in such a decentralized, competitive enviroment
to enable efficient allocations. Our algorithms are evaluated both globally and individually: On the one hand,
we hope the outcomes achieve good social welfare (i.e., the total value obtained by all firms). Thus, we
measure the competitive ratio compared to social welfare given by the optimal centralized online algorithm.
On the other hand, considering that firms are self-interested entities, we hope that our algorithms generate
a nearly optimal outcome for each individual firm. That is, although given the limited feedback it can be
impossible to obtain best-response strategies, we nevertheless hope that (when applied in combination) our
algorithms can approximate the outcome of a best response (in hindsight with full information) of every
individual firm within a small factor.

We identify several settings that admit algorithms with small constant competitive ratio both globally
and individually. This implies that even in decentralized markets with very limited feedback, there are
algorithms obtaining a good allocation. For the general case, we provide a strategy to approximate social
welfare within a logarithmic factor, and we show almost matching lower bounds on the competitive ratio
for a very natural class of algorithms. Thus, in the general case centralized control seems to be necessary in
order to achieve good social welfare.

1.1 Model and Preliminaries

We first outline our basic model, a decentralized online scenario for hiring a single applicant per firm with
random arrival. There is a complete bipartite graph G = (U, V,w) with sets U = {u1, u2, . . . , um} and V =
{v1, v2, . . . , vn} of firms and applicants, respectively. There is a value or weight function1 w : U × V → R+.
We assume that each firm can hire at most one applicant.

The weights describe an implicit preference of each individual to the other side. Each firm u ∈ U prefers
applicants according to the decreasing order of w(u, ·) of the edges incident to u; similarly, each applicant
v ∈ V prefers firms according to the decreasing order of w(·, v) of the edges incident to v.2

Applicants in V arrive one by one to the market and reveal their edge weights to all firms. Upon the
arrival of an applicant, each firm immediately decides whether to provide an offer for the applicant or not;
after collecting all job offers, the applicant then picks one that she prefers most, i.e., the one with the largest
weight. Note that each firm can only see its own weights for the applicants and has no information about
future applicants; in addition, all decisions cannot be revoked. A firm can make multiple offers over time
until it succeeds to hire an applicant. In this paper, we mostly concentrate on the random permutation
model, i.e., weights are fixed by an adversary but applicants arrive in a uniformly random order. We also
consider extensions of our results to other standard models, such as the iid model (weights drawn iid from
known distributions), prophet-inequality model (different known distributions, adversarial arrival), and more
general models based on different mixtures of stochastic and adversarial elements.

Our goal is to design decentralized algorithms when each firm makes its decision only based on its own
previously seen information and there is no centralized authority that manages different firms altogether.
Due to online arrival some performance loss is unavoidable, and there are two natural objectives to quantify
this loss. The standard benchmark is social welfare, defined to be the total weight of assigned firm-applicant

1To avoid technicalities, we assume that no two edges have the same weight; this assumption is without loss of generality
by using small perturbations or a fixed rule to break ties.

2In a more general preference model there are for each pair (u, v) different values obtained by u and v; we will not consider
this general case in the present paper.
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pairs. For an algorithm A, we say the algorithm has a competitive ratio of α if for all instances, we have
w(M∗)/E

[
w(MA)

]
≤ α. Here the expectation is taken over the random permutation, M∗ is the maximum

weight matching in G, and MA is the matching returned when every firm runs algorithm A.
In addition, we would like to approximate the individual optimum for each firm (i.e., the value of its best

applicant) and strive to obtain a constant competitive ratio for this benchmark. This goal is obviously much
more demanding than social welfare. It can be impossible, e.g., if there is a single applicant that is extremely
valuable for every firm, while all others are not valuable at all. Consequently, a constant competitive ratio
for individual optima can be achieved only in domains with additional structure. In this paper, we obtain
them when applicant values result from stochastic processes with a sufficient amount of independence among
firms.

1.2 Contribution and Techniques

As a natural first attempt, consider every firm running the classic secretary algorithm [9,24], which samples
the first r−1 applicants, records the best weight seen in the sample, and then makes an offer to every applicant
that exceeds this threshold (see Algorithm 4 below). It turns out that such a strategy fails miserably in a
decentralized market, even if each applicant has the same weight for all firms. The main idea of the proof is
to construct an instance with many ‘bad’ applicants and only a few (Θ(log n)) ‘good’ applicants. With high
probability, each firm will see at least one ‘good’ applicant over the sampling period, and compete over the
‘good’ applicants later on. However, at most O(log n) of the firms can hire a ‘good’ applicant. In contrast,
to achieve optimal social welfare each firm should hire an applicant.

Proposition 1. For any constant β < 1, when setting r = bβnc + 1, then the classic secretary algorithm
has a competitive ratio of Ω(n/ log n).

Proof. Suppose there are n applicants and m = n firms. The applicants come in two types: ng = γ lnn
‘good’ applicants with weight 2 for all edges incident to them, where γ ≥ 1/β is a constant, and the rest
‘bad’ applicants with weight 1 for all edges incident to them. (Note that to avoid ties, we can add a small
perturbation εu,v on all pairs).

For any permutation of the applicants, we have w(M∗) = m+ ng. Next, we consider the matching MA

returned by the algorithm and give an upper bound on E
[
w(MA)

]
. In the first r−1 rounds, the probability

that no good applicant arrives is

p =

bβnc∏
i=0

n− ng − i
n− i

≤
(

1− ng
n

)bβnc
≤

(
1− ng

n

)βn−1
=

((
1− ng

n

)n)β
·
(

n

n− ng

)
≤ e−ngβ ·

(
n

n− ng

)
.

If a firm observes a ‘good’ applicant, no ‘bad’ applicant can be hired since the threshold for the firm is set
to be 2. Since a good applicant is good for all firms, a single good applicant in the first r− 1 rounds results
in all thresholds for all firms being set to 2. Hence,

E
[
w(MA)

]
≤ p(m+ ng) + (1− p) · 2ng ≤ n

n− ng
· e−ngβ · (m− ng) + 2ng

Using γ ≥ 1/β, we see

E
[
w(MA)

]
E [w(M∗)]

≤ n

n− ng
· e−ngβ · m− ng

m+ ng
+

2ng
m+ ng

=
n1−γβ + 2γ lnn

n+ γ lnn
= Θ

(
log n

n

)
.

In contrast, we present in Section 2 a more careful approach based on sampling and thresholds that
is O(log n)-competitive. This algorithm can be applied beyond the basic model in a very large generality.
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In fact, we prove the guarantee in a scenario where each firm ui has a private matroid Si and can accept
any subset of applicants that forms an independent set in Si. Furthermore, our analysis extends to a
general sampling model that encompasses the secretary model (random arrival, worst-case weights), prophet-
inequality model (worst-case arrival, stochastic weights), as well as a variety of other mixtures of stochastic
and worst-case assumptions [13]. The algorithm is essentially the approach used in [3], where it was shown
that it provides a logarithmic guarantee for the matroid secretary problem. In contrast to this work, however,
we must apply the algorithm based on local information, which requires a different approach for analysis.
Our novel approach here to handle decentralized thresholding is to bundle all stochastic decisions and treat
correlations using linearity of expectation. The effects of applicant preferences and competition can then be
analyzed in a pointwise fashion.

We contrast this upper bound with an almost matching lower bound for thresholding-based algorithms
in the basic model. A thresholding-based algorithm samples a number of applicants, determines a threshold,
and then offers to every remaining applicant that has a weight above the threshold. Although such algorithms
are nearly optimal in the centralized setting, every such algorithm must have a competitive ratio of at least
Ω(log n/ log log n) in the decentralized setting. The lower bound carefully constructs a challenge to guess
how many firms contribute to the social welfare and to avoid overly high concentration of offers on a small
number of valuable applicants.

In Section 3 we show that this challenge can be overcome if there is stochastic independence between the
weights of an applicant to different firms. We study this property in a generalized model for decentralized
k-secretary, where each firm ui has ki different jobs to offer. Upon arrival, an applicant reveals ki weights
for each firm ui, one for each position. If each firm uses a variant of the optimal e-competitive algorithm for
bipartite matching [19], independence between weights of different firms allows to show a constant competitive
ratio. Moreover, each firm even manages to recover a constant fraction of the individual optimum matching
and therefore almost plays a best response strategy.

In Section 4 we consider two additional variants with stochastically generated weights. In both variants
we can show constant competitive ratios, and in one case firms can even hire their best applicant with
constant probability.

Finally, we conclude in Section 5 with a discussion of open problems.

1.3 Related Work

The secretary model is a classic approach to stopping problems and online admission [9, 24]. The classic
algorithm outlined in the previous section is e-competitive, which is the best possible ratio. In the algorithmic
literature, recent work has addressed secretary models for packing problems with random arrival of elements.
A prominent case is the matroid secretary problem [3], for which the first general algorithm was O(log k)-
competitive, where k is the rank of the matroid. The ratio was very recently reduced to O(log log k) [10,23].
Constant-factor competitive algorithms have been obtained for numerous special cases [1,8,14,17,21,27]. It
remains a fascinating open problem whether a general constant-factor competitive algorithm exists or not.

Another popular domain is bipartite matching in the secretary model, which has many applications in
online revenue maximization via ad-auctions. In Section 3 we use a variant of a recent optimal e-competitive
algorithm [19], which tightened the ratio and improved it over previous algorithms [3, 7, 22]. The main
idea has recently been extended to construct optimal secretary algorithms for packing linear problems [20],
improving over previous approaches [6, 26]. Algorithms based on primal-dual techniques are a popular
approach, especially for budgeted online matching with different stochastic input assumptions [5, 18,25].

Our analysis of the algorithm for the general case applies in a unifying sampling model recently proposed
as a framework for online maximum independent set in graphs [13]. It encompasses many stochastic adver-
sarial models for online optimization – the secretary model, the prophet inequality model, and various other
mixtures of stochastic and worst-case adversaries.

Closer to our paper are studies of a secretary problem with k queues [11], or game-theoretic approaches
with complete knowledge about opponent strategies [15, 16]. These scenarios, however, have significantly
different assumptions on the firms and their feedback, and they do not target markets with both decentralized
control and restricted feedback that we explore in this paper.
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2 General Preferences

For general weights w : U × V → R+, Proposition 1 shows that the classic secretary algorithm may perform
poorly in a decentralized market. A reasonable strategy has to be more careful in adopting a threshold to
avoid extensive competition over a few applicants. We overcome this obstacle with a randomized thresholding
strategy, and we analyze it in a very general distributed matroid scenario. In the Appendix, we show that
our bounds apply even within a general sampling model [13] that encompasses the secretary model, the
prophet-inequality model, and many other approaches for stochastic online optimization.

For the combinatorial structure of the scenario, we consider that each firm ui holds a possibly different
matroid Si over the set of applicants. Firm ui can accept an applicant as long as the set of accepted applicants
forms an independent set in Si. Special cases include hiring a single applicant or any subset of at most ki
many applicants. Each firm strives to maximize the sum of weights of hired applicants. The structure of Si
does not have to be known in advance. ui only needs an oracle to test if a set of arrived applicants is an
independent set in Si.

As a simple baseline, we can trivially obtain the following guarantee. Suppose there is an α-competitive
algorithm A’ for a single firm. We assume that every firm ui executes A’ in exactly the same way as if it
was the only firm in the market. In particular, this adjusted algorithm A pretends that every applicant that
gets an offer also accepts it.

Proposition 2. Let algorithm A’ be any α-competitive algorithm for a single firm. Suppose every firm ui
runs a version A that pretends every applicant getting an offer from ui also accepts it. Then algorithm A is
mα-competitive.

Proof. For each firm ui, consider the individual optimum M∗i in hindsight. Clearly, there is one firm ui′ for
which this individual optimum has w(M∗i′) ≥ w(M∗)/m. Using A’, ui′ makes offers to a set of applicants
that constitute an α-approximation to the individual optimum. If an applicant decides against the offer of
ui′ , it accepts a better offer from a different firm, so it secures an even larger weight in the solution MA.
Hence, E[w(MA)] ≥ w(M∗i′)/α ≥ w(M∗)/(mα).

This shows that a number of firms almost equal to the number of applicants is necessary for the lower
bound in Proposition 1. Also, for general matroids it implies a competitive ratio of O(m log log kmax) using
the currently best algorithm [10, 23], where kmax is the maximum rank of any of the matroids Si. In the
following section, we describe an algorithm that significantly improves upon this trivial guarantee when m
grows large.

2.1 Logarithmic Approximation

Algorithm 1 is executed in parallel by all firms ui. We first sample a fraction of roughly n/2 applicants and
determine a random threshold based on the maximum weight seen by firm ui in its sample. Firm ui then
greedily makes an offer only to those applicants whose values are above the threshold.

In line 4, the algorithm relies on an upper bound b ≥ |M∗|. A simple example is b = n, which is always
known and results in a O(log n)-competitive algorithm. In case there is additional knowledge about the
cardinality of the optimum solution, the guarantee can be improved. For example, if all firms know m and
kmax, then with b = mkmax the algorithm is O(logm+log kmax)-competitive. In particular, if all firms know
m in the basic model, the algorithm is O(logm)-competitive.

Theorem 1. Algorithm 1 is 32(dlog2 be+ 2)-competitive.

Proof. We denote by V Si the set of applicants in the sample and by V Ii the other applicants. Note that by
the choice of sample and the random arrival, we have that Pr

[
vj ∈ V Si

]
= Pr

[
vj ∈ V Ii

]
= 1/2. Thus, the

sampling inequalities hold for every vj , independently of vj′ ∈ V Si or not for all other applicants j′ 6= j. To
see this, observe that one can simulate the algorithm by first assigning every vj independently to V Si or V Ii ,
then compute ti, and finally consider applicants from V Ii in random order3.

3Such a simulation is used for the analysis of secretary algorithms in, e.g., [13, 22].
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Algorithm 1: Thresholding algorithm for ui with matroids.

1 Draw a random number k ∼ Binom(n, 1/2)

2 Reject the first k applicants, denote this set by V Si
3 mi ← arg maxvj∈V Si w(ui, vj)

4 Xi ← Uniform(0, 1, . . . , dlog2 be+ 1), where b ≥ |M∗|
5 ti ← w(ui,mi)/2

Xi , Mi ← ∅
6 for all remaining vj over time do
7 if w(ui, vj) ≥ ti and Mi ∪ {vj} is independent set in Si then
8 make an offer to vj
9 if vj accepts then Mi ←Mi ∪ {vj}

Let vmax
i = argmaxjw(ui, vj) and v2ndi = argmaxj 6=vmax

i
w(ui, vj) be the best and second best applicant

for firm ui, respectively. In addition, we denote by wmax
i = w(ui, v

max
i ) and w2nd

i = w(ui, v
2nd
i ) their weights

for firm ui. For most of the analysis, we consider another weight function, the capped weights w̃(ui, vj),
based on thresholds ti set by the algorithm as follows

w̃(ui, vj) =


wmax
i if vj ∈ V Ii , ti = w2nd

i , and w(ui, vj) > w2nd
i ,

ti if vj ∈ V Ii and w(ui, vj) ≥ ti,
0 otherwise.

Observe that the definition of w̃ relies on several random events, i.e., vj ∈ V Ii and the choice of thresholds
ti. For any outcome of these events, however, we have that w̃(ui, vj) ≤ w(ui, vj) for all pairs (ui, vj), since
if ti = w2nd

i and w(ui, vj) > w2nd
i , then vj = vmax

i (recall that we assume no ties in w). By the following
lemma, in expectation over all the correlated random events, an optimal offline solution with respect to w̃
still gives an approximation to the optimal offline solution with respect to w.

Lemma 1. Denote by w(M) and w̃(M) the weight and capped weight of a solution M . Let M̃∗ and M∗ be
optimal solutions for w̃ and w, respectively. Then

E
[
w̃(M̃∗)

]
≥ 1

16(dlog2(b)e+ 2)
· w(M∗).

Proof. Let (ui, vj) ∈ M∗ be an arbitrary pair. First, assume that vj maximizes w(ui, vj), i.e., vj = vmax
i .

With probability at least 1/4, we have vj ∈ V Ii and v2ndi ∈ V Si . For any such outcome, we have with probabil-
ity 1/(dlog2(b)e+2) that ti = w2nd

i and w̃(ui, vj) = wmax
i . This yields E [w̃(ui, vj)] ≥ w(ui, vj)/(4(dlog2(b)e+

2)).
Second, for any vj 6= vmax

i with wmax
i /(2b) < w(ui, vj) < wmax

i , we know vmax
i ∈ V Si is an independent

event which happens with probability at least 1/2. Then, there is some 0 ≤ k′ ≤ dlog2(b)e + 1, with
w(ui, vj) > wmax

i /2k
′ ≥ w(ui, vj)/2. With probability 1/(dlog2(b)e+2), we have that Xi = k′ and w̃(ui, vj) =

ti ≥ w(ui, vj)/2. This yields E [w̃(ui, vj)] ≥ w(ui, vj)/(8(dlog2(b)e + 2)), since vj ∈ V Ii with probability at
least 1/2.

Finally, we denote by M> the set of pairs (ui, vj) ∈M∗ for which w(ui, vj) > wmax
i /(2b). The expected

weight of the best assignment with respect to the threshold values is thus

E
[
w̃(M̃∗)

]
≥

∑
(ui,vj)∈M∗

E [w̃(ui, vj)] ≥
∑

(ui,vj)∈M>

w(ui, vj)

8(dlog2(b)e+ 2)

=
1

8(dlog2(b)e+ 2)
· (w(M∗)− w(M∗ \M>))

≥ 1

16(dlog2(b)e+ 2)
· w(M∗),
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where the last inequality results from
∑

(ui,vj)∈M∗\M> wmax
i /(2b) ≤ maxi w

max
i /2 ≤ w(M∗)/2.

The previous lemma bounds the weight loss due to (i) all random choices inherent in the process of input
generation and threshold selection and (ii) using the capped weights. The next lemma bounds the remaining
loss due to random arrival of elements in V Ii , exploiting that w̃ equalizes equal-threshold firms.

Lemma 2. Suppose subsets V Ii and thresholds ti are fixed arbitrarily and consider the resulting weight
function w̃. Let MA be the feasible solution resulting from Algorithm 1 using the thresholds ti, for any
arbitrary arrival order of applicants in

⋃
V Ii . Then w(MA) ≥ w̃(M̃∗)/2.

Proof. We will account for the weight of each edge (ui, vj) ∈ M̃∗ under w̃ by the original weight w(e) of

a pair e ∈ MA, using each pair in MA at most twice. Let (ui, vj) ∈ M̃∗ be arbitrary. W.l.o.g. assume

w̃(ui, vj) > 0, which implies that w(ui, vj) ≥ ti. We divide the edges of M̃∗ in two sets – depending on
whether (1) vj gets a better offer from another firm ui′ 6= ui with w(ui′ , vj) > w(ui, vj), or not.

First, consider the set of all edges (ui, vj) ∈ M̃∗ for firm ui, for which (1) holds. Then, each such vj is
assigned to some other firm ui′ that makes a better offer. Hence, (ui′ , vj) ∈MA with w(ui′ , vj) ≥ w(ui, vj) ≥
w̃(ui, vj), and we can charge (ui, vj) to (ui′ , vj).

Now consider the set of all edges (ui, vj) ∈ M̃∗ for firm ui, for which (1) does not hold. We denote
their number by ki. More generally, consider the superset Etii of all edges (ui, vj) (in or not in M∗) with
w(ui, vj) ≥ ti such that (1) does not hold. These are all edges with w̃(ui, vj) > 0 that firm ui is able to obtain.
For the ones that ui can obtain simultaneously, consider a maximum-cardinality independent set in matroid Si
that uses only edges from Etii . Denote this maximum cardinality by `i. Obviously, `i ≥ ki, since M̃∗ is feasible
for firm i. Moreover, firm ui accepts in MA at least `i applicants, irrespective of the arrival order. This is a
simple consequence of the exchange property of matroid Si. Thus, for each of the ki edges (ui, vj) ∈ M̃∗, for
which (1) does not hold, there is some edge (ui, vj′) ∈MA with w(ui, vj′) ≥ w̃(ui, vj′) = w̃(ui, vj) to which

we can charge it. This step can be done such that each (ui, vj) ∈ M̃∗ is charged to a different (ui, vj′) ∈MA.
Finally, consider an arbitrary edge (ui′ , vj′) ∈ MA. In the above accounting scheme, this edge can only

be used to account for w̃(ui, vj) with (ui, vj) ∈ M̃∗ if either ui = ui′ or vj = vj′ . Since M̃∗ is a feasible

assignment, (ui′ , vj′) is used at most twice. This proves w̃(M̃∗) ≤ 2w(MA).

Combining the insights of Lemma 1 and 2, we see that that w(M∗) ≤ O(log b) ·E
[
w(MA)

]
, which proves

the theorem.

In Appendix B we extend the result of this theorem to a general sampling model that includes the
secretary model, the prophet-inequality model and other models that combine stochastic and worst-case
adversarial elements.

2.2 Lower Bound

Our general upper bound results from a thresholding-based algorithm. We constrast this result with a
lower bound for thresholding-based algorithms in the basic model when every firm wants to hire only a
single applicant. More formally, an algorithm A is called thresholding-based if during its execution A rejects
applicants for some number of rounds, then determines a threshold T and afterwards enters an acceptance
phase. In the acceptance phase, it makes an offer to exactly those applicants whose weight exceeds threshold
T . Note that the number of rejecting rounds in the beginning and the threshold T can be chosen arbitrarily
at random.

If the number of firms is unknown, the lower bound can be shown even for a class of identical-firm
instances, in which for each applicant vj all firms have the same weight, i.e., there is w(vj) ≥ 0 such that
w(ui, vj) = w(vj) for every firm ui. The main challenge here is to guess the right number of firms m in order
to concentrate on the most profitable class of applicants. Note that in this class of instances we always have
m ≤ n. Still, we manage to show a lower bound that depends on n, since m remains unknown and the best
upper bound on |M∗| that is known to the firms is n.
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Alternatively, if the number of firms m is known, we can adjust the instance to contain an unknown
number of firms that contribute only negligibly to social welfare. In fact, here we ensure that our instance
satisfies m = n, and hence the lower bound can be expressed as Ω(logm/(log logm)). This almost matches
our upper bound in the basic model when firms know m. More generally, one can always add more dummy
applicants with weight 0 for all firms. This shows the lower bound in m continues to hold even more generally
when m ≤ n and m known.

We show that the bound applies even in the iid model, which is a special case of the prophet-inequality
model and can be seen as a special case of the secretary model. In the iid model, we draw the weight w(vj)
for each vj independently at random from a single distribution. The main difference from the secretary
model is that M∗ becomes a random variable.

Theorem 2. Ssuppose every firm ui uses some thresholding-based algorithm Ai in the basic model to hire
a single applicant. There are instances I with m ≤ n on which the collection of algorithms (Ai)i∈m has a
competitive ratio of

• Ω(log n/ log log n) if firms do not know m. Here I is even an identical-firm instance.

• Ω(logm/ log logm) if firms know m.

These lower bounds apply in the iid model and the secretary model.

Proof. We first prove the bound when firms firms do not know m. They can have IDs, but these IDs must
not imply information about the number of firms m. For this case, the lower bound can be shown using an
instance with identical firms. In the end of the proof, we make a simple observation how we can extend this
construction to the case when m is known.

The proof follows a similar argument as in Proposition 1. Recall that in the proof of Proposition 1 there
are two classes of ‘good’ and ‘bad’ applicants. Instead, here we construct an instance with logarithimcally
many classes of applicants. The weights of applicants in larger classes is decreasing, but the total number of
applicants in these classes is increasing. In total, the applicants in larger classes can generate more welfare
– if there are enough firms to hire them. However, if the number of firms is too small, then offering to
applicants from higher classes with lower weights is a bad strategy. These applicants generate small total
weight, and since their numbers are significantly larger, the probability to hire an applicant from a lower
class with high weight is very small. Thus, guessing the right order of magnitude of m represents the inherent
difficulty on which the lower bound is based.

More formally, let t ∈ N, t ≥ 3 and n =
∑t
j=2 t

2j = (t2t − t2) · t2/(t2 − 1) = (1 + o(1)) · t2t. Since

t2t < n < t2t(1+o(1)), standard arguments for bounding t imply t = Θ(log n/(log log n) with small constants
hidden in the Θ-notation. We construct a distribution I on a family of identical-firm instances by drawing
the weight w(vj′) of each applicant vj′ according to Pr[w(vj′) = t−j ] = t2j/n for j = 2, . . . , t. In the secretary
model, we may assume that each applicant draws w(vj′) at the moment it arrives in the random order, since
the order is chosen independently of the weights. Since all applicant weights are identically distributed, we
may even completely disregard the random arrival order.

We define classes C2, . . . , Ct, where each class Cj consists of all applicants vj′ with value w(vj′) = t−j .
Consider how A performs on I for some firm ui. We can assume that every algorithm Ai chooses a threshold
among {t−2, . . . , t−t}, since all other choices are equivalent concerning the set of applicants receiving an
offer from ui. Let Xij be an indicator variable (resulting from randomness of I and the random choices of
Ai) that is 1 iff Ai picks threshold t−j and 0 otherwise. Firms have access to shared as well as individual
random bits (e.g., when sampling some of the initial applicants and picking a random individual threshold
based on the observed values). As such, the random threshold choices of the firms might or might not be
stochastically independent.

Let Fj =
∑m
i=1Xij be the number of firms with threshold t−j . Clearly, there is some 2 ≤ k ≤ t where

E [Fj ] ≤ m/(t− 1). In the following, we bound the expected competitive ratio of the collection of algorithms

(Ai)i∈m on I with m =
∑k
j=2 t

2j < (9/8)t2k firms. To obtain a competitive solution, most firms should

choose a threshold of t−k, hence the challenge is to guess m correctly and extract welfare from the right class
of applicants.
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Let us denote by Ti the threshold chosen by firm ui. Consider the firms ui with Ti ≥ t−(k−1). Clearly,
these firms can accept only applicants in C2, . . . , Ck−1. Observe that the total contribution to social welfare

of all these applicants is bounded by at most
∑k−1
j=2 |Cj |t−j . To bound the expectation of this term, consider

iid random variables Yj′ that take the value of the j′-th candidate if it falls into classes C2, . . . , Ck−1 and 0
otherwise. Formally, Yj′ ∈ [0, 1] are iid with Pr[Yj′ = t−j ] = t2j/n for j = 2, . . . , k− 1 and Pr[Yj′ = t−j ] = 0
for j = k, . . . , t. Then, since t ≥ 3,

E

k−1∑
j=2

|Cj |t−j
 = E

 n∑
j′=1

Yj′

 =

k−1∑
j=2

tj < (3/2)tk−1 .

Now consider the set of firms choosing threshold Ti = tk. Beyond the applicants from C2, . . . , Ck−1, their
contribution to social welfare is at most Fk · t−k from applicants in Ck. By the choice of k, we have

E [Fk] t−k ≤ m/(tk(t− 1)) < (9/8)tk/(t− 1) ≤ (27/16)tk−1 .

Finally, consider the firms with threshold Ti = t−k
′

with k′ ≥ k + 1. We define S =
∑k′

j=2 t
2j . Let Wi be

the expected value of an applicant matched to a firm ui with threshold Ti = t−k
′
. The expected value of Wi

is bounded by

E[Wi] ≤
k′∑
j=2

t2j

S
· t−j <

3tk
′

2t2k′
≤ (3/2)t−(k+1) , (1)

since the next accepted applicant of value at least t−k
′

is distributed as w(vj′) conditioned on containment
in {t−2, . . . , t−(k+1)}, except when we run out of applicants, in which case the value is zero.

Suppose that an applicant gets an offer by firm ui, but decides to go to another firm. Since applicant
weights are drawn iid, this can only have a negative influence on the expected value of accepted applicants for
firm ui. Hence, summarizing the arguments above, the expected social welfare of the assignment computed
by the collection of algorithms A = (Ai) is bounded from above by

E(I,A)[w(Malg)] ≤ E

k−1∑
j=2

|Cj |t−j
+ E [Fk] t−k + E

[
m∑
i=1

Wi

]
≤ (3/2)tk−1 + (27/16)tk−1 + (3/2)mt−(k+1)

< (3/2)tk−1 + (27/16)tk−1 + (27/16)tk−1

= (39/8)tk−1

For the optimum solution we bound |Cj | for j = 2, . . . , k. We use a standard Chernoff bound and observe
that for every j = 2, . . . , k over I

Pr[|Cj | < (1/2)t2j ] ≤ exp(−t2j/8) .

Using a union bound,
∑k
j=2 |Cj | > (1/2)

∑k
j=2 t

2j with probability at least 1 −
∑
j = 2k exp(−t2j/8) ≥

1− exp(−t2/8) > 0.67, since k ≥ 2 and t ≥ 3. Since m =
∑k
j=2 t

2j , the optimum solution M∗ has expected
value at least

EI [w(M∗)] ≥
k∑
j=2

|Cj |t−j · 0.67 > (2/3)tk .

Recall that t = Ω(log n/ log log n). Thus, in the iid model, the ratio of expectations is at least

EI [w(M∗)]

EI,A[w(MA)]
>

(2/3)tk

(39/8)tk−1
> t/8 = Ω

(
log n

log logn

)
.
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Note that we did not optimize any constants, since we only intend to show that the asymptotics do not hide
large constants. In fact, since the constants result from bounding exponential series and tail bounds, they can
be expressed as functions of t that approach 1 quickly as t grows large. For the secretary problem, observe
that EI [w(M∗)] is the average of w(M∗) weighted over all possible instances I ∈ I, while EI,A[w(MA)] is
the average over EA[w(MA)] weighted over all possible instances I ∈ I. As a simple consequence of standard
calculus there must be some instance I ∈ I with competitive ratio

w(M∗)

EA[w(MA)]
≥ EI [w(M∗)]

EI,A[w(MA)]
= Ω

(
log n

log log n

)
.

This shows the lower bound on identical-firm instances when A does not know m and IDs do not imply
information about m. We extend this result when each firm knows m and its (arbitrary) ID as follows. In the
class of instances, we now always have m = n firms. Each firm ui knows its ID and runs any thresholding-
based algorithm Ai (with shared and individual random bits). For the instance the adversary then picks m′

as the number of valuable firms. For every non-valuable firm, every applicant value is multiplied with ε� t−t.
Hence, the non-valuable firms do not contribute significantly to the value of any matching. Furthermore,
the adversary picks these m′ firms uniformly at random from the set of n firms. The lower bound continues
to hold, since information about n and the firm ID does not help a thresholding-based algorithm to better
estimate m′, the number of firms that contribute significantly to w(M∗). Since m = n, this also implies a
lower bound of Ω(logm/(log logm)).

Finally, to see that this lower bound in m also holds for m known and n ≥ m, we use the distribution
Pr[w(vj′) = t−j ] = t2j/n, and assign the remaining probability mass to Pr[w(vj′) = 0] = 1 −

∑t
j=2 t

2j/n.

This has no influence on the expected values that upper bound EI,A[w(Malg)] or the Chernoff bound for
lower bounding w(M∗).

The proof shows lower bounds if firms either know m and arbitrary IDs or are identical. If an instance with
m ≤ n has identical firms that know m and their ID in {1, . . . ,m}, they can jointly implement algorithms for
the k-secretary problem (such as, e.g., [1, 21]). For example, the Optimistic Algorithm of [1] can be turned
into a thresholding-based algorithm that is e-competitive. All firms sample the first bn/ec applicants. Then
firm i sets its threshold to the weight of the i-th best candidate seen in the sample. Applicants have the
same weight for all firms, and they are assumed to break ties such that ui is preferred over ui′ iff i > i′.

In Section 4.1 below we further explore this domain by using algorithms with multiple thresholds. This
allows us to show the same result even when the weights are subject to small stochastic perturbations.

3 Independent Preferences

In this section, we show improved results for decentralized matching in the secretary model when preferences
are independent among firms. More formally, we assume firm ui has a set Ui of ki positions available. An
adversary specifies a separate set Pi of n applicant profiles for each firm ui. An applicant profile p ∈ Pi is a
function p : Ui → R+. In round t, when a new applicant vt arrives, we pick one remaining profile pit ∈ Pi
for each ui ∈ U independently and uniformly at random. The weight for position uij ∈ Ui is then given by
w(uij , vt) = pit(uij). We pick profiles from Pi uniformly at random without replacement. Special cases of
this model are, e.g., when all weights for all positions are independently sampled from a certain distribution,
or for each firm ui the weights of all applicants are sampled independently from a different distribution for
each position.

In contrast to the previous section, we assume that each applicant has ki weight values for each firm
ui. A straightforward O(log n)-competitive algorithm is to run Algorithm 1 separately for each position of
each firm. In contrast, when n ≥

∑m
i=1 ki and ki ≤ αn for all i ∈ [m] and some constant α ∈ (0, 1), we can

achieve a constant competitive ratio using Algorithm 2. This algorithm resembles an optimal algorithm for
secretary matching with a single firm [19]. Each firm rejects a number of applicants and enters an acceptance
phase. In this phase, it maintains two virtual solutions: (1) an individual virtual optimum M∗i,t with respect
to applicants arrived up to and including round t, and (2) a virtual solution M ′i where all applicants are

10



Algorithm 2: Matching algorithm for firm ui for independent weights

1 Reject the first ri − 1 applicants
2 Mi,M

′
i ← ∅

3 for applicant vt arriving in round t = ri, . . . , n do
4 Let M∗i,t be optimum matching for firm ui and applicants {v1, . . . , vt}
5 if vt is matched to position uij in M∗i and uij unmatched in M ′i then
6 Make an offer for position uij to vt
7 M ′i ←M ′i ∪ {(uij , vt)}
8 if vt accepts then
9 Mi ←Mi ∪ {(uij , vt)}

assumed to accept the offers of ui. If the newly arrived applicant vt is matched in M∗i,t, it is offered the same
position unless this position is already filled in M ′i .

Note that for a single firm in the basic model, this algorithm reduces to the standard e-competitive
algorithm discussed in the introduction. As such, our approach here is exactly the one we outlined above in
Proposition 2. The main point here is to show that under the conditions on n and ki, the properties of this
specific algorithm combined with the independence among firms avoid the increase of m in the competitive
ratio.

Theorem 3. Algorithm 2 achieves a constant competitive ratio.

Proof. Fix a firm ui. The matching M ′i is constructed by assuming that ui is the only firm in the market,
i.e., every applicant accepts the offer of firm ui. Consider the individual optimum M∗i,n in hindsight. Then,
by repeating the analysis of [19, Section 2] and replacing the sampling size of dn/ee by ri − 1, the expected
value of M ′i becomes

E [w(M ′i)] ≥
n∑

`=ri

ri − 1

`− 1
·
w(M∗i,n)

n
≥ ri − 1

n
ln

(
n

ri − 1

)
· w(M∗i,n) = f(ri) · w(M∗i,n) ,

where we denote the ratio by f(ri). Recall ki ≤ αn. Set ri in the interval [βn, γn] for some appropriate
constants β, γ ∈ (0, 1) such that β > α. This ensures that f(ri) becomes a constant.

Let us now analyze the performance of the algorithm in the presence of competition. Consider applicant
vt in round t and the following events: (1) P (ui, vt) is the event that ui sends an offer to vt, and (2) A(ui, vt)
is the event that ui sends an offer to vt and he accepts it. ui’s decision to offer depends only on M∗i,t and
M ′i , but not on the acceptance decisions of earlier applicants. vt for sure accepts an offer from ui if ui offers
and no other firm offers. Offers from other firms ui′ occur only if ui′ is matched in M∗i′,t. More formally,
A(ui, vt) occurs (at least) if P (ui, vt) and none of the P (ui′ , vt) occur. Since the profiles for different firms
are combined independently

Pr [A(ui, vt) | P (ui, vt)] ≥
∏
i 6=i′

(1−Pr [P (ui′ , vt)])

Consider the probability that vt is matched in M∗i′,t. Since the order of profiles for ui′ is independent
of the order for ui, we can imagine again choosing t profiles at random. Of those a random profile is
chosen to be one of vt. The t profiles determine M∗i′,t, which matches min(t, ki′) profiles. Since the last
profile is determined at random, the probability that vt is matched in M∗i′,t is at most min(1, ki′/t). As
t ≥ ri′ ≥ βn > αn ≥ ki′ , we have

Pr [P (ui′ , vt)] ≤

{
0 if t ≤ ri′ − 1,

ki′/(βn) otherwise.
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Thus, for t ≥ ri′

Pr [A(ui, vt) | P (ui, vt)] ≥
∏
i 6=i′

(1−Pr [P (ui′ , vt)]) ≥ exp

(
m∑
i=1

ln

(
1− ki

βn

))

≥ exp

(
−

m∑
i=1

1

1− (α/β)
· ki
βn

)
≥ exp

(
− 1

β − α

)
.

The third inequality follows since ki ≤ αn, we have that (1−ki/(βn)) > 1−α/β. Furthermore, it holds that
ln(1− x) ≥ − x

1−x for all x ∈ (0, 1) (see Fact 1 in the Appendix). The last inequality is due to n ≥
∑
j kj .

Consequently, E [w(Mi)] recovers at least a constant fraction of E [w(M ′i)], which represents a constant
factor approximation to the individual optimum M∗i,n for i in hindsight. By linearity of expectation, the
algorithm achieves a constant competitive ratio for the expected weight of the optimum matching.

4 Correlated Preferences

In this section, we treat the basic model where every firm strives to hire one applicant. In this section, we
assume that m ≤ n, i.e., there are more candidates than firms. We consider stochastic input generation
which allows correlations on the weights incident to an applicant. Specifically, assume that each applicant
vi has a parameter qi, measuring his built-in quality, and the weights of edges incident to vi are generated
independently from a distribution Di with mean qi and standard deviation σ. Note that the lower bound for
the classical e-competitive algorithm for the secretary problem (Proposition 1) applies to this general setting.
As a natural candidate, we consider in particular normal distributions and assume that Di ∼ N(qi, σ

2).
We analyze correlations in two regimes: When the random noise is small and the preference lists of each

firm are unlikely to differ and when large variance has substantial effects on the preferences. In the two cases
we apply different algorithms, and both can achieve constant competitive ratios.

4.1 Small Variance

We consider the case of highly correlated preferences of an applicant to all firms with possibly small fluc-
tuations around an applicant’s quality. Intuitively, all the firms are facing almost the same situation. If
we apply the classic algorithm of letting each firm set a single threshold, as we have seen in the previous
sections, there will be extensive competition over few ‘good’ candidates. So instead, we use an approach
using multiple thresholds for each firm.

Consider the list-based approach of Algorithm 3. The algorithm knows the number m of firms. After
sampling a linear number r = Θ(n) of applicants, it maintains a list of the top m candidates observed
so far. The key observation we exploit is that Algorithm 3, in contrast to the classical algorithm for the
secretary problem, can cope well with competition, provided that applicants have a global quality that all
firms roughly agree on. In particular, each of the top m applicants will be matched to her best firm with
constant probability.

Without loss of generality, let q1 ≥ · · · ≥ qn. Formally, we define δmin := mini 6=j |qi − qj |, and ψ = δmin
σ .

Theorem 4. Let ψ = ω(n) and r ∈ [βn, γn] for constants β, γ ∈ (0, 1), β ≤ γ. Algorithm 3 achieves a
constant competitive ratio with high probability, i.e., with probability approaching 1 over the choice of weights,
we have E [w(M∗)] ≤ c · E

[
w(MA)

]
for some constant c > 0.

Proof. Our analysis proceeds as follows. We first assume that all firms share the same uniform preference
list (v1, . . . , vn) over the applicants, based on which they make offers. This list ranks applicants in order
of qi and not necessarily by the realized random weights w(ui, vj). We show that under this condition, the
best m applicants get matched to their best firm with constant probability. We then show that with high
probability the weights induce a uniform preference list. This yields the theorem.
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Algorithm 3: List-based algorithm for firm u

1 Initialize list Lu = (`u,1, . . . , `u,m), initialized with (−∞, . . . ,−∞)
2 (maintain Lu to contain the top m weights u observed so far, where `u,1 ≥ · · · ≥ `u,m)
3 Reject the first (r − 1) applicants, denote the set by R
4 for applicant vt arriving in round t = r, . . . , n do
5 if w(u, vt) ≥ `u,m then
6 Update Lu: Push wu,vt into Lu and pop `u,m out.
7 if popped out `u,m = −∞ or corresponds to an applicant in R then
8 Make an offer to vt, stop if vt accepts

For convenience, we allow each firm to send offers even after it has been matched, i.e., it still sends virtual
offers, which will always be rejected. Since we assume all firms have uniform preference lists (v1, . . . , vn), if
an applicant receives an offer from a firm, every other firm also sends her an offer which might be virtual.
Note that in the algorithm every firm sends out offers at most m times, thus no more than m applicants
can receive offers from the same firm. It follows that when receiving some (potentially virtual) offer, an
applicant also sees non-virtual offers and chooses the best from them.

Observe that for uniform preference lists, our algorithm is similar to the Virtual Algorithm in [1] for
the k-secretary problem. Let S be the set of all applicants who receive any offer. For following lemma
see [1, Lemma 1]. Note that this probability is constant for r ∈ (βn, γn).

Lemma 3. For each applicant vj with j ∈ {1, . . . ,m} we have

Pr [v ∈ S] ≥ f(r) =
r − 1

n
ln

(
n

r − 1

)
.

Lemma 4. Let r ∈ (βn, γn) and all firms have a uniform preference list (v1, . . . , vn). Suppose for each
applicant vi, all incident weights {w(u, vi) | u ∈ U} are drawn independently from the same distribution Di.
Then for each 1 ≤ k ≤ m, we have that vk is matched to her best firm with constant probability.

Proof. Denote the (random) arrival order of applicants by τ and let sτ,i be the i-th applicant who receives
offers. Fix an applicant v = vk, 1 ≤ k ≤ m, among the best m applicants.

First, for every τ where sτ,j = v and j > 1, by swapping the position between sτ,j−1 and v we can
obtain a new order τ ′. Note that in τ ′, v is arriving earlier than in τ . Since the entry `u,m is monotonically
increasing over time, v will also be pushed into Lu at this earlier time. Since sτ,j−1 was made an offer, it
popped out −∞ or an applicant in R, which now also happens since the state of L is the same and v is
pushed into it. As such, in the new arrival order τ ′, v becomes the (j − 1)-th applicant to receive offers, i.e.,
sτ ′,j−1 = v. Clearly, for two different arrival orders τ1 and τ2 with sτ1,j = sτ2,j = v, the corresponding new
orders τ ′1 and τ ′2 are also different. Thus |{τ |sτ,j−1 = v}| ≥ |{τ |sτ,j = v}|. Therefore

Pr
τ

[sτ,j−1 = v | v ∈ S] ≥ Pr
τ

[sτ,j = v | v ∈ S], for all j > 1.

Now given that sτ,j = v, among the m offers v has received, j − 1 of them are virtual and must be
rejected. If the best offer for v is among the remaining m− j+1 ones, then v will get her best offer. Since all
the weights of edges incident to v are generated independently from the same distribution, this event occurs
with probability m−j+1

m and is decreasing in j, therefore

Pr [vi assigned to its best firm | vi ∈ S] =

m∑
j=1

Pr [sτ,j = vi | vi ∈ S] · m− j + 1

m

≥ 1

m

m∑
j=1

m− j + 1

m
=

1

2
+

1

2m
.
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where the inequality follows from Chebyshev’s sum inequality and
∑m
j=1 Pr [sτ,j = vi | vi ∈ S] = 1. Com-

bining this with Pr [v ∈ S] ≥ r
n ln(nr ), the claim follows.

When the fluctuations in applicants’ quality are small enough to have a small effect on the preference
lists, it is easy to extend the result to show a constant competitive ratio for the case of small variance.
We first show that in this regime, indeed the fluctuations keep the same preference lists uniform with high
probability.

Lemma 5. Let ψ = ω(n). Then for any given sequence q1 > · · · > qn, with probability approaching 1 it
holds that

(1) for each applicant vi and firm u, we have |w(u, vi)− qi| < δmin/2,

(2) all firms have a uniform preference list of applicants (v1, . . . , vn).

Proof. For some applicant vi and firm u, note that w(u, vi) is sampled independently from Di with mean qi
and standard deviation σ. By Chebyshev’s inequality, we conclude

Pr

[
|w(u, vi)− qi| ≤

δmin
2

]
≤ 4σ2

δ2min
=

4

ψ2
.

Using a union bound, this event holds for all applicants and firms with probability at least 1− 4nm
ψ2 . Given

that m ≤ n and ψ = ω(n), this probability approaches 1 when n goes to infinity. This proves that part (1)
of the lemma holds with high probability.

For the part (2), assume that part (1) holds. Fix a particular firm u, and let xi be xi = w(u, vi). Recall
that by assumption q1 > q2 > ... > qn. Given that qi − qi−1 ≥ δmin, we conclude that

xi − xi−1 ≥ (qi − qi−1)− |xi − qi| − |xi−1 − qi−1| > (qi − qi−1)− δmin ≥ 0 .

Hence, x1 > · · · > xn and u has the preference list (v1, . . . , vn).

Note that Lemma 5 allows us to apply Lemma 4 by letting Di be the truncated distribution obtained by
conditioning w(u, vi) ∼ Di to be contained in (qi − δmin/2, qi + δmin/2).

Finally, for the proof of the theorem, let T = {v1, . . . , vm} be the set of the m applicants with highest
mean qi. Lemma 5 shows that with probability approaching 1, all firms have a uniform preference list. In
this case, w(M∗) ≤

∑
vi∈T maxu∈U w(u, vi). Also, according to Lemmas 4 and 5 the algorithm guarantees

that every vi ∈ T will be matched to her best firm with constant probability. By linearity of expectation,
E
[
w(MA)

]
≥
∑
vi∈T c ·maxu∈U w(u, vi) for some constant c > 0, concluding the result.

As a corollary, we obtain the following.

Corollary 1. Each firm has a probability of Ω(1/m) to obtain the best applicant.

Proof. By Lemma 5, with probability approaching 1 all firms consider the same applicant as the best. Denote
the best applicant by v. By the fact that Pr [v ∈ S] ≥ r

n ln(nr ) is a constant, v is matched to some firm with
constant probability. Since there is no difference between the firms, each firm has a probability of 1

m to be
chosen.

4.2 Large Variance

If weights are perturbed by high-variance normal distributions, then intuitively this results in a similar
scenario as with independent preferences. For this scenario we proved above that the classic algorithm
(more precisely, its generalization to multiple positions per firm) achieves a constant competitive ratio. For
completeness, we state the classic algorithm again as Algorithm 4.
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Algorithm 4: The classic secretary problem algorithm for firm u.

1 Reject the first (r − 1) applicants, denote the set by R
2 Tu ← maxj∈R w(u, vj)
3 for applicant vt arriving in round t = r, . . . , n do
4 if w(u, vt) ≥ Tu then
5 Make an offer to vt, stop if vt accepts

An instance is given by the distributions (Di)i=1...,n from which the values of applicants i = 1, . . . , n are
drawn independently. We call such an instance strong-tailed if for any subset of r distributions Di1 , . . . , Dir

with Xij ∼ Dij we have

Pr
[
∃1 ≤ j ≤ r − 1 : Xij > Xir

]
≥

(
1− c

r

)
for a constant c > 0.

Theorem 5. The classic secretary algorithm achieves a constant competitive ratio for strong-tailed instances
when r ∈ [βn, γn] for constants β, γ ∈ (0, 1), β ≤ γ. Each firm hires its best applicant with constant
probability.

Proof. In the secretary model, the adversary fixes the distributions, draws the match values w(u, vj) ∼ Dj

independently at random for each firm u, and then applicants arrive in uniform random order. Here it seems
convenient to number applicants {v1, v2, . . . , vn} in their arrival order (and not based on their expected
quality as in the previous section). We denote vj ’s distribution by Dj . Consequently, since arrival order is
random, Dj becomes a random variable itself.

Now consider B(u, vi), P (u, vi), and A(u, vi) as the events that vi is the best applicant for u, vi receives
an offer from u, and vi receives and accepts an offer from u, respectively. By random arrival, for each i ≥ r,
we have Pr [B(u, vi)] ≥ 1/n and Pr [P (u, vi) | B(u, vi)] ≥ r−1

i−1 (for the latter, note that if the most valuable
applicant among v1, . . . , vi−1 is among v1, . . . , vr−1, u cannot have made a previous offer). Hence,

Pr [u gets its best applicant] ≥
n∑
i=r

1

n
· r − 1

i− 1
·Pr [A(u, vi) | B(u, vi), P (u, vi)] .

If no other firm sends an offer to vi, A(u, vi) must be true if P (u, vi) holds. For any u′ 6= u, P (u′, vi)
depends on {Di}ni=1 (and, hence, the arrival order) and random coin flips when drawing the exact value of
applicant vj for firm u′. Note that the latter random coin flips are independent for the firms. Thus, given
{Di}ni=1 (and, hence, the arrival order) the events {P (u′, vi) | u′ 6= u} are independent from each other, and
are all independent from B(u, vi) and P (u, vi). Therefore

Pr [A(u, vi) | B(u, vi), P (u, vi)] ≥ E{Di}ni=1

∏
u′ 6=u

Pr
[
P (u′, vi) | {Di}ni=1

]∣∣∣∣∣∣B(u, vi), P (u, vi)

 .

Note that if firm u′ saw a better applicant during the sampling phase, then P (u′, vi) is implied4. Since the
instance is strong-tailed, we see

Pr
[
P (u′, vi) | {Di}ni=1

]
≥

(
1− c

r

)
,

and thus

Pr [A(u, vi) | B(u, vi), P (u, vi)] ≥
(

1− c

r

)m−1
.

4In fact, P (u′, vi) holds more often, e.g., if firm u′ saw only worse applicants so far but hired an applicant in a previous
round.
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Using m ≤ n, we compute

Pr [u gets its best applicant] ≥
n∑
i=r

1

n
· r − 1

i− 1
·
(

1− c

r

)m−1
≥

((
1− c

r

)r)n
r

n∑
i=r

1

n
· r − 1

i− 1
.

Since r ∈ [βn, γn] this term can be bounded from below by a constant depending on constants c, β, γ.
This implies that the classic algorithm for the secretary problem is almost an optimal strategy for firms.

It guarantees for every single firm the best outcome with constant probability. By linearity of expectation,
the expected social welfare is at least a constant fraction of the optimum, completing the proof of Theorem 5.

For an example of strong-tailed distributions, we consider normal distributions Di = N(qi, σ
2). Similar

to the previous section, we rely on two parameters to bound properties of these distributions. In contrast
to δmin and ψ based on the minimum difference in applicants’ qualifications, we here use the maximum
difference. Let δmax = maxi 6=j |qi − qj | and set ϕ = δmax

σ .

Lemma 6. Let Di = N(qi, σ
2) for all i = 1, . . . , n, with ϕ = O(1/n2). Then the instance is strong-tailed.

Proof. Due to the definition of δmax, the probability Pr
[
∃1 ≤ j ≤ r − 1 : Xij > Xir

]
is minimized if all

distributions Dij = N(qir − δmax, σ
2) for 1 ≤ j ≤ r − 1.

Thus, let X1, . . . , Xr−1, Y ∼ N(qi − δmax, σ
2), Xi ∼ N(qi, σ

2). Also, consider X ′i ∼ N(0, σ2) and
Y ′ ∼ N(−δmax, σ2). This implies

Pr [∃1 ≤ j ≤ r − 1 : Xj > Xi] = 1−
r−1∏
j=1

Pr [Xj ≤ Xi]

= 1− (Pr [Y ≤ Xi])
r−1

= 1− (Pr [(Y − qi) ≤ (Xi − qi)])r−1

= 1−
∫ ∞
−∞

fX′i(xi) · (FY ′(xi))
r−1dxi

= 1−
∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2

(
1

2
+

1

2
erf
(xi + δmax√

2σ

))r−1
dxi ,

where erf(·) is the error function

erf(x) =
2√
π

∫ x

0

e−t
2

dt .

With

d( 1
2 + 1

2erf( x√
2σ

))r−1

dx
=

r − 1√
2πσ

e−
x2

2σ2

(
1

2
+

1

2
erf
( x√

2σ

))r−2
≤ r − 1√

2πσ
,

by the Mean Value Theorem, we have(
1

2
+

1

2
erf
(xi + δmax√

2σ

))r−1
≤

(
1

2
+

1

2
erf
( xi√

2σ

))r−1
+
r − 1√

2πσ
· δmax .

Therefore, ∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2

(
1

2
+

1

2
erf
(xi + δmax√

2σ

))r−1
dxi

≤
∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2

(
1

2
+

1

2
erf
( xi√

2σ

))r−1
dxi +

∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2

(r − 1)δmax√
2πσ

dxi .
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Note that the first term is exactly the probability that xi is the highest value among r random variables
drawn independently from the same normal distribution N(0, σ2), which equals 1

r . For the second term∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2

(r − 1)δmax√
2πσ

dxi =
(r − 1)δmax√

2πσ

∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2 dxi =

(r − 1)δmax√
2πσ

,

thus, ∫ ∞
−∞

1√
2πσ

e−
x2i
2σ2

(
1

2
+

1

2
erf
(xi + δmax√

2σ

))r−1
dxi ≤ 1

r
+
r − 1√

2π

δmax
σ

=
1

r
+
r − 1√

2π
ϕ .

Note that ϕ ≤ c
r(r−1) for some constant c. Thus,

Pr [∃1 ≤ j ≤ r − 1 : Xj > Xi] ≥ 1−
(

1

r
+
r − 1√

2π
ϕ

)
≥ 1− 1 + (c/2π)

r
.

This shows the lemma.

Theorem 5 implies the following result.

Corollary 2. Let Di = N(qi, σ
2), for all i = 1, . . . , n, such that ϕ = O(1/n2), then the classic secretary

algorithm achieves a constant competitive ratio. Each firm hires its best applicant with constant probability.

Finally, observe that a relatively high variance, i.e. ϕ = O(1/n2), is not sufficient for the result.

Proposition 3. There are distributions (Di)i=1,...,n with the same variance σ2 such that ϕ = O(1/n2) and
the classic secretary algorithm has a competitive ratio of Ω(n/ log n).

Proof. The proof is a simple adjustment of Proposition 1. Recall the identical-firm instance I ′ with m = n
firms, where γ lnn applicants are ’good’ and the remaining ones are bad. For each good applicant we construct
a distribution Di by setting its value to 2 with probability 1− (1/n6) and to (n5 + 2) with probability 1/n6.
Thus, for a good applicant we have expected value qi = 2 + (1/n). Similarly, for each bad applicant the
distribution Di sets the value to 1 with probability 1− (1/n6) and to (n5 + 1) with probability 1/n6, which
implies an expected value of qi = 1 + (1/n). This implies δmax = 1, σ2 = Ω(n4), and ϕ = O(1/n2).

In the resulting random class I of instances, the original instance I ′ analyzed in Proposition 1 appears
with probability p0 = (1− (1/n6))n. Then the expected value obtained by the algorithm is EI′,A[w(Malg)] =
O(lnn). Otherwise, we overestimate the performance of the algorithm by assuming it computes the optimum
that matches all applicants. Let Xi ∈ {0, 1} be the indicator variable with Xi = 1 if applicant i has a value
at least n5 + 1. For X =

∑
iXi, note that E [X] = 1/n5 and E [X | X ≥ 1] = 1/(n5(1− p0)). This implies

EI,A[Malg] < p0 · EI′,A[w(Malg)] + (1− p0) ·
(
n+ γ lnn+ (n5 + 2)

1

n5(1− p0)

)
< EI′,A[w(Malg)] +

n+ γ lnn

2n5
+
n5 + 2

n5

< EI′,A[w(Malg)] + 2 ,

where the second inequality results from 1 − p0 = 1 − (1 − (1/n6))n ≤ 1 − exp(−1/n5) ≤ 1/(2n5). Thus,
overall the algorithm only obtains an expected value of O(log n). Obviously, the social optimum obtains a
value of n+ γ ln(n) with probability p0, where p0 > (1− 1/n5) by a union bound.
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5 Conclusion

In this paper, we have studied online secretary problems with n applicants, m firms, and local information.
We analyze thresholding-based algorithms and show how to obtain a competitive ratio of O(log n), even
if firms can accept sets of applicants based on a local matroid. Moreover, we show a lower bound of
O(log n/(log log n)) if all firms use thresholding-based algorithms. These bounds continue to hold in terms
of m if every firm knows the number of firms in the market. For more structured domains, we show that
constant competitive ratios can be achieved.

For the general case, the main point is to determine the right order of magnitude of firms that contribute
significantly to social welfare. In the basic model, if a firm makes no offer or the applicant accepts, then the
firm does not obtain feedback that allows to learn the number of (better) firms competing in the market.
Such feedback is mostly generated by rejected offers. Thresholding-based algorithms are unable to learn
based on this, since the threshold is set before any offer is made and does not get adjusted based on rejected
offers. As such, these algorithms are restricted to simply guessing the number of relevant firms, which results
in almost tight logarithmic ratios.

It is a fascinating open problem if our bounds can be improved, in general and for meaningful special
cases. Intuitively, the feedback would have to be used to guide the offering decisions. A starting point might
be domains where each firm has multiple positions (say, every firm has k = Θ(log n) positions), where initial
offers can be made simply to explore the market and generate feedback. Possibly, ideas from contention
resolution protocols might be helpful in designing such protocols.
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A Useful Facts

Fact 1. For all x ∈ [0, 1) it holds that

ln(1− x) ≥ − x

1− x
.

Proof. For x = 0 we have equality. The derivative of left- and right-hand sides are −(1−x)−1 and −(1−x)−2,
respectively. Hence, the right-hand side drops faster when x > 0 grows towards 1, so the inequality holds
for the entire interval.

B Extension to the Sampling Model

In this section, we extend our logarithmic approximation to a general sampling model presented in [13]. This
model extends the secretary model (adversarial values, random-order arrival), the prophet-inequality model
(stochastic values from known distributions, adversarial arrival) as well as other mixtures of stochastic and
worst-case aspects.

Formally, in the sampling model we have two values for each firm-applicant pair (ui, vj), a non-negative
sample value wS(ui, vj) and a non-negative input value wI(ui, vj). The sample and input values are both
drawn from possibly different, unknown distributions. For a single applicant vj the sample and input
distributions can be arbitrarily correlated among different firms and among each other. However, there is
no correlation among distributions of different applicants. This defines a probability space over a class of
instances I.

The arrival process proceeds as follows. First, the adversary draws all values wS(ui, vj) and wI(ui, vj)
for all pairs (ui, vj). It then reveals to firm ui all drawn sample values wS(ui, vj), for all applicants vj .
Subsequently, depending on the drawn values wI it chooses a worst-case arrival order of applicants. Upon
arrival, an applicant vj reveals its “real” value wI(ui, vj) to firm ui. The algorithm A for firm ui decides
whether to make an offer to vj , and applicant vj accepts an offer that maximizes wI(ui, vj). Then the
next applicant arrives. Decisions made in earlier rounds cannot be revoked. The goal for the algorithm
is to maximize social welfare, i.e., to generate an assignment MA that minimizes the competitive ratio
EI [wI(M∗)]/EI,A[wI(MA)].

Clearly, if sample values are completely unrelated to input values, no algorithm A can obtain a bounded
competitive ratio. Towards this end, we assume that for each value k, there is a similar probability that wI

and wS have value k for pair (ui, vj). We here restrict attention to discrete distributions over integers. It is
straightforward that our results hold for general distributions, but this minor extension does not justify the
notational and technical overhead in presentation. More formally, we assume

• Stochastic similarity : Suppose c > 1 is a fixed constant. For every pair (ui, vj) and every integer
k > 0, we assume that Pr

[
wI(ui, vj) = k

]
≤ c · Pr

[
wS(ui, vj) = k

]
and Pr

[
wS(ui, vj) = k

]
≤ c ·

Pr
[
wI(ui, vj) = k

]
.

• Stochastic independence: For every pair (ui, vj), the weights wI(ui, vj) and wS(ui, vj) do not depend
on the weights wS and wI of other candidates vj′ 6= vj .

For further discussion of the sampling model and an exposition how to formulate secretary and prophet-
inequality models within this framework, see [13].

Consider Algorithm 5, which is an extension of Algorithm 1 to the sampling model. It can be applied
when every firm has a local matroid Si that determines the set of applicants the firm can hire simultaneously.
It is executed in parallel by all firms ui. The algorithm first simplifies the structure of input and sample
values by assuming that no candidate has wS(ui, vj) > 0 and wI(ui, vj) > 0. This loses a factor of at most
2 in the expected value of the solution. Again, we assume that every firm knows b, an upper bound on the
maximum cardinality of the optimum solution, which is used to determine a random threshold based on the
maximum weight seen by firm ui in its simplified sample. Then the algorithm greedily makes an offer only
to those applicants whose simplified input values are above the threshold.

20



Algorithm 5: Thresholding algorithm for firm ui for general weights and matroids.

1 For each vj flip a fair coin: if heads wI(ui, vj)← 0, if tails wS(ui, vj)← 0

2 mi ← arg maxvj w
S(ui, vj)

3 Xi ← Uniform(0, 1, . . . , dlog2 be+ 1), where b ≥ |M∗|
4 ti ← wS(ui,mi)/2

Xi

5 Mi ← ∅
6 for all vj over time do
7 if wI(ui, vj) ≥ ti and Mi ∪ {vj} is independent set in Si then
8 make an offer to vj
9 if vj accepts then

10 Mi ←Mi ∪ {vj}

Theorem 6. Algorithm 5 is 16(c+ 1)2(dlog2 be+ 2)-competitive in the sampling model.

Proof. The proof follows largely the one presented for the secretary model in Section 2 above. At first,
however, we use arguments similar to [13] to capture the relation between sample and input values and to
transform the scenario into a simpler domain.

The first line of our algorithm implements an adjustment of weights, so that at most one of the two
weights for an applicant and a firm is positive. Let us assume w.l.o.g. that this condition holds already for
the initial weights wI and wS . Formally, we denote

ŵ(ui, vj) = max{wI(ui, vj), wS(ui, vj)}

and assume that (wI(ui, vj), w
S(ui, vj)) ∈ {(0, ŵ(ui, vj)), (ŵ(ui, vj), 0)}. This preserves stochastic indepen-

dence and similarity properties of the sampling model. Moreover, it lowers the expected value of the optimum
solution by at most a factor of 2, i.e.,

EI [wI(M∗)] ≤ 2EI [ŵ(M∗)] ≤ 2EI [ŵ(M̂∗)] ,

where M∗ and M̂∗ are optimal solutions for wI and ŵ, respectively.
We condition on properties of the applicant with largest and second largest value for firm ui. To cope with

the resulting correlations, we introduce a conditional probability space. For each applicant vj we assume that
ŵ(ui, vj) is fixed arbitrarily. For simplicity, we drop applicants from consideration for which ŵ(ui, vj) = 0.
Let V Ii = {vj | wI(ui, vj) > 0} and V Si = {vj | wS(ui, vj) > 0}. Stochastic similarity implies

Pr
[
wI(ui, vj) = ŵ(ui, vj)

]
≥ (1/c) ·Pr

[
wS(ui, vj) = ŵ(ui, vj)

]
and

Pr
[
wS(ui, vj) = ŵ(ui, vj)

]
≥ (1/c) ·Pr

[
wI(ui, vj) = ŵ(ui, vj)

]
.

Since V Ii ∩ V Si = ∅, we have

Pr
[
vj ∈ V Ii

]
≥ 1

c+ 1
and Pr

[
vj ∈ V Si

]
≥ 1

c+ 1
(2)

for each applicant vj , independent of the outcome of weights of other applicants. In particular, (2) hold for
every vj , independently of vj′ ∈ V Si or not for all other applicants j′ 6= j.

We now execute the proof of the theorem, which proceeds very similarly to the proof of Theorem 1 above.
We make two assumptions that make the analysis easier but do not hurt the overall result.

1. Based on our reformuation on a conditional probability space, we assume all ŵ(ui, vj) are fixed arbi-

trarily. Furthermore, we assume M̂∗ is an optimum solution when all applicants are in V Ii for all firms

ui. As such, we assume that both ŵ and M̂∗ are deterministic. Our analysis is based only on the
randomization expressed by the sampling inequalities (2) and randomized choice of ti in Algorithm 5.

21



2. To avoid technicalities, we again assume that for each firm ui, the values ŵ(ui, vj) of all applicants are
mutually disjoint.

Let vmax
i = argmaxjŵ(ui, vj) and v2ndi = argmaxj 6=vmax

i
ŵ(ui, vj) be the best and second best applicant

for firm ui, respectively. Here we denote by wmax
i = ŵ(ui, v

max
i ) and w2nd

i = ŵ(ui, v
2nd
i ). For most of the

analysis, we again work with capped weights w̃(ui, vj), based on thresholds ti set by the algorithm as follows

w̃(ui, vj) =


wmax
i if vj ∈ V Ii , ti = w2nd

i , and ŵ(ui, vj) > w2nd
i ,

ti if vj ∈ V Ii and ŵ(ui, vj) ≥ ti,
0 otherwise.

The definition of w̃ relies on random events, i.e., vj ∈ V Ii and the choice of thresholds ti. For any outcome of
these events, however, w̃(ui, vj) ≤ ŵ(ui, vj) for all pairs (ui, vj). The following lemma adapts Lemma 1 and
shows that, in expectation over all the correlated random events, an optimal offline solution with respect to
w̃ gives a logarithmic approximation to the optimal offline solution with respect to ŵ.

Lemma 7. Denote by ŵ(M) and w̃(M) the weight and capped weight of a solution M . Let M̃∗ and M̂∗ be
optimal solutions for w̃ and ŵ, respectively. Then

E
[
w̃(M̃∗)

]
≥ 1

4(c+ 1)2(dlog2 be+ 2)
· ŵ(M̂∗).

Proof. Let (ui, vj) ∈ M̂∗ be an arbitrary pair. First, assume that vj maximizes ŵ(ui, vj), i.e., vj = vmax
i .

By (2) with probability at least 1/(c + 1)2, we have vj ∈ V Ii and v2ndi ∈ V Si . For any such outcome, we
have with probability 1/(dlog2 be + 2) that ti = w2nd

i and w̃(ui, vj) = wmax
i . This yields E [w̃(ui, vj)] ≥

ŵ(ui, vj)/(2(c+ 1)2(dlog2 be+ 2)).
Second, for any vj 6= vmax

i with wmax
i /(2b) < ŵ(ui, vj) ≤ wmax

i , by (2) we know vmax
i ∈ V Si is an

independent event which happens with probability at least 1/(c+1). Then, there is some 0 ≤ k′ ≤ dlog2 be+1,
with ŵ(ui, vj) > wmax

i /2k
′ ≥ ŵ(ui, vj)/2. With probability 1/(dlog2 be + 2), we have that Xi = k′ and

w̃(ui, vj) = ti ≥ ŵ(ui, vj)/2. This yields E [w̃(ui, vj)] ≥ ŵ(ui, vj)/(2(c + 1)2(dlog2 be + 2)), since vj ∈ V Ii
with probability at least 1/(c+ 1) by (2).

Finally, we denote by M̂> the set of pairs (ui, vj) ∈ M̂∗ for which ŵ(ui, vj) > wmax
i /(2b). The expected

weight of the best assignment with respect to the threshold values is thus

E
[
w̃(M̃∗)

]
≥

∑
(ui,vj)∈M̂∗

E [w̃(ui, vj)] ≥
∑

(ui,vj)∈M̂>

ŵ(ui, vj)

2(c+ 1)2(dlog2 be+ 2)

=
1

2(c+ 1)2(dlog2 be+ 2)
· (ŵ(M̂∗)− ŵ(M̂∗ \ M̂>))

≥ 1

4(c+ 1)2(dlog2 be+ 2)
· ŵ(M̂∗),

since
∑

(ui,vj)∈M̂∗\M̂> wmax
i /(2b) ≤ maxi w

max
i /2 ≤ ŵ(M̂∗)/2.

The previous lemma bounds the weight loss due to (i) all random choices inherent in the process of input
generation and threshold selection and (ii) using the capped weights. The next lemma is essentially identical
to Lemma 2 and bounds the remaining loss due to adversarial arrival of elements in V Ii , exploiting that
w̃ equalizes equal-threshold firms. Note that in Lemma 2 we already prove the result for arbitrary arrival,
arbitrary weights w, and arbitrary thresholds based on w. Moreover, we define thresholds ti based on ŵ
in exactly the same way as they we did based on w for Lemma 2. Hence, the lemma and its proof can be
applied literally when using ŵ instead of w.

Lemma 8. Suppose subsets V Ii and thresholds ti are fixed arbitrarily and consider the resulting weight
function w̃. Let MA be the feasible solution resulting from Algorithm 5 using the thresholds ti, for any
arbitrary arrival order of applicants in

⋃
V Ii . Then ŵ(MA) ≥ w̃(M̃∗)/2.
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Combining these insights we see that that

EI [wI(M∗)] ≤ 2EI [ŵ(M̂∗)]

≤ 8(c+ 1)2(dlog2 be+ 2)EI,A[w̃(M̃∗)]

≤ 16(c+ 1)2(dlog2 be+ 2)EI,A[ŵ(MA)]

≤ 16(c+ 1)2(dlog2 be+ 2)EI,A[wI(MA)] .

This proves the theorem.
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