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Abstract

We consider a general class of non-cooperative games related to combinatorial covering and
facility location problems. A game is based on an integer programming formulation of the
corresponding optimization problem, and each of the k players wants to satisfy a subset of the
constraints. For that purpose, resources available in integer units must be bought, and their
cost can be shared arbitrarily between players. We consider the existence and cost of exact and
approximate pure-strategy Nash equilibria. In general, prices of anarchy and stability are in © (k)
and deciding the existence of a pure Nash equilibrium is NP-hard. Under certain conditions,
however, cheap Nash equilibria exist, in particular if the integrality gap of the underlying integer
program is 1, or in the case of single constraint players. We also present algorithms that compute
simultaneously near-stable and near-optimal approximate Nash equilibria in polynomial time.
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1 Introduction

Over the last decade the area of algorithmic game theory has evolved, in which computational
environments are analyzed using game-theoretic models. Motivated in large parts by the Internet,
the resulting effects and dynamics of introducing selfish behavior of independent agents into a com-
putational environment are studied. In this paper we follow this line of research by considering a
general class of non-cooperative games based on general covering integer problems. Problems con-
cerning service installation or clustering, which play an important role in large networks like the
Internet, formally are modeled as some variant of covering, partition, or facility location problems.
The Internet is composed, built, and maintained by a multitude of different parties - companies,
governmental institutions, as well as private users - which all have their personal interests and goals.
In particular, investments into the infrastructure of the network like establishing connections or
placement and installation of service technology are done by telecommunication companies that
strive to sell products and maximize profits. This requires to model these scenarios using economi-
cal, and in particular, game-theoretic approaches. Our games can serve as a basis to analyze service
installation and investment problems in the presence of independent non-cooperative selfish agents.

The formulation of our games generalizes an approach by Anshelevich et al. [6], who proposed
games in the setting of Steiner forest design. In particular, we consider a covering optimization
problem given as an integer linear program and turn this into a non-cooperative game as follows.
Each of the & non-cooperative players considers a subset of the constraints and strives to satisfy
them. Players offer money for the purchase of units of resources, which are modeled by the variables.
A variable is raised in bought integer units if the resulting cost in the objective function is paid for
by the players. Bought units can be used by all players simultaneously to satisfy their constraints
— no matter whether they contribute to the cost or not. A player strives to minimize her cost, but
insists on satisfaction of her constraints. A variety of covering problems, most prominently variants
of set cover and facility location, can be turned into a game with the help of this approach. In these
games, the problem of finding the social optimum solution is represented by the underlying integer
program. The problem of finding the best response strategy for a player ¢ represents an adjusted
subproblem. It is derived by dropping all constraints of players other than ¢ and reducing the cost
coefficients in the objective function by the share that is contributed by other players.

We investigate our non-cooperative games in terms of stable solutions, which are the pure
strategy Nash equilibria of the game. We do not consider mixed strategy equilibria, because our
environment requires a concrete investment rather than a randomized action, which would be the
result of a mixed strategy. Hence, when using the term “Nash equilibrium” we mean pure strategy
exact Nash equilibria unless mentioned otherwise. First, we study the price of anarchy [35,42],
which is the ratio of the cost of the worst Nash equilibrium over the cost of a minimum cost
cover satisfying all constraints of all players for a game. In addition, we consider the price of
stability [5], which measures the best Nash equilibrium in terms of the optimum cost instead of
the worst equilibrium. Both of these measures, however, can be prohibitively high, and pure Nash
equilibria might not exist in our games. Hence, we focus on a trade-off between stability and
optimality by considering a two-parameter optimization problem to find («, 3)-approximate Nash
equilibria (denoted as (a, 3)-NE). These are states in which each player can reduce her cost by
unilateral deviation by at most a factor of o and that represent a S-approximation to the socially
optimum cost. We refer to « as the stability ratio and 5 as the approximation ratio. Intuitively, we
strive to obtain a state with small values for a and 5. This guarantees that it is near-stable and
near-optimal.



Note that, in contrast to the additive concept of e-Nash equilibrium [23] used in the game theory
literature, our parameters are multiplicative ratios. The reason that we chose to use multiplicative
ratios is that in our games each player is required to optimize a combinatorial optimization problem
to find a best response strategy. Most of these problems turn out to be NP-complete. In this case
a multiplicative stability ratio has the advantage that results directly relate to approximation
algorithms with multiplicative approximation factors, which might be used by players to find good
strategies. Such algorithms have been proposed for many of the underlying optimization problems
we consider in this paper.

1.1 Outline and contributions

We study our games with respect to quality of pure strategy exact and approximate Nash equilibria.
Throughout the paper we denote a feasible solution by C indicating that it forms a cover, and denote
the social optimum solution by C*. Our contributions are as follows.

Section 2 introduces covering games using the special case of vertex cover and provides some
initial observations. In Section 3 we show lower bounds for the vertex cover game. The price of
anarchy is k even if the underlying graph is a tree. There exist simple unweighted and weighted
games for two players without exact Nash equilibria. They can be used to prove that the price
of stability can be arbitrarily close to k — 1. Determining existence of exact Nash equilibria for a
given game is NP-hard, even for unweighted games or two players.

In Section 4 we specify classes of set cover games for which exact Nash equilibria exist and
the price of stability is 1. For games, in which the underlying integer program has integrality gap
1, our proof is based on linear programming duality. This yields a polynomial time algorithm to
calculate cheap exact Nash equilibria. For the class of singleton games, in which each player owns
exactly one element, the proof is based on a local improvement method. This can be turned into
an FPTAS that yields (1+4¢,O(logn))-NE in polynomial time, for any constant ¢ > 0. Thus, every
player can improve her payments through selfish defection by a factor of at most 1 + ¢, and the
bought cover is an O(logn)-approximation of the minimum cost cover for all players.

In Section 5 we further consider the problem of finding (a, 8)-NE, i.e., cost sharings of covers
that are cheap and allow low incentives for players to deviate. We propose a simple algorithm for
set cover games that finds (f,f)-NE, in which f is the maximum frequency of any item in the sets.
For vertex cover games with f = 2 we show that any game has a (2,1)-NE. This is tight, because
there are general vertex cover games without an («a, §)-NE for any a < 2. Recent progress on the
complexity status of the minimum vertex cover problem can be used to reasonably conjecture that
there can be no polynomial time algorithm with a better guarantee for the approximation ratio 3
as well. For planar games our argument extends to a lower bound of 1.5 on «. It can be increased
close to 2 by forcing 8 to be close to 1, indicating a trade-off between the ratios.

In Section 6 we discuss facility location games. The results and proofs mainly translate previous
arguments given for covering games. Even in the most simple variant, the metric uncapacitated
facility location (UFL) game, the price of anarchy is exactly k, the price of stability as high as
k — 2, and it is NP-hard to determine whether a game has an exact Nash equilibrium. However,
if every player has only a single client, it follows from [6] that the price of stability is 1 and that
(1+¢€,1.5)-NE can be found in polynomial time, for any constant € > 0. For the metric UFL game
there is an algorithm to compute (3,3)-NE in polynomial time. We will extend the ideas to a more
general setting coming from [26], which we term connection-restricted facility location (CRFL). For
a subclass of closed CRFL (CCRFL) games, the price of stability is 1 if the integrality gap of the



Game Class [ NE | find best NE | [PoA, PoS] | apx. NE ‘

Covering see Set Cover

Set Cover(SC) NP-hard [k, k —1] (f,f)
Singleton SC Vv NP-hard [k, 1] (1+¢,0(logn))
Integral SC Vv P [k, 1] (1,1)
CRFL NP-hard [00, k — 2]

Metric UFL NP-hard [k, k — 2] (3,3)
Singleton UFL v [k, 1] (1+¢,1.5)
Integral CCRFL || / P [00,1] (1,1)

Table 1: Main results

corresponding LP-relaxation is 1. The best Nash equilibrium can be derived with LP-duality.

Table 1 summarizes the results obtained in this paper. Column “Game Class” denotes the class
of games; Covering for the general case, set cover, UFL or CCRFL for more specific games; finally,
the special cases integral, metric, and singleton as mentioned above. Column “NE” shows whether
or not an exact Nash equilibrium is guaranteed to exist, and whether or not it is hard to decide
existence. Column “find best NE” shows the complexity of finding the best Nash equilibrium.
Column “[PoA, PoS|” shows upper bounds on the price of anarchy as well as lower bounds on
the price of stability. Finally, “apx. NE” displays bounds on («, 8)-NE that can be computed in
polynomial time.

Part of this work has appeared previously in two extended abstracts [11,29]. In [11] we treated
only the case of vertex cover games, whereas the remaining results of this paper are reported
in [29]. In [11] many proofs are sketched or misssing (e.g., NP-hardness to determine existence of
exact Nash equilibria, existence of (2,1)-NE, computation of (2,2)-NE in polynomial time), which
are presented in full detail in this paper. In addition, instead of bipartiteness of the graph as stated
n [11], the right condition for existence of Nash equilibria is an integrality gap of 1 for the LP.
While this condition is considered for the more general class of set cover games in [29], a full proof
of the result has not been given before this paper. In addition, we present complete proofs that
were presented only as sketches in [29], for instance for the price of stability and the existence and
computability of (3,3)-NE in metric UFL games, and for (f,f)-NE in set cover games.

1.2 Discussion and Related Work

Our analysis uses concepts developed for non-cooperative games in the area of algorithmic game
theory, in particular prices of anarchy and stability characterizing worst- and best-case Nash equi-
libria. The price of anarchy has been studied in a large and diverse number of games, e.g., in areas
like routing and congestion [7,35,43], network creation [6,24], wireless ad-hoc networks [20, 28], or
facility location [45]. The price of stability [5] has been introduced more recently and studied for
instance in network creation games [5,31] or linear congestion games [16].

The non-cooperative model we consider stems from [6], who proposed a connection game based
on the Steiner forest problem. They show that prices of anarchy and stability are ©(k) and give
a polynomial time algorithm for (4.65 + ¢,2)-NE. In our uncapacitated facility location (UFL)
game we assume that each of the clients must be connected directly to a facility. The connection
requirement for a client cannot be satisfied by connecting it to a different client, which is (possibly



over other clients) connected to a facility. Hence, it is possible to turn this into a single source
connection game on a directed graph. The idea is to introduce a source node s, connect all facilities
f to it and direct all edges from clients to facilities. The costs for the new edges (f,s) are given
by the opening costs ¢(f) of the corresponding facilities. If we allow connecting to facilities using
longer paths, the same construction allows us to turn the game into an undirected single source
connection game (SSC) considered in [6,30]. For both the UFL and the SSC game results in [6]
suggest that the price of anarchy is k and the price of stability is 1 if each player has a single client.
In [30] we provided improved algorithms for (3.1 + ¢,1.55)-NE for the SSC game. In addition,
we showed that deciding the existence of exact Nash equilibria is NP-hard. Extended results on
the price of stability for Steiner network and group formation games have been obtained recently
in [3,4].

A similar model for non-cooperative cost sharing in covering scenarios was proposed by An-
shelevich et al. [5], who study an egalitarian cost sharing protocol closely related to the Shapley
value. The resulting game is a potential game [40], i.e., pure Nash equilibria are guaranteed to
exist, and the price of stability is in ©(log k). Variants of this game recently have been subject to
increased research interest [1,12-14,22]. For a class of similar protocols for network cost sharing
games, Chen et al. [15] derived a characterization of the ones that allow pure Nash equilibria and
showed that the Shapley protocol results in minimal prices of anarchy and stability. The main
motivation for the study of these aspects is the design of routing protocols. The task is to set cost
sharing rules in order to obtain favorable properties in the resulting game like pure Nash equilibria
and low equilibrium inefficiency. Player strategies are limited by design to chosing routes. However,
when considering the interplay of companies building the Internet, there is no agency that is able
to prescribe a certain way of sharing the cost of an investment. Instead, we take a more general
approach with payment functions as strategies, a standard in the area of cost sharing mechanisms.
On the one hand, this results in non-existence of pure Nash equilibria and a high price of stability.
On the other hand, in many settings (including ours) finding an optimal investment strategy is
NP-hard. This makes it reasonable to consider cheap approximate equilibria, which exist in our
model because of more general strategy spaces.

Another model, which is close to our approach, are cooperative games and mechanism design
problems based on optimization. The set cover problem is a fundamental combinatorial optimiza-
tion problem and has been studied for decades. Recently, a cooperative set cover game was studied
by Immorlica et al. [32]. In this coalitional game, each item is an agent and each coalition of players
is associated with a certain cost value - the cost of a minimum cover. In [32] cross-monotonic cost
sharing schemes were investigated. For each coalition of players covered they distribute the cost
to players in a way that every player is better off if the coalition expands. The authors showed
that for vertex cover no more than O(n_%), for set cover no more than O(2) and for uncapacitated
facility location no more than % of the cost can be charged to the agents with a cross-monotonic
scheme, respectively.

Closely related to cooperative games is the study of cost sharing mechanisms. In this scenario a
central authority distributes service to players and strives for their cooperation. Starting with [19]
cost sharing mechanisms for set cover problems have been considered. Every player corresponds
to a single item and has a private utility (i.e., a willingness to pay) for being in the cover. The
mechanism asks each player for her utility value. Based on this information its goal is to pick a
subset of items to be covered, to find a minimum cost cover for the subset and to distribute costs
to covered item players such that no coalition can be covered at a smaller cost. A strategyproof



mechanism allows no player to lower her cost by misreporting her utility value. The authors in [19]
presented strategyproof mechanisms for set cover and facility location games. For set cover games
this work was extended recently by [36,37] to the consideration of different social desiderata like
fairness aspects and model formulations with items or sets being agents.

More general cooperative games based on covering/packing problems were studied in [17]. It
was shown that the core of such games is non-empty if and only if the integrality gap is 1. Additional
results included polynomial time computability of core members in a number of games encompassed
by this framework. In [26] similar results are shown for a general class of facility location games
and an appropriate integer programming formulation.

Cooperative games and the mechanism design framework are used to capture situations with
selfish service receivers who can either cooperate to an offered cost sharing or manipulate. Players
may also be excluded from the game depending on their utility. A major goal has been to derive
good cost sharing schemes that guarantee truthfulness or budget balance. Our game, however, is
strategic and non-cooperative in nature and allows players a much richer set of actions. In our
game each player is motivated to participate in the game. We investigate uncoordinated service
installation scenarios rather than a coordinated environment with a mechanism choosing customers,
providing service, and charging costs.

Under the name competitive location there has been a high research activity on game-theoretic
models for spatial and graph-based facility location during the last decades [21,39]. These models
consider facility owners as players that selfishly decide where to open a facility. Clients are modeled
as part of player utility, e.g., they are assumed to connect to the closest facility and thus represent
part of the revenue a player gets from opening a facility. Recent examples of this kind of location
games are also found in [18,45]. According to our knowledge, however, none of these models consider
the clients as non-cooperative players that need to create connections and facilities without central
coordination.

2 Covering Games

2.1 Vertex and Set Cover Games

We start by introducing covering games for the important special case of vertex cover. The vertex
cover game for k players is defined as follows. In an undirected graph G = (V, E) with n = |V]|
and m = |E| each player i owns a set E; C F of edges. We denote by G[E;] the graph induced by
the edges in E;, and by V(G[E;]) the set of vertices of G[E;]. Without loss of generality we assume
that £ = |J,; F;, as any edge not owned by a player is irrelevant in the game. Each player strives
to establish a service at one or both endpoints of each of her edges. For each vertex v there is a
nonnegative cost c¢(v) for establishing service at this vertex. A strategy for a player i is a function
pi:V — Rf{ specifying an offer to costs of each vertex. A state or payment scheme is a vector
p = (p1,-..,pk) specifying a strategy for each player. If the sum of offers of all players for vertex v
exceeds its cost (i.e., if >, pi(v) > ¢(v)) it is considered bought. Bought vertices can be used by all
players to cover their incident edges. The individual cost of a player is c;(p) = > <y pi(v) if there
is a cover of bought vertices for E; and ¢;(p) = oo otherwise. Hence, a player tries to minimize her
investment but insists on covering her edges.

A (pure strategy) exact Nash equilibrium is a payment scheme such that no player ¢ can uni-
laterally improve her individual cost by changing her strategy, that is ¢;(p;, p—i) < ¢i(p}, p—i) for



any player ¢ and strategy p,. Note that we consider only pure strategy Nash equilibria in this
paper. The social cost of a state p is given by the sum of player costs c(p) = >, ci(p). A social
optimum is a strategy profile p* such that p* = argmin, c(p). It is easy to verify that in a Nash
equilibrium p a vertex v is either bought exactly or not at all, i.e., >, pi(v) = ¢(v) or >, pi(v) = 0.
Furthermore, in every Nash equilibrium the set of bought vertices contains one incident vertex for
every edge e € E; of every player ¢, because otherwise the respective player is not satisfied. Thus,
the set of bought vertices in a Nash equilibrium is a vertex cover C C V such that for each e € F
there is at least one incident vertex in C. For the social cost of a Nash equilibrium p this implies
c(p) = ¢(C) = >, ¢ c(v) with the corresponding cover C. A similar observation holds for the social
optimum p*; it is easy to observe that in p* the vertices of a minimum cost vertex cover C* are
bought exactly, and thus ¢(p*) = ¢(C*). In this way, Nash equilibria and social optima represent
cost sharings of possibly different vertex covers.

To quantify the inefficiency of the covers bought in Nash equilibria, we consider the price of
anarchy and the price of stability, i.e., the ratio of the cost of the worst and best Nash equilibrium
over the cost of the social optimum, respectively. The price of anarchy is defined as the maximum of
c(p)/c(C*) for any Nash equilibrium p. Similarly, the price of stability is the minimum of ¢(p)/c(C*)
for any Nash equilibrium p. In addition, we consider approximate Nash equilibria. A («, 5)-NE is
a payment scheme p such that c¢(p;,p—;) < ac(p},p—;) for any player i and strategy p, and that
c(p) < Be(C*). In such a state every player can improve her cost at most by a factor of o by
switching to another strategy, and the total payments approximate the minimum cost cover by a
factor 8. We will refer to the factor 8 as the approximation ratio, and we term « as the stability
ratio. Finally, we call a vertex cover game unweighted if all vertices have equal costs, and weighted
otherwise. We refer to games with a planar graph G as planar games.

This construction is easily generalized to a set cover game, which is based on an instance of the
set cover problem. In the set cover problem there is a set S of n sets S over a set E of m elements.
For each S € S we have S C E and a cost ¢(5) > 0. The problem is to find a subset of S covering
all elements with minimum total cost. Note that in the special case of vertex cover elements are
edges, and vertices can be seen as sets of incident edges. Using this analogy, it is easy to generalize
all the constructions above to this case. In particular, in a set cover game, each player ¢ strives to
cover a set of elements F;. Player i chooses p; with p;(S) being the payments offered to set S. Set
S is bought if the total contributions exceed the cost ¢(S). A Nash equilibrium p represents a cost
sharing of a set cover C C S of E, i.e., a set of sets such that | Jgco S = E. A social optimum p* is
a cost sharing of a set cover C* of minimum total cost. By f = max.cp [{S € S | e € S}| we denote
the maximum frequency of any element in the sets. Note that a vertex cover game is a set cover
game with f = 2, as each edge is incident to exactly two vertices.

2.2 Integer Covering Games

Our games have an interesting connection to the linear programming formulation of the underlying
optimization problem. Consider an instance of the vertex cover problem, in which we simply strive
to find C*, as an integer linear program. For each vertex v there is a binary variable x, indicating
whether it is in the cover or not. Furthermore, for each edge e = (u,v) there is a constraint
Xy + 2, > 1 ensuring that e is covered. The cost of a vertex is given by the cost coefficient ¢(v),



which appears in the objective function.

Min Z c(v)xy

veV (1)
subject to  x, + x4 > 1 V(u,v) €FE

x, € {0,1} YveV.

Suppose for a vertex cover game the underlying optimization problem of finding C* is described by
the above integer program. Then a player actually strives to satisfy the constraints corresponding
to her edges. This is done by offering money to the purchase of variable units (i.e., vertices). Once
the sum of offers exceeds the cost given by the coefficient in the objective function, it is considered
bought and can be used by all players to satisfy their constraints (i.e., cover their edges). The
remaining specification of the game and the definitions follow accordingly.

This formulation of the game allows a straightforward translation to games based on arbitrary
covering integer programs. A covering game is based on a covering integer problem (CIP) [44,
chapter 13.2] given as

n

Min Zc(f)xf

f=1
: - (2)
subject to Zatfwf >b Vt=1,....m
f=1
xy €N Vf=1,...,n.
All constants are assumed to have non-negative (rational) entries asf, by, ¢(f) > Oforallt =1,...,m
and f =1,...,n. Each player i owns a subset of the constraints C; C {1,..., m}, which she strives

to satisfy. Integral units of a resource f have cost ¢(f). They must be bought to be available for
constraint satisfaction. Each player offers money to purchase some integral units of the resources
f. A unit is considered bought if the sum of all offered payments of all players purchase its cost.
If a unit is paid for, it can be used by all players no matter whether they contribute to the cost or
not.

More formally, we assume that each player i chooses a strategy p; to specify the non-negative
contribution p;(f) to each resource f. In a state p = (p1,...,px) a total of xy = >, pi(f)/cy]
units of resource f are bought, and the contribution of player i to each unit is p;(f)/xf. The
individual cost is ¢;(p) = > ,;pi(f) if D yarpry > by for all t € C; and ¢;(p) = oo otherwise.
Thus, as before, a player minimizes investment but insists on satisfying her constraints. The
notions of Nash equilibrium, social optimum, and («, §)-NE follow accordingly. Note that in a
Nash equilibrium and a social optimum no player contributes to an unbought unit, and the bought
units are paid for exactly. Thus, we again have that a Nash equilibrium p and a social optimum
p* correspond to feasible and optimal solutions x and z* of the CIP instance, respectively. The
payments represent cost sharings of these solutions. This again implies that for a Nash equilibrium
p and a social optimum p* we have 3, pi(f) = c(f)xy, and >, pi(f) = c(f)z}. Note that this
general formulation includes vertex and set cover games as special cases.

2.3 Initial Observations

The following observations can be used to simplify a game. Suppose a constraint is not included
in any of the players constraint sets. This constraint has no influence on the game. Hence, in the



following w.l.o.g. we will assume that the sets C; cover all constraints. In particular, for the vertex
cover game this means F = U§:1 E;.

For the vertex cover game we observe a decomposition property. For a player ¢ assume the
graph G|[E;] induced by the players edge set FE; is not connected. The player has to cover edges in
each component and her optimum strategy decomposes to cover both components independently at
minimum cost. Hence, we can form another game in which the edges for each of the k; components
are owned by different subplayer i1,...,4,. Suppose we adjust the game like this and derive an
(approximate) Nash equilibrium under the condition that the edges of each player form only a
single connected component. When we translate this payment scheme back to the original game,
the stability ratio can only improve. This property can be translated to covering games, however,
it does not seem to have a similar intuitive meaning.

Finally, suppose a constraint ¢ is owned by a player ¢ and a set of players J. Now consider a
Nash equilibrium for an adjusted game in which the constraint is owned only by player ¢. In this
equilibrium a player j € J has no better strategy to satisfy the constraints in C; —t. However, t is
satisfied as well, potentially by a different player. If ¢ is added to C; again, j has no incentive to
deviate from her strategy. This is due to the fact that the individual cost of a player can only increase
by adding constraints. The Nash equilibrium for the adjusted game yields a Nash equilibrium in
the original game. Clearly, the other direction is not true: Consider a game with a single resource
f and a single constraint x; > 1 owned by two players. A Nash equilibrium is obtained, e.g., if the
players share the cost of resource f in equal shares. This can be no Nash equilibrium for the case, in
which only one player owns the constraint. Nevertheless, for computation of approximate equilibria
we will for convenience use an adjusted game and assume that all constraint sets C; are mutually
disjoint. The above idea can be used to show that the derived bounds on the ratios continue to
hold for the original game, in which the sets C; overlap.

3 Quality and Existence of Nash Equilibria

In this section we consider lower bounds on the quality of Nash equilibria in vertex cover games
and on the hardness of determining their existence. In general it is not possible to guarantee their
existence, they can be hard to find or expensive. At first, observe that the price of anarchy in the
vertex cover game is exactly k, and that this result generalizes to general covering games.

Theorem 1 The price of anarchy in any covering game is at most k, and there exists a vertex
cover game with price of anarchy at least k.

Proof. Consider a star in which each vertex has cost 1 and each player owns a single edge.
The minimum cost cover C* is the center vertex of cost 1. If each player purchases the vertex of
degree 1 incident to her edge, we get a Nash equilibrium of cost k. Hence, the price of anarchy is
at least k. On the other hand, k is a simple upper bound. If there is a Nash equilibrium C with
¢(C) > kc(C*), there is at least one player i that pays more than ¢(C*). She could unilaterally
improve by purchasing C* all by herself. As the argumentation for the upper bound does not use
specific properties of the vertex cover game, it continues to hold for all covering games. O

Note that the price of anarchy is k even for very simple games, in which every player owns only
one edge and G is a tree. Hence, we will in the following consider existence and quality of the best
Nash equilibrium in a game.
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Figure 1: Vertex cover games for two players without Nash equilibria. (a) weighted game; (b)
unweighted game. Edge type indicates player ownership. For the weighted game numbers at
vertices indicate vertex costs.

Figure 2: A game with k=8, for which the cost of any Nash equilibrium is close to (k — 1)c(C*).
Numbering of edges indicates player ownership. Indicated vertices have cost ¢’ < 1, vertices without
labels have cost 1.

Lemma 1 There are planar vertex cover games for two players without Nash equilibria.

Proof. We consider the game for two players in Figure 1(a) for an ¢ > 0. For this game we
consider the four possible covers. A cover including all three vertices cannot be an equilibrium,
because vertex u is not needed by any player to fulfill the covering requirement. Hence, any player
contributing to the cost of u could feasibly improve by removing these payments. Suppose the cover
representing an equilibrium includes v; and wve. If player 1 contributes to v, she can remove these
payments, because she only needs vy to cover her edge. With the symmetric statement for vy we
can see that in equilibrium player 1 could not pay anything. Player 2, however, cannot purchase
both vy and wve, because buying u offers a cheaper alternative to cover her edges. Finally, suppose
u and vp are in the cover. In equilibrium player 1 will not pay anything for u. Player 2, however,
cannot purchase u completely, because vy offers a cheaper alternative to cover the edge (u,vs).
With the symmetric observation for the cover of u and vy, we see that there is no feasible cover
that can be purchased in a Nash equilibrium. With similar arguments we can prove that the game
on K4 depicted in Figure 1(b) has no Nash equilibria. This proves the lemma. O

Note that every game with less edges, vertices, or players than the game in Figure 1(a) is guaranteed
to have a Nash equilibrium.
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Theorem 2 For any € > 0 there is a weighted vertex cover game in which the price of stability is
k+2

at least (k—1) —e. There is an unweighted vertex cover game in which the price of stability is " =.
Proof. Consider a game as depicted in Figure 2. The social optimum cover includes the center
vertex of the star and three vertices of the K4-gadget yielding a total cost of 1 + 3¢’. If the center
vertex of the star is in the cover and we assume to have a Nash equilibrium, no player other than
players 1 and 2 can contribute anything to vertices of the K4-gadget incident to edges of player 1
and 2. For this network structure, however, it is easy to note that players 1 and 2 cannot agree on
a set of vertices covering their edges. Hence, to allow for a Nash equilibrium, the star center must
not be picked which in turn requires all other adjacent star vertices to be in the cover. Under these
conditions the best feasible cover includes the vertex that connects K4 to the star yielding a cost
of k — 1+ 3¢’. Note that we can derive a Nash equilibrium purchasing this cover by assigning each
player to purchase a star vertex - including the vertex that also belongs to Ky. Players 1 and 2
are assigned to purchase one of the additional Ky vertices, respectively. With € = 35{5:%;,2 ) the first
part of the theorem follows. For the unweighted case we simply consider the game graph with all
vertex costs equal to 1.

A similar analysis delivers the stated bound and proves the second part of the theorem, where
we insist on the assumption that G[E;] is connected for each player. Here we drop the edges incident
to the star center from F; and FEs, which results in connected subgraphs for these players. Then
we introduce two new players, and each one owns one of the dropped edges. This results in every
G|[E;] being connected. In addition, the Nash equilibria remain equivalent and the numerical value
of the price of stability is the same before and after the transformation (c.f. Section 2.3). However,
the number of players k has increased by 2, and thus the expression now reads k — 3 — ¢ and k/4.
O

Theorem 3 It is NP-hard to determine if
1. an unweighted vertex cover game
2. a weighted vertex cover game for 2 players
has a pure strategy Nash equilibrium, even if the graphs G|E;] are forests.

Proof. We describe a reduction from 3SAT [25] for weighted games and then show how to adjust
it for unweighted games. Given an instance of 3SAT for every variable we introduce a gadget
with a decision player. This player owns the edges of two stars, denoted as the true star and
the false star. The number of leaves of the (false) true star is equal to the number of (negated)
nonnegated occurrences of the variable in the clauses of the instance. The cost of each center vertex
is equal to the number of leaves, the cost of the leaves is equal to 1. In addition, we include a direct
connection between the centers of the stars. Furthermore, we use extended triangle gadgets depicted
in Figure 3. This gadget represents a game without a Nash equilibrium, which can be shown along
the lines of the proof of Lemma 1. At each leaf vertex of the stars we install an extended triangle
gadget. As no pair of gadgets is directly connected, this introduces only two new triangle players.
The leaf vertices of the stars become the u;-vertices of the gadgets. An example variable gadget is
depicted in Figure 4(a). For each clause we introduce a new clause player. She owns a star of three
edges connecting a new center vertex of cost 1 to three extended triangle gadgets. We let the edges
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1.4
Vi

Figure 3: Extended triangle used in the proof of Theorem 3. This game does not have any Nash
equilibrium. To stabilize the extended triangle in the gadgets described below, a third player can
either buy u; completely, then the first two players can pay for ug and wvy; or reduce the cost of vy
of 0.5, allowing the first two players to pay 0.9 for v; and 1.6 for vs.

connect to triangles of the false or true star of a variable gadget depending on whether the variable
appears negated or non-negated in the clause, respectively. In particular, the edges connect to the
vi-vertices of the extended triangles. As we have installed a sufficient number of these gadgets, we
construct the network such that no two edges of different clause players are incident at the same
vertex. An example of a clause gadget is depicted in Figure 4(b).

Suppose there is a satisfying assignment for the instance of 3SAT. Then we construct an equi-
librium as follows. If a variable is true in the assignment, we pick the center vertex of her false
star and all leaf vertices of the true star of its gadget to be in the cover and let the decision player
pay for it. All extended triangles incident to the false star then allow a stable cost distribution, in
which ug and v; are bought by the triangle players (see Figure 3). In the case a variable is false
we pick the leaf vertices of the false star and adjust the assigned payments accordingly. As we
have a satisfying assignment for the 3SAT instance, this stabilizes at least one triangle gadget per
clause. So each clause player has the chance to reduce the cost of the vertices of the remaining two
incident triangles by 0.5 each. The triangle players can then purchase the v; and vy vertices in the
remaining unstabilized gadgets (see Figure 3). This assignment leaves no player an incentive to
defect and forms a Nash equilibrium.

Now suppose there exists a Nash equilibrium. In equilibrium a decision player can either
purchase one or both of the star centers. Omnce she purchases the center of a star, she is not
willing to contribute anything to the leaf vertices of the star. Hence, if she does not contribute
to the extended triangles attached to a star, the clause players must help the triangle players
agree upon a cover. However, a clause player can only contribute a total cost of 1 to the triangle
vertices, because otherwise she can pick her star center as a cheaper alternative. The minimum
cost reduction that she can achieve at every v; vertex of her incident triangle gadgets is 1/3, which
is not enough to allow for a stable cost assignment in all triangles. Hence, we need to have the
decision players purchase the stars such that they trigger a stable cover in at least one extended
triangle from each clause. Furthermore, as they can only trigger a stable cover in triangle gadgets
attached to one of their stars, this naturally translates to a satisfying assignment for the 3SAT
instance.

Finally, we use the transformations mentioned in Section 2 to obtain an equivalent game by
merging all decision players into one player and all clause players into another player. Note that

12



true star false star 1

1.4

(a) A gadget for a variable occurring nonnegated in two clauses and negated in three
clauses.

| | |
11 I I

1 1

(b) A gadget for a clause.

Figure 4: Variable and clause gadgets. The edges owned by triangle players are numbered, while
edges owned by decision and clause player are unlabeled. All vertices have cost 1, except for the
two vertices in the extended triangles and the star centers.
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we have introduced only two triangle players, whose edges form a partition of all edges from the
extended triangle gadgets. The class of decision players shares endpoints only with one of the
triangle players. The same is true for clause players and the other triangle player. Hence, we can
merge the players again forming an equivalent game with only two players. This proves NP-hardness
for weighted games and two players, even in the case where the graphs induced by the set of edges
of each player are forests.

For unweighted games we replace the extended triangles by the games on K4 depicted in Fig-
ure 1(b). Vertices labeled u; and v; indicate where to connect the decision and clause player stars,
respectively. In the variable gadgets the star centers have cost 1. In addition, we introduce a
number of new players such that edges of the true and false stars are each owned by a different
player. For a clause player we now install two stars instead of one star. The stars have different
centers, but leaf nodes from the same Ky gadgets. Observe that in every variable gadget players
in equilibrium contribute only to the leaves of at most one star. Furthermore, a clause player must
invest at least a cost of 1 to stabilize a K4 gadget. Hence, if at least one gadget per clause is stabi-
lized by the decision players, there exists a Nash equilibrium. On the other hand, this condition is
also necessary, because the centers of the clause stars allows the clause players to stabilize at most
two K4 gadgets. This proves NP-hardness.

To show that the result holds even when the graphs G[E;] are forests, we can remark that the
two stars of a clause player can be shared among two distinct players and the above reasoning is
still correct. It can be checked that all graphs G[E;] in this game are forests. Note that in this case
it can be checked in polynomial time whether a payment scheme is a Nash equilibrium, because
the minimum vertex cover problem can be solved in polynomial time on trees. Hence the problem
of finding whether a Nash equilibrium exists, when restricted to these instances, is also in NP and
so is NP-complete. This proves Theorem 3. U

4 Games with cheap Nash Equilibria

The results in the previous section reveal that in general pure Nash equilibria can be absent, even
from very simple variants of the vertex cover game. In this section we outline two classes of set
cover games that have Nash equilibria which are even social optima.

We present two classes of set cover games that always exhibit optimal Nash equilibria: integral
games, in which the integrality gap of the integer programming relaxation is 1, and singleton games,
in which each player owns only a single edge. For singleton games it is NP-hard to find a social
optimum. Hence, we study existence and algorithmic computation of (a, 3)-NE. Formally, for
(a, B)-NE the stability ratio o > 1 specifies the violation of the Nash equilibrium inequality, and
B > 1 is the approximation ratio of the social cost. We show that for singleton set cover games
(14+¢,0(logn))-NE can be obtained in polynomial time, for any constant € > 0.

4.1 Integral Games

In this subsection we turn to integral games, in which the integrality gap is 1. The integrality
gap of a linear program for a minimization problem is the worst-case ratio of the cost of the best
integral solution over the cost of the best fractional solution. Thus, in integral games even the
linear relaxation of the underlying integer program has an optimal integral solution.
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Theorem 4 For any set cover game, in which the integrality gap of the underlying CIP is 1, the
price of stability is 1 and an optimal Nash equilibrium can be found in polynomial time.

Proof. We define the payments for the players using the optimal values of the dual variables.
Then the total contribution of the players suffices to pay exactly for the solution. Basically, the
proof is an application of standard properties of LP-duality. In the following we provide a detailed
presentation of the specific steps.

Consider the LP-relaxation of the CIP derived by setting xg > 0 instead of xg € N. For the set
cover game, primal and dual of the LP-relaxation can be formulated as

Min Zc(S)xS Max Zye

Ses ecl

s.t. Z xg>1 VeeFE s.t. Zye <c(S) VSeS (3)
S:eeS ecS
xg >0 vSeS Ye >0 Ve € E.

We can find the optimum primal solution z* and the optimum dual solution y* in polynomial time.
Note that * yields a feasible cover C* by setting S € C* if and only if 2% = 1, because all 2% € {0,1}
due to an integrality gap of 1. Both x* for the primal and y* for the dual have the same value by
strong LP duality. Now assign each player to pay p;(S) = ZeESﬂEi ysxg. The resulting state p is
a Nash equilibrium if every player plays a best response. We first show a necessary condition for
this, i.e., that C* is exactly paid for.

Lemma 2 In the state p defined above the players exactly purchase the optimum cover. The con-
tribution of player i in p is evactly Y g5 pi(S) =D cp. Yo -

Proof. At first, note that no player contributes to a set S & C*, because g = 0. For sets S € C*
we use complementary slackness of optimal solutions to primal and dual linear programs, which
yields 25 - (c(S) = > .cqve) =0 for any S € S. If S € C*, then 2% > 0 and thus ) gyl = c(95).
Hence, for such a set the total contribution is

k

k k
Do) =D > wrar=> > yr=) uyr=cb),

=1 i=1 eeSNE; 1=1 e€SNE; eceS

because w.l.0.g. we can assume that each element needs to be covered by exactly one player ¢. This
shows that in p all sets in C* get exactly paid for and no player contributes to sets S ¢ C*. This
proves the first part of the lemma.

For the second part of the lemma we again use complementary slackness, i.e., that y} Y g g 2& =
0. For every overcovered element e with ) ¢.g2% > 1 this shows that y} = 0. Thus, the total
contribution of player ¢ in p; is

DonlS) =D ak > =Y

SeS SeS ecSNE; ecE;
This proves the second part of the lemma. O
Now we prove that the strategy assignment p; is a best response against p_; for every player i.

Lemma 3 In the state p defined above every player plays a best response.

15



Proof. Lemma 2 implies that no player has a prohibitively large individual cost, because for each
player a collection of sets covering her elements is paid for. Thus, the individual cost of each player
iis ¢i(p) = > g pi(S). To show the lemma we consider for each player i the optimization problem
of finding a strategy that minimizes the function ¢;(-, p—;). An optimum solution p} to this problem
is obviously a best response for player i. We will show that p; is such an optimum solution. This
proves that p is a Nash equilibrium.

For player i the optimization of ¢;(-, p—;) has to consider the contributions of other players as
fixed. In particular, player ¢ only has to contribute exactly ¢/(S) = ¢(S) — 32, ; pj(S) to make
set S become bought. Thus, in order to find a best response, player ¢ faces a reduced set cover
problem, in which she must cover elements E; with sets S of cost ¢/(S). Using Lemma 2 we note
that ¢/(S) > 0 for every S € S. An optimum solution C’ to the reduced problem yields a best
response pf(S) = (S) if S € €' and pf(S) = 0 otherwise. Consider the linear relaxation of the
reduced problem and the dual:

Min Zc’(S)x’S Max Zyé

SeS ecE;

st Y ag>1 VeeE 5.t Y oy,<d(S) VSeSs (4)
S:eeS eeSNE;
'y >0 vS eS8 yL >0 Ve € E;.

Note that setting 'y = x¥ is feasible, because all elements in E; were covered using z%. In addition,
this solution results in the original payments p;(S) and cost c;(p) = > gcgpi(S). Now consider
setting y, = y? in the dual. This is feasible for the dual in (4), because

d(S) = e(S) =) pi(S) = e(S) =Y D whyi =) - Y abyl

jF#i Jj#i eeSNE; eeS—FE;
> oS- D v = D L
GGS—E,L' eGSﬁEi

and because y: was feasible for the original dual. In addition, it results in an objective function
value of »  p y; for the dual. Due to LP-duality > cp yi < > gcs ¢ (9)2 for every feasible 2%
in the reduced primal. Lemma 2 and the observations above imply equality for 2’ = z*. Hence,
the solutions z* and y* have the same objective function value for the primal and dual reduced
problems. By strong duality this implies that zy = «% is an integral optimal solution for the primal
LP-relaxation in (4). Hence, the cover C* is an optimum solution to the reduced problem. It results
in the original payments p;(S), which therefore are a best response for player 7. This proves the
lemma. ]

The previous two lemmas show that it is possible to obtain a Nash equilibrium p, which exactly
pays for the cost of an optimum solution. This proves the theorem. O

For illustration of the arguments consider a vertex cover game on a bipartite graph G, which is
known to have an integrality gap of 1, see Figure 5(a). To obtain an optimum dual solution one
can employ a flow network using a standard construction by adding a source and a sink vertex,
see Figure 5(b). Each of these two vertices is then connected by directed edges to all vertices from
one partition of the graph. The additional edges are directed away from the source to the sink and
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Figure 5: (a) A vertex cover game with an optimal Nash equilibrium. Edge numbering indicates
player ownership, vertex numbering indicates cost. (b) Dual variables correspond to maximum
flow values in an extended graph. It yields a cost sharing of an optimum cover indicated by filled
vertices. Edge numbering represents top-down flow, labels of a vertex v are i:p;(v). (c) Player 2
plays a best response, because in the reduced problem the flow over her edges stays feasible. Edge
numbering represents top-down flow, vertex numbering indicates cost, filled vertices constitute an
optimum cover.

receive as capacity the cost of the incident vertex from G. All edges from G receive infinite capacity.
A maximum flow in this network yields an optimum solution to the corresponding LP-dual of the
vertex cover problem in G. The dual variables correspond to the flow values on the edges. They
can be used to construct a cost sharing of an optimum vertex cover. To show that this represents a
Nash equilibrium, Figure 5(c) illustrates the reduced problem of finding a best response for player
2. For the reduced problem the flow over her edges is still feasible, hence by LP-duality it lower
bounds the optimum cover cost. As the flow also yields a feasible strategy, player 2 plays a best
response.

4.2 Singleton Games

For singleton set cover games, in which |E;| = 1 for all players i, we prove a similar result as
for integral games. The proof, however, is along different lines. It does not immediately yield
an efficient algorithm to compute an optimal Nash equilibrium, however, it allows us to obtain
(14 ¢,0(logn))-NE in time polynomial in n, k and ¢~!, for any constant ¢ > 0.

Note that one can prove these results in a quite simple way. We can transform a singleton set
cover game into an equivalent single source connection game in a directed graph. The construction
has three layers. In the first layer there is exactly one terminal node for each player. In the second
layer there is a node for each set. There is an edge between a player node and a set node if and
only if the element of the player is contained in this set. These edges all have cost 0. Finally, the
third layer is the source node, and a node for set S is connected to the source node with an edge of
cost ¢(S). It is obvious that solutions and Nash equilibria in this connection game correspond to
solutions and Nash equilibria in the singleton set cover game and vice versa. Hence, using results
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of [6] it follows that optimal Nash equilibria exist and that starting from an r-approximate solution
we can construct a sequence of polynomially many steps improving the social cost until reaching
a (14 &,7)-NE. The results are stated in Theorem 5 and Theorem 6. For completeness, we also
provide self-contained proofs, which apply elementary arguments along the lines of [6] directly to
singleton set cover games and highlight some of the important main ideas.

Theorem 5 For singleton set cover games the price of stability is 1.

Proof. Consider a cover C and a set S € C, and remove S from C. Players that are still covered
can be assigned no contribution to S. Now consider the set of remaining players Is. For each player
1 € Ig independently consider the case, in which S is removed, and consider her cheapest strategy
to cover her element by a set different from S. Player ¢ must purchase completely this new set.
We denote the cost of this set by ¢. A set is called stabilized if ¢(S) < Yic Is c¢?. For a stabilized
set S we assign the players to pay p;(S) = % This will not yield any incentives to remove
payments. e

A cover C is called exchange minimal if all sets are stabilized. Observe that an exchange minimal
cover can be purchased by a Nash equilibrium specified by the above given assignment of payments.
If C is not exchange minimal, it is possible to exchange an unstabilized set S with all the alternative
sets used to define cf for the players i € Ig. The total cost of this alternative collection is at most
Y ic I c:? . Such a local exchange step results in a new, strictly cheaper cover. Thus, if C = C*, then
this is not possible. Hence, in C* all sets are stabilized and there is a Nash equilibrium as cheap as
C*. O

The exchange step mentioned in the proof suggests that with an iterated application cover and
payments converge to a Nash equilibrium, which is cheaper than the starting cover. The problem
with this approach is the running time, which is not guaranteed to be polynomial in the input size.
Here we borrow a trick from [6]. For computing exchanges we artificially reduce the cost of currently
bought sets by a value k such that each exchange operation of the proposed algorithm guarantees
a minimum improvement of the overall cost. For computing a starting solution any algorithm
can be used, in particular, we can apply the greedy O(logn)-approximation algorithm [44]. Using
this algorithm we can compute (1 + ¢,0(logn))-NE in time polynomial in n, k and =1, for any
constant € > 0. Note that the greedy algorithm alone does not necessarily output an exchange

minimal cover.!

Theorem 6 For singelton set cover games a (1 + ¢,0(logn))-NE can be computed in polynomial
time, for any constant € > 0.

Proof. Consider the output C of any S-approximation algorithm for set cover. Starting from this
cover we consider an unstabilized set S and create a new cover C’, in which we remove S. Then
we let all the players with uncovered elements simultaneously switch to their best responses and
add the corresponding sets to the cover. Let € > 0 and define Kk = (164;2(57)15' We perform such an
exchange step only if it improves the cost of the cover by at least k. The algorithm terminates

when no further improving exchange steps are possible. Hence, in total the algorithm makes at
(14e)n'B
g

most such exchange steps.

!Consider a game with 3 players and 3 sets: S; = {e1,ea}, S2 = {e2,e3}, and S3 = {e1}, where player i owns
element e;, for i = 1,2,3. The costs are ¢(S1) = 2 and ¢(S2) = ¢(S3) = 1.5. The greedy algorithm first picks S1 and
then S2. However, ez is overcovered, and player 1 can purchase S3. So cfl = 1.5 < 2, and S is not stabilized.
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If the iteration has terminated, we assign players to purchase the cost of the cover as described
in the proof of Theorem 5. Note, however, that for each unit a cost of at most x remains unpaid.
Suppose in the final cover C’ there are n’ bought sets. This creates a remaining cost of at most xkn’
to be paid for. Now each player is assigned a proportional share of C(Cpf)(% of all remaining costs,
which might require a player to pay at sets not containing her elements. To establish the stability

ratio of (1 + ¢’) we note that the increase for player i is only

kn' < e'e(C)pi(C)

€)=k~ a(l+e)(1—e)e) < 5’pi(C/)’

pi(C) :

Hence, even if all additional payments of player ¢ contribute to resource units she does not need
for coverage, she cannot decrease her payments by more than a factor of (1 + ¢). This yields the
result. O

A possible extension of this result is the case in which each player i has a threshold M; and would
rather stay uncovered if her assigned payments exceed M;. The presented algorithm finds a Nash
equilibrium with stability ratio arbitrarily close to 1 for this case as well. Note that we can further
generalize the result to games based on set multicover. It is, however, an interesting open problem
to adjust this procedure to cope with general covering games with general a;; and b;.

5 Approximate Equilibria

In the previous sections we saw that exact Nash equilibria exist only in special cases, in general
they can be absent or highly inefficient. In this section we focus on (a, 3)-NE for general vertex
and set cover games. For set cover games we show that (f,f)-NE can be computed in polynomial
time. For vertex cover games we give an algorithm to divide the cost of any optimum solution into
payments representing a (2,1)-NE. In addition, we prove a tight lower bound. We show that for
any given o < 2 and 3 > 1, there is a vertex cover game without any («, 5)-NE.

Algorithm 1: (f,f)-NE for set cover games

1 p;(S) < 0 for all players i and sets S

2 v;(e) < 0 for all players ¢ and elements e

3 while there is an uncovered element e do

4 Let i be the player owning element e, and let 7;(e) «— mings, ¢(S)
Increase payments: p;(S) < p;(S) + 7i(e) for all S with e € S
Reduce set costs: ¢(S) < ¢(S) — 7;(e) for all S with e € S

Add all purchased sets to the cover

N o >

Theorem 7 Algorithm 1 returns an (f,f)-NE for set cover games in polynomial time.

Proof. This is a variant of the well-known primal-dual f-approximation algorithm for minimum
set cover for all elements in F (see for instance [44, chapter 15]). It can clearly be implemented to
run in polynomial time. It accounts contributions to elements. For each element e it simultaneously
raises the contribution 7;(e) to all covering sets until one set is bought. A player is assigned to pay
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all contributions of her elements. It remains to be shown that the stability ratio is equal to f as
well.

Intuitively, for an element e of player ¢ we simultaneously raise the contribution 7;(e) to each
set S it can be covered with. When player ¢ deviates to a best response, she has to purchase the
(remaining share of the) cost of at least one set that contains e, and thus she has to pay ~;(e) at
least once. This yields a stability ratio of at most f.

More formally, after the execution of the algorithm, we consider the ith player and her best
move taking into account the payments of all other players j # i. We define the remaining costs
c(S) for each set S, by letting ¢'(S) = ¢(S) — 3, pj(S). We have to show that the sum of the
payments of player i is not greater than f times the cost of the cheapest set cover of E; with respect
to the costs .

At first, we bound the payments of player i. The algorithm does not raise payments above
costs, i.e, for any set S we have Zj:1,2,...,k p;j(S) < ¢(S). In particular, player ¢ does not overpay
the cost ¢/(S):

pi(S) < () = pi(8) =(5).
J#i
The algorithm simultaneously raises contributions to all sets that contain an element e. The total
contribution of player i to a set S equals the ) s7i(e), so pi(S) = > conp, Vi(e). Again, as no
set is overpaid, this contribution is at most ¢/(S)

> qile) <(9).

eGSﬂEi

Now we turn to lower bounding the cost of a best response set cover C; of E;, which has minimum
cost with respect to the cost function ¢/. With the previous arguments, the cost of this cover is at

least
deH=>d9=>" > e
secy SECr e€SNE;

Since C} is a set cover of E;, the charge v;(e) of each element e in E; is counted at least once in the
right-hand side above. Hence, the left-hand side is at least » . i 7i(e), which allows to conclude

S =3" 3 @) <3 yile) <F-(C).

SeS SeS eeSNE; ecE;

This proves that for any best response player ¢ has to pay for all e € E; the share v;(e), and the
theorem follows. O

We remark here that our arguments are also implicitly used in [33], which considers dual pay-
ments and core solutions in cooperative games. We could as well employ their results to show that
the algorithm has stability ratio f. A proof along these lines is given for the primal-dual Algorithm 3
for the UFL game below in Section 6.1.

For the case of vertex cover we can show that any socially optimum cover C* can always be
purchased by a (2,1)-NE.

Theorem 8 For every vertex cover game there is a (2,1)-NE.
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Algorithm 2: (2,1)-NE for vertex cover games

pi(v) <= 0 for all players i and vertices v € V
vi(e) < 0 for all players i and edges e € E
E? « edges e covered twice in C*
Set all edges unmarked
while there is an unmarked edge e € E* do
Let i be the player owning edge e = (u,v), and let 7;(e) - min{c(u), c(v)}
Increase payments: p;(u) < p;(u) + vi(e), pi(v) < pi(v) + vi(e)
Reduce vertex costs: c(u) < c(u) — yi(e), c(v) < c(v) —yi(e)
Mark all purchased vertices and their incident edges

© 0 N O oA W N

10 Create G’ = (V', E’) and C’ by removing all marked vertices and edges from G and C*
11 Find optimum y* for dual LP of G’ that corresponds to C’ for primal LP (3)

12 for all edges e € E' do

13 Let i be the player owning edge e = (u,v), and let y;(e) < y

14 Increase payments: p;(u) < p;i(u) + vi(e), pi(v) < pi(v) + vi(e)

15 p;(v) « 0 for all v ¢ C*

Proof. Consider a vertex cover game on a graph G with vertex costs ¢(v) and an arbitrary optimal
solution C*. We use Algorithm 2 to obtain a cost sharing of C* that is a (2,1)-NE. It proceeds in
two phases. The first phase is a run of Algorithm 1 on a restricted set of edges. The second phase
uses insights from Theorem 4 to assign the remaining costs. The key observation is that after the
first phase, the remaining graph G’ is bipartite, and C’ is a minimum weight vertex cover for G’.

Lemma 4 The graph G' is bipartite. C' is a minimum weight vertex cover for G'.

Proof. In the first phase, the algorithm considers the set of edges E? for which both incident
vertices are in C*. Note that every odd cycle of G has at least one edge in E?. Thus, if E? is empty,
then G must be bipartite, and the lemma follows. Otherwise, Algorithm 1 is called with E?, which
assigns budgets 7;(e) to edges e € E? and reduces the vertex costs accordingly. In each step, the
cost function c is adjusted, the costs of both incident vertices of e are reduced by 7;(e). As both
these vertices are in C*, it remains an optimal cover after the adjustment. After considering all
edges of E?2, the algorithm removes all purchased vertices with cost ¢(v) = 0 from C* and G, along
with all incident edges. This leaves C’ optimal for the resulting graph G’ and proves the second
part of the lemma.

Due to the algorithm, all edges of E? are marked and removed. This adjustment breaks every
odd cycle of G. Hence, in C’ every vertex v € V'’ has frequency 1, and G’ is bipartite. O

For the remaining game given by G’ we show in Theorem 4 that there is an exact Nash equilib-
rium, in which the remaining cost of C’ is exactly paid for. It can be obtained by assigning values
of an optimal solution y* of the LP-dual as cost shares to the edges. Instead, we create a budget
for the edges e € E' with v;(e) + y*, which is offered to both incident vertices. The next lemma
shows that with this adjustment players will not overpay any cost ¢(v) and will contribute ¢(v) for
every vertex v € C*.
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Lemma 5 It holds that

k
Z vile) < ¢(v) for allveV and

c(v) for allv € C*.

=2
<
Y

Proof. Note that after the first phase, the first part of the lemma clearly holds. In the second
phase, player i contributes the dual payment p;(e) = 7;(e) = y¥ for e € E’ to both end vertices.
Feasibility of y* for the dual (3) means that > yr < ¢(v) for every vertex v, thus proving
the first part of the lemma.

For the second part of the lemma, a subset of vertices of C* is bought directly after the first
phase. For the remaining vertices and the remaining costs we use Theorem 4. It shows that the
primal solution z* corresponding to C' under the remaining costs is completely paid for by the dual
cost shares y*. O

e:e=(u,v)

This property allows to use the proof idea of Theorem 7 to show that the stability ratio is
bounded by 2. By dropping all payments to vertices v € C* in the last step of Algorithm 2, we
obtain a cost sharing of C* with stability ratio at most 2. This dropping step is not necessary for
the bound on the stability ratio, it serves only to obtain a payment scheme that exactly purchases
C*. This proves the theorem. O

For lower bounds on the ratios we note that any algorithm to find a («, 5)-NE in the set cover
game can be used as an approximation algorithm for the set cover problem with approximation
ratio min(a, 8). This follows simply by considering a game with one player. This observation can
be combined with recent results on the complexity status of the set cover problem. In particular, set
cover cannot be approximated in polynomial time to a factor of o(logn) unless P = NP [2]. Thus,
a polynomial time algorithm for (O(logn), O(logn))-NE is all we can hope for. For the special case
of the minimum weighted vertex cover problem a recent result [34] suggests that if P # NP and the
unique games conjecture holds, there is no polynomial time algorithm to approximate vertex cover
to a factor of 2 — . Thus, in this case our algorithm delivers the best factors we can hope for in
polynomial time. Note that both bounds apply only to polynomial time computability. We now
show that in vertex cover games the frequency f = 2 is also a lower bound for the stability ratio,
in a much stronger sense.

Theorem 9 For any o < 2 there is an unweighted vertex cover game without («, 5)-NE for any
B =>1.

Proof. The proof follows with a game on K4, with g € N. We assume the vertices are numbered
v1 to vy and distribute the edges of the game to 2¢% + ¢ players in g + 1 classes as follows. In
the first class there are 2g players. Every player i from this class owns only single edge (v;, vag+i)-
Then, for each integer j € [1,g — 1] there is another class of 2¢g players. A player i in one of the
classes owns a cycle of four edges (vi, vit;), (Vitj, V2g+i), (Vag+i, V2g+itj) and (vag4itj,vi). Finally,
there are g players in the last class. Each player ¢ in this class also owns a cycle of four edges
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(Vi, Vgti)s (Vgtis V2g+i), (V2g4i, U3g+i) and (v3gi, v;). See Figure 6 for g = 2 and the distribution of
the 10 players into 3 classes on Kg.

It is well-known that any feasible vertex cover of a complete graph is composed of either all or
all but one vertices. For a cover of all 4g vertices we can simply drop the payments to one vertex.
This reduces the payment for at least one player. In addition, it only increases the cost of some of
the deviations as the players must now purchase the uncovered vertex in total. Hence, the stability
ratio of the resulting payment scheme can only decrease. Hence, the minimum stability ratio is
obtained by purchasing 4g — 1 vertices.

So w.l.o.g. consider a cover of 49— 1 vertices including all but vertex v44. Note that some player
subgraphs do not include v44, and there are only two types of player subgraphs - a single edge or
a cycle of length 4. First, consider a player subgraph that consists of a single edge and both end
vertices are covered. If the player contributes to the cost of the incident vertices, she can drop the
maximum of both contributions. Thus, if she contributes more than 0 to at least one of the vertices,
her incentive to deviate is at least a factor of 2. Second, consider a player subgraph that consists of a
cycle of length four. Label the four included vertices along a Euclidean tour with w1, ue, ug and uq4.
Let the contributions of the player to u; be x; for j = 1,2, 3,4, respectively. To optimally deviate
from a given payment scheme, the player picks one of the possible minimum vertex covers {ui, us}
or {ug,us} and removes all payments outside this cover. A factor of r bounding her incentives to
deviate must thus obey the inequalities Z?:l xj < r(r1+x3) and Z?:1 xj <r(za+x4). Note that a
player might also contribute to vertices outside her cycle. These additional contributions, however,
would unnecessarily tighten the bounds and require an increase in r. Hence, in order to find the
minimum r that is achievable we assume the player contributes only to vertices inside her subgraph.
Summing the two inequalities yields (2 — r) Z?Zl x; <0, so either her overall contribution is 0 or
r > 2. To derive a payment scheme with stability ratio of strictly less than 2, all 4g — 1 vertices in
the cover must be purchased by the 2g players whose subgraph includes vy,.

For the rest of the proof we will concentrate on these 2¢g players. We will refer to player 4, if
she includes v; in her subgraph, for ¢ = 1,...,2g — 1. All these players own cycle subgraphs. The
player that owns the edge (va4,v44) is labeled player 2g. See Figure 7 for an example on Kg. We
denote the contribution of player ¢ to vertex v; by p;; for all ¢ = 1,...,2g and j = 1,...,4g9 — 1.

Figure 6: From left to right the edges owned by the players in the first, second, and third classes of
players for Kg. The first and second class consist of four players each, the third class of two players.
Players in the first class own a single edge, while players in other classes own cycles of length 4.
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Figure 7: Players that include vg in their subtree. Numbering of players as described in the text.
Edges labels indicate player ownership.

Observe that for each player the set {vag, v44} forms a feasible vertex cover. To achieve a stability
ratio r, we must ensure that each player can only reduce her payments by a factor of at most r
when switching to this cover. In the case of player 2g only {vag} is needed, so we must ensure that
she can reduce her payments by at most r when dropping all payments but pag 4. As vy is not
part of the purchased cover its cost of 1 must be purchased completely by a player that strives to
use it in a deviation. This yields the following set of 2¢g inequalities:

4g—1
Zpij < 7r(pigg+1) fori=1,...,2g—1
j=1

4g9—1

Z P29 < TD2g2g

We again strive to obtain the minimum ratio r that is possible. Note that in the minimum case no
vertex gets overpaid, i.e., 2?11 pij = Lforall j =1,...,49 — 1. Using this property in the sum of
all the inequalities gives

49—1 2g
49_1_ Z me <r (29—14_2])129) <2g7"
7j=1 =1
which finally yields » > 2— 5. This proves that in the presented game no (o, 8)-NE with o < 2— 5=
exists. Thus, for every ¢ > 0 we can pick g > (2¢)7!, which then yields a game without (2—¢, 3)- N E
for any 5 > 1. O

Although we did not consider all deviation possibilities, this lower bound is the best we can get
for the presented example games. The following payment scheme is for the players including v4, in
their subgraph. Player ¢ purchases 1 — % of vertices v; and vo44; for i =1,...,2g — 1. Player 2g

purchases vy, completely and the remaining % at every other vertex.
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It would be interesting to see if this lower bound is connected to the integrality gap of vertex
cover. Such a relation exists for approximate budget balanced core solutions in the cooperative
game [33]. In a core solution each possible player coalition S contributes no more than the cost of
a minimum vertex cover for S. In our game, however, players make concrete strategic investments
at the vertices, which alter the cost of the minimum cover for other players. In particular, our
result is mainly due to the fact that the majority of players is sufficiently overcovered leaving only
a small number of contributing players. This makes a relation to the integrality gap seem more
complicated to establish.

Some classes of the vertex cover problem can be approximated to a better extent. For example,
there is a PTAS for the vertex cover problem on planar graphs [8]. It is therefore natural to explore
whether for planar games we can find covers with approximation and stability ratio arbitrarily close
1. The bad news is that in general there are also limits to the existence of cheap approximate Nash
equilibria even for planar games. In particular, Theorem 9 provides a lower bound of 1.5 on the
stability ratio for unweighted planar games. For weighted planar games there is an additional trade-
off between stability and approximation ratios that yields a stability ratio close to 2 for socially
near-optimal covers.

Corollary 1 There is a planar unweighted vertex cover game without (o, 3)-NE for any o < 1.5
and B > 1. For any B < L there is a planar weighted vertex cover game without (av, B)-NE for

6
a<2/(26—1).

Proof. With the planarity of K4 and Theorem 9 the first part follows. For the second part consider
a game from Figure 1(a) with e > 0. Here every algorithm with 3 < 2£€ returns C* = {v1,v2}. How
good can this cover be in terms of the stability ratio? If player 1 contributes, she can always drop
payments to the one vertex to which she contributes the most. This shows that if her contribution
is greater than 0, her deviation incentive is at least a factor of 2. If we assign player 2 to purchase
the whole cover, this delivers a = 12? < 2 for all e > 0. Hence, once an algorithm returns («, §)-NE
with 8 < 2—;5, then for this game any such cover has a > %E Solving for € we get the bound,

which proves the second part of the corollary. [l

So the better an algorithm is required to be in terms of social cost, the more it allows for selfish
improvement by a factor close to 2. Note that these lower bounds apply directly to any algorithm
with or without polynomial running time.

6 Facility Location Games

In this section we extend our model to facility location games. We will first restrict ourselves to
one of the most simple variants, the uncapacitated facility location problem. It can be stated as
follows. A complete bipartite graph G = (T'U F,T x F') with vertex sets F' of ny facilities and T
of n; clients or terminals is given. Each facility f € F' has nonnegative opening costs ¢(f), and
for each terminal ¢t and each facility f there is a nonnegative connection cost ¢(¢, f). The goal is
to connect each terminal to exactly one opened facility at minimum total cost. The classic integer
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programming formulation of the UFL problem is due to Balinski [9].

Min > _clys+ Y elt Pay

feF teT
subject to Z iy >1 VteT (5)

feF

yr—xer 20 VieT,feF

yr,ep € 10,1} VteT,feF.

Note that even for this simple version the integer program is not a CIP, as there are negative
coefficients in the constraints. Nevertheless, it is possible to construct a non-cooperative game
based on an UFL instance as follows. Each of the k non-cooperative players holds a set T; C T
of terminals and insists to satisfy the constraints corresponding to her terminals ¢ € T;. She offers
money to the connection and opening costs. In particular, she picks as a strategy a pair of two
payment functions p§ : T x F' — ]Rar and pf : F' — Rg that specify her offers to the connection
and opening costs. If the total offers of all players exceed the cost of a connection or facility,
the corresponding variable is raised to 1. In this case the connection or facility is considered
bought or opened, respectively. All players can use bought connections and opened facilities for
free, no matter whether they contribute to the cost or not. The definitions of payment scheme,
Nash equilibrium and («, 8)-NE follow directly. Furthermore, it is possible to apply some of the
simplifications observed in Section 2 for covering games. Hence, for the rest of this paper, we will
assume that the sets T; form a partition of the terminal set 7. In particular, this means that in a
Nash equilibrium connection costs are not shared between players.

6.1 Exact and approximate Nash equilibria

In this section we present results on exact and approximate Nash equilibria for the metric UFL
game. For lower bound constructions we mainly use the following transformation to turn a vertex
cover game with graph G = (V, E) into a metric UFL game. The set of facilities F' is given by the
vertex set V' of the graph G. For the opening costs ¢(f) = ¢(v). The terminal set T is given by
the edge set E. For each terminal ¢ corresponding to (u,v) € E we specify the connection costs for
edges between ¢ and the two facilities corresponding to v and v. These edges will be termed basic
edges, as we explicitly specify the connection cost. All other edge costs are given by the shortest
path metric over basic edges.

Even in the metric UFL game the price of anarchy is exactly k. The lower bound is derived by
an instance with two facilities, f; with cost £ and fo with cost 1. Each player ¢ has one terminal
t;, and all connection costs are € > 0. The argumentation follows essentially Theorem 1. Note that
also the upper bound of k is easily translated to metric and non-metric UFL games. To derive a
bound on the price of stability, we note that there are games without Nash equilibria.

Lemma 6 There is a metric UFL game without Nash equilibria.

Proof. The proof follows by translating the game of Figure 1(a) into a metric UFL game. We set
the cost of vertex u to 1.5 and the cost of each basic edge to 1. Note that in equilibrium no player
will consider to pay a connection cost of 3 to connect a terminal to a facility, because it is always
possible to open another facility and connect the terminal with a total cost of less than 3. Hence,
in equilibrium only basic edges are bought and the total connection cost is 3. Then the opened
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Figure 8: Construction of metric UFL games, in which the price of stability is arbitrarily close
to k — 2. Filled vertices are facilities, empty vertices are terminals. Numerical labels of terminals
indicate player ownership, labels of facilities indicate opening costs. All basic solid edges have cost
1, all basic dashed edges cost €. All other edge costs are given by the shortest path metric.

facilities must resemble a feasible vertex cover for the original instance. This proves the lemma. [
We can use this game to make the price of stability as large as k — 2.
Theorem 10 There is a metric UFL game with price of stability at least k — 2.

Proof. Consider the game in Figure 8. This game is in essence obtained by transformation from
the game in Figure 2. In addition to the transformation there are two major adjustments to be
made. First, instead of the unweighted game in Figure 1(b) we attach the game in Figure 1(a) to the
star of players 3,...,k. Second, after the transformation we must adjust opening and connection
costs to ensure the property that in equilibrium no non-basic edges are purchased. It is easy to
verify that for the presented game this property holds. The argumentation then follows the proof
of Theorem 2. In particular, there can be no Nash equilibrium purchasing the facility in the center
of the star composed by players 3, ..., k, because in this case players 1 and 2 must agree on opening
some of the cheap facilities. This is not possible due to Lemma 6. If, however, the center facility
of the star is not bought, each of the players 4, ...,k pays the connection and opening costs of the
corresponding leaf facility resulting in a total cost of 1+ ¢ for each player. Player 3 can connect to
the cheap facility and contribute a cost of € to the opening cost. Then player 1 can contribute the
remaining cost of €/2 and connect her 2 terminals at a cost of 2e. Player 2 purchases one of the
facilities of cost € and the connection to it. This yields a Nash equilibrium of cost (k—2)(14-¢)+4.5¢.
The social optimum solution has cost 1+ (k + 3)e. Thus, if € tends to 0, the lower bound becomes
arbitrarily close to k — 2. (I

The next theorem concerns the hardness of deciding Nash equilibrium existence.
Theorem 11 It is NP-hard to decide if a metric UFL game has a Nash equilibrium.
Proof. The theorem follows directly by transformation from the vertex cover game. If we trans-

form the variable and clause gadgets of Figure 3 using a cost of 1 for each basic edge, then every
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non-basic edge has cost at least 3. Thus, in equilibrium no non-basic edge is purchased, as a player
can always open another facility and connect a terminal with a basic edge with smaller cost. Thus,

the set of opened facilities in equilibrium resembles a feasible vertex cover. This proves the theorem.
O

Thus, exact Nash equilibria can be quite costly, may not exist, and existence is hard to decide.
For some classes of games, however, there is a cheap Nash equilibrium. In particular, results in [6]
can be used to show that UFL games with a single terminal per player allow for an iterative
improvement procedure similar to the one presented in Section 4.2. Hence, the price of stability
is 1, and (1 4 €,1.5)-NE can be found using a recent approximation algorithm [10] to compute a
starting solution. In addition, there is another class of games with cheap equilibria that can be
computed efficiently.

Theorem 12 For any metric UFL game, in which the underlying UFL problem has integrality gap
1, the price of stability is 1, and an optimal Nash equilibrium can be computed in polynomial time.

Proof. The proof works by repeating and adjusting the ideas in the proof of Theorem 4. Recon-
sider the IP formulation (5) and its corresponding LP-relaxation obtained by allowing ys,x:s > 0.
The integrality gap is assumed to be 1, so the optimum solution (z*,y*) to (5) is optimal for the
relaxation. Its dual is

Min Z o

teT

subject to v — iy < c(t,f) VteT,feF (6)
Yuaer Oy Sc(f) VfEF
Ve, 05 >0 vteT, feF.

We can find the optimum dual solution (v*,6*) in polynomial time. It has the same value as (x*, y*)
for (5). Now assign each player to pay pJ(f) = Iy (ZtETi o; f) to the opening cost of each facility f.
By complementary slackness this assignment purchases every opened facility exactly. In addition, if
a terminal ¢ is connected to facility f then zi; = 1and e =0y < c(t, f) is tight. As 2™ is integral, for
each terminal ¢ we have x} p=1 for exactly one opened facility f, and we can let the owning player
i contribute p§(t, f) = xZ‘f(’yf — z‘f) to c(t, f) for every facility f. This assignment exactly pays for
all opened facilities and established connections. In addition, with a similar analysis as in Lemma, 2
using complementary slackness it is possible to show that > .. - p7(f) + > e PE(E, ) = X ier, Vi -

To show that p = (p°,p°) is a set of best responses we consider the optimization problem of
finding a best response for a single player ¢ and her set of terminals 7;. We again construct a
reduced problem by reduction of costs through contributions in p®,. This yields new costs ¢/(f) =
c(f) = 22 P;(f). Note that in p no player contributes to the connection costs of a different
player, thus (¢, f) = c(t, f). We can formulate the reduced problem as an integer program with
variables (2/,v'), relax this program, and consider the LP-dual of the relaxation with variables
(+',8"). Now consider as primal solution the reduced optimal solution, i.e., y} =y} and ) ;=T
for all t € T; and f € F. This is still feasible, because (z*, y*) satisfies the connection requirements
of all t € T;. Also, it results in the original payments of p¢(f) and p{(t, f) and thus in a total cost
of ZfeF P{(f) + X ser, Pi(t, f) for the primal. Now consider the LP-dual for the reduced problem
and solutions v, = 7; and (5£f = (52’} for all f € F and t € T;. These solutions are feasible for the
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facility constraints in the reduced dual, because they were feasible for the facility constraints in the
original dual:

() =elf) =Y 03 =cf) =y} D 0ip =D yidiy.

Jj#t teT-T; teT;

The same holds trivially for the connection constraints, because ¢ (¢, f) = ¢(¢, f). This results in a
total objective function value of } ;1. 7;. By LP-duality we know that >, v < >, ¢ (f)y) +
> et C(t. f)ayy for every feasible solution (2',y’) to the primal. For (z*,y*) we use observations
above to show equality. Hence, (z*,y*) and (v*,0*) have the same value for primal and dual LPs
of the reduced problem. Thus, (*,y*) yields an optimum solution for the reduced problem. This
proves that p; = (p?,p§) is a best response for player i. Hence, p is a Nash equilibrium with
optimum social cost. O

For general games we consider approximate Nash equilibria.

Theorem 13 For the metric UFL game there is an algorithm to derive (3,3)-NE in polynomial
time.

Proof. In the following algorithm we denote a terminal by ¢, a facility by f, and the player
owning t by i;. The algorithm raises budgets for each terminal, which are offered for purchasing
the connection and opening costs. Facilities are opened if the opening costs are covered by the total
budget offered, and if they are located sufficiently far away from other opened facilities.

For the approximation ratio of 3 we note that the algorithm is a primal-dual method for the
UFL problem [38,41].

For the analysis of the stability ratio consider a single player i and her payments. Note that
the algorithm stops raising the budget of a terminal by the time it becomes directly or indirectly
connected. We will first show that for the final budgets ), ;. B; is a lower bound on the cost of
any deviation for player i. For any terminal ¢ we denote by f(¢) the facility ¢ is connected to in the
calculated solution.

Lemma 7 c(t, f) > By for any terminal t and any opened facility f # f(t).

Proof. First suppose there is such a facility for a terminal that is indirectly connected at the end
of the algorithm. This is a contradiction, because then the terminal would have been tight to an
opened facility during the run of the algorithm. If this happens, ¢ gets directly connected to f.
Otherwise suppose t is directly connected to f(¢). Then, f and f(t) are within a distance of
2By, which is too close for both of them to be open. As t is directly connected to f(t), either f(t)
or both f and f(¢) are opened at a time where the current budget B > B;. If f is opened first and
the algorithm tries to open f(t), then with ¢ there is a terminal c(¢, f) + ¢(¢, f(t)) = 2B; < 2B.
Thus, f(t) must stay closed. Otherwise, if the algorithm tries to open f after f(¢), then f must be
closed for the same reason. O

Hence, if a player has a deviation that improves upon B, she must open a new facility and connect
some of her clients to it. By opening a new facility, however, the player is completely independent
of the cost contributions of other players. Similar to [41] we can argue that the final budgets yield
a feasible solution for the dual of the LP-relaxation. Hence, they form a 3-approximately budget
balanced core solution for the cooperative game [33]. Now suppose there is a deviation for a player,
which opens a new facility f and connects a subset of her terminals Ty to f thereby reducing her
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Algorithm 3: Primal-dual algorithm for (3,3)-NE

In the beginning all terminals are unconnected, all budgets B; are 0, and all facilities closed.
Raise budgets of unconnected terminals at the same rate until one of the following events
occurs. We denote the current budget of unconnected terminals by B. We call a terminal ¢
tight with facility f if By > c(t, f).

1. An unconnected terminal ¢ goes tight with an opened facility f.

In this case set t connected to f and assign player i; to pay p, (¢, f) = c(t, f).

2. For a facility f not yet definitely closed the sum of the budgets of unconnected
and indirectly connected terminals ¢ pays for opening and connection costs:
> ,max(B; — c(t, f),0) = c¢(f). Then stop raising the budgets of the

unconnected tight terminals. Also,

(a) if there are opened facility f’ and terminal ¢’ with ¢(¥', f) + (¢, f') < 2B,
set f definitely closed and all unconnected terminals ¢ tight with f
indirectly connected to f'.

(b) Otherwise open f and set all terminals, which are tight with f and not
yet directly connected to some other facility, directly connected to f.

For each such terminal assign player i; to pay pf, (t, f) = c(t, f) and

piot(f) = Bt - C(t,f).

In the end connect all indirectly connected terminals to the closest opened facility and
assign the corresponding players to pay for the connection cost.
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cost below the budgets. Then the cost of ¢(f) + ZteTf c(t, f) < ZteTf B;. This, however, would
mean that the coalition formed by T in the coalitional game has a way to improve upon their
budgets, which is a contradiction to B; having the core-property. Hence, we know that ZteTi B,
is a lower bound on every deviation cost. Finally, note that for every directly connected terminal
t € T; player i pays B;. A terminal ¢ becomes indirectly connected only if it is unconnected and
tight to a facility f by the time f is definitely closed. f becomes definitely closed only if there is
another previously opened facility f’ at distance 2B; from f. Hence, there is an edge c(t, f') < 3B;
by the metric inequality. So in the end player i pays at most 3B; when connecting an indirectly

connected terminal to the closest opened facility. This establishes the bound on the stability ratio.
O

Our proof uses results for cooperative games to lower bound the deviation possibilities of a player
1 that are not influenced by the contribution of other players than <. Note that it is possible to
derive a self-contained proof as for Algorithm 1 before.

Finally, we discuss some observations regarding lower bounds on the stability ratio. There is
no polynomial time algorithm for the UFL problem with an approximation ratio of 1.463 unless
NP c DTIME(nOUeglogn)) [27]. Again, this transfers to a lower bound for the stability ratio in
terms of polynomial time computability. In addition there is a game giving a constant lower bound
r such that the stability ratio a > r in every approximate Nash equilibrium. Reconsider the UFL
game obtained from transforming the vertex cover game of Figure 1(a). The structure of the graph
is fixed as well as all connection costs. Hence, as there is no exact Nash equilibrium, there must
be a constant » > 1 such that any cost distribution of any feasible solution can represent only a
(o, B)-NE with a > r. By appropriate adjustment of edge costs we can obtain a small bound of
r = 1.097, but the proof is by tedious case analysis and therefore omitted.

6.2 Connection-Restricted Facility Location Games

This section extends the UFL game to connection-restricted facility location (CRFL) problems as
considered in [26]. Instead of the constraints y; — x4 > 0 there is for each facility f a set Py
of feasible subsets S of terminals that can be connected simultaneously to f. This formulation
allows for instance capacity, quota, or incompatibility constraints and thus encompasses several
well-known generalizations of the problem. For these games some of the previous results can be
extended to hold. In particular, lower bounds on the prices of anarchy and stability follow simply
by extension. The price of anarchy can be unbounded, as there might be infeasible assignments,
which no player can resolve unilaterally.? In the following we show that for subclasses of these games
cheap Nash equilibria exist in the CRFL game. We restrict to closed CRFL games (CCRFL games)
in which the sets Py are downward closed. In particluar, we assume that for S € Py and S’ C S it
holds S” € Ps. Note that this class is still quite general, as it includes capacity or incompatibility
constraints. An exception are quota constraints, which in general do not yield closed games.

Theorem 14 For any CCRFL game, in which a partially conic relaxation of the underlying CRFL
problem has integrality gap 1, the price of stability is 1.

2Consider two players 1 and 2 owning terminal ¢; and t2, respectively. There are two facilities f1 and fa, for which
Py, = {{t1}} and Py, = {{t2}}. All opening and connection costs are 1. Suppose ¢, pays for c¢(f2) and c(t1, f2) and
to for ¢(f1) and c(t2, f1). Then both player constraintss are violated, and they both have infinite cost. However, no
player can remove payments of others, so no player can unilaterally obtain a feasible solution. Therefore, the state is
a Nash equilibrium of unbounded cost.
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Proof. We can formalize the CRFL problem by an integer program as follows:

Min >_clys+ Y elt, Py

fer teT
subject to Z i >1 VteT (7)
fer
(yfaﬁlfv"')xntf)epf erF
yr,ep € 10,1} VteT,feF.

Here Py = {(0,...,0)}U{(1, xs)|S C T feasible for f} C {0,1}"™*! and xs denotes the character-
istic vector of the subset S.

Following the argumentation in [26] it is possible to use the conic hull of the sets Py to derive
a linear relaxation:

Min S elfyp+ >l ey
fer teT

subject to Z Tip > 1 vteT (8)
fer
(Y @1y T, p) € cone(Py) VfeF.

For this program a dual can be given by

Max Z Ve

teT
9
subject to Y v < c(f)+ > _c(t,f) VfEF SeP. ©)
tes tes

Now we will apply similar arguments given before in Theorems 4 and 12. An integral optimum
solution (z*,y*) to the LP relaxation represents a partition of the terminal set 7" into a collection of
feasible sets S]"Z € Py, one for each facility f. We will again construct a set of strategies p = (p°, p°)
for the players such that 7/ from the corresponding optimum dual solution is the total payment
of a terminal ¢. For player i we assign an amount p§(t, f) = c(t, f) as connection cost to f
with ¢ € S}. For the opening costs pe(f) = ZtesfmTi v — c(t, f). For a player i this yields
o per () + Xier pd(t, f) = Yt Vi as total payment. W.l.o.g. we again assume that the sets
T; are mutually disjoint. Thus, the total payment of all players is ), ;"

We first show that for all ¢t € S;Z we have v/ > ¢(t, f). Thus, for every player i and every facility
f we have p¢(f) > 0. In addition, we note that the solution is exactly paid for. This shows that
state p = (p°, p°) is feasible and all costs of the solution are exactly paid for.

Lemma 8 For the optimum dual solution it holds v} > c(t, f) for every t € Sjc. In addition, for
every f € F we have ZteS; v =c(f) + ZteS} c(t, f).

Proof. The proof of the first part follows using the closed property of the sets Pr. Note that
by strong LP-duality we have >, cr v = > pep ¢(f)y} + X oier @iy, 1., the total contribution of
all players exactly matches the cost of the optimum solution that is to be paid for. Suppose for
contradiction that for some facility f there is a terminal ¢’ € S;i with ~ < ¢(t', f).

First suppose that >, s v o= clf) + 2 51 c(t, f). In this case, consider the set of players

S —{t'}, for which we have Ztes;,t;ét' vE > e(f) + Ztes;—{t’} c(t, f). We have a CCRFL, thus we
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know that 5% — {t'} € P;. This is a contradiction, because v* would violate the corresponding dual
constraint.
Now suppose that ), 51 W <e(f)+ 2 51 c(t, f). Because primal and dual solutions have the

same value, there must be at least one facility f’ and a set of players S}‘, € Pp with ), s, v >
c(f)+ > 1eq+ c(t, f'). This, however, again violates the corresponding constraint in the dual. This
f/

proves the first part of the lemma. Note that the last argument also proves the second part of the
lemma. O

We now show that p is a collection of best responses. Consider a player ¢ and the problem of
finding a best response strategy. This reduces to optimally solving the facility location problem
for terminals ¢ € T; under the fixed payments p_; of other players. Similarly to the previous
theorems this yields a reduced problem to cover terminals ¢ € T; via allowed connections to open
facilities, where opening costs are ¢'(f) = c(f) — >_;;pj(f) for each f € F. Due to Lemma 8
we again have (¢, f) = ¢(t, f) for each f € F and t € T; as in Theorem 12. For the reduced
problem we must not only fix the payments but also the connectivity conditions of all other players
than i. We need to check these conditions to evaluate whether a unilateral deviation for player
i is feasible or not. A terminal ¢ € T — T; is connected to facility f if p§(¢, f) > c(t, f). Thus,
the set of necessarily connected terminals of players j # i for facility f in state p can be given by
Ny ={t € T—T, | zj; = 1}. The feasible subsets at f for player i reduce to all subsets of T; that can
be combined with N; to yield a set in Py. More formally, we get P; = {S € PyNT; | S € Py, Ny C S},
which is the set of feasible subsets in the reduced problem. A conic relaxation of the corresponding
integer program can be given by

Min DLWy + DLt

fer teT;

subject to Z x> 1 Vt e T; (10)
fer
(y},2") € cone(P}) Vf eF.

For this program the dual can be given by

Max Z oA

teT;
! 11
subject to E v < (f) + E c(t,f) VfeFSePr. ()
tes teS

As done previously, we use (x*,y*) as candidate solution for the reduced problem. Note that it
is trivially feasible, because it yields a feasible solution for the original problem and was used to
define P}. Also, it results in ¢;(p) = 3 e p 1§ (f) + Dter, Pi(t, f) as objective function value. For
the dual we again use v; = 7;. This choice of v, is feasible, because for every S € P]’c we have
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SUN,; € F? and

O+ et f) = () =D 5+ et f)

tes JFi tes
= ¢(f) - <Z v - c(t,f)> +> elt, f)
teNt tes
= co(f)+ Z C(ﬂf)_Z%?
teSUN tEN:
> ) A
tesS

because v; was feasible for the original dual. We get as value of the dual objective function
dter, Vi = ZfeF P{(f) + 2 ser, Pi(t, f), which shows that (z*,y) represents an optimum solution
to the reduced problem. Thus, p; = (p?,p§) is a best response for player i. This proves that p is a
Nash equilibrium of optimum cost. O

If we can optimize over the cones in polynomial time we can also compute the best Nash equilibrium
in polynomial time. In particular, this is the case if the cone can be described by a polynomial
number of inequalities.

Finally, we observe that there are singleton CCRFL games (in which every player has exactly
one terminal) without any pure Nash equilibrium. In particular, insights from [6] and Theorem 5
that prove existence of optimal Nash equilibria cannot be extended to this class of games. For
example, consider a game with two clients 7' = {t1,t2} as players.> There are two facilities f;
and fy. All connection costs are 0. The opening costs are ¢(f1) = 2.2 and ¢(fz) = 1. The set
Py, =27, whereas f5 has a capacity constraint of @y, f, + 1,1, < 1, which yields Py, = {{t1}, {t2}}.
In every feasible solution f; must be open, but f; can never be paid for in a Nash equilibrium.
Note, however, that the integrality gap of the underlying problem is not 1, because we can assign
each player fractionally x;,r, = 24,7, = x4, 5, = %4,f, = 0.5 and open both facilities to a degree of
y1 = y2 = 0.5. This satisfies all constraints and yields a total cost of 1.6, which is strictly less than
for any feasible integral solution.

7 Conclusion

In this paper we have studied a general class of cost sharing games for non-cooperative agents
based on combinatorial optimization problems. Exact Nash equilibria in these games are often
absent, costly, and their existence is hard to decide. Nevertheless, there are non-trivial classes of
games that even allow optimal exact Nash equilibria, e.g., in case agents have a single element
or the integrality gap of an underlying linear programming formulation is 1. For many games we
provided efficient algorithms to compute approximate Nash equilibria with small constant stability
and approximation ratios. They represent an interesting trade-off between optimality of social cost
and stability of agent incentives, especially in light of the fact that finding social optima and best
response strategies in these games is NP-hard.

There are a number of interesting open problems that arise from our work. We have shown
that certain classes of primal-dual algorithms can be used to compute approximate Nash equilibria.

3We thank an anonymous reviewer for pointing out this example to us.
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A similar result is known to hold for cooperative games and mechanism design. However, in our
non-cooperative model we need to find stable allocations of payments to resources. Because of this
allocation property, the application of approximation algorithms to compute approximate Nash
equilibria is much more challenging. In particular, it would be interesting to see if primal-dual
algorithms for Steiner network problems can be applied to compute («, 5)-NE with small constant
ratios in variants of connection games.

In addition, there are other interesting stability and fairness concepts in our model. For instance,
it is an interesting open problem to characterize existence and cost of exact and approximate
versions of coalitional stability concepts like strong equilibria, which have been studied recently
in single source conncetion games [22]. Finally, there are many other interesting minimization
problems, for which the analysis of corresponding cost sharing games can provide interesting insights
into the stability of incentives.
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