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Abstract. We consider a scenario of distributed service installationin privately
owned networks. Our model is a non-cooperativevertex cover gamefor k players.
Each player owns a set of edges in a graphG and strives to cover each edge by an
incident vertex. Vertices have costs and must be purchased to be available for the
cover. Vertex costs can be shared arbitrarily by players. Once a vertex is bought, it
can be used by any player to fulfill the covering requirement of her incident edges.
Despite its simplicity, the model exhibits a surprisingly rich set of properties.
We present a cumulative set of results including tight characterizations for prices
of anarchy and stability, NP-hardness of equilibrium existence, and polynomial
time solvability for important subclasses of the game. In addition, we consider
the task of finding approximate Nash equilibria purchasing an approximation to
the optimum social cost, in which each player can improve hercontribution by
selfish defection only by at most a certain factor. A variation of the primal-dual
algorithm for minimum weighted vertex cover yields a guarantee of 2, which is
shown to be tight.

1 Introduction

In this paper we consider a simple model for service installation in networks, e.g. high-
way or communication networks like the internet. Many networks including the inter-
net are built and maintained by a number of different agents with relatively limited
goals whereas others are centrally planned and operated – e.g. the system of interstate
highways in some countries is centrally owned and planned whereas in other countries
certain roads are owned privately. In particular, we consider a simple model in which
network owners have to make a concrete investment to establish a service at a location
in the network. Network connections are owned by different players, and each player
strives to establish a service point at different locationsalong her connections. These
service points could be resting facilities at highways or caching, buffering, or amplifi-
cation technology in telecommunication networks. We investigate the question of how
the quality and density of these service locations changes when networks are owned
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privately vs. owned by a central authority. A player owning aset of connections has an
incentive to cover all her connections with service. The motivation for this might either
be economical or lawfully enforced. If at a location a service point is already estab-
lished, the incident connections are covered. This might alter the motivation for some
players to invest. Formally we model this interaction with anon-cooperative game,
which we call thevertex cover gameand analyze using notions from algorithmic game
theory.

Our game is similar in spirit to the one considered in [2] for network creation. We
assume that a number ofk non-cooperative players have to create service points in
a network. The network is modeled as a graphG = (V, E), in which edges represent
roads or connections and vertices represent possible service point locations. Each player
i owns a subsetEi ⊆ E of edges and strives to establish a service point at at least
one endpoint of each edge inEi, but with minimum investment. For establishing a
service point at a vertexv, a costc(v) has to be paid, which can be shared among
different players. A strategy for a player is an assignment of payments to vertices in
V , and once a vertex is bought – that is, when a total amount ofc(v) is offered by
the players for a vertexv, this vertex can be used by all players to cover any of their
incident edges – no matter whether they contribute to the cost or not. In this game both
the problem of finding the optimum strategy for a player and the problem of finding
a centralized optimum cover for all edges of all players are the classic optimization
problem of minimum weighted vertex cover.

We investigate our non-cooperative game in terms of stable solutions, which are
the pure strategy Nash equilibria of the game. We do not consider mixed strategy equi-
libria, because our environment requires a concrete investment rather a randomized
action, which would be the result of a mixed strategy. We consider theprice of anar-
chy [14, 16], which measures the ratio of the cost of the worst Nash equilibrium over
the cost of a minimum cost cover satisfying all requirementsof all players for a game.
In addition, we investigate theprice of stability[1], which measures the best Nash equi-
librium in terms of the optimum cost instead of the worst equilibrium. As in general
both of these ratios are inΘ(k), we investigate the question how to derive cheap covers
and cost distributions that provide low incentives to selfishly defect. We present an effi-
cient algorithm with small constant approximation ratios and provide tightness results.
In addition, we show that determining existence of Nash equilibria in the vertex cover
game is NP-hard.

1.1 Related work

The vertex cover problem is a classic optimization problem in graph theory and has been
studied for decades. Recently, distributed variants of theproblem have attracted interest
in the area of algorithmic game theory. Specifically, a cooperative vertex cover game
was studied in a more general context by Immorlica et al. [11]. In this coalitional game,
each edge is an agent and each coalition of players is associated with a certain cost value
- the cost of a minimum cover. In [11] cross-monotonic cost sharing schemes were in-
vestigated. For each coalition of players covered they distribute the cost to players in
a way that every player is better off if the coalition expands. The authors showed that
no more thanO(n− 1

3 ) of the cost can be charged to the agents with a cross-monotonic



scheme.
Closely related to cooperative games is the study of cost sharing mechanisms. Here a
central authority distributes service to players and strives for their cooperation. Start-
ing with [6] cost sharing mechanisms have been considered for a game based on set
cover. Every player corresponds to a single item and has a private utility (i.e. a will-
ingness to pay) for being in the cover. The mechanism asks each player for her utility
value. Based on this information it tries to pick a subset of items to be covered, to find
a minimum cost cover for the subset and to distribute costs tocovered item players
such that no coalition can be covered at a smaller cost. A strategyproof mechanism al-
lows no player to lower her cost by misreporting her utility value. The authors in [6]
presented strategyproof mechanisms for set cover and facility location games. For set
cover games [15,18] recently considered different social desiderata like fairness aspects
and model formulations with items or sets being agents.
Cooperative games and the mechanism design framework are used to capture situations
with selfish service receivers who can either cooperate to anoffered cost sharing or
manipulate. Players may also be excluded from the game depending on their utility.
A major goal has been to derive good cost sharing schemes thatguarantee truthful-
ness or budget balance. Our game, however, is strategic and non-cooperative in nature
and allows players a much richer set of actions. In our game each player is motivated
to participate in the game. We investigate distributed uncoordinated service installation
scenarios rather than a coordinated environment with a mechanism choosing customers,
providing service and charging costs. Our study is, however, related to these develop-
ments – especially the singleton games, which we study in Section 5.
Our analysis uses concepts developed for non-cooperative games in the area of algo-
rithmic game theory, in particular prices of anarchy and stability characterizing worst-
and best-case Nash equilibria. The price of anarchy has beenstudied in a large and di-
verse number of games, e.g. in areas like routing and congestion [3, 14, 17], network
creation [2, 8], or wireless ad-hoc networks [7, 9]. The price of stability [1] has been
introduced more recently and studied for instance in network creation games [1, 10] or
linear congestion games [5]. Characterizing selfish improvement possibilities and so-
cial cost of a strategy combination in terms of multiplicative factors has been recently
introduced in the study of network creation games [2,10].

1.2 Outline and Contributions

We study our vertex cover game with respect to quality of purestrategy exact and ap-
proximate Nash equilibria. Throughout the paper we denote afeasible cover byC and
the centralized optimum cover byC∗. All proofs omitted in this extended abstract will
be given in the full version of this paper. Our contributionsare as follows.

– Section 2 presents the model and some initial observations.In Section 3 we show
that the price of anarchy in the vertex cover game isk, even when the underlying
graph is a tree. There exist simple unweighted and weighted games for two players
without Nash equilibria. They can be used to prove that the price of stability can
be arbitrarily close tok − 1. Determining existence of Nash equilibria for a given
game is NP-hard, even for unweighted games or two players.



– In Section 4 we study a two-parameter optimization problem:Find covers that are
cheap and allow low incentives for players to deviate. We formalize this notion as
(x, y)-approximate Nash equilibria and propose a simple algorithm that finds (2,2)-
approximate Nash equilibria for any vertex cover game. In addition to this algorith-
mic result, we show that in general there are games without a(x, y)-approximate
equilibrium forx < 2. Recent progress on the complexity status of the minimum
vertex cover problem can be used to reasonably conjecture that there can be no
polynomial time algorithm with a better guarantee for the approximation ratioy as
well. For planar games our argument extends to a lower bound of 1.5 onx, which
can be increased close to 2 by forcingy to be close to 1 indicating a Pareto rela-
tionship between the ratios.

– Finally, in Section 5 we present games for which the price of stability is 1. For the
class ofsingleton games, in which each player owns exactly one edge, we relate
the results to recent work on mechanism design and cooperative game theory. For
bipartite games, in which the graph is bipartite, our proof is based on the max-
flow/min-cut technique for vertex cover. This provides new game-theoretic inter-
pretations of classic results from graph theory and polynomial time algorithms to
calculate cheap Nash equilibria.

2 The Model and Basic Results

The vertex cover game fork players is defined as follows. In an undirected graph
G = (V, E) with n = |V | andm = |E| each playeri owns a setEi ⊆ E of edges.
We denote byG[Ei] the graph induced by the edges inEi, and byV (G[Ei]) the set
of vertices ofG[Ei]. Each player strives to establish service at least one endpoint of
each of her edge. For each vertexv there is a nonnegative costc(v) for establishing
service at this vertex. A strategy for a playeri is a functionpi : V → IR+

0 specifying
an offer to costs of each vertex. The cost of a strategypi for player i is the sum of
all money she offers to the vertices. Once the sum of offers ofall players for vertex
v exceeds its cost it is consideredbought. Bought vertices can be used by all players
to cover their incident edges. Each player strives to minimize her cost, but insists on
covering her edges. Apayment schemeis a vectorp = (p1, . . . , pk) specifying a strat-
egy for each player. ANash equilibriumis a payment scheme such that no playeri can
unilaterally improve her payments by changing her strategyand still cover all her edges
in Ei. A (x, y)-approximate Nash equilibriumis a payment scheme purchasing a cover
C for which every player can improve her cost at most by a factorof x by switching
to another strategy, and such thatc(C) ≤ yc(C∗). We will refer to the factory as the
approximation ratio, and we termx as thestability ratio. The definitions of the approx-
imation ratio and the stability ratio coincide for single-player games. Finally, we call a
gameunweightedif all vertices have equal costs, andweightedotherwise. We refer to
games with a planar graphG asplanar games.
The following observations can be used to simplify a game. Suppose an edgee is not
included in any of the players edge sets. This edge is not considered by any player
and has no influence on the game. Hence, in the following w.l.o.g. we will assume that
E =

⋃k

i=1 Ei.



For a playeri assume the graphG[Ei] induced by the players edge setEi is not con-
nected. The player has to cover edges in each component and her optimum strategy
decomposes to cover both components independently at minimum cost. Hence, we can
form an equivalent game in which the edges for each of theki components are owned
by different subplayeri1, . . . , iki

. Then any approximate Nash equilibrium from this
equivalent game can be translated to the original game, and eventually the stability ra-
tio improves. Hence, for deriving approximate Nash equilibria we can assume that the
edges of each player form only a single connected component.
Suppose an edgee ∈ E is owned by a playeri and a set of playersJ , i.e. e ∈
Ei ∩ (

⋂

j∈J Ej). This is equivalent to one parallel edge for each player. Nowconsider
a Nash equilibrium for an adjusted game in which there is onlyone edgee owned only
by playeri. In this equilibrium a playerj ∈ J has no better strategy to cover the edges
in Ej − e. However,e is covered as well, potentially by a different player. Ife is added
to Ej againj has no incentive to deviate from her strategy as her coveringrequirement
only increases. The Nash equilibrium for the adjusted game yields a Nash equilibrium
in the original game. Hence, in the following we will assume that all edge setsEi are
mutually disjoint.

3 Quality and Existence of Nash Equilibria

In this section we consider the quality of pure Nash equilibria and the hardness of
determining their existence. In general it is not possible to guarantee their existence,
they can be hard to find or expensive. At first observe that the price of anarchy in the
vertex cover game isk.

Theorem 1. The price of anarchy in the vertex cover game is exactlyk.

Proof. Consider a star in which each vertex has cost 1 and each playerowns a single
edge. The centralized optimum coverC∗ is the center vertex of cost 1. If each player
purchases the vertex of degree 1 incident to her edge, we get aNash equilibrium of
costk. Hence, the price of anarchy is at leastk. On the other hand,k is a simple upper
bound. If there is a Nash equilibriumC with c(C) > kc(C∗), there is at least one player
i that pays more thanc(C∗). She could unilaterally improve by purchasingC∗ all by
herself. ⊓⊔

Note that the price of anarchy isk even for very simple games in which every player
owns only one edge andG is a tree. Hence, we will in the following consider existence
and quality of the best Nash equilibrium in a game.

Lemma 1. There are planar games for two players without Nash equilibria.

Proof. We consider the game for two players in Fig. 1(a) for anǫ > 0. For this game we
examine four possible covers. A cover including all three vertices cannot be an equilib-
rium, because vertexu is not needed by any player to fulfill the covering requirement.
Hence, any player contributing to the cost ofu could feasibly improve by removing
these payments. Suppose the cover representing an equilibrium includesv1 andv2. If



(a) (b)

Fig. 1.Games for two players without Nash equilibria. (a) weightedgame; (b) unweighted game.
Edge type indicates player ownership. For the weighted gamenumbers at vertices indicate vertex
costs

player 1 contributes tov1, she can remove these payments, because she only needsv2

to cover her edge. With the symmetric statement forv2 we can see that in equilibrium
player 1 could not pay anything. Player 2, however, cannot purchase bothv1 andv2,
because buyingu offers a cheaper alternative to cover her edges. Finally, supposeu
andv1 are in the cover. In equilibrium player 1 will not pay anything for u. Player 2,
however, cannot purchaseu completely, becausev2 offers a cheaper alternative to cover
the edge(u, v2). With the symmetric observation for the cover ofu andv2, we see that
there is no feasible cover that can be purchased by a Nash equilibrium. With similar
arguments we can prove that the game onK4 depicted in Fig. 1(b) has no pure Nash
equilibria. This proves the lemma. ⊓⊔

Fig. 2. A game with k=8, for which the cost of any Nash equilibrium is close to(k − 1)c(C∗).
Numbering of edges indicates player ownership. Indicated vertices have costǫ′ ≪ 1, vertices
without labels have cost 1.

Theorem 2. For anyǫ > 0 there is a weighted game in which the price of stability is
at least(k− 1)− ǫ. There is an unweighted game in which the price of stability is k+2

4 .

Proof. Consider a game as depicted in Fig. 2. The centralized optimum cover includes
the center vertex of the star and three vertices of theK4-gadget yielding a total cost of



1 + 3ǫ′. If the center vertex of the star is in the cover and we assume to have a Nash
equilibrium, no player can contribute anything to verticesof the K4-gadget incident
to edges of player 1 and 2. For this network structure, however, it is easy to note that
players 1 and 2 cannot agree on a set of vertices covering their edges. Hence, to allow
for a Nash equilibrium, the star center must not be picked which in turn requires all
other adjacent star vertices to be in the cover. Under these conditions the best feasible
cover includes the vertex that connectsK4 to the star yielding a cost ofk − 1 + 3ǫ′.
Note that we can derive a Nash equilibrium purchasing this cover by assigning each
player to purchase a star vertex - including the vertex that also belongs toK4. Players
1 and 2 are assigned to purchase one of the additionalK4 vertices, respectively. With
ǫ = 3ǫ′(k−2)

1+3ǫ′
the first part of the theorem follows. For the unweighted casewe simply

consider the game graph with all vertex costs equal to 1. A similar analysis delivers the
stated bound and proves the second part of the theorem. ⊓⊔

Theorem 3. It is NP-hard to determine whether (1) an unweighted vertex cover game
or (2) a weighted vertex cover game for 2 players has a pure strategy Nash equilibrium,
even if the graphsG[Ei] are forests.

4 Approximate Equilibria

In the previous section we saw that in general cheap pure Nashequilibria can be absent
from the game. Hence, we study existence and algorithmic computation of solutions to
a two-parameter optimization problem. Recall that(x, y)-approximate Nash equilibria
are payment schemes that allow each player to reduce her payments by at most a factor
of x and approximatec(C∗) to a factor ofy.

Algorithm 1 : (2,2)-approximate Nash equilibria
pi(v)← 0 for all playersi and verticesv
γi(e)← 0 for all playersi and edgese
while there is an uncovered edgee = (u, v) ∈ E do

Let i be the player owning edgee, and letγi(e)← min(c(u), c(v))
Increase payments:pi(u)← pi(u) + γi(e) andpi(v)← pi(v) + γi(e)
Add all purchased vertices to the cover
Reduce vertex costs:c(u)← c(u)− γi(e) andc(v)← c(v)− γi(e)

Theorem 4. Algorithm 1 returns a (2,2)-approximate Nash equilibrium inO(k(n+m))
time.

The algorithm is an adaption of the primal-dual algorithm for minimum vertex cover. It
is also used to show that any socially optimum coverC∗ can always be purchased by a
(2, 1)-approximate Nash equilibrium.

Theorem 5. For every game there is a (2,1)-approximate Nash equilibrium.



For lower bounds on the ratios we note that any algorithm to find a(x, y)-approximate
Nash equilibrium in the vertex cover game can be used as an approximation algorithm
for minimum weighted vertex cover with approximation ratiomin(x, y). The argument
follows simply by considering a game with one player. This observation can be com-
bined with recent conjectures on the complexity status of the minimum weighted vertex
cover problem [13]. It suggests that ifP 6= NP and the unique games conjecture
holds, there is no polynomial time algorithm delivering(x, y)-approximate Nash equi-
libria with x < 2 − o(1) or y < 2 − o(1). This bound applies only to polynomial
time computability in general games. We now show that 2 is also a lower bound for the
stability ratio, in a stronger sense.

Theorem 6. For anyx < 2 there is an unweighted game without(x, y)-approximate
Nash equilibria for anyy ≥ 1.

Fig. 3. From left to right the edges owned by the players in the first, second, and third classes
of players forK8. The first and second class consist of four players each, the third class of two
players. Players in the first class own a single edge, while players in other classes own cycles of
length 4.

Proof. The proof follows with a game onK4g with g ∈ IN. We assume the vertices are
numberedv1 to v4g and distribute the edges of the game to2g2 + g players ing + 1
classes as follows. In the first class there are2g players. Every playeri from this class
owns only single edge(vi, v2g+i). Then, for each integerj ∈ [1, g − 1] there is an-
other class of2g players. A playeri in one of the classes owns a cycle of four edges
(vi, vi+j), (vi+j , v2g+i), (v2g+i, v2g+i+j) and(v2g+i+j , vi). Finally, there areg play-
ers in the last class. Each playeri in this class also owns a cycle of four edges(vi, vg+i),
(vg+i, v2g+i), (v2g+i, v3g+i) and(v3g+i, vi). See Fig. 3 forg = 2 and the distribution
of the 10 players into 3 classes onK8.
Any feasible vertex cover of a complete graph is composed of either all or all but one
vertices. For a cover of all4g vertices we can simply drop the payments to one vertex.
This reduces the payment for at least one player. In addition, it increases the cost of
some of the deviations as the players must now purchase the uncovered vertex in total.
The stability ratio of the resulting payment scheme can onlydecrease. Hence, the min-
imum stability ratio is obtained by purchasing4g − 1 vertices.



Fig. 4. Players that includev8 in their subtree. Numbering of players as described in the text.
Edge labels indicate player ownership.

So w.l.o.g. consider a cover of4g − 1 vertices including all but vertexv4g. Note that
some player subgraphs do not includev4g, and there are only two types of player sub-
graphs - a single edge or a cycle of length 4. First, consider aplayer subgraph that
consists of a single edge and both endvertices are covered. If the player contributes
to the cost of the incident vertices, she can drop the maximumof both contributions.
Thus, if she contributes more than 0 to at least one of the vertices, her incentive to
deviate is at least a factor of 2. Second, consider a player subgraph that consists of a
cycle of length four. Label the four included vertices alonga Euclidean tour withu1,
u2, u3 andu4. Let the contributions of the player touj bexj for j = 1, 2, 3, 4, resp.
To optimally deviate from a given payment scheme, the playerpicks one of the possi-
ble minimum vertex covers{u1, u3} or {u2, u4} and removes all payments outside this
cover. A factor ofr bounding her incentives to deviate must thus obey the inequalities
∑4

j=1 xj ≤ r(x1 +x3) and
∑4

j=1 xj ≤ r(x2 +x4). In order to find the minimumr that
is achievable we assume each player contributes only to vertices inside her subgraph.
Summing the two inequalities yields(2− r)

∑4
j=1 xj ≤

∑4
j=1 xj , so either her overall

contribution is 0 orr ≥ 2. Hence, to derive a payment scheme with stability ratio of
less than 2, all4g − 1 vertices in the cover must be purchased by the2g players whose
subgraph includesv4g.
For the rest of the proof we will concentrate on these2g players. We will refer to player
i, if she includesvi in her subgraph, fori = 1, . . . , 2g − 1. All these players own cycle
subgraphs. The player that owns the edge(v2g, v4g) is labeled player2g. See Fig.4 for
an example onK8. We denote the contribution of playeri to vertexvj by pij for all
i = 1, . . . , 2g andj = 1, . . . , 4g − 1. Observe that for each player the set{v2g, v4g}
forms a feasible vertex cover. To achieve a stability ratior, we must ensure that each
player can only reduce her payments by a factor of at mostr when switching to this
cover. In the case of player2g only {v2g} is needed, so we must ensure that she can
reduce her payments by at mostr when dropping all payments butp2g,2g. As v4g is
not part of the purchased cover its cost of 1 must be purchasedcompletely by a player



that strives to use it in a deviation. This yields the following set of2g inequalities:
∑4g−1

j=1 pij ≤ r(pi,2g + 1), for i = 1, . . . , 2g− 1 and
∑4g−1

j=1 p2g,j ≤ rp2g,2g. We again
strive to obtain the minimum ratior that is possible. Note that in the minimum case no
vertex gets overpaid, i.e.

∑2g

i=1 pij = 1 for all j = 1, . . . , 4g − 1. Using this property
in the sum of all the inequalities gives

4g − 1 =

4g−1
∑

j=1

2g
∑

i=1

pij ≤ r

(

2g − 1 +

2g
∑

i=1

pi,2g

)

≤ 2gr,

which finally yieldsr ≥ 2 − 1
2g

. This proves that in the presented game no(x, y)-

approximate Nash equilibrium withx < 2 − 1
2g

exists. Thus, for everyǫ > 0 we

can pickg ≥ (2ǫ)−1, which then yields a game without(2 − ǫ, y)-approximate Nash
equilibria for anyy ≥ 1. ⊓⊔

It would be interesting to see, whether this lower bound is due to the integrality
gap of vertex cover. Such a relation exists for approximate budget balanced core solu-
tions in the cooperative game [12]. In a core solution each possible player coalitionS
contributes less than the cost of a minimum vertex cover forS. In our game, however,
players make concrete strategic investments at the vertices, which alter the cost of the
minimum cover for other players. In particular, our result is mainly due to the fact that
the majority of players is sufficiently overcovered leavingonly a small number of con-
tributing players. This makes a relation to the integralitygap seem more complicated to
establish.
Some classes of the vertex cover problem can be approximatedto a better extent. For ex-
ample, there is a PTAS for the vertex cover problem on planar graphs [4]. It is therefore
natural to explore whether for planar games we can find coverswith approximation and
stability ratio arbitrarily close 1. The bad news is that in general there are also limits to
the existence of cheap approximate Nash equilibria even on planar games. In particular,
Theorem 6 provides a lower bound of1.5 on the stability ratio for unweighted planar
games. For weighted planar games there is an additional Pareto relationship between
stability and approximation ratios that yields a stabilityratio close to 2 for socially
near-optimal covers.

Corollary 1. There is a planar unweighted game without(x, y)-approximate Nash
equilibria for anyx < 1.5 and y ≥ 1. For any y < 7

6 there is a planar weighted
game without(x, y)-approximate Nash equilibria forx < 2/(2y − 1).

The better an algorithm is required to be in terms of social cost, the more it allows for
selfish improvement by a factor close to 2. Note that all our lower bounds apply directly
to any algorithm with or without polynomial running time.

5 Games with cheap Nash Equilibria

In this section we present two classes of games that have cheap Nash equilibria: single-
ton games, in which each player owns only a single edge, and bipartite games, in which
the graph is bipartite.



5.1 Singleton Games

An exchange-minimalvertex cover is a cover which cannot be improved by replacinga
single vertex in the cover by a subset of its neighbors.

Lemma 2. In singleton games every exchange-minimal vertex cover forG allows a
distribution of vertex costs, such that no player can unilaterally improve her payments.

Proof. Suppose we are given an exchange-minimal coverC ⊂ V . For v ∈ C denote
the neighbors outside the cover byNv(C) = {u ∈ V |(u, v) ∈ E, u 6∈ C}. Suppose
c(Nv(C)) < c(v); then we can form a new cheaper feasible coverC′ by replacingv
with Nv(C). This is a contradiction toC being exchange-minimal. Hence, for anyv ∈ C
it follows thatc(Nv(C)) ≥ c(v).
This property allows a very simple algorithm to construct a Nash equilibrium from a
given exchange-minimal coverC. First initialize all payments of all players to 0. Then
for each vertexv ∈ C iteratively consider all players owning an edgee = (u, v) with
u 6∈ C. For playeri set her contribution topi(v) = min(c(u), c(v)−

∑

j 6=i pj(v)). This
leaves her no chance for improvement. In addition, by the previous argument every
vertexv ∈ C gets paid for. ⊓⊔

Clearly, the centralized optimum coverC∗ is an exchange-minimal cover, and hence
there is a Nash equilibrium as cheap asC∗. This proves that the price of stability in
singleton games is 1. It does not prove, however, that a(1, 2)-approximate Nash equi-
librium can be found in polynomial time, since a 2-approximation algorithm for min-
imum vertex cover does not necessarily yield an exchange-minimal cover. We can de-
vise an algorithm that starts from such an approximate coverand performs exchange
operations to turn it into an exchange-minimal cover. In theweighted case, however,
the number of exchange operations is not necessarily polynomial, and our algorithm
could take exponential time. To circumvent this problem, weborrow a trick from An-
shelevich et al. [2]. In the proposed algorithm each exchange operation guarantees a
minimum improvement of the overall cost. The drawback is that we can only compute
(1 + ǫ, 2)-approximate Nash equilibria, for any constantǫ.

Theorem 7. There is a polynomial time algorithm that finds(1 + ǫ, 2)-approximate
Nash equilibria for weighted singleton games and(1, 2)-approximate Nash equilibria
for unweighted singleton games.

Singleton games are similar in spirit to cooperative vertexcover games and mecha-
nism design, as we assume that each edge is a single player. Itis known that the core of
the cooperative game contains only cost sharing functions that are at most 1/2 budget
balanced. Our result states that once players have an intrinsic motivation to participate
in the game and consider only selfish non-cooperative deviations, there is a cost-sharing
function to distribute the full costs of an optimum cover. Inthis interpretation our game
is close to a cooperative game that deals only with the globaland singleton coalitions.
Furthermore, our game is strategic, i.e. it specifies exactly to which vertex a player pays
how much and in what way a player is motivated to reallocate her payments. This is a
feature that is not considered in the cooperative framework.



5.2 Bipartite Games

Lemma 3. In bipartite games there is an optimum vertex coverC∗ for G which allows
a distribution of vertex costs such that no player can unilaterally improve her payments.

The proof relies on standard algorithmic techniques like maximum weight matching and
max-flow/min-cut calculations. This allows to construct Nash equilibria with optimum
social cost in polynomial time.

Theorem 8. The price of stability in bipartite games is 1. Nash equilibria purchasing
C∗ can be found in polynomial time.
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