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Abstract. We consider a scenario of distributed service installaitioprivately
owned networks. Our model is a non-cooperatigetex cover gamfor k players.
Each player owns a set of edges in a grépaind strives to cover each edge by an
incident vertex. Vertices have costs and must be purchadeel available for the
cover. Vertex costs can be shared arbitrarily by playerse@rvertex is bought, it
can be used by any player to fulfill the covering requireméhtoincident edges.
Despite its simplicity, the model exhibits a surprisingighr set of properties.
We present a cumulative set of results including tight otter&zations for prices
of anarchy and stability, NP-hardness of equilibrium exise, and polynomial
time solvability for important subclasses of the game. Iditaoh, we consider
the task of finding approximate Nash equilibria purchasingpproximation to
the optimum social cost, in which each player can improvecdoeatribution by
selfish defection only by at most a certain factor. A variatid the primal-dual
algorithm for minimum weighted vertex cover yields a guaeanof 2, which is
shown to be tight.

1 Introduction

In this paper we consider a simple model for service ingtatidn networks, e.g. high-
way or communication networks like the internet. Many ne&gdncluding the inter-
net are built and maintained by a number of different ageritis welatively limited
goals whereas others are centrally planned and operated the system of interstate
highways in some countries is centrally owned and plannest@ds in other countries
certain roads are owned privately. In particular, we cogrsasimple model in which
network owners have to make a concrete investment to estiadokervice at a location
in the network. Network connections are owned by differdayers, and each player
strives to establish a service point at different locatialtmg her connections. These
service points could be resting facilities at highways arhiag, buffering, or amplifi-
cation technology in telecommunication networks. We itigase the question of how
the quality and density of these service locations chandenwetworks are owned
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privately vs. owned by a central authority. A player owninggd of connections has an
incentive to cover all her connections with service. Theiwadion for this might either
be economical or lawfully enforced. If at a location a seevpint is already estab-
lished, the incident connections are covered. This migbkt #he motivation for some
players to invest. Formally we model this interaction witth@n-cooperative game,
which we call thevertex cover gamand analyze using notions from algorithmic game
theory.

Our game is similar in spirit to the one considered in [2] fetwork creation. We
assume that a number &fnon-cooperative players have to create service points in
a network. The network is modeled as a gr&ph= (V, E), in which edges represent
roads or connections and vertices represent possiblesgwint locations. Each player
i owns a subset;; C FE of edges and strives to establish a service point at at least
one endpoint of each edge if;, but with minimum investment. For establishing a
service point at a vertex, a costc(v) has to be paid, which can be shared among
different players. A strategy for a player is an assignmémtayments to vertices in
V', and once a vertex is bought — that is, when a total amount«9fis offered by
the players for a vertey, this vertex can be used by all players to cover any of their
incident edges — no matter whether they contribute to thearasot. In this game both
the problem of finding the optimum strategy for a player arel ghoblem of finding
a centralized optimum cover for all edges of all players e dlassic optimization
problem of minimum weighted vertex cover.

We investigate our non-cooperative game in terms of stadllgiens, which are
the pure strategy Nash equilibria of the game. We do not densnixed strategy equi-
libria, because our environment requires a concrete imesst rather a randomized
action, which would be the result of a mixed strategy. We wersheprice of anar-
chy[14, 16], which measures the ratio of the cost of the worstiNaguilibrium over
the cost of a minimum cost cover satisfying all requiremenl players for a game.

In addition, we investigate tharice of stability[1], which measures the best Nash equi-
librium in terms of the optimum cost instead of the worst éftium. As in general
both of these ratios are ii(k), we investigate the question how to derive cheap covers
and cost distributions that provide low incentives to sklfisiefect. We present an effi-
cient algorithm with small constant approximation ratiasl @rovide tightness results.

In addition, we show that determining existence of Nashldayia in the vertex cover
game is NP-hard.

1.1 Related work

The vertex cover problem s a classic optimization problegraph theory and has been
studied for decades. Recently, distributed variants optbblem have attracted interest
in the area of algorithmic game theory. Specifically, a coajde vertex cover game
was studied in a more general context by Immorlica et al..[thlthis coalitional game,
each edge is an agent and each coalition of players is as=weiah a certain cost value

- the cost of a minimum cover. In [11] cross-monotonic costrsty schemes were in-
vestigated. For each coalition of players covered theyilige the cost to players in

a way that every player is better off if the coalition expantise authors showed that
no more tharO(n~ %) of the cost can be charged to the agents with a cross-mootoni



scheme.

Closely related to cooperative games is the study of costrghanechanisms. Here a
central authority distributes service to players and s#rifor their cooperation. Start-
ing with [6] cost sharing mechanisms have been considened ftame based on set
cover. Every player corresponds to a single item and hasvatprutility (i.e. a will-
ingness to pay) for being in the cover. The mechanism asks@ager for her utility
value. Based on this information it tries to pick a subseterhis to be covered, to find
a minimum cost cover for the subset and to distribute costot@red item players
such that no coalition can be covered at a smaller cost. Aeglyproof mechanism al-
lows no player to lower her cost by misreporting her utiliglue. The authors in [6]
presented strategyproof mechanisms for set cover andtfdoitation games. For set
cover games [15, 18] recently considered different so@siderata like fairness aspects
and model formulations with items or sets being agents.

Cooperative games and the mechanism design frameworkeddasapture situations
with selfish service receivers who can either cooperate tofi@ned cost sharing or
manipulate. Players may also be excluded from the game dameon their utility.
A major goal has been to derive good cost sharing schemegtizaantee truthful-
ness or budget balance. Our game, however, is strategicaandaoperative in nature
and allows players a much richer set of actions. In our garok pkayer is motivated
to participate in the game. We investigate distributed ondimated service installation
scenarios rather than a coordinated environment with a amésim choosing customers,
providing service and charging costs. Our study is, howeetated to these develop-
ments — especially the singleton games, which we study itid3es.

Our analysis uses concepts developed for non-cooperaivieg in the area of algo-
rithmic game theory, in particular prices of anarchy andistg characterizing worst-
and best-case Nash equilibria. The price of anarchy hasdiaedied in a large and di-
verse number of games, e.g. in areas like routing and caongd8t 14, 17], network
creation [2, 8], or wireless ad-hoc networks [7, 9]. The erid stability [1] has been
introduced more recently and studied for instance in nétwogation games [1, 10] or
linear congestion games [5]. Characterizing selfish imgnoent possibilities and so-
cial cost of a strategy combination in terms of multipligatfactors has been recently
introduced in the study of network creation games [2, 10].

1.2 Outline and Contributions

We study our vertex cover game with respect to quality of sir@tegy exact and ap-
proximate Nash equilibria. Throughout the paper we dendéasible cover by and
the centralized optimum cover lg}f. All proofs omitted in this extended abstract will
be given in the full version of this paper. Our contributi@me as follows.

— Section 2 presents the model and some initial observatinr&ection 3 we show
that the price of anarchy in the vertex cover gamg,isven when the underlying
graph is a tree. There exist simple unweighted and weigtaeteg for two players
without Nash equilibria. They can be used to prove that theepsf stability can
be arbitrarily close t& — 1. Determining existence of Nash equilibria for a given
game is NP-hard, even for unweighted games or two players.



— In Section 4 we study a two-parameter optimization probleimd covers that are
cheap and allow low incentives for players to deviate. Wenfaize this notion as
(z,y)-approximate Nash equilibria and propose a simple algorttiat finds (2,2)-
approximate Nash equilibria for any vertex cover game. bfitaah to this algorith-
mic result, we show that in general there are games with@ut @)-approximate
equilibrium forz < 2. Recent progress on the complexity status of the minimum
vertex cover problem can be used to reasonably conjectatetiare can be no
polynomial time algorithm with a better guarantee for thpragimation ratioy as
well. For planar games our argument extends to a lower botihdbmn x, which
can be increased close to 2 by forcindgo be close to 1 indicating a Pareto rela-
tionship between the ratios.

— Finally, in Section 5 we present games for which the pricealbitity is 1. For the
class ofsingleton gamesn which each player owns exactly one edge, we relate
the results to recent work on mechanism design and coopegdime theory. For
bipartite gamesin which the graph is bipartite, our proof is based on the -max
flow/min-cut technique for vertex cover. This provides neang-theoretic inter-
pretations of classic results from graph theory and polyiabtime algorithms to
calculate cheap Nash equilibria.

2 The Model and Basic Results

The vertex cover game fdk players is defined as follows. In an undirected graph
G = (V,E) withn = |[V| andm = |E| each playet owns a setr; C FE of edges.
We denote byG|[E;] the graph induced by the edgesi, and byV (G[E;]) the set

of vertices of G[E;]. Each player strives to establish service at least one émdpi
each of her edge. For each vertexhere is a nonnegative cosfv) for establishing
service at this vertex. A strategy for a playes a functionp; : V — IRJ specifying

an offer to costs of each vertex. The cost of a strategfor playeri is the sum of
all money she offers to the vertices. Once the sum of offeallgflayers for vertex

v exceeds its cost it is considerbdught Bought vertices can be used by all players
to cover their incident edges. Each player strives to minénfier cost, but insists on
covering her edges. payment schems a vectonp = (p1, ..., px) specifying a strat-
egy for each player. ANash equilibriuris a payment scheme such that no playean
unilaterally improve her payments by changing her strategy/still cover all her edges
in £;. A (z,y)-approximate Nash equilibriuis a payment scheme purchasing a cover
C for which every player can improve her cost at most by a facfor by switching

to another strategy, and such tléf) < yc(C*). We will refer to the factow as the
approximation ratio and we termx as thestability ratio. The definitions of the approx-
imation ratio and the stability ratio coincide for singllyer games. Finally, we call a
gameunweightedf all vertices have equal costs, aneightedotherwise. We refer to
games with a planar gragh asplanar games

The following observations can be used to simplify a gam@pBae an edge is not
included in any of the players edge sets. This edge is notideresl by any player
and has no influence on the game. Hence, in the following \@.lwee will assume that
E= Uf:l L.



For a playeri assume the grapf[F;] induced by the players edge g€t is not con-
nected. The player has to cover edges in each component amuptimum strategy
decomposes to cover both components independently at mninicost. Hence, we can
form an equivalent game in which the edges for each okih@omponents are owned
by different subplayety, ..., ix,. Then any approximate Nash equilibrium from this
equivalent game can be translated to the original game,\a@1d&lly the stability ra-
tio improves. Hence, for deriving approximate Nash eqtidilve can assume that the
edges of each player form only a single connected component.

Suppose an edge € FE is owned by a playei and a set of playerd, i.e.e €

E; N (ﬂjey, E;). This is equivalent to one parallel edge for each player. Nomsider

a Nash equilibrium for an adjusted game in which there is only edge: owned only
by playeri. In this equilibrium a playej € J has no better strategy to cover the edges
in E; — e. Howeverg is covered as well, potentially by a different playere i added
to E; againj has no incentive to deviate from her strategy as her coveeimgirement
only increases. The Nash equilibrium for the adjusted gaieldya Nash equilibrium
in the original game. Hence, in the following we will assurhattall edge set&; are
mutually disjoint.

3 Quality and Existence of Nash Equilibria

In this section we consider the quality of pure Nash equditand the hardness of
determining their existence. In general it is not possiblguarantee their existence,
they can be hard to find or expensive. At first observe that the pf anarchy in the
vertex cover game iB.

Theorem 1. The price of anarchy in the vertex cover game is exdetly

Proof. Consider a star in which each vertex has cost 1 and each mayer a single
edge. The centralized optimum cou&r is the center vertex of cost 1. If each player
purchases the vertex of degree 1 incident to her edge, we §ash equilibrium of
costk. Hence, the price of anarchy is at leasOn the other hand; is a simple upper
bound. If there is a Nash equilibriuéhwith ¢(C) > kc(C*), there is at least one player
i that pays more than(C*). She could unilaterally improve by purchasi@ig all by
herself. O

Note that the price of anarchy iseven for very simple games in which every player
owns only one edge ar@ is a tree. Hence, we will in the following consider existence
and quality of the best Nash equilibrium in a game.

Lemma 1. There are planar games for two players without Nash equdibr

Proof. We consider the game for two players in Fig. 1(a) foean 0. For this game we
examine four possible covers. A cover including all thrediges cannot be an equilib-
rium, because vertex is not needed by any player to fulfill the covering requiretnen
Hence, any player contributing to the costwtould feasibly improve by removing
these payments. Suppose the cover representing an eiguilibrcludesy; andwvs. If
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Fig. 1. Games for two players without Nash equilibria. (a) weighdache; (b) unweighted game.
Edge type indicates player ownership. For the weighted gambers at vertices indicate vertex
costs

player 1 contributes to;, she can remove these payments, because she only meeds
to cover her edge. With the symmetric statementfowe can see that in equilibrium
player 1 could not pay anything. Player 2, however, cannothmase both; andws,
because buying offers a cheaper alternative to cover her edges. Finalppaseu
andv; are in the cover. In equilibrium player 1 will not pay anythifor . Player 2,
however, cannot purchaseompletely, because offers a cheaper alternative to cover
the edggu, v2). With the symmetric observation for the coveroanduv,, we see that
there is no feasible cover that can be purchased by a Naslibeigan. With similar
arguments we can prove that the gamefondepicted in Fig. 1(b) has no pure Nash

equilibria. This proves the lemma. a
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Fig. 2. A game with k=8, for which the cost of any Nash equilibrium sse to(k — 1)c(C™).
Numbering of edges indicates player ownership. Indicaetioes have cost < 1, vertices
without labels have cost 1.

Theorem 2. For anye > 0 there is a weighted game in which the price of stability is
atleast(k — 1) — e. There is an unweighted game in which the price of stabﬁ;if%'f—giz.

Proof. Consider a game as depicted in Fig. 2. The centralized opticaver includes
the center vertex of the star and three vertices offhegadget yielding a total cost of



1 + 3¢’. If the center vertex of the star is in the cover and we assunfvte a Nash
equilibrium, no player can contribute anything to verticdghe K,-gadget incident
to edges of player 1 and 2. For this network structure, howévis easy to note that
players 1 and 2 cannot agree on a set of vertices coveringetigés. Hence, to allow
for a Nash equilibrium, the star center must not be pickecctwlm turn requires all
other adjacent star vertices to be in the cover. Under theseitions the best feasible
cover includes the vertex that conneéfs to the star yielding a cost df — 1 + 3¢'.
Note that we can derive a Nash equilibrium purchasing thieicby assigning each
player to purchase a star vertex - including the vertex thsat belongs td<,. Players
1 and 2 are assigned to purchase one of the additi@nalertices, respectively. With

= 351/%;/2) the first part of the theorem follows. For the unweighted casesimply

consider the game graph with all vertex costs equal to 1. Al@iranalysis delivers the
stated bound and proves the second part of the theorem. a

Theorem 3. It is NP-hard to determine whether (1) an unweighted vertarec game
or (2) a weighted vertex cover game for 2 players has a puagegly Nash equilibrium,
even if the graph&:/[E;] are forests.

4 Approximate Equilibria

In the previous section we saw that in general cheap pure &tashibria can be absent
from the game. Hence, we study existence and algorithmigatation of solutions to
a two-parameter optimization problem. Recall thaty)-approximate Nash equilibria
are payment schemes that allow each player to reduce hergpayivy at most a factor
of z and approximate(C*) to a factor ofy.

Algorithm 1: (2,2)-approximate Nash equilibria

pi(v) « 0 for all players: and vertices)

~i(e) < 0 for all playersi and edges

while there is an uncovered edge= (u,v) € E do
Let 7 be the player owning edge and lety; (e) <« min(c(u), c(v))
Increase paymentg; (u) « pi(u) + vi(e) andp;(v) « pi(v) + vi(e)
Add all purchased vertices to the cover
Reduce vertex costs(u) < c(u) — vi(e) ande(v) < c(v) — vi(e)

Theorem 4. Algorithm 1 returns a (2,2)-approximate Nash equilibrium@i(k(n+m))
time.

The algorithm is an adaption of the primal-dual algorithmrfonimum vertex cover. It
is also used to show that any socially optimum ca¥ecan always be purchased by a
(2, 1)-approximate Nash equilibrium.

Theorem 5. For every game there is a (2,1)-approximate Nash equiliriu



For lower bounds on the ratios we note that any algorithm wditr, y)-approximate
Nash equilibrium in the vertex cover game can be used as aoxpation algorithm
for minimum weighted vertex cover with approximation rafitn(x, y). The argument
follows simply by considering a game with one player. Thisavation can be com-
bined with recent conjectures on the complexity status@ftinimum weighted vertex
cover problem [13]. It suggests that # # NP and the unique games conjecture
holds, there is no polynomial time algorithm deliverifag y)-approximate Nash equi-
libria with z < 2 — o(1) ory < 2 — o(1). This bound applies only to polynomial
time computability in general games. We now show that 2 is al®wer bound for the
stability ratio, in a stronger sense.

Theorem 6. For anyx < 2 there is an unweighted game withdut y)-approximate
Nash equilibria for anyy > 1.

Fig. 3. From left to right the edges owned by the players in the fiestpad, and third classes
of players forKs. The first and second class consist of four players eachhttedlass of two
players. Players in the first class own a single edge, whilggut in other classes own cycles of
length 4.

Proof. The proof follows with a game o4, with g € IN. We assume the vertices are
numbered; to vy, and distribute the edges of the game2tg + g players ing + 1
classes as follows. In the first class there Zy@layers. Every player from this class
owns only single edgév;, vo4.;). Then, for each integer € [1,g — 1] there is an-
other class oRg players. A player in one of the classes owns a cycle of four edges
(Vi, Vi j)s (Vigj, V2g+i)s (Vagtis Vagtits) @nd(vagtitj,vi). Finally, there arg play-
ersin the last class. Each playén this class also owns a cycle of four edges vy4),
(Vgti, V2g+i)s (Vagti, V3g+i) and(vsg4q,v;). See Fig. 3 foiy = 2 and the distribution

of the 10 players into 3 classes &f;.

Any feasible vertex cover of a complete graph is composedtioéeall or all but one
vertices. For a cover of adlg vertices we can simply drop the payments to one vertex.
This reduces the payment for at least one player. In additioncreases the cost of
some of the deviations as the players must now purchase tozered vertex in total.
The stability ratio of the resulting payment scheme can delgrease. Hence, the min-
imum stability ratio is obtained by purchasitg — 1 vertices.



Fig. 4. Players that includes in their subtree. Numbering of players as described in tke te
Edge labels indicate player ownership.

So w.l.o.g. consider a cover dfy — 1 vertices including all but vertex,,. Note that
some player subgraphs do not includg, and there are only two types of player sub-
graphs - a single edge or a cycle of length 4. First, considgager subgraph that
consists of a single edge and both endvertices are covdrétke player contributes
to the cost of the incident vertices, she can drop the maximfiboth contributions.
Thus, if she contributes more than 0 to at least one of thécesither incentive to
deviate is at least a factor of 2. Second, consider a playsgraph that consists of a
cycle of length four. Label the four included vertices alaguclidean tour withy,

ug, ug anduy. Let the contributions of the player to; bex; for j = 1,2,3,4, resp.
To optimally deviate from a given payment scheme, the playeks one of the possi-
ble minimum vertex coverSuy, uz} or {uz, us} and removes all payments outside this
cover. A factor ofr bounding her incentives to deviate must thus obey the irliigsa
Z?:l zj <r(xi+a3) ande}:1 zj < r(xe+x4). Inorderto find the minimum that

is achievable we assume each player contributes only tacesrinside her subgraph.
Summing the two inequalities yieldg — ) 37 _; z; < 3°7_; x;, so either her overall
contribution is 0 orr > 2. Hence, to derive a payment scheme with stability ratio of
less than 2, alllg — 1 vertices in the cover must be purchased byxhelayers whose
subgraph includes,.

For the rest of the proof we will concentrate on thgglayers. We will refer to player
1, if she includes); in her subgraph, foir = 1,...,2g — 1. All these players own cycle
subgraphs. The player that owns the eflgg, v4,) is labeled playeRg. See Fig.4 for
an example orK’s. We denote the contribution of playéto vertexv; by p;; for all
i=1,...,2¢gandj = 1,...,4g — 1. Observe that for each player the $et,, vi,}
forms a feasible vertex cover. To achieve a stability ratiove must ensure that each
player can only reduce her payments by a factor of at maghen switching to this
cover. In the case of play@y only {vy,} is needed, so we must ensure that she can
reduce her payments by at mostvhen dropping all payments bpb, 25. AS v4g IS
not part of the purchased cover its cost of 1 must be purchasagletely by a player



that strives to use it in a deviation. This yields the follogiiset of2¢g inequalities:
249 llp” <r(pigg+1),fori=1,...,2g—1 andzzlizl P29, < TP2g.24- We again
strlve to obtain the minimum ratiothat is possible. Note that in the minimum case no
vertex gets overpaid, i.@fﬁlpzj =1forallj =1,...,49 — 1. Using this property

in the sum of all the inequalities gives

49—1 2g
49 —-1= Z Zp” <r <2g—1—|—2p129> < 2gr,
j=1 =1
which finally yieldsr > 2 — i This proves that in the presented game(ngy)-
approximate Nash equlllbrlum with < 2 — = eX|sts Thus, for every > 0 we
can pickg > (2¢)~%, which then yields a game witho(® — ¢, y)-approximate Nash
equilibria for anyy z 1. a

It would be interesting to see, whether this lower bound is ttuthe integrality
gap of vertex cover. Such a relation exists for approximatiglet balanced core solu-
tions in the cooperative game [12]. In a core solution eadside player coalitiors
contributes less than the cost of a minimum vertex covesfdn our game, however,
players make concrete strategic investments at the vertideich alter the cost of the
minimum cover for other players. In particular, our ressiliainly due to the fact that
the majority of players is sufficiently overcovered leavorgy a small number of con-
tributing players. This makes a relation to the integrajiy seem more complicated to
establish.

Some classes of the vertex cover problem can be approxirteedduktter extent. For ex-
ample, there is a PTAS for the vertex cover problem on plaregtts [4]. It is therefore
natural to explore whether for planar games we can find caviéinsapproximation and
stability ratio arbitrarily close 1. The bad news is that @ngral there are also limits to
the existence of cheap approximate Nash equilibria evetearapgames. In particular,
Theorem 6 provides a lower bound b on the stability ratio for unweighted planar
games. For weighted planar games there is an additionaldPelationship between
stability and approximation ratios that yields a stabiliitio close to 2 for socially
near-optimal covers.

Corollary 1. There is a planar unweighted game withdut y)-approximate Nash
equilibria for anyz < 1.5andy > 1. Foranyy < % there is a planar weighted
game withoufz, y)-approximate Nash equilibria far < 2/(2y — 1).

The better an algorithm is required to be in terms of sociat,dbe more it allows for
selfish improvement by a factor close to 2. Note that all owelobounds apply directly
to any algorithm with or without polynomial running time.

5 Games with cheap Nash Equilibria

In this section we present two classes of games that have dtessh equilibria: single-
ton games, in which each player owns only a single edge, araitiie games, in which
the graph is bipartite.



5.1 Singleton Games

An exchange-minimalertex cover is a cover which cannot be improved by replaaing
single vertex in the cover by a subset of its neighbors.

Lemma 2. In singleton games every exchange-minimal vertex coveGfatlows a
distribution of vertex costs, such that no player can ueilally improve her payments.

Proof. Suppose we are given an exchange-minimal céver V. Forv € C denote
the neighbors outside the cover BY,(C) = {u € V|(u,v) € E,u ¢ C}. Suppose
¢(Ny(C)) < c(v); then we can form a new cheaper feasible ca¥/eby replacingy
with N, (C). This is a contradiction t6 being exchange-minimal. Hence, for ang C

it follows thatc(N,(C)) > c(v).

This property allows a very simple algorithm to constructash equilibrium from a
given exchange-minimal covér First initialize all payments of all players to 0. Then
for each vertex € C iteratively consider all players owning an edge- (u, v) with
u ¢ C. For playeri set her contribution tp; (v) = min(c(u), c(v) —>_,; pj(v)). This
leaves her no chance for improvement. In addition, by theipus argument every
vertexv € C gets paid for. a

Clearly, the centralized optimum covér is an exchange-minimal cover, and hence
there is a Nash equilibrium as cheap(s This proves that the price of stability in
singleton games is 1. It does not prove, however, that a)-approximate Nash equi-
librium can be found in polynomial time, since a 2-approxima algorithm for min-
imum vertex cover does not necessarily yield an exchangénmal cover. We can de-
vise an algorithm that starts from such an approximate camdrperforms exchange
operations to turn it into an exchange-minimal cover. Inwreghted case, however,
the number of exchange operations is not necessarily poliaipand our algorithm
could take exponential time. To circumvent this problem bheerow a trick from An-
shelevich et al. [2]. In the proposed algorithm each exchageration guarantees a
minimum improvement of the overall cost. The drawback i e can only compute
(1 + ¢,2)-approximate Nash equilibria, for any constant

Theorem 7. There is a polynomial time algorithm that finds + €, 2)-approximate
Nash equilibria for weighted singleton games &gnd2)-approximate Nash equilibria
for unweighted singleton games.

Singleton games are similar in spirit to cooperative vecxer games and mecha-
nism design, as we assume that each edge is a single plagdmtiwn that the core of
the cooperative game contains only cost sharing functioatsare at most 1/2 budget
balanced. Our result states that once players have ansiatrimotivation to participate
in the game and consider only selfish non-cooperative dexmtthere is a cost-sharing
function to distribute the full costs of an optimum coverthis interpretation our game
is close to a cooperative game that deals only with the glabdlsingleton coalitions.
Furthermore, our game is strategic, i.e. it specifies exaativhich vertex a player pays
how much and in what way a player is motivated to reallocatephgments. This is a
feature that is not considered in the cooperative framework



5.2 Bipartite Games

Lemma 3. In bipartite games there is an optimum vertex ca¥effor G which allows
a distribution of vertex costs such that no player can ueilally improve her payments.

The proofrelies on standard algorithmic techniques likgimam weight matching and
max-flow/min-cut calculations. This allows to constructsNaquilibria with optimum
social cost in polynomial time.

Theorem 8. The price of stability in bipartite games is 1. Nash equikigpurchasing
C* can be found in polynomial time.
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