
Towards Quality of Service Based Resource

Management for Cluster-Based Image Database

A. Brüning1, F. Drews2, M. Hoefer1, O. Kao3, and U. Rerrer3

1Department of Computer Science, Technical, University of Clausthal, Germany
E-mail: bruening@informatik.tu-clausthal.de, martin.hoefer@tu-clausthal.de

2 Ohio University, Athens, USA
E-mail: drews@ohiou.edu

3 Department of Computer Science, Paderborn University, Germany
E-mail: {okao,urerrer}@upb.de

Abstract
The main research in the area of image databases
addresses the improvement of retrieval quality and
the speedup of the query processing. A number of
image retrieval systems reached meanwhile a level,
where these are used in real-world applications and
thus create new demands. In particular dealing with
a large, simultaneous number of users and queries
requires concepts for resource management, which
strongly consider the underlying architecture and
the various approaches for image retrieval. This pa-
per is our first step in this direction, as it provides
a formal problem specification and a proof that this
problem is NP-hard.
Keywords: resource management, image retrieval

1 Introduction

A standard approach for the retrieval in im-
age databases is based on the extraction and
comparison of a priori defined features. These
can be combined and weighted in different ways
resulting in advanced features representing the
image contents on a higher abstraction level.
The similarity degree of a query image and
the target images is determined by calculation
of a multidimensional distance function of the
corresponding features. An acceptable system
response time is achieved, as no further pro-
cessing of the raw data is required during the
retrieval process. However, the extraction of
such simple features results in a disadvanta-

geous reduction of the image contents. Due
to the comparison of whole images only global
features like dominant colors, shapes, and tex-
tures define the similarity, but detailed object
and topological information is not sufficiently
considered.

A retrieval following a human-like approach
of analyzing and searching images can be real-
ized using dynamically extracted features. The
user marks his/her region of interest (ROI),
which is then separated from the background
and transformed by algorithms for dynamic
feature extraction. The result is a set of fea-
tures describing the object. All other elements
of the source image are ignored. In order to
find the object in different environments a tem-
plate matching with the gained ROI is applied.
The ROI slides over the image and for each
section a similarity value is computed. The
similarity computation is repeated for all im-
age sections with respect to the given step size
(e.g. 5 pixels). Finally the most similar section
within the image is found. A result ranking
based on the values of the most similar sec-
tions in all images is presented to the user.

Summarizing, a typical image retrieval chain
consists of an operation for a static retrieval
s and of an operation for dynamic retrieval d
combined as d ◦ s(I), where I is the total set
of stored images. As already noted the op-
eration s is executed in a couple of seconds
using the existing index structures. The re-

sult of s is a selection of the most promising
images for the current query, which are sub-
sequently analyzed using methods for dynamic
image retrieval. The processing time for this
step is user/query-specific and depends on the
applied operation type, the selected parame-
ters (e.g. step size) and the settings of the pre-
selection algorithm, which produces the image
subset for the dynamic retrieval. This second
step is accompanied by a large computational
load [?] resulting in enormous processing time
per query.

In order to speedup this process, powerful
parallel architectures are necessary. According
to simulation results [?], a cluster-based archi-
tecture was selected and a cluster-based pro-
totype called Cairo has been developed. The
organisation of the underlying cluster architec-
ture is depicted in Figure ??.

The node functionalities are subdivided into
three classes:

1. Query stations host the user interfaces and
provide a web-based access.

2. Master node provides the web-based inter-
face, controls the cluster, and performs the
pre-selection with the a-priori extracted
features. Subsequently, it distributes the
dynamic retrieval tasks to the nodes and
unifies the intermediate results into the fi-
nal ranking.

3. Compute nodes perform the comparisons
with the sample image. Each of these
nodes contains a disjoint subset of the im-
ages and executes all operations with the
local data.

The images are distributed over the cluster
nodes using a content-independent, size-based
partitioning strategy. The total memory size
of the images stored on the local devices is
approximately the same for all nodes. This
even data distribution is distorted by the pre-
selection, as only a part of the images has to
be processed dynamically. As result, varying
response times of the individual nodes occur.
In order to equalize the processing times and

to balance the workload a temporal or perma-
nent migration of the images has to be per-
formed. For this purpose, a number of load
balancing strategies was developed and exam-
ined [?]. The results have shown that the re-
sponse times of a typical database can be re-
duced noticeably, if the queries are executed
sequentially in batch mode. However, this is
not acceptable for real-world applications, as
couple of queries would block the system for
days. In case of multiple queries a well-defined
QoS concept is necessary.

The main contribution of this paper is a for-
mal statement for the described problem. Fur-
thermore, we prove that this problem is NP-
hard and thus heuristic strategies have to be
applied.

2 Quality of Service for multi-
ple queries

The processing of multiple queries in the de-
scribed database must be analyzed from two
points of view. The concurrent execution of
the queries can be performed easily with well-
known synchronization mechanisms from tra-
ditional database. It is rather a simple prob-
lem, as all operations are executed image-wise
and the majority of the operations is read-
only. Hence, the decisive aspect is the pro-
cessing time. Each query blocks the system
for a long time, which will be substantially ex-
tended, if multiple queries are allowed. Load
balancing – e.g. combination of queries con-
sidering images of disjoint subsets placed on
different nodes – promises a speedup, however
this approach depends on the characteristics
of the current query and it is thus not well-
suited for real-world applications. Therefore,
a utility measure and a concept for quality-of-
service is designed, which allows for the real-
location of resources depending on the actual
set of queries issued to the system. By this
means we are able to react flexibly to changes
in global system load.

In an overload situation, the main goal is to
keep the response time within desired time in-

slave node 1

CPU 1 CPU 2

CPU 1 CPU 2

CPU 1 CPU 2

slave node 2

slave node n

…

query access Internet

master node

Figure 1: Schematic of the underlying cluster architecture

tervals by reducing the number of images to be
processed with time-intensive dynamic opera-
tors. Thereby, the retrieval quality will only
slightly be reduced, as the best images will
still be found and only images with (very) low
chances for success will be ignored. However,
it is possible, that particular objects or per-
sons will not be found, as the images are not
contained in the pre-selected image set. The
reason for this is, that static operators evalu-
ate the entire image, whereas the dynamic op-
erators consider only small parts of the image
which might fit the query section. On the other
hand, in an underload situation, the unused
resources are utilized to increase the retrieval
quality of the remaining queries by enlarging
the set of pictures processed by dynamic oper-
ators.

The adaptation of the image sets to be
searched is realized by adapting the thresh-
old values for the static image retrieval s.
A low value for the threshold s leads to a
high-number of images as a result of the pre-
selection and a high threshold value delivers
solely the most promising images. The thresh-
old interval is discretized and the resulting n
discrete threshold values are denoted as ”ser-
vice level settings“. A higher setting is equiv-
alent to a lower threshold value and results in

a higher search quality. Note, that the service
level setting of a query can be adapted online,
consequently providing a tool for adapting the
system load. The user should be able to define
a minimal service level setting in order to de-
fine a minimal processing quality to be met for
his query. If no minimal service level setting is
provided a (low) standard setting is assumed.
In order to determine whether it is beneficial
to enhance the retrieval quality of a query or
to complete it earlier, a user-provided utility
function is needed. The definition of the utility
function underlies certain restrictions in mini-
mal and maximal utility values. Depending on
the user status these restrictions may vary.

Hence, a query can be characterized by the
sample objects, the user-provided utility func-
tion, its minimal service level setting and even-
tually a hard deadline.

3 Resource Management Ar-
chitecture

In this section we describe the resource man-
agement architecture for the retrieval system.
Users issue queries to the system via inter-
net. The optimization and acceptance mod-
ule (OAM) controls the admission of queries
into the system and maintains an input queue

of queries. For each query the OAM checks
whether the query can be processed by the sys-
tem or not. The OAM’s decision may be based
on the time constraints of the queries or the
overall utility of the system obtained by ad-
mitting the query. Once a query is accepted,
the system has to assure completion of this
query without violating neither resource con-
straints nor the query’s deadline (if provided).
If a query is refused, the system can return in-
formation to the user about how to lower the
quality and time requirements of the query for
acceptance. The system architecture allows to
consider his case as a new query issued by the
user.

Note that the sets of images on the compute
nodes are usually not equally reduced by the
static retrieval operator. Therefore, equilibra-
tion of processing demand across the cluster
nodes is needed. The set of images of a query
is subject to change when the service level of
the query is adapted by the system. In order
to determine which image has to be processed
we provide the OAM with a service level table
containing the maximal service level for each
image in which it is still processed.

This table can be generated by appliying the
static retrieval operator on each image of the
system. Once the table is generated, no further
run of the static retrieval operator is necessary
for this query. The result of the static retrieval
operator on an image is compared with the
threshold values of the different service levels
in increasing order.

As we will show later, the problem of deter-
mining an optimal schedule with optimal ser-
vice level settings is NP-hard. Hence, the de-
cision making process performed by the OAM
has to be based on a good approximation of
an optimal solution. Therefore, the optimiza-
tion is accomplished by several modules tack-
ling different sub-problems:

(i) the load balancer determines which host
processes which object,

(ii) the service level optimizer determines the
service level settings for the queries, and

(iii) the query optimizer determines the sched-
ule of the queries on the hosts.

Every time a query is issued, a new solution
for the system is calculated. If the new solution
permits the acceptance of the new query with-
out violating any constraint, the new process
schedule and service level settings are passed to
the application software for execution. Then,
for each query a retrieval application is started
on each host, processing the subset of objects
as determined by the OAM. Consequently, q
different queries result in q different retrieval
applications on each host, each of which pro-
cessing a subset of the stored images.

It may be reasonable to repeat the optimiza-
tion after a certain period of time independent
of arriving queries. Thus, the predicted sched-
ule can be adjusted according to system depen-
dent delays in order to ensure that the comple-
tion time of queries obeys the hard deadlines.

4 Formal System Model and

Problem Statement

For a systematic discussion of the problems as-
sociated with the architecture introduced in
the last section, we define a formalized opti-
mization problem of the OAM to be solved dy-
namically on a repeated basis. The database
D of objects is distributed over the hosts
H1, . . . ,Hh of the system. Let Dl be the set
of objects on host Hl with D = D1 ∪ . . . ∪ Dh

and size(Dl) ≈ size(Dm). If a query Qi enters
the system, all images of the database are ex-
amined with a static operator. The maximal
service level setting (threshold value) for each
image is determined. For a query i on each
host l and each service level j we get a differ-
ent set of images Qijl ⊆ Dl. Generally, this
leads to an unbalanced image distribution for
a query as we have size(Qijl) �≈ size(Qijm) for
two hosts l and m. With q queries the formal
description of a query Qi consists of

(i) a set S = {s1, . . . , sn} of service level set-
tings,

(ii) a set of images Qij = Qij1 ∪ . . . ∪ Qijh to
be processed with setting sj,

(iii) user defined monotonic utility functions
Ui(ri) with ri being the response time of
the system for this query, and

(iv) (possibly) a deadline πi for the response
time.

Note that due to our assumption about the
threshold values service level settings can be
totally ordered, i.e. an ordering s1, . . . , sn ex-
ists, such that for each query i Qi1 ⊆ Qi2 ⊆
. . . ⊆ Qin holds. Modelling the system we will
make a few simplifying assumptions:

(i) Apart from the images located on them all
hosts have identical features,

(ii) all queries have hard deadlines,

(iii) each image appears on exactly one host
(Di ∩ Dj = ∅ for i �= j), and

(iv) if an image is scheduled to be processed
by a query on a different host, it is copied
and available on the other host only for
the corresponding query.

For the utility functions we assume that the
user is able to specify one utility function Ui(ri)
per query, which is monotonically decreasing
in the response time. It will be adjusted by
a multiplicative factor monotonically depend-
ing on the choice of the service level setting,
i.e. the number and type of images processed.
With this construction we can ensure that the
ordering of service level settings holds not only
for image sets but also for utility values. Espe-
cially the notion of minimum quality associated
with a minimum service level can be justified,
because for each query and any given response
time a minimum service level setting results in
minimum utility. The overall system utility is
constructed by an aggregation of query utili-
ties.

The main resources of the system are CPU-
time, memory and network bandwidth. For
each combination of settings for the service at-
tributes, a resource profile as a function of the

object size has to be given. All utility functions
are monotonically decreasing in the response
time. Therefore delaying queries by simulta-
neous execution of multiple queries on a host
(multi-tasking) or preemption can never lead
to optimal system utility. Thus, we will as-
sume that in each point in time a host processes
only one non-preemptive image processing task
of one query. Hence, memory constraints can
be neglected when our system is designed such
that each host provides the maximum mem-
ory requirement of a dynamic feature extrac-
tion operator applied on an image in D. Con-
sidering current practical computers this is a
reasonable assumption.

Note, that every time a new query is arriving
the OAM is invoked to solve a new instance of
this problem. It has adjusted image sets for the
existing queries in the system. The currently
processed query may be preempted when the
solution of the OAM is put into action. In this
situation preemption of a query is allowed.

Communication has been a major issue in
previous attempts to optimize response time
in image retrieval systems [?]. Here we intro-
duce the notion of a communication module on
each host i, which is informed about the times
when queries need to process images of Di on
another host j. The communication modules
initiate transfer such that the image arrives
only shortly before the processing starts. Im-
ages are only transferred when they are really
needed, which is appealing in a case when the
allocation of image processing tasks to hosts
might change dynamically with each call of the
OAM. Thus, the transfers are distributed over
the time of processing and it is very unlikely
that reasonably sized bandwidth will be used
up resulting in processing delays. Neverthe-
less we will relax the assumption of identical
hosts and introduce host-dependent processing
times for each retrieval operation. Processing
of an image k ∈ Di, k �∈ Dj on host j might
be delayed by communication. The process-
ing time on host j should reflect this fact and
be equal to the processing time on host i plus
some extra amount depending on bandwidth
and image size, which we call ”expected com-

munication delay”.
With processor time being the only remain-

ing resource we can find the following lemma
which facilitates the development of efficient
optimization algorithms for the scheduling
problem of finding an optimal schedule with
optimal service level settings:

Lemma 1
Under the given assumptions there is an opti-
mal solution with the following properties:

1. Image processing tasks of a query form
blocks on the hosts to which they are allo-
cated, i.e. all images of a query on a host
are scheduled back-to-back.

2. There is no idle time on any host between
the processing of any two images/blocks.

3. Blocks of all queries are ordered the same
way on every host.

Proof of Lemma 1:

1. In an optimal schedule for host l, in which
images of queries are not scheduled in
blocks, consider the non-block query i
which finishes last. We move all other im-
ages of i on l back-to-back directly before
the start of the last finishing image of i.
Thus, we construct a block at the end of
the schedule of l. The completion time
of i will remain unchanged, because the
starting time of the last image is not al-
tered. All other queries are able to finish
no later than before - the images of the last
query are moved to the end of the sched-
ule, therefore images of other queries can
be moved to earlier start times on host
l. This change results in equally good or
better utility values. Repeating this argu-
ment for all queries and all hosts yields the
superiority of block-schedules. �

2. Move the idle time to the back of the
schedule by scheduling earlier all images
after the idle slot. The utility of the new
schedule is at least as good as before. �

3. Without loss of generality, we assume that
each query has a block on each host.
Let all blocks with processing times 0 be
scheduled on each host at time 0. We
assume to have an optimal schedule, in
which blocks do not have the same order-
ing on every host. Now consider the lat-
est position α, in which the orderings on
two hosts differ. Let query i be the query
of the block with the latest response time
of all the blocks scheduled in these posi-
tions (break ties arbitrarily). Now con-
sider switching all other blocks of query i
to position α on their hosts. The overall
length of the schedules at position α on the
hosts does not change. So the new comple-
tion time of the switched blocks of query
i does not exceed the completion time of
the non-switched block. Therefore switch-
ing all the blocks of query i to position α
on all hosts does not increase the response
time of query i. It leaves the completion
times of all blocks scheduled at positions
greater than α unchanged. The blocks
of queries scheduled at positions smaller
than α might be moved to earlier start
and completion times on the hosts. This
change results in equally good or better
utility values. The lemma follows from
repeating this argument until a common
ordering on the hosts is found. �

Now we are able to give a formal proof for the
complexity of the optimization problem.

Lemma 2
The problem of finding an optimal schedule
with optimal service level settings is NP -hard.

Proof of Lemma 2:

We consider a special case with one host
H = {1} and one service level setting S = {1},
in which each query i must process only one
image k ∈ D. The deadlines are denoted di.
The utility function is given as Ui(Ci) = −wiCi

with Ci representing the completion time of
the query on the host and wi an arbitrary

weight. Then the problem reduces to the well
known scheduling problem 1 | d̃j | ∑

wjCj

which was proven to be strongly NP -hard
[?]. As our problem is a generalization, it is
strongly NP -hard, too. �

5 Conclusions

This paper presents an formal model for intro-
duction of multiple queries in a cluster-based
database with object retrieval. In opposite to
general models for resource management such
as QRAM [?], the specific characteristics of im-
age retrieval with dynamically extracted fea-
tures and cluster processing are considered.
The main contribution of the paper is a for-
mal problem statement as well as prove that
the problem is NP -hard.

Future work includes in first line the devel-
opment and evaluation of heuristic approaches
for the solution of the specified problem.

References

[1] C.C. Venters and M. Cooper. A review
of content-based image retrieval systems,
Tech. Rep. jtap-054, University of Manch-
ester, 2000.

[2] O. Kao, G.R. Joubert. Efficient Dynamic
image retrieval using the À trous wavelet
transformation, Advances in Multimedia
Information Processing, LNCS 2195, 2001,
pp. 343-350, Springer

[3] J.K. Lenstra Sequencing by Enumera-
tive Methods, Mathematical Centre Tract
69, Mathematisch Centrum, Amsterdam,
1977.

[4] T. Bretschneider, S. Geisler, O. Kao.
Simulation-based Assessment of Parallel
Architectures for Image Databases, Pro-
ceedings of the International Conference on
Parallel Computing (ParCo 2001), pp. 401-
408, 2002, Imperial College Press.

[5] F. Drews, K. Ecker, O. Kao and S.
Schomann. Strategies for Workload Bal-
ancing in Cluster-based Image Databases,
Parallel Processing Letters, to appear.

[6] O. Kao, S. Stapel. Case Study: Cairo
A Distributed Image Retrieval System for
Cluster Architectures, T.K. Shih (Edt.):
Distributed Multimedia Databases: Tech-
niques and Applications, pp. 291-303, 2001,
Idea Group Publishing

[7] R. Rajkumar, C. Lee, J. Lehoczky, D.
Siewiorek. A Resource Allocation Model
for QoS Management, Proceedings of the
IEEE Real-Time Systems Symposium, pp
298-307, 1997

