
QoS Resource Management for Cluster-Based Image Retrieval

Systems

A. Brüning1, S. Geisler1, M. Hoefer2, and O. Kao3

1Department of Computer Science, Technical, University of Clausthal, Germany

E-mail: {bruening,geisler}@tu-clausthal.de
2Department of Computer and Information Science, University of Konstanz, Germany

E-mail: hoefer@inf.uni-konstanz.de
3Department of Computer Science, Paderborn University, Germany

E-mail: okao@upb.de

Abstract This paper presents a novel concept

for resource management in cluster-based image re-

trieval systems. First, the paper describes image

retrieval using static and dynamic feature extrac-

tion. The complexity of dynamic feature extraction

requires the utilization of powerful parallel architec-

tures and in order to provide the user with reason-

able response times. Most existing methods for re-

source management in parallel image retrieval sys-

tems are based on sinlge query execution and do not

take quality of service (QoS) aspects into account.

This appears not to be practical in large-scale and

commercial applications of image databases having

a large number of users at any time. In order to

allow an efficient utilization of the parallel system

and to meet user-defined QoS demands associated

with queries, we need to develop a new concept and

a novel resource management architecture. Inter-

esting aspects of the model include utility theory,

flexible computations, QoS levels, and a hierarchi-

cal resource management architecture. Finally, an

approach for algorithmic solution is described.

Keywords: resource management, image retrieval

1 Introduction

Image management systems handle large, gen-
eral sets of images and allow to search for
a number of images that are similar to a
given sample image. The importance of im-
age databases rose enormously in recent years.
Progresses in digital technologies caused a vast

spreading of multimedia applications. This can
be seen from the production of Petabytes of
pictorial information per year in numerous ap-
plication areas such as museums, research in-
stitutions, photo agencies for publisher houses,
press agencies, and civil services. A survey of
existing image databases is e.g. provided in [1].

A standard approach for the retrieval in im-
age databases is based on the extraction and
comparison of a priori defined features. These
can be combined and weighted in different ways
resulting in advanced features representing the
image contents on a higher abstraction level.
The similarity degree of a query image and
the target images is determined by calculation
of a multidimensional distance function of the
corresponding features. An acceptable system
response time is achieved, because no further
processing of the raw data is required during
the retrieval process. Moreover, pre-compiled
index structures accelerate the search, as only a
small part of the image set has to be considered
[2]. The extraction of such simple features re-
sults, however, in a disadvantageous reduction
of the image contents. Due to the comparison
of whole images only global features like dom-
inant colors, shapes, and textures define the
similarity, but detailed object and topological
information is not sufficiently considered.

A detailed retrieval following a human-like
approach of analyzing and searching images
can be realized using dynamically extracted

1



features. Any manually or automatically se-
lected elements of the query image are trans-
formed into feature vector and compared with
all sections of the selected target images dur-
ing runtime. The user marks his/her region of
interest (ROI), which is then separated from
the background and transformed by various al-
gorithms for dynamic feature extraction. The
result is a set of features – e.g. Gabor-Jets [3]
– describing the object. All other elements of
the source image are ignored. In order to find
the object in different environments a template
matching with the gained ROI is applied. The
ROI slides over the image and for each section
a similarity value is computed. The similarity
computation is repeated for all image sections
with respect to the given step size (e.g. 5 pix-
els). Finally the most similar section within
the image is found. A result ranking based on
the values of the most similar sections in all
images is presented to the user. Summariz-
ing, a typical image retrieval chain consists of
an operation for a static retrieval s and of an
operation for dynamic retrieval d combined as
d ◦ s(I), where I is the total set of stored im-
ages. As already noted the operation s is ex-
ecuted in couple of seconds using the existing
index structures. The result of s is a selection
of the most promising images for the current
query, which are subsequently analyzed using
methods for dynamic image retrieval. The pro-
cessing time for this step is user/query-specific
and depends on the applied operation type, the
selected parameters (e.g. step size) and the
settings of the pre-selection algorithm, which
produces the image subset for the dynamic re-
trieval. This second step is accompanied by
a large computational load [4] resulting into
enormous processing time per query.

In order to speedup this process, powerful
parallel architectures are necessary. According
to simulation results [5], a cluster-based
architecture was selected and a cluster-based
prototype called Cairo has been developed.
The nodes of the underlying architecture are
subdivided into three classes:

• Query stations host the user interfaces and
provide a web-based access.

• A master node controls the cluster and
receives the query. It performs the
pre-selection, distributes the dynamic re-
trieval tasks to the nodes and unifies the
intermediate results into the final ranking.

• Compute nodes perform the comparisons
with the sample image. Each of these
nodes contains a disjoint subset of the im-
ages and executes all operations with the
local data.

For the initial distribution of the images over
the cluster nodes a partitioning strategy is se-
lected which is content-independent and where
the total memory size of the images stored on
the local devices is approximately the same for
all nodes. This even data distribution is dis-
torted by the pre-selection, as only a part of
the images has to be processed dynamically.
Due to the applied size-based partitioning a
random distribution of the relevant images oc-
curs and leads to varying response times of the
individual nodes. In order to equalize the pro-
cessing times and to balance the workload a
temporal or permanent migration of the im-
ages has to be performed. For this purpose, a
number of load balancing strategies was devel-
oped and examined [6]. The results have shown
that the response times of a typical database
can be reduced noticeably, if the queries are
executed non-preemptively and sequentially in
batch mode. However, this is not acceptable
for real-world applications, as couple of queries
would block the system for days. In case of
multiple queries a well-defined QoS concept is
necessary.

2 A Quality of Service concept

The processing of multiple queries in the de-
scribed database must be analyzed from two
points of view. The concurrent execution of
the queries can be performed easily with well-
known synchronization mechanisms from tra-



ditional databases. It is rather a simple prob-
lem, as all operations are executed image-wise
and the majority of the operations is read-
only. Hence, the decisive aspect is the pro-
cessing time. Each query blocks the system
for a long time, hence full processing of every
query can be computationally and timely in-
feasible. Load balancing – e.g. combination
of queries considering images of disjoint sub-
sets placed on different nodes – can yield a
speedup, which however is not able to yield
sufficient improvement. Therefore, a QoS con-
cept is designed, which helps to determine for
each query, how much processing time is al-
located to it – i.e. how many and which of
the images are processed with time-intensive
dynamic retrieval operations. The aim is to
reduce the retrieval quality as little as possible
by ranking the images such that the best im-
ages will still be found and only images with
(very) low chances for success will be ignored.
However, it still might be possible, that par-
ticular objects or persons will not be found, as
the images are not contained in the pre-selected
image set. Static operators evaluate the entire
image, whereas the dynamic operators consider
only small parts of the image which might fit
the query section. On the other hand, in an
underload situation, the unused resources are
utilized to increase the retrieval quality of the
remaining queries by enlarging the set of pic-
tures processed by dynamic operators.

Our QoS-concept is manifested in the adap-
tation of the image sets to be searched. This
is realized by adapting the threshold values for
the static image retrieval s. A low value for the
threshold s leads to a high-number of images as
a result of the pre-selection and a high thresh-
old value delivers solely the most promising im-
ages. The threshold interval is discretized and
the resulting n discrete threshold values are de-
noted as ”service level settings“. A higher set-
ting is equivalent to a lower threshold value
and results in a higher search quality. Note,
that the service level setting of a query can be
adapted online, consequently providing a tool
for adapting the system load. The user should
be able to define a minimal service level set-

ting in order to define a minimal processing
quality to be met for his query. If no min-
imal service level setting is provided a (low)
standard setting is assumed, ensuring a rea-
sonable amount of images to be processed. In
order to determine whether it is beneficial to
enhance the retrieval quality of a query or to
complete it earlier, a user-provided utility func-
tion is needed. The definition of the utility
function underlies certain restrictions in mini-
mal and maximal utility values. Depending on
the user status these restrictions may vary.

Hence, a query can be characterized by the
sample objects, the user-provided utility func-
tion, its minimal service level setting and even-
tually a hard deadline.

3 Resource Management Ar-

chitecture

In this section we describe the resource man-
agement architecture for the retrieval sys-
tem. The optimization and acceptance module
(OAM) controls the admission of queries into
the system and maintains an input queue of
queries. In case of several queries arriving si-
multaneously, they are processed either in the
order of arrival or according to user status. For
each query the OAM checks whether the query
can be processed by the system or not. The
OAM’s decision may be based on the time con-
straints of the queries or the overall utility of
the system obtained by admitting the query.
Once a query is accepted, the system has to
assure completion of this query without violat-
ing neither resource constraints nor the query’s
deadline (if provided). If a query is refused,
the system can return information to the user
about how to lower the quality and time re-
quirements of the query for acceptance. From
the system architecture point of view this case
can be considered as a new query with differ-
ent settings issued by the user. The sets of
objects on the hosts are usually not equally re-
duced by the static retrieval operator. There-
fore, equilibration of processing demand across
the compute nodes is needed. Note that the



set of objects of a query is subject to change
when the service level of the query is adapted
by the system.

The problem of determining an optimal
schedule with optimal service level settings is
NP-hard. Hence, the decision making pro-
cess performed by the OAM has to be based
on a good approximation of an optimal solu-
tion. Therefore, the optimization is accom-
plished by several modules tackling different
sub-problems:

• Load balancer determines which host pro-
cesses which object

• Service level optimizer determines the ser-
vice level settings for the queries

• Query optimizer determines the schedule
of the queries on the hosts.

Every time a query is issued a new solution for
the system is calculated. If the new solution
permits the acceptance of the new query with-
out violating any constraint, the new process
schedule and service level settings are passed to
the application software for execution. Then,
for each query a retrieval application is started
on each host, processing the subset of objects
as determined by the OAM. It may be reason-
able to repeat the optimization after a certain
period of time independent of arriving queries.
Thus, the predicted schedule can be adjusted
according to system dependent delays ensuring
the completion time of queries obeys the hard
deadlines.

4 Formal System Model and

Problem Statement

For a systematic discussion of the problems as-
sociated with the architecture introduced in
the last section, we define a formalized opti-
mization problem of the OAM to be solved dy-
namically on a repeated basis. The database
D of objects is distributed over the h hosts.
Let Dl, Dm be the set of objects on hosts l

and m with D = D1 ∪ . . .∪Dh and size(Dl) ≈
size(Dm). If a query enters the system, all

images of the database are examined with a
static operator. The maximal service level set-
ting (threshold value) for the image is deter-
mined. For a query i on each host l and each
service level j we get a different set of images
Qijl ⊆ Dl. Generally, this leads to an unbal-
anced image distribution for a query as we have
size(Qijl) 6≈ size(Qijm) for different hosts l

and m. With q queries the formal description
of a query consists of

• Set S = {s1, . . . , sn} of service level set-
tings,

• Set of images Qij = Qij1 ∪ . . .∪Qijh to be
processed with setting sj,

• Monotonic (user defined) utility function
Ui(ri) with ri the response time of the sys-
tem for this query, and (possibly)

• Deadline πi for the response time.

Note that due to our assumption about the
threshold values service level settings can be
totally ordered, meaning that an ordering
s1, . . . , sn exists, such that for each query i

Qi1 ⊆ Qi2 ⊆ . . . ⊆ Qin holds. Modeling the
system we will make a few simplifying assump-
tions:

• Apart from the images located on them all
hosts have identical features

• All queries have hard deadlines

• Each image appears on exactly one host:
Di ∩ Dj = ∅ for i 6= j

• If an image is scheduled to be processed
by a query on a different host, it is copied
and available on the other host only for
the corresponding query.

For the utility functions we assume that the
user is able to specify one utility function Ui(ri)
per query capturing his benefit if the query is
processed with the best service level and fin-
ished at time ri. Ui is monotonic decreasing
and will be adjusted by a multiplicative fac-
tor monotonically depending on the choice of



the service level setting, i.e. the number and
type of images processed. With this construc-
tion we can ensure that the ordering of service
level settings holds not only for image sets but
also for utility values. Especially the notion of
minimum quality associated with a minimum
service level can be justified, because for each
query and any given response time a minimum
service level setting results in minimum utility.
The overall system utility is constructed by an
aggregation of query utilities.

The main resources of the system are CPU-
time, memory and network bandwidth. For
each combination of settings for the service at-
tributes a resource profile as a function of ob-
ject size has to be given.1 All utility functions
are monotonic decreasing in the reciprocal of
the response time, therefore delaying a query
by simultaneous execution (multi-tasking) or
preemption can never lead to optimal system
utility. Thus, we will assume that in each
point in time a host processes only one non-
preemptive image processing task of one query.
Hence, memory constraints can be neglected
when our system is designed such that each
host provides the maximum memory require-
ment of a dynamic feature extraction opera-
tor applied on any image. Considering cur-
rent practical computers this is a reasonable
assumption.

Communication has been a major issue in
previous attempts to optimize response time
in image retrieval systems [6]. Here we intro-
duce the notion of a communication module on
each host i, which is informed about the times
when queries need to process images of Di on
another host j. The communication modules
initiate transfer such that the image arrives
only shortly before the processing starts. Im-
ages are only transferred when they are really
needed, which is appealing in a case when the
allocation of image processing tasks to hosts
might change dynamically with each call of the
OAM. Thus, the transfers are distributed over
the time of processing and it is very unlikely

1We assume a functional dependency between the

resource usage and the object size, as it exists for many

image and audio processing operators.

that reasonably sized bandwidth will be used
up resulting in processing delays. Neverthe-
less, we will relax the assumption of identical
hosts and introduce host-dependent processing
times for each retrieval operation. Processing
of an image k ∈ Di, k 6∈ Dj on host j might
be delayed by communication. The process-
ing time on host j should reflect this fact and
be equal to the processing time on host i plus
some extra amount depending on bandwidth
and image size, which we call ”expected com-
munication delay”.

With processor time being the only remain-
ing resource we can find the following: Lemma
Under the given assumptions there is an opti-
mal solution in which

1. Images processing tasks of a query form
blocks on the hosts they are allocated, i.e.
all images of a query on a host are sched-
uled back-to-back.

2. No idle time on any host between the pro-
cessing of any two images/blocks.

3. Blocks of all queries are ordered the same
way on every host.

To get a better understanding of the sys-
tem we present an approach for an algorithmic
solution. Due to the complexity of the prob-
lem the optimization is divided in two parts:
the service-level-optimization and the image
scheduling between the hosts. We suggest a
tabu search approach [7] for the optimization
of the service-level settings. The search space
is the space S of all service-level settings meet-
ing the minimal quality demands of all queries.
A specific setting can be represented by a vec-
tor s ∈ S consisting of the settings si for
each query Qi. The tabu search neighborhood
can be realized by increasing or decreasing one
setting si without violating neither the mini-
mal quality constraints nor the deadlines of all
queries.

The changing of a service-level setting dur-
ing the service-level optimization results in
changed sets of images which have to be sched-
uled. Thus, a fast scheduling algorithm has to



be applied. As mentioned above the scheduling
of the queries has to be done in blocks in or-
der to achieve optimal utility. For each query
Qi, these blocks can be predicted by identify-
ing the sets Q′

ij = Qij\
⋃j−1

s=1
Qis, j = 1, . . . , n,

of images additionally processed when switch-
ing from service-level j − 1 to j. The sets
Q′

ij are balanced over the hosts by the LPT
algorithm [8], considering the host-dependent
processing times. We assume the sets Q′

ij to
be large compared to the average image size
so that LPT gives nearly optimal equilibrated
results. This reduces the problem of image-
scheduling to block-scheduling.

As stated above, all blocks Q′

ij of a query Qi

have to be scheduled back to back in order of
increasing service-level settings. Optimal util-
ity can be achieved when the same order is
maintained on all hosts. For a given service-
level setting s ∈ S we obtain a fast deadline
feasibility test:

feasible(s)

1. Queries are scheduled in EDF-ordering on
all hosts.

2. Schedule the Q′

ij, j = 1, . . . , si for every
query i in order of increasing service-level
settings for obtaining the default schedule
S̃(s).

3. If all deadlines are met return true else
false.

Usually, best utility values are not obtained
for the EDF ordering of the queries. For opti-
mizing the order of queries we suggest a local
search heuristic based on swapping adjoining
queries:

switch-optimize(s)

1. Start with S = S̃(s). If no utility-
increasing feasible swap exists, return S.

2. Calculate new schedule S by executing
best feasible swap and return to 1.

This leads to the following algorithm:

1. A new query Qi arrives.

2. Identify the Q′

ij for all service level set-
tings of Qi and equilibrate the images in
the Q′

ij by LPT with respect to their host-
dependent processing times.

3. Start service-level optimization with min-
imal feasible settings smin ∈ S for all
queries.

4. If feasible(smin) = false then exit by de-
clining the query

5. Perform tabu-search with iter iterations:

(a) Alter one service-level setting in s

(b) If feasible(s) and utility(S) > opt

with S = switch-optimize(s) then
opt = utility(S) and best = S

6. best is best solution, opt is the best utility
value

An implementation of the proposed algo-
rithm and performance measurements in real-
world environments using the cluster-based
image database Cairo [9] are currently in
progress.

5 Conclusions and Future

Work

Current research on the design of image
databases addresses almost exclusively the in-
crease of retrieval quality and the efficient ex-
ecution of isolated queries in batch mode, e.g.
image partitioning and load balancing. How-
ever, the growing number of fully-operational
image databases in real applications and web
services requires studies of resource manage-
ment with respect to the current number of
waiting queries. The main aim is to adjust the
global load and to provide reasonable response
time. Such mechanisms already exist for in-
ternet search engines for documents, but also
for general systems such as QRAM [10]. How-
ever, these approaches do not consider specific
image database characteristics resulting from
large computational and network load. There-
fore we developed a formal system model and



an algorithmic approach, which takes the spe-
cific problems of image retrieval – in particular
with dynamic image operators – in account.

Future work includes in first line the eval-
uation of the proposed algorithm in different
scenarios and comparison with other strate-
gies, which have to be developed. In particular
set-up of practical limits for the maximum al-
lowed pre-selection without significant loss of
retrieval quality are mandatory.

References

[1] C.C. Venters and M. Cooper. A review
of content-based image retrieval systems,
Tech. Rep. jtap-054, University of Manch-
ester, 2000.

[2] O. Kao, G.R. Joubert. Efficient Dynamic
image retrieval using the À trous wavelet
transformation, Advances in Multime-
dia Information Processing, LNCS 2195,
2001, pp. 343-350, Springer

[3] V. Krüger, G. Sommer. Gabor wavelet
networks for object representation, Pro-
ceedings of the DAGM Symposium, pp.
13-15, 2000.

[4] A. Reuter. Methods for parallel execu-
tion of complex database queries, Parallel
Computing 25 (1999) pp. 2177-2188.

[5] T. Bretschneider, S. Geisler, O. Kao.
Simulation-based Assessment of Parallel
Architectures for Image Databases, Pro-
ceedings of the International Conference
on Parallel Computing (ParCo 2001), pp.
401-408, 2002, Imperial College Press.

[6] F. Drews, K. Ecker, O. Kao and S.
Schomann. Strategies for Workload Bal-
ancing in Cluster-based Image Databases,
Parallel Processing Letters, to appear.

[7] F. Glover and M. Laguna. Tabu Search,
Kluwer Academic Publishers, 1997.

[8] R.L. Graham. Bounds on multiprocessing
timing anomalies, SIAM J. Appl. Math.
17, pp. 263-269, 1969

[9] O. Kao, S. Stapel. Case Study: Cairo
A Distributed Image Retrieval System for
Cluster Architectures, T.K. Shih (Edt.):
Distributed Multimedia Databases: Tech-
niques and Applications, pp. 291-303,
2001, Idea Group Publishing

[10] R. Rajkumar, C. Lee, J. Lehoczky, D.
Siewiorek. A Resource Allocation Model
for QoS Management, Proceedings of the
IEEE Real-Time Systems Symposium, pp
298-307, 1997


