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Abstract

We study a multi-player one-round game termed Stackelberg Network Pricing Game, in which a
leadercan set prices for a subset ofm priceable edges in a graph. The other edges have a fixed cost.
Based on the leader’s decision one or morefollowersoptimize a polynomial-time solvable combinatorial
minimization problem and choose a minimum cost solution satisfying their requirements based on the
fixed costs and the leader’s prices. The leader receives as revenue the total amount of prices paid by
the followers for priceable edges in their solutions. Our model extends several known pricing problems,
including single-minded and unit-demand pricing, as well as Stackelberg pricing for certain follower
problems like shortest path or minimum spanning tree. Our first main result is a tight analysis of a
single-price algorithm for the single follower game, whichprovides a(1 + ε) logm-approximation.
This can be extended to provide a(1 + ε)(log k + logm)-approximation for the general problem andk
followers. The problem is also shown to be hard to approximate withinO(logε k + logε m) for some
ε > 0. If followers have demands, the single-price algorithm provides anO(m2)-approximation, and the
problem is hard to approximate withinO(mε) for someε > 0. Our second main result is a polynomial
time algorithm for revenue maximization in the special caseof Stackelberg bipartite vertex-cover, which
is based on non-trivial max-flow and LP-duality techniques.This approach can be extended to provide
constant-factor approximations for any constant number offollowers.

1 Introduction

Algorithmic pricing problems model the task of assigning revenue maximizing prices to a retailer’s set of
products given some estimate of the potential customers’ preferences in purely computational [19], as well
as strategic [3] settings. Previous work in this area has mostly focused on settings in which these preferences
are rather restricted, in the sense that products are eitherpure complements[2, 11, 20, 21] and every customer
is interested in exactly one subset of products orpure substitutes[1, 12, 15, 19, 20, 21], in which case each
customer seeks to buy only a single product out of some set of alternatives. A customer’s real preferences,
however, are often significantly more complicated than thatand therefore pose some additional challenges.

The modelling of consumer preferences has received considerable attention in the context ofalgorithmic
mechanism design[25] and combinatorial auctions[16]. The established models range from relatively
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simple bidding languages to bidders that are represented byoracles allowing certain types of queries, e.g.,
revealing the desired bundle of items given some fixed set of prices. The latter would be a somewhat
problematic assumption in the theory of pricing algorithms, where we usually assume to have access to a
rather large number of potential customers through some sort of sampling procedure and, thus, are interested
in preferences that allow for a compact kind of representation.

In this paper we focus on customers that have non-trivial preferences, yet can be fully decsribed by theirtypes
andbudgetsand do not require any kind of oracles. We consider the framework of Stackelberg pricing[30],
which models scenarios that arise naturally in a variety of combinatorial pricing problems in practice. This
approach originates in the operations research literature[24].

For instance, consider a simple pricing problem to optimally set tolls in a traffic network. There is a company
that owns a certain subset of road segments (like speedways or private highways) on which the company can
set prices. Customers are cars travelling between their source and destination through the network. Let us
disregard effects of congestion and assume that every non-priceable edge has a fixed publicly known cost,
which could come from a (constant) travel time or a toll that acompetitor company places on this edge.
Customers are rational, i.e., they choose a shortest path with respect to the sum of edge costs on the path.
How can the company price their road segments in order to achieve highest revenue?

As another example consider a telecommunication company that provides certain connections in a network.
In the market there are competitors of this company that operate similar or different connections, for which
users must pay fixed publicly known prices. In this case possible customers are interested in establishing
connections via the network (e.g., setting up telephone or internet connections) for which they must pay
the corresponding prices. Again, as customers are acting rationally, they are going to purchase the cheapest
set of connections that meets their communication requirement. How can the company set prices for the
connections such that it receives the highest revenue from the customers?

Note, that in both cases customer preferences are represented implicitly via some network design problem
and the customers’ objective of minimizing total cost. The revenue optimization problem is then to ma-
nipulate the prices of network edges to obtain the largest share of revenue in the optimum solution of the
customer. In general, this approach of defining customer preferences implicitly in terms of some optimiza-
tion problem is the characteristic of Stackelberg pricing.In the standard 2-player form we are given aleader
setting the prices on a subset of network elements and afollower seeking to purchase a min-cost network
satisfying her requirements. In general, this gives rise toa bi-level optimization problem for the revenue of
the leader. We proceed by formally defining the model before stating our results.

1.1 Model and Notation

In this paper we consider the following class of multi-player one-round games. LetG = (V,E) be a multi-
graph. There are two types of players in the game, oneleaderand one or morefollowers. We consider two
classes ofedgeandvertex games, in which either the edges or the vertices have costs. For most of the paper,
we will consider edge games, but the definitions and results for vertex games are completely analogous. In
an edge game, the edge setE is divided into two setsE = Ep ∪ Ef with Ep ∩ Ef = ∅. For the set of
fixed-priceedgesEf there is a fixed costc(e) ≥ 0 for each edgee ∈ Ef . For the set ofpriceableedgesEp

the leader can specify a pricep(e) ≥ 0 for each edgee ∈ Ep. We denote the number of priceable edges by
m = |Ep|. Each followeri = 1, . . . , k has a setSi ⊂ 2E of feasible subnetworks. Theweightw(S) of a
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subnetworkS ∈ Si is given by the costs of fixed-price edges and the price of priceable edges,

w(S) =
∑

e∈S∩Ef

c(e) +
∑

e∈S∩Ep

p(e) .

The revenuer(S) of the leader from subnetworkS is given by the prices of the priceable edges that are
included inS, i.e.,

r(S) =
∑

e∈S∩Ep

p(e) .

Throughout the paper we assume that for any price functionp every followeri can in polynomial time find a
subnetworkS∗

i (p) of minimum weight. Hence, we further assume that the sets ofSi are not part of the input
but can be represented in a compact way, e.g., by a logic formula or a set of constraints that is polynomial
in the size ofG andk. Our interest is to find the pricing functionp∗ for the leader that generates maximum
revenue, i.e.,

p∗ = argmax
p

k
∑

i=1

r(S∗
i (p)) .

We denote this maximum revenue byr∗. To guarantee that the revenue is bounded and the optimization
problem is non-trivial, we assume that there is at least one feasible subnetwork for each followeri that
is composed only of fixed-price edges. In order to avoid technicalities, we assume w.l.o.g. that among
subnetworks of identical weight the follower always chooses the one with higher revenue for the leader. In
general we will refer to the revenue optimization problem bySTACK.

Problem STACK: Given a graphG = (V,E), a subsetEp ⊂ E of priceable edges, fixed costsc(e)
for e ∈ E − Ep, andk followers with follower i specified by a compact representation of her feasible
subnetworksSi ⊆ 2E , find pricesp(e) for all e ∈ Ep such that the revenue

∑k
i=1 r(S

∗
i (p)) is maximized.

It is not difficult to see that for games withk = 1 follower, we need a follower with a large number of
feasible subnetworks in order to make STACK interesting.

Proposition 1 Given followerj and a fixed subnetworkSj ∈ Sj , we can compute pricesp with w(Sj) =
minS∈Sj

w(S) maximizingr(Sj) or decide that such prices do not exist in polynomial time. For STACK

with k = 1 follower, if |S| = O(poly(m)), then revenue maximization can be done in polynomial time.

Proof: Fix follower j and subnetworkSj ∈ Sj . We formulate the problem of extracting maximum revenue
from Sj as the following LP, where variablexe defines the price of edgee ∈ Ep:

max.
∑

e∈Sj∩Ep

xe (1)

s.t.
∑

e∈Sj∩Ep

xe +
∑

e∈Sj∩Ef

c(e) ≤
∑

e∈S∩Ep

xe +
∑

e∈S∩Ef

c(e) ∀S ∈ Sj (2)

xe ≥ 0 (3)

Constraints 2 require thatSj is the cheapest feasible network for followerj, formallyw(Sj) ≤ w(S) for all
feasible networksS ∈ Sj . Clearly the number of these constraints might be exponential in m. However,
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by our assumption we can compute the min-cost subnetwork forany given set of prices and, thus, have a
polynomial time separation oracle.

Now assume that|S| = O(poly(m)) for an instance of STACK with k = 1 follower. By enumerating all
S ∈ S and optimizing revenue for each subnetwork separately, we obtain a polynomial time algorithm.�

Note, that our definition of Stackelberg pricing generalizes most of the previously employed models in
algorithmic pricing. In particular, it is equivalent to item pricing with general valuation functions, a problem
that has independently been considered in [4]. Every general valuation function can be expressed in terms
of Stackelberg network pricing on graphs and our algorithmic results apply in this setting, as well.

While we will start by addressing the general case of STACK, we will also focus on more restricted variants,
in which we can use the additional problem structure to show improved results. As an example we consider
thebipartite Stackelberg vertex cover game. In this game we are given a bipartite graphG = (A ∪ B,E)
with a subset ofpriceable verticesVp ⊂ V = A ∪ B and fixed costscf (v) on the remaining vertices
v ∈ Vf = V − Vp. Hence, the game is defined as a vertex game rather than an edgegame. Each follower
seeks to purchase a min-cost vertex cover of some subset of the graph’s edgesE. In particular, followeri
has a setEi ⊆ E of edges, and her feasible subsetsSi ⊆ 2V are the subsets of vertices that form vertex
covers ofEi. Theweightw(S) of a subsetS ∈ Si is again given by

w(S) =
∑

v∈S∩Vf

c(v) +
∑

v∈S∩Vp

p(v) .

Therevenuer(S) of the leader is given by the prices of the priceable verticesincluded inS, i.e.,

r(S) =
∑

v∈S∩Vp

p(v) .

Note that the setSi of all vertex covers for a followeri can be described by a number of linear constraints that
is polynomial in the size ofG. For any price functionp follower i can in polynomial time find a minimum-
weight vertex coverS∗

i (p) for Ei using a well-known algorithm based on max-flow computations. Our
interest is to find the pricing functionp∗ for the leader that generates maximum revenue.

Problem STACKVC: Given a bipartite graphG = (V,E), a subsetVp of priceable vertices, fixed costsc(v)
for v ∈ V −Vp, andk followers with followeri specified by edge setEi ⊆ E, find pricesp(v) for all v ∈ Vp

such that the revenue
∑k

i=1 r(S
∗
i (p)) is maximized.

1.2 Previous Work and New Results

The single-follower shortest-path Stackelberg pricing problem (STACKSP) has first been considered by
Labbé et al. [24], who derive a bilevel LP formulation of theproblem and proveNP-hardness. Roch et
al. [26] present a first polynomial time approximation algorithm with a provable performance guarantee,
which yields logarithmic approximation ratios. Bouhtou etal. [6] extend the problem to multiple (weighted)
followers and present algorithms for a restricted shortestpath problem on parallel links. For an overview
of most of the initial work on Stackelberg network pricing the reader is referred to [29]. A different variant
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called the shortest-path-tree game, in which a customer purchases the shortest path tree from a node to every
other node in the network, was studied by Biló et al. [5]. They solve the pricing problem optimally in time
O(n2 log n) for 2 priceable edges. A different line of research has been investigating the application of
Stackelberg pricing to network congestion games in order toobtain low congestion Nash equilibria for sets
of selfish followers [18, 22, 23, 27, 28, 31].

Recently, Cardinal et al. [13] investigated the corresponding minimum spanning tree (STACKMST) game,
again obtaining a logarithmic approximation guarantee andproving APX-hardness. Theirsingle-price al-
gorithm, which assigns the same price to all priceable edges, turns out to be even more widely applicable
and yields similar approximation guarantees for any matroid based Stackelberg game. Very recently, in [14]
they provided constant-factor approximation algorithms based on dynamic programming for STACKMST
in the special case of planar and bounded-treewidth graphs.

The first result of our paper is a generalization of the single-price algorithm to general Stackelberg games.
The previous limitation to matroids stems from the difficulty to determine the necessarily polynomial num-
ber of candidate prices that can be tested by the algorithm. We develop a novel characterization of the small
set ofthreshold pricesthat need to be tested and obtain a polynomial time(1+ε)Hm-approximation (where
Hm denotes them’th harmonic number) for arbitraryε > 0, which turns out to be perfectly tight for shortest
path as well as minimum spanning tree games. This result is found in Section 2.

We then extend the analysis to multiple followers, in which case the approximation ratio becomes(1 +
ε)(Hk +Hm). This can be shown to be essentially best possible by an approximation preserving reduction
from single-minded combinatorial pricing [17]. Extendingthe problem even further, we also look at the case
of multiple weightedfollowers, which arises naturaly in network settings wheredifferent followers come
with different routing demands. While previous upper-bounding techniques could not yield approximation
guarantees essentially better than the number of followersin this scenario, we present an alternative analysis
of the single-price algorithm that results in an approximation ratio of(1 + ε)m2. Additionally, we derive a
lower bound ofO(mε) for the weighted player case. This resolves a previously open problem from [6]. The
results on multiple followers are found in Section 3.

The generic reduction from single-minded to Stackelberg pricing yields a class of networks in which we can
price the vertices on one side of a bipartite graph and players aim to purchase minimum cost vertex covers
for their sets of edges. This motivates us to return to the classical Stackelberg setting and consider the
single-follower bipartite vertex-cover game (STACKVC). As it turns out, this variation of the game allows
polynomial-time algorithms for exact revenue maximization using non-trivial algorithmic techniques. We
first present an upper bound on the possible revenue in terms of the min-cost vertex-cover not using any
priceable vertices and the minimum portion of fixed cost in any possible cover. Using iterated max-flow
computations, we then determine a pricing with total revenue that eventually coincides with our upper
bound. These results are found in Section 4.

Section 5 concludes and presents several intriguing open problems for further research.

2 A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower and letc0 denote the cost of a cheapest feasible
subnetwork for the follower not containing any of the priceable edges. Clearly, we can computec0 by
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assigning price+∞ to all priceable edges and simulating the follower on the resulting network. Thesingle-
price algorithmproceeds as follows. Forj = 0, . . . , dlog c0e it assigns pricepj = (1 + ε)j to all priceable
edges and determines the resulting revenuer(pj). It then simply returns the pricing that results in maximum
revenue. We present a logarithmic bound on the approximation guarantee of the single-price algorithm.

Theorem 1 Given anyε > 0, the single-price algorithm computes an(1 + ε)Hm-approximation for Stack-
elberg network pricing with respect tor∗, the revenue of an optimal pricing.

2.1 Analysis

The single-price algorithm has previously been applied to anumber of different combinatorial pricing prob-
lems [1, 20]. The main issue in analyzing its performance guarantee for Stackelberg pricing is to determine
the right set of candidate prices. We first derive a precise characterization of these candidates and then argue
that the geometric sequence of prices tested by the algorithm is a good enough approximation. Slightly
abusing notation, we letp refer to both pricep and the assignment of this price to all priceable edges. Con-
sider the follower’s cheapest feasible subnetworksS∗(p) for different values ofp. If there exists any feasible
subnetwork that uses at leastj priceable edges, we let

θj = max
{

p
∣

∣

∣
|S∗(p) ∩ Ep| ≥ j

}

be the largest price at which such a subnetwork is chosen. If no feasible subnetwork with at leastj priceable
edges exists, we setθj = 0. As we shall see, these thresholds are the key to prove Theorem 1.

We want to derive an alternative characterization of the values ofθj. For each1 ≤ j ≤ m we letcj refer to
the minimum sum of prices of fixed-price edges in any feasiblesubnetwork containing at mostj priceable
edges, formally

cj = min
{

∑

e∈S∩Ef

fe

∣

∣

∣
S ∈ S : |S ∩Ep| ≤ j

}

.

Note, that clearlyc0 ≥ c1 ≥ · · · ≥ cm by definition. Now let∆j = c0 − cj and consider the point set
(0,∆0), (1,∆1), . . . , (m,∆m) on the plane. ByH we refer to a minimum selection of points spanning the
upper convex hull of the point set. It is a straightforward geometric observation that we can defineH as
follows:

Fact 1 Point (j,∆j) belongs toH if and only ifmini<j
∆j−∆i

j−i
> maxj<k

∆k−∆j

k−j
.

We now return to the candidate prices. By definition we have that θ1 ≥ θ2 ≥ · · · ≥ θm. We say thatθj is
true threshold valueif θj > θj+1, i.e., if at priceθj the subnetwork chosen by the follower contains exactly
j priceable edges. Leti1 < i2 < · · · < i` denote the indices, such thatθik are true threshold values and for
ease of notation definei0 = 0.

Lemma 1 θj is true threshold value if and only if(j,∆j) belongs toH.
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Proof: ”⇒” Let θj be true threshold value, i.e., at priceθj the chosen subnetwork contains exactlyj priceable
edges. We observe that at any pricep the cheapest subnetwork containingj priceable edges has costcj +
j · p = c0 −∆j + j · p. Thus, at priceθj it must be the case that∆j − j · θj ≥ ∆i − i · θj for all i < j and
∆j − j · θj > ∆k − k · θj for all j < k. It follows that

min
i<j

∆j −∆i

j − i
≥ θj > max

j<k

∆k −∆j

k − j
,

and, thus, we have that(j,∆j) belongs toH.

”⇐” Assume now that(j,∆j) belongs toH and let

p = min
i<j

∆j −∆i

j − i
.

Consider anyk < j. It follows that

∆k − k · p = ∆j − j · p− (∆j −∆k) + (j − k)p ≤ ∆j − j · p ,

sincep ≤ (∆j −∆k)/(j − k) and, thus, the network chosen at pricep cannot contain less thanj priceable
edges. Analogously, letk > j. Usingp > (∆k −∆j)/(k − j) we obtain

∆k − k · p = ∆j − j · p+ (∆k −∆j)− (k − j)p < ∆j − j · p ,

and, thus, the subnetwork chosen at pricep contains exactlyj priceable edges. We conclude thatθj is a true
threshold. �
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Figure 1: A geometric interpretation of (true) threshold values. Priceθik corresponds to the slope of the
segment of the upper convex hull of point set(0,∆0), (1,∆1), . . . , (m,∆m) between(ik−1,∆ik−1

) and
(ik,∆ik).

It is not difficult to see that the pricep defined in the second part of the proof of Lemma 1 is precisely the
threshold valueθj. Let θik be any true threshold. Since points(i0,∆i0), . . . , (i`,∆i`) define the convex hull
we can write thatmini<ik(∆ik −∆i)/(ik − i) = (∆ik −∆ik−1

)/(ik − ik−1). We state this important fact,
which is also illustrated in Fig. 1, again in the following lemma.

Lemma 2 For all 1 ≤ k ≤ ` it holds thatθik =
∆ik

−∆ik−1

ik−ik−1

.
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Figure 2: An instance of Stackelberg Shortest Path, on whichthe analysis of the approximation guarantee
of the single-price algorithm is tight. Bold edges are priceable, vertex labels of regular edges indicate cost.
The instance yields tightness of the analysis also for Stackelberg Minimum Spanning Tree.

From the fact that points(i0,∆i0), . . . , (i`,∆i`) define the convex hull we know that∆i` = ∆m, i.e.,∆i`

is the largest of all∆-values. On the other hand, each∆j describes the maximum revenue that can be made
from a subnetwork with at mostj priceable edges and, thus,∆m is clearly an upper bound on the revenue
made by an optimal price assignment.

Fact 2 It holds thatr∗ ≤ ∆i` .

By definition of theθj ’s it is clear that at any price belowθik the subnetwork chosen by the follower contains
no less thanik priceable edges. Furthermore, for eachθik the single-price algorithm tests a candidate price
that is at most a factor(1 + ε) smaller thanθik . Let r(pik), r(θik) denote the revenue that results from
assigning pricepik or θik to all priceable edges, respectively.

Fact 3 For eachθik there exists a pricepik with (1 + ε)−1θik ≤ pik ≤ θik that is tested by the single-price
algorithm. Especially, it holds thatr(pik) ≥ (1 + ε)−1r(θik)

Finally, we know that the revenue made by assigning priceθik to all priceable edges isr(θik) = ik · θik . Let
r denote the revenue of the single-price solution returned bythe algorithm. We have:

(1 + ε) ·Hm · r = (1 + ε)

m
∑

j=1

r

j
≥ (1 + ε)

∑̀

k=1

ik
∑

j=ik−1+1

r

j
≥ (1 + ε)

∑̀

k=1

ik
∑

j=ik−1+1

r(pik)

j

≥
∑̀

k=1

ik
∑

j=ik−1+1

r(θik)

j
≥

∑̀

k=1

ik
∑

j=ik−1+1

ik · θik
j

≥
∑̀

k=1

(ik − ik−1)
ik · θik
ik

=
∑̀

k=1

(∆ik −∆ik−1
) , by Lemma 2

= ∆i` −∆0 = ∆i` ≥ r∗.

This concludes the proof of Theorem 1.

2.2 Tightness

The example in Fig. 2 shows that our analysis of the single-price algorithm’s approximation guarantee is
tight. The follower wants to buy a path connecting verticess andt. In an optimal solution we set the price
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of edgeej to m/j. Then edgese1, . . . , em form a shortest path of costmHm. On the other hand, assume
that all edgese1, . . . , em are assigned the same pricep. If p ≤ 1, the leader’s revenue is clearly bounded by
m; if p > m, the shortest path does not contain any priceable edge at all. Let thenm/(j + 1) < p ≤ m/j
for some1 ≤ j ≤ m− 1. It is straightforward to argue that at this price a shortestpath froms to t does not
contain any of the priceable edgesej+1, . . . , em and, thus, it contains at mostj priceable edges. It follows
that the leader’s revenue is at mostj · p ≤ m. Similar argumentation clearly holds if the follower seeksto
purchase a minimum spanning tree instead of a shortest path.

The best known lower bound for single-follower Stackelbergpricing is found in [10], where STACKSP is
shown to be non-approximable within2 − o(1). For the spanning tree case the best lower bound isAPX-
hardness shown in [13]. To the authors’ best knowledge, up tonow no non-constant inapproximability
results could be proven. We proceed by extending our resultsto multiple followers, in which case previous
results on other combinatorial pricing problems yield strong lower bounds.

3 Extension to Multiple Followers

In this section we extend our results on general Stackelbergnetwork pricing to scenarios with multiple
followers. Recall that each followerj is characterized by her own collectionSj of feasible subnetworks and
k denotes the number of followers. Section 3.1 extends the analysis from the single follower case to prove a
tight bound of(1 + ε)(Hk +Hm) on the aproximation guarantee of the single-price algorithm. Section 3.2
presents an alternative analysis that applies even in the case of weighted followers and yields approximation
guarantees that do not depend on the number of followers. Section 3.3 derives (near) tight inapproximability
results based on known hardness results for combinatorial pricing.

3.1 An (1 + ε)(Hk +Hm)-Approximation for Multiple Followers

Let an instance of Stackelberg network pricing with some number k ≥ 1 of followers be given. We ex-
tend the analysis from Section 2 to obtain a similar bound on the single-price algorithm’s approximation
guarantee.

Theorem 2 The single-price algorithm computes an(1 + ε)(Hk +Hm)-approximation with respect tor∗,
the revenue of an optimal pricing, for Stackelberg network pricing with multiple followers.

Proof: Consider graphG = (V,E), E = Ef ∪ Ep with |Ep| = m, andk followers defined by collections
S1, . . . ,Sk of feasible subnetworks. We transform this instance into a single follower pricing game as
follows. LetG1, . . . , Gk be identical copies ofG and defineG∗ = G1 ∪ . . . ∪ Gk. Furthermore, define a
single follower by

S∗ = {S1 ∪ . . . ∪ Sk |S1 ∈ S1 ∩G1, . . . , Sk ∈ Sk ∩Gk} ,

i.e., for every followerj in the original instance our new follower seeks to purchase asubnetwork fromSj in
copyGj of the original graph. Clearly, the maximum possible revenue in the new instance is an upper bound
on the maximum revenue in the multiple follower case, since we can always assign the same price to every
copy of a priceable edge inG1, . . . , Gk. Furthermore, every pricing returned by the single-price algorithm
on G1 ∪ . . . ∪ Gk translates naturally into a corresponding pricing of identical revenue inG, since again
all copies of an edge fromG are assigned identical prices. Finally, since the number ofpriceable edges in
G1 ∪ . . . ∪Gk is k ·m, we obtain an approximation ratio of(1 + ε)Hkm as desired. �
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This reduction from the multiple to single follower case relies essentially on the fact that we are considering
the single-price algorithm. Thus, the above does not imply anything about the relation of these two cases in
general.

3.2 A (1 + ε)m2-Approximation for Weighted Followers

We now turn to an even more general variation of Stackelberg pricing, in which we allow multipleweighted
followers. This model, which has been previously considered in [6], arises naturally in the context of
network pricing games with different demands for each player. Formally, for each follower we are given her
demanddj ∈ R

+
0 . Given followers buying subnetworksS1, . . . , Sk, the leader’s revenue is defined as

k
∑

j=1

dj
∑

e∈Sj∩Ep

p(e) .

It has been conjectured before that in the weighted case no approximation guarantee essentially beyond
O(k · logm) is possible. We show that an alternative analysis of the single-price algorithm yields ratios that
do not depend on the number of followers.

Theorem 3 The single-price algorithm computes an(1 + ε)m2-approximation with respect tor∗, the rev-
enue of an optimal pricing, for Stackelberg network pricingwith multiple weighted followers.

Proof: Let again graphG = (V,E), E = Ef ∪ Ep with |Ep| = m, andk followers defined byS1, . . . ,Sk

and demandsd1, . . . , dk be given and consider the optimal pricingp∗. For each priceable edge, letF (e)
refer to the set of followers purchasinge under price assignmentp∗ and denote byr∗(e) =

∑

j∈F (e) djp
∗(e)

the corresponding revenue. Clearly,
∑

e∈Ep
r∗(e) = r∗.

Fix some priceable edgee and define a corresponding pricepe = p∗(e)/m. By r(pe) we denote the revenue
from assigning pricepe to all priceable edges. Letj ∈ F (e) and assume that followerj buys subnetwork
Sj under price assignmentp∗. By w∗(Sj), we(Sj) andc(Sj) we refer to the total weight ofSj under price
assignmentsp∗ andpe and the weight due to fixed price edges only, respectively. Itholds that

we(Sj) ≤ c(Sj) +m
p∗(e)

m
= c(Sj) + p∗(e) ≤ w∗(Sj) .

Let cj0 denote the cost of a cheapest feasible subnetwork for follower j consisting only of fixed price edges.
It follows thatwe(Sj) ≤ w∗(Sj) ≤ cj0 and, thus, followerj is going to purchase a subnetwork containing
at least one priceable edge under price assignmentpe, resulting in revenue at leastdjpe = djp

∗(e)/m from
this follower. We conclude thatr(pe) ≥ r∗(e)/m and, thus

m2 max
e∈Ep

r(pe) ≥ m
∑

e∈Ep

r(pe) ≥
∑

e∈Ep

r∗(e) = r∗ .

Finally, observe that for each pricepe the single-price algorithm checks some candidate price that is smaller
by at most a factor of(1 + ε), which finishes the proof. �
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3.3 Lower Bounds

Hardness of approximation of Stackelberg pricing with multiple followers follows quite easily from known
results about other combinatorial pricing models, which have received considerable attention lately. More
formally, we will show lower bounds on the approximability of both weighted and unweighted multi-
follower Stackelberg pricing games expressed in the numberof priceable edgesm and the number of fol-
lowersk based on hardness of the unit-demand and single-minded envy-free pricing problems, respectively.
Theorem 4 is based on a reduction from the unit-demand version of envy-free pricing. The resulting Stack-
elberg pricing game is an instance of the so-calledriver tarification problem, in which each player needs to
route her demand along one out of a number of parallel links connecting her respective source and sink pair.
This resolves an open problem from [6].

Theorem 4 The Stackelberg network pricing problem with multiple weighted followers is hard to approx-
imate withinO(mε) for someε > 0, unlessNP ⊆

⋂

δ>0 BPTIME(2O(nδ)). The same holds for the river
tarification problem.

Proof: The distribution-based unit-demand envy-free pricing problem with uniform budgets (UDP-M IN) is
defined as follows. We are given a universeU , |U| = m, of products and a set of consumersC, where each
c ∈ C is defined by her budgetbc ∈ R

+
0 and the setSc ⊆ U of products she is interested in. Additionally,

probability distributionD assigns to each consumerc a probabilityPrD(c). We want to find product prices
p : U → R

+
0 maximizing the expected revenue

r(p) =
∑

c∈C

PrD(c) · min
u∈Ac(p)

p(u)

from a sale to a consumer sampled according toD, whereAc(p) = {u ∈ U |u ∈ Sc ∧ p(u) ≤ bc}
denotes the set of productsc can afford under price assignmentp and we defineminu∈Ac(p) p(u) = 0
wheneverAc(p) = ∅. UDP-M IN is hard to approximate withinO(mε) for someε > 0, unlessNP ⊆

⋂

δ>0

BPTIME(2O(nδ)) [7].

We can encode UDP-M IN in terms of a weighted multi-follower shortest-path Stackelberg pricing game in
a directed graph in a straightforward way. For every productu ∈ U we define two verticesvu, wu and the
directed priceable edge(vu, wu). For each consumerc ∈ C we add verticessc, tc, directed fixed-price edge
(sc, tc) of costbc and directed fixed-price edges(sc, vu), (wu, tc) of cost0 for every productu ∈ Sc. We
then define a follower seeking to route a total demand ofdc = PrD(c) along a shortest path fromsc to tc.

Obviously the leader’s revenue from assigning any prices tothe priceable edges equals the expected rev-
enue from assigning the same prices to the products of the UDP-M IN instance. Furthermore, the simple
structure of the constructed graph satisfies the requirements of the river tarification problem from [6]. The
construction is depicted in Figure 3(a). �

In the unweighted case, a reduction from the single-minded version of the envy-free pricing problem yields
lower bounds on the approximability of multi-follower Stackelberg pricing games. Theorem 5 shows that
the single-price algorithm is essentially best possible inthis situation. The resulting pricing game is an
instance of bipartite Stackelberg Vertex Cover Pricing and, thus, yields the same result for this special case.
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Figure 3: Reductions from pricing problems to Stackelberg pricing. (a) Unit-demand reduces to directed
STACKSP. Bold edges are priceable, edge labels indicate cost. Regular edges without labels have cost
0. Vertex labels indicate source-sink pairs for the followers. (b) Single-minded pricing reduces to bipartite
STACKVC. Solid vertices are priceable, vertex labels indicate cost. For each customer there is one fixed-cost
vertex and a corresponding follower, who needs to cover all the incident edges.

Theorem 5 The Stackelberg network pricing problem with multiple unweighted followers is hard to ap-
proximate withinO(logε k + logεm) for someε > 0, unlessNP ⊆

⋂

δ>0 BPTIME(2O(nδ)). In particular,
this holds for bipartite Stackelberg Vertex Cover Pricing.

Proof: We prove the theorem by a reduction from the single-minded envy-free pricing problem (SMP). In
this problem, given a universe of productsU , |U| = m, and a set of consumer samplesC, |C| = k, consisting
of budgetsbc ∈ R

+
0 and product setsSc ⊆ U , we need to find pricesp : U → R

+
0 maximizing the revenue

r(p) =
∑

c∈C:p(Sc)≤bc

p(Sc)

from sales to consumersC, wherep(Sc) =
∑

u∈Sc
p(u) is shorthand notation for the sum of prices of

products inSc. Intuitively, each consumer in SMP buys the whole set of products she is interested in, if the
sum of prices does not exceed her budget. SMP is hard to approximate withinO(logε k + logεm) for some
ε > 0, unlessNP ⊆

⋂

δ>0 BPTIME(2O(nδ)) [17].

We encode SMP in terms of a Stackelberg vertex pricing game as follows. Forevery productu ∈ U we
define a priceable vertexvu. For each consumerc ∈ C we add a fixed-price vertexwc of costbc and edges
{wc, vu} for every productu ∈ Sc. We then define a follower seeking to purchase a min-cost vertex-cover
for the edges connected towc.

It is straightforward to check that the follower corresponding to consumerc in the SMP instance purchases
the priceable vertices corresponding to the products in herset, if and only if their assigned prices sum to at
mostbc. We observe that the constructed graph is clearly bipartiteand, furthermore, all priceable vertices
are located on one side of the bipartition. The constructionis illustrated in Figure 3(b). �

We proceed by taking a closer look at STACKVC and especially focus on the interesting case of a single
follower.
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4 Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game. Nevertheless, the approximation results for the single-
price algorithm, which are completely independent of the underlying network structure, continue to hold. In
general the vertex-cover problem is hard and, consequently, we focus on settings in which the problem can
be solved in polynomial time in order to stay within our definition of general Stackelberg network pricing
games laid out in Section 1.1. In bipartite graphs the problem can be solved optimally by using a classic
and fundamental max-flow/min-cut argumentation. If all priceable vertices are in one side of the partition,
we have shown evidence that for multiple followers the single-price algorithm is essentially best possible.
Our main result in this section is the fact that the problem can be solved exactly if there is only a single
follower. This is despite the fact that the follower’s set offeasible vertex covers might of course still be
of exponential size and so the enumeration approach sketched in Section Proposition 1 is infeasible in this
setting. A simple extension of our algorithm shows that general bipartite STACKVCwith a single follower
can be approximated within a factor of 2.

Theorem 6 If for a bipartite graphG = (A ∪B,E) we have priceable verticesVp ⊆ A only, then there is
a polynomial time algorithm computing an optimal price function p∗ for STACKVCwith a single follower.

Assume that the pricesp(v) of all priceable verticesv ∈ Vp are fixed. Lemma 3, which is essentially folklore
by now, briefly describes how the follower can find a min-cost vertex-cover in this setting using a max-flow
approach. Given the bipartite graphG = (A ∪ B,E), we define the correspondingflow networkGf as
follows. We add a sources and a sinkt to G and connects to all verticesv ∈ A with directed edges(s, v),
and t to all verticesv ∈ B with directed edges(v, t). Each such edge gets as capacity the price of the
involved original vertex, i.e.p(v) for v ∈ Vp or c(v) if v ∈ Vf . Furthermore, we direct all original edges of
the graph fromA toB and set their capacity to infinity.

Given ans-t-flow φ on Gf , we define theresidual networkGr in the standard fashion. If edge(v,w) in
Gf has a remaining free capacityc, Gr contains an edge(v,w) of capacityc. Additionally, if (v,w) carries
flow φ(v,w) > 0 in Gf , thenGr contains edge(w, v) of capacityφ(v,w). Finally, by an augmenting path
we refer to ans-t-path inGr.

Lemma 3 Given a maximums-t-flow f on Gf , we obtain a min-cost vertex-cover ofG by selecting all
vertices inA that are disconnected froms in Gr and all vertices fromB which can be reached froms in Gr.

Proof: Let VA andVB the selections of vertices described above, i.e.,VA contains all verticesv ∈ A for
which no directeds-v-path exists inGr, VB contains all verticesv ∈ B for which such a path exists. We
first argue thatVA ∪ VB is indeed a feasible vertex-cover. Towards a contradiction, assume that there is an
uncovered edge{v,w} in G, thus,v ∈ A\VA andw ∈ B\VB . Then there is an edge(v,w) of infinite
capacity inGr. Sincev ∈ A\VA, there is ans-v-path inGr and by adding edge(v,w) we obtain an
s-w-path, as well. It follows thatw ∈ VB, a contradiction.

Optimality of the constructed vertex-cover can be seen as follows. First, we observe that the cost of the
vertex-cover equals the total value of flowf . This is immediate by considering the cut ofGf defined by
({s} ∪ A\VA ∪ VB , {t} ∪ VA ∪ B\VB) and applying the max-flow/min-cut theorem. One can then argue
that the max-flow problem onGf corresponds exactly to the dual of the LP-relaxation of the min-cost
vertex-cover problem onG, and the claim follows. We omit the details of this part of theproof. �
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(a) (b) (c)

Figure 4: Construction to solve bipartite STACKVC with priceable vertices in one partition and a single
follower. Solid vertices are priceable, vertex labels indicate cost. (a) A graphG; (b) The flow network
obtained fromG. Grey parts are source and sink added by the transformation.Edge labels indicate a
suboptimals-t-flow; (c) An augmenting pathP indicated by bold edges and the resulting flow. Every path
P starts with a priceable vertex, and all priceable vertices remain in the optimum cover at all times.

Algorithm 1 is based on the idea of computing a sequence of flows on networkGf . Throughout the itera-
tions, we interpret the flow on edge(s, v) for a priceable vertexv ∈ Vp as the current price ofv. As we will
see, Algorithm 1 terminates with the optimum set of vertex prices. The key to the analysis lies in showing
that at any time all priceable vertices are part of the min-cost vertex-cover. As we have argued before, this
is equivalent to saying that all priceable vertices are inVA (disconnected froms in Gr) at all times.

Algorithm 1: Solving STACKVC in bipartite graphs withVp ⊆ A.

Construct the flow networkGf by adding nodess andt.1

Setp(v) = 0 for all v ∈ Vp.2

Compute a maximums-t-flow φ in Gf .3

while there isv ∈ Vp s.t. increasingp(v) yields an augmenting pathP do4

Increasep(v) andφ alongP as much as possible.5

Lemma 4 For every priceable vertexv ∈ Vp and all pricesp(v) and flowsφ computed by Algorithm 1, it
holds thatv ∈ VA in the corresponding residual networkGr.

Proof: The claim clearly holds in the initial round withp(v) = 0 for all v ∈ Vp, since in this situation edge
(s, v) has capacity0 and all edges leavingv carry zero flow. We then only need to argue that the property is
preserved through a single iteration of the algorithm.

We first observe that all computed flows are maximal with respect to the current capacities. To see this, note,
that in each iteration the capacity of a single edge and the overall flow are increased by the same margin.
Maximality is then immediate by the max-flow/min-cut theorem.

It follows that before and after each iteration, there is no augmenting path inGr and, thus,Gr is discon-
nected. Now assume that in an iteration the algorithm increases the capacity of edge(s, v) for a givenv ∈ Vp

and this yields an augmenting pathP = (s, v, w1, . . . , wk, t). Since there was nos-t-path before increasing
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the capacity on(s, v), there is no others-w1-path except the one throughv. This implies that assigning flow
to edge(v,w1) does not create ans-v-path inGr. The exact same argument can be applied to any other
priceable vertex on the augmenting path, and the claim follows. �

We denoten = |Vp| and again use the valuescj for 1 ≤ j ≤ n to denote the minimum sum of prices of
fixed-price vertices in any feasible vertex-cover containing at mostj priceable vertices. Then,∆j = c0 − cj
are again upper bounds on the revenue that can be extracted from a network that includes at mostj priceable
vertices. For the optimal achievable revenuer∗ we haver∗ ≤ ∆n.

When computing the maximum flow onGf holding all p(v) = 0, we get an initial flow ofcn. In order
to prove optimality of Algorithm 1, we now only need to calculate the value of the flow computed in the
final iteration. ByCALG we refer to the min-cost vertex-cover with respect to the prices computed by the
algorithm. C0 andCn denote the min-cost vertex-covers with the prices of all priceable vertices set to+∞
or 0, respectively.

Proof:[of Theorem 6] Suppose that after executing Algorithm 1 we increasep(v) aboveφ(s, v) for every
priceable vertexv. As we are at the end of the algorithm, this does not create anyaugmenting path and,
thus, does not allow us to increase the flow any further. Consequently, the adjustment creates slack capacity
on all the edges(s, v) with v ∈ Vp and causes all priceable vertices to leaveCALG. The new cover must be
the cheapest cover that excludes all priceable vertices, i.e., it must beC0 and have costc0. As we have not
increased the flow, this implies that the cost ofCALG is alsoc0.

As we have argued before, the vertex-cover corresponding tothe initial flow with p(v) = 0 for all v ∈ Vp

wasCn of cost cn. As all flow increase in the while-loop was made over priceable vertices and all the
priceable vertices stay in the cover, the revenue ofCALG must bec0 − cn = ∆n. This is an upper bound on
the optimum revenue, and hence the prices found by the algorithm are optimal.

Notice that adjusting the price of the priceable vertices ineach iteration is very convenient for the analysis,
but not necessary for the algorithm to work. We can start withcomputingCn and for the remaining while-
loop set all prices to+∞. This will result in the desired flow, which directly generates the final price for
every vertexv as flow on(s, v). Hence, we can get optimal prices with an adjusted run of the standard
polynomial time algorithm for maximum flow inGf . This proves Theorem 6. �

In the next theorem we note that for the general bipartite case we can get a2-approximation for the optimum
revenue.

Theorem 7 Algorithm 2 is a2-approximation algorithm for bipartiteSTACKVC, and the analysis of the
ratio is tight.

Proof: Note that by settingpA(v) = ∞ for all priceable vertices ofB, we increase their price over the prices
in the optimum solution. This obviously allows us to extractmore revenue from the vertices inA thanp∗.
The same argument applies for the vertices inB andpB. Hence, the sum of both revenues is an upper bound
on r∗, and our algorithm delivers a2-approximation by preserving the greater of the two.

For a tight example consider a path(v1, v2, v3, v4, v5). The first vertexv1 is a priceable vertex, then there
are two fixed-price verticesv2 andv3 of cost 1 and 0, respectively.v4 is priceable vertex, andv5 has fixed
cost 1. The optimum prices arep(v1) = p(v3) = 1. This yields the coverC∗ = {v1, v3, v4} and generates
a revenue of 2. A solution returned by the algorithm, however, is e.g.p(v1) = 1 andp(v2) = ∞ (or vice
versa), and hence generates only a revenue of 1. �
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Algorithm 2: A 2-approximation algorithm for STACKVC in bipartite graphs.

Fix pA(v) = ∞ for all v ∈ Vp ∩B.1

Fix pB(v) = ∞ for all v ∈ Vp ∩A.2

Run Algorithm 1 to determinepA(v) for v ∈ Vp ∩A.3

Run Algorithm 1 to determinepB(v) for v ∈ Vp ∩B.4

ReturnpA or pB , depending on which one yields more revenue.5

We conclude the section with a lower bound and show that bipartite STACKVC with a small number of
followers isNP-hard.

Theorem 8 It is weaklyNP-hard to compute revenue maximizing prices for bipartiteSTACKVC with

• priceable vertices in one partition and at least three followers.

• on a tree with priceable vertices in both partitions and at least two followers

Proof: We reduce from PARTITION, and the reduction is similar to the one used in [11] to show hardness
of the highway pricing problem. For an instance of PARTITION given by integersA = {a1, . . . , an} we
introducen element gadgets. An element gadget consists of a path of four edges, in which two vertices are
priceable (see Figure 5a). All non-priceable vertices havefixed costai. The two outer edges belong to one
follower, the two interior edges to a second follower. The vertices of different element gadgets will not be
directly connected in the final construction, hence we can merge these followers into a total of two for all
gadgets. By repeating arguments of [11] we observe that in the element gadget ofai we can at most extract a
revenue of2ai. In particular, follower 1 will purchase exactly one vertexfor each of her edges. Here we can
obtain a revenue of2ai by setting each price toai. Follower 2 will either purchase one fixed cost vertex, or
both priceable vertices. In this case we can obtain a total revenue from both followers by setting two prices
that sum up toai. Hence, the crucial decision is whether the prices in the gadget shall sum to2ai or to ai.
In order to coordinate these decisions, we introduce a thirdcoordination follower, who owns a star with a
root vertex of fixed cost32

∑

i ai. The leaves of the star are all priceable vertices from all element gadgets
(see Figure 5b). In total, we can now gain at mostrmax = 7

2

∑

i ai in revenue,2
∑

i ai from the followers
in the element gadgets and the rest from the coordination follower. Suppose the instanceA of PARTITION

has a solutionS ⊂ A such that
∑

ai∈S
ai =

∑

ai 6∈S
ai. Then it is possible to obtainrmax as follows. We

decide to set the prices to equalai for all vertices in the element gadgets ofai ∈ S. For the remaining
gadgets we set the prices toai/2. This extracts a revenue of2ai from each gadget and the full32

∑

i ai from
the coordination follower. On the other hand, it is easy to verify that whenever we obtainrmax, we must
decide for each gadget, in which way we intend to obtain the revenue of2ai. In order to extract all possible
revenue from the coordination follower, the set of gadgets with prices set toai will compose a solution to
the PARTITION instance. This completes the first reduction.

For the second part we replace the element gadgets by a path oflength five owned by a single follower. The
priceable vertices are located in both of the bipartitions (see Figure 5c). All fixed price vertices have costai.
Observe that the follower has only 5 reasonable covers to choose from. If both prices are less thanai, the
follower will pick one of two covers including both priceable vertices. If one or both priceable vertices have
cost more thanai, the follower will include only the cheaper vertex in his cover. Finally, if both vertices have
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Figure 5: Construction of the reduction to PARTITION. Solid vertices are priceable, vertex labels indicate
fixed cost. Edge labels indicate follower ownership, follower 3 is the coordination follower. (a),(c) Element
gadgets with two (one) followers for an elementai; (b),(d) Combination of element gadgets for an instance
using three (two) followers.

price more than2ai, none of the priceable vertices will be bought. An optimum revenue of2ai can again be
obtained in two ways: by setting prices ofai or 2ai to both vertices. Finally, we complete the construction
with a coordination player, who owns a star that connects to one priceable vertex of each element gadget
(see Figure 5d). The rest of the argument follows with similar observations as before. In particular, in order
to obtain the maximum revenue of72

∑

i ai, the underlying instance of PARTITION must admit a solution.
This completes the proof of the theorem. �
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5 Open problems

In the model of Stackelberg games there are a number of important open problems that arise from our work.
First, and foremost, we believe that the single-price algorithm is essentially best possible even for the single
follower case and general Stackelberg pricing games. However, there is no matching logarithmic lower
bound for this case. The best known lower bound to date is the constant factor inapproximability presented
in [10].

In addition, we believe that for the most general case of weighted followers a better bound thanm2 is
possible. It remains an open problem how to tighten the gap between this bound and theΩ(mε) lower
bound we observed.

More generally, extending other fundamental algorithm design techniques to cope with pricing problems
is a major open problem. We have shown here how ideas related to LP-duality can be used in the case of
bipartite vertex-cover. It remains to be shown if these ideas can be adjusted to cope with minimum cut or
more general graph partitioning problems.

Another interesting issue that we explored in [8] is to examine problems, in which customers cannot effi-
ciently optimize over the set of feasible subnetworks. Thisis obviously the case in many non-trivial practical
(network) optimization problems. To obtain a solution followers must resort to approximation algorithms,
and pricing for such computationally bounded customers exhibits fundamentally different properties than
the ones we observed here. It is an interesting open problem to extend the results in [8] for Min-Knapsack
and general vertex cover problems to more general scenarios.
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