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Abstract

We study a multi-player one-round game termed Stackelbetgvdtk Pricing Game, in which a
leadercan set prices for a subset of priceable edges in a graph. The other edges have a fixed cost.
Based on the leader’s decision one or miotlowersoptimize a polynomial-time solvable combinatorial
minimization problem and choose a minimum cost solutioisBaing their requirements based on the
fixed costs and the leader’s prices. The leader receivesvanue the total amount of prices paid by
the followers for priceable edges in their solutions. Oudel@xtends several known pricing problems,
including single-minded and unit-demand pricing, as wsliS#ackelberg pricing for certain follower
problems like shortest path or minimum spanning tree. Ost firain result is a tight analysis of a
single-price algorithm for the single follower game, whiglovides a(1 + &) log m-approximation.
This can be extended to providé B+ ¢)(log k + log m)-approximation for the general problem ahd
followers. The problem is also shown to be hard to approxémathin O(log® k + log® m) for some
e > 0. If followers have demands, the single-price algorithmvimtes anO(m?)-approximation, and the
problem is hard to approximate withi(m<) for somes > 0. Our second main result is a polynomial
time algorithm for revenue maximization in the special cafsgtackelberg bipartite vertex-cover, which
is based on non-trivial max-flow and LP-duality techniquEBis approach can be extended to provide
constant-factor approximations for any constant numbéoltdwers.

1 Introduction

Algorithmic pricing problems model the task of assigningemue maximizing prices to a retailer’s set of
products given some estimate of the potential customeedemnces in purely computational [19], as well
as strategic [3] settings. Previous work in this area haglynimeused on settings in which these preferences
are rather restricted, in the sense that products are githecomplemen{g, 11, 20, 21] and every customer
is interested in exactly one subset of productpure substitutegl, 12, 15, 19, 20, 21], in which case each
customer seeks to buy only a single product out of some sdtephatives. A customer’s real preferences,
however, are often significantly more complicated than #mak therefore pose some additional challenges.

The modelling of consumer preferences has received caabideattention in the context algorithmic
mechanism desigf25] and combinatorial auctiond16]. The established models range from relatively
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simple bidding languages to bidders that are representedtdzjes allowing certain types of queries, e.g.,
revealing the desired bundle of items given some fixed setiot@ The latter would be a somewhat
problematic assumption in the theory of pricing algorithnvbere we usually assume to have access to a
rather large number of potential customers through som@gsampling procedure and, thus, are interested
in preferences that allow for a compact kind of represenati

In this paper we focus on customers that have non-trividepeaces, yet can be fully decsribed by thgpes
andbudgetsand do not require any kind of oracles. We consider the framnewf Stackelberg pricing30],
which models scenarios that arise naturally in a varietyoofilgsinatorial pricing problems in practice. This
approach originates in the operations research literfidie

For instance, consider a simple pricing problem to optiyrsgt tolls in a traffic network. There is a company

that owns a certain subset of road segments (like speedwaywate highways) on which the company can

set prices. Customers are cars travelling between theice@nd destination through the network. Let us

disregard effects of congestion and assume that every nogaple edge has a fixed publicly known cost,

which could come from a (constant) travel time or a toll thaioanpetitor company places on this edge.

Customers are rational, i.e., they choose a shortest p#thregpect to the sum of edge costs on the path.
How can the company price their road segments in order t@egiighest revenue?

As another example consider a telecommunication compatytbvides certain connections in a network.
In the market there are competitors of this company thatadpesimilar or different connections, for which
users must pay fixed publicly known prices. In this case possiustomers are interested in establishing
connections via the network (e.g., setting up telephonenternet connections) for which they must pay
the corresponding prices. Again, as customers are actiimgpadly, they are going to purchase the cheapest
set of connections that meets their communication req@rémHow can the company set prices for the
connections such that it receives the highest revenue tneraustomers?

Note, that in both cases customer preferences are repedsemplicitly via some network design problem
and the customers’ objective of minimizing total cost. Theenue optimization problem is then to ma-
nipulate the prices of network edges to obtain the largestesbf revenue in the optimum solution of the
customer. In general, this approach of defining customdegmaces implicitly in terms of some optimiza-
tion problem is the characteristic of Stackelberg pricimghe standard 2-player form we are giveleader
setting the prices on a subset of network elements dotlaver seeking to purchase a min-cost network
satisfying her requirements. In general, this gives rise bdlevel optimization problem for the revenue of
the leader. We proceed by formally defining the model beftating) our results.

1.1 Modd and Notation

In this paper we consider the following class of multi-plagee-round games. L&t = (V, E') be a multi-
graph. There are two types of players in the game,leagerand one or moréllowers We consider two
classes oédgeandvertex gamesn which either the edges or the vertices have costs. For ofitise paper,
we will consider edge games, but the definitions and resoitgdrtex games are completely analogous. In
an edge game, the edge dets divided into two set¥¥ = E, U E; with E, N E; = (). For the set of
fixed-priceedgesE; there is a fixed cost(e) > 0 for each edge < E. For the set opriceableedgesr,

the leader can specify a prigge) > 0 for each edge < E,. We denote the number of priceable edges by
m = |E,|. Each followeri = 1,...,k has a set5; C 2% of feasible subnetworksTheweightw(S) of a



subnetworkS € S; is given by the costs of fixed-price edges and the price oéphte edges,

w(S)= Y e+ Y ple)

e€SNEy e€SNE)y

Therevenuer(S) of the leader from subnetworK is given by the prices of the priceable edges that are

included inS, i.e.,
r(S)= > ple)

eeSNE,

Throughout the paper we assume that for any price fungtievery follower: can in polynomial time find a
subnetworkS; (p) of minimum weight. Hence, we further assume that the sef% afe not part of the input
but can be represented in a compact way, e.g., by a logic farona set of constraints that is polynomial
in the size ofGG andk. Our interest is to find the pricing functigit for the leader that generates maximum
revenue, i.e.,

k
p' =argmax ) (S} (p))
=1

We denote this maximum revenue bY. To guarantee that the revenue is bounded and the optiomnzati
problem is non-trivial, we assume that there is at least easilble subnetwork for each followérthat

is composed only of fixed-price edges. In order to avoid tmetities, we assume w.l.0.g. that among
subnetworks of identical weight the follower always cha@otde one with higher revenue for the leader. In
general we will refer to the revenue optimization problem3mycK.

Problem STAck: Given a graphG = (V, E), a subsetE,, C E of priceable edges, fixed costée)
fore € E — E,, andk followers with follower: specified by a compact representation of her feasible

subnetworksS; C 2%, find pricesp(e) for all e € E,, such that the revenuEf’:1 r(S¥(p)) is maximized.

It is not difficult to see that for games with = 1 follower, we need a follower with a large number of
feasible subnetworks in order to makea8K interesting.

Proposition 1 Given follower; and a fixed subnetwork; € S;, we can compute pricgswith w(S;) =
minges, w(S) maximizingr(S;) or decide that such prices do not exist in polynomial timer $oack
with k£ = 1 follower, if |S| = O(poly(m)), then revenue maximization can be done in polynomial time.

Proof: Fix follower j and subnetworlS; € S;. We formulate the problem of extracting maximum revenue
from S; as the following LP, where variable. defines the price of edgec E,:

max. Z Te (1)
eESjﬂEp
s.t. Z Te + Z cle) < Z Te + Z cle) VSeS; (2)
eESjﬂEp BGSjﬂEf GESOEP GESﬂEf
ze >0 3

Constraints 2 require tha; is the cheapest feasible network for followgformally w(.S;) < w(.S) for all
feasible networkss' € S;. Clearly the number of these constraints might be expoaleintim. However,
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by our assumption we can compute the min-cost subnetwor&rrgiven set of prices and, thus, have a
polynomial time separation oracle.

Now assume thatS| = O(poly(m)) for an instance of $ack with k£ = 1 follower. By enumerating all
S € § and optimizing revenue for each subnetwork separately,bigiroa polynomial time algorithm. [

Note, that our definition of Stackelberg pricing generaireost of the previously employed models in
algorithmic pricing. In particular, it is equivalent to mepricing with general valuation functions, a problem
that has independently been considered in [4]. Every gémahaation function can be expressed in terms
of Stackelberg network pricing on graphs and our algorithrasults apply in this setting, as well.

While we will start by addressing the general case Df&K, we will also focus on more restricted variants,
in which we can use the additional problem structure to stmproved results. As an example we consider
the bipartite Stackelberg vertex cover garla this game we are given a bipartite graph= (A U B, F)
with a subset opriceable vertices, C V = A U B and fixed costs:¢(v) on the remaining vertices
v e Vy =V —V,. Hence, the game is defined as a vertex game rather than agaage Each follower
seeks to purchase a min-cost vertex cover of some subset gfdiph’'s edge&. In particular, follower:
has a sefy; C F of edges, and her feasible subs&isC 2V are the subsets of vertices that form vertex
covers ofE;. Theweightw(S) of a subsetS € S; is again given by

w(S)= Y )+ Y p)

veESNV} veSNV,

Therevenuer(S) of the leader is given by the prices of the priceable verticelsided inS, i.e.,

r(S)= Y p)

veSNVp

Note that the se$; of all vertex covers for a followercan be described by a number of linear constraints that
is polynomial in the size ofs. For any price functiom follower i can in polynomial time find a minimum-
weight vertex covelS; (p) for E; using a well-known algorithm based on max-flow computatio@sir
interest is to find the pricing functiop for the leader that generates maximum revenue.

Problem STACKVC: Given a bipartite graphy = (V, E), a subsel/,, of priceable vertices, fixed costév)
forv € V —V,, andk followers with followeri specified by edge séf; C E, find pricesp(v) for all v € V,,
such that the revendg ~_, 7(S7(p)) is maximized.

1.2 Previous Work and New Results

The single-follower shortest-path Stackelberg pricinghbem (SSACKSP) has first been considered by
Labbé et al. [24], who derive a bilevel LP formulation of theblem and provéNP-hardness. Roch et

al. [26] present a first polynomial time approximation altfon with a provable performance guarantee,
which yields logarithmic approximation ratios. Bouhtowakt{6] extend the problem to multiple (weighted)
followers and present algorithms for a restricted shoipash problem on parallel links. For an overview
of most of the initial work on Stackelberg network pricingtfeader is referred to [29]. A different variant
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called the shortest-path-tree game, in which a customehpses the shortest path tree from a node to every
other node in the network, was studied by Bil6 et al. [5]. Wkelve the pricing problem optimally in time
O(n?logn) for 2 priceable edges. A different line of research has beeestigating the application of
Stackelberg pricing to network congestion games in ordebtain low congestion Nash equilibria for sets
of selfish followers [18, 22, 23, 27, 28, 31].

Recently, Cardinal et al. [13] investigated the correspaganinimum spanning tree (BCKMST) game,
again obtaining a logarithmic approximation guarantee @moging APX-hardness. Theisingle-price al-
gorithm, which assigns the same price to all priceable edges, twintdye even more widely applicable
and yields similar approximation guarantees for any mdtbaised Stackelberg game. Very recently, in [14]
they provided constant-factor approximation algorithrasdal on dynamic programming forT&KMST

in the special case of planar and bounded-treewidth graphs.

The first result of our paper is a generalization of the sipglee algorithm to general Stackelberg games.
The previous limitation to matroids stems from the diffiguth determine the necessarily polynomial num-
ber of candidate prices that can be tested by the algorithendéVelop a novel characterization of the small
set ofthreshold priceshat need to be tested and obtain a polynomial tiine ¢) H,,,-approximation (where
H,,, denotes then'th harmonic number) for arbitrary > 0, which turns out to be perfectly tight for shortest
path as well as minimum spanning tree games. This resulurgdfn Section 2.

We then extend the analysis to multiple followers, in whietse the approximation ratio becom@s-+
e)(Hy + H,,). This can be shown to be essentially best possible by an@ppation preserving reduction
from single-minded combinatorial pricing [17]. Extenditigg problem even further, we also look at the case
of multiple weightedfollowers, which arises naturaly in network settings whdiféerent followers come
with different routing demands. While previous upper-bding techniques could not yield approximation
guarantees essentially better than the number of folloindghss scenario, we present an alternative analysis
of the single-price algorithm that results in an approxioratatio of (1 + ¢)m?. Additionally, we derive a
lower bound ofO(m*®) for the weighted player case. This resolves a previousiy @peblem from [6]. The
results on multiple followers are found in Section 3.

The generic reduction from single-minded to Stackelbeitjmy yields a class of networks in which we can
price the vertices on one side of a bipartite graph and psagien to purchase minimum cost vertex covers
for their sets of edges. This motivates us to return to thes@tal Stackelberg setting and consider the
single-follower bipartite vertex-cover gameT&KVC). As it turns out, this variation of the game allows
polynomial-time algorithms for exact revenue maximizatigsing non-trivial algorithmic techniques. We
first present an upper bound on the possible revenue in tefiting anin-cost vertex-cover not using any
priceable vertices and the minimum portion of fixed cost ig passible cover. Using iterated max-flow
computations, we then determine a pricing with total reeethat eventually coincides with our upper
bound. These results are found in Section 4.

Section 5 concludes and presents several intriguing opsremns for further research.

2 A Single-Price Algorithm for a Single Follower

Let us assume that we are faced with a single follower andyletenote the cost of a cheapest feasible
subnetwork for the follower not containing any of the prickeaedges. Clearly, we can compuig by



assigning priceroco to all priceable edges and simulating the follower on theltes network. Thesingle-
price algorithmproceeds as follows. Fgr= 0, ..., [log co] it assigns pricey; = (1 +¢)’ to all priceable
edges and determines the resulting revet{ge). It then simply returns the pricing that results in maximum
revenue. We present a logarithmic bound on the approximatimrantee of the single-price algorithm.

Theorem 1 Given anye > 0, the single-price algorithm computes &h-+ ¢) H,,,-approximation for Stack-
elberg network pricing with respect td, the revenue of an optimal pricing.

2.1 Analysis

The single-price algorithm has previously been appliedriaraber of different combinatorial pricing prob-
lems [1, 20]. The main issue in analyzing its performanceaytae for Stackelberg pricing is to determine
the right set of candidate prices. We first derive a preciseadterization of these candidates and then argue
that the geometric sequence of prices tested by the algoiigha good enough approximation. Slightly
abusing notation, we let refer to both pricep and the assignment of this price to all priceable edges. Con-
sider the follower’s cheapest feasible subnetwatk®) for different values op. If there exists any feasible
subnetwork that uses at leggpriceable edges, we let

6; = max{p‘ |S*(p) N E,| > j}

be the largest price at which such a subnetwork is chosew. fEasible subnetwork with at leaspriceable
edges exists, we séf = 0. As we shall see, these thresholds are the key to prove Tinebre

We want to derive an alternative characterization of theesbfd;. For eachl < j < m we letc; refer to
the minimum sum of prices of fixed-price edges in any feasshlenetwork containing at mogtpriceable
edges, formally

¢ :min{ S fe‘SeS SN E,| gj}.

GESﬂEf

Note, that clearlyy > ¢; > --- > ¢, by definition. Now letA; = ¢y — ¢; and consider the point set
(0,A¢),(1,A1),...,(m,A,,) on the plane. By we refer to a minimum selection of points spanning the
upper convex hull of the point set. It is a straightforwar@metric observation that we can defihkkeas
follows:

i A Ay
> maXJ<k W

Fact 1 Point(j,A;) belongs taH if and only ifmin; = .
We now return to the candidate prices. By definition we haa¢@h> 6, > --- > 6,,,. We say that; is
true threshold valuéf 0; > 0,1, i.e., if at priced; the subnetwork chosen by the follower contains exactly
Jj priceable edges. Lét < i; < --- < iy denote the indices, such thg} are true threshold values and for
ease of notation defing = 0.

Lemmal 6; is true threshold value if and only i, A ;) belongs toH.



Proof. =" Let 0, be true threshold value, i.e., at priggthe chosen subnetwork contains exagtpriceable
edges. We observe that at any pricthe cheapest subnetwork containingriceable edges has cast+
Jj-p=co—Aj+j-p. Thus, at pricéd; it must be the case thdf; —j-0; > A; —7-0; forall: < j and
Aj—j-0; > A, —k-0;forall j < k. It follows that

Aj

A An — A
min ———* > 0; >maxM

i<j  j—1 j<k k—7j
and, thus, we have th@f, A;) belongs toH.
" <" Assume now thatj, A;) belongs to# and let

A=A
p=min ———
i<j j—1

Consider any: < j. It follows that
Ap—k-p=A8j—jp—(8; A+ (U —-kp<A;j—j-p ,

sincep < (A; — Ay)/(j — k) and, thus, the network chosen at priceannot contain less thanpriceable
edges. Analogously, lét > j. Usingp > (Ax — A;)/(k — j) we obtain

Ap—k-p=A7Aj—j-p+Qr—Aj))—(k—Jjlp<Aj—j-p ,

and, thus, the subnetwork chosen at pgic®ntains exactly priceable edges. We conclude thais a true
threshold. 0

Figure 1: A geometric interpretation of (true) thresholdues. Priced;, corresponds to the slope of the
segment of the upper convex hull of point $8tAy), (1,4A4),...,(m,A,,) between(i;_;,A;, ,) and

(i, Aiy,)-

It is not difficult to see that the price defined in the second part of the proof of Lemma 1 is precigedy t
threshold valud;. Letd;, be any true threshold. Since poirfig, A, ), . . ., (i¢, A;,) define the convex hull

we can write thatin;;, (A;, — A;)/(ix — 1) = (A, — Ay, _,)/ (i — ix—1). We state this important fact,
which is also illustrated in Fig. 1, again in the followingriena.

Lemma2 Forall 1 < k < (it holds thatf;, = ~ =t

U —Tk—1



Figure 2: An instance of Stackelberg Shortest Path, on wifielanalysis of the approximation guarantee
of the single-price algorithm is tight. Bold edges are palde, vertex labels of regular edges indicate cost.
The instance yields tightness of the analysis also for &thekg Minimum Spanning Tree.

From the fact that points&ip, A;,), . .., (i¢, A;,) define the convex hull we know that;, = A,,, i.e., A;,

is the largest of alA-values. On the other hand, eagh describes the maximum revenue that can be made
from a subnetwork with at mogtpriceable edges and, thu4,, is clearly an upper bound on the revenue
made by an optimal price assignment.

Fact 2 It holds thatr* < A,,.

By definition of thef;’s it is clear that at any price belofy, the subnetwork chosen by the follower contains
no less thari;, priceable edges. Furthermore, for edghthe single-price algorithm tests a candidate price
that is at most a factofl + ¢) smaller tharg;,. Letr(p;, ), r(6;,) denote the revenue that results from
assigning pricey;, or 0;, to all priceable edges, respectively.

Fact 3 For eachd;, there exists a price;, with (1 +¢)~16;, < p;, < 6;, that is tested by the single-price
algorithm. Especially, it holds that(p;, ) > (1 +¢)~'r(6;,)

Finally, we know that the revenue made by assigning @c¢o all priceable edges ig6;, ) = ix - 0;, . Let
r denote the revenue of the single-price solution returnetthé&wlgorithm. We have:

(te) Hoor = (1+5)§m:§ 119y 3 3 19y 37

7=1 k=1j=tp_1+1 k=1j=if_1+1
l ik
Sy oy My g
k=1j=i_1+1 k=1j=i_1+1
l in 0 )4
> Z(z‘k — 1) kik % —=N"(A;, — Ag,_,), by Lemma 2

k=1
= AZ‘[ - A() = Aié > r*.

This concludes the proof of Theorem 1.

2.2 Tightness

The example in Fig. 2 shows that our analysis of the singleepalgorithm'’s approximation guarantee is
tight. The follower wants to buy a path connecting vertisemdt. In an optimal solution we set the price
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of edgee; tom/j. Then edges,, ..., e, form a shortest path of costH,,. On the other hand, assume
that all edges;, ..., e, are assigned the same prieef p < 1, the leader’s revenue is clearly bounded by
m; if p > m, the shortest path does not contain any priceable edge atealithenm/(j +1) < p < m/j

for somel < j < m — 1. Itis straightforward to argue that at this price a shonpesh froms to ¢ does not
contain any of the priceable edges i, . .., e, and, thus, it contains at mogfpriceable edges. It follows
that the leader’s revenue is at mgstp < m. Similar argumentation clearly holds if the follower seéis
purchase a minimum spanning tree instead of a shortest path.

The best known lower bound for single-follower Stackelbpnging is found in [10], where 8ACKSP is
shown to be non-approximable withih— o(1). For the spanning tree case the best lower bourfdPiX-
hardness shown in [13]. To the authors’ best knowledge, upot® no non-constant inapproximability
results could be proven. We proceed by extending our resuttailtiple followers, in which case previous
results on other combinatorial pricing problems yield is¢yéower bounds.

3 Extension to Multiple Followers

In this section we extend our results on general Stackelbetgork pricing to scenarios with multiple
followers. Recall that each followgris characterized by her own collectioh) of feasible subnetworks and
k denotes the number of followers. Section 3.1 extends thgsisadrom the single follower case to prove a
tight bound of(1 + ¢)(Hy, + H,,) on the aproximation guarantee of the single-price algaritBection 3.2
presents an alternative analysis that applies even in seafaveighted followers and yields approximation
guarantees that do not depend on the number of followersio8eX3 derives (near) tight inapproximability
results based on known hardness results for combinataichg.

31 An(1+¢)(Hy+ Hp)-Approximation for Multiple Followers

Let an instance of Stackelberg network pricing with some ek > 1 of followers be given. We ex-
tend the analysis from Section 2 to obtain a similar boundhensingle-price algorithm’s approximation
guarantee.

Theorem 2 The single-price algorithm computes éh+ ¢)(Hj, + H,,)-approximation with respect to*,
the revenue of an optimal pricing, for Stackelberg netwai&ipg with multiple followers.

Proof: Consider graplt; = (V, E), E = E; U E, with |E,| = m, andk followers defined by collections
S1,..., S, of feasible subnetworks. We transform this instance inténgle follower pricing game as
follows. LetGy, ..., Gy be identical copies off and defineG* = G U ... U Gi. Furthermore, define a
single follower by

S* :{SlU...USk|Sl eSS NGy,..., S ESkﬂGk} R

i.e., for every follower; in the original instance our new follower seeks to purchasgbmetwork frons; in
copyG; of the original graph. Clearly, the maximum possible rewemuthe new instance is an upper bound
on the maximum revenue in the multiple follower case, sineecan always assign the same price to every
copy of a priceable edge ifi1, . .., G. Furthermore, every pricing returned by the single-prig@i@hm

on G U ... U Gy translates naturally into a corresponding pricing of id=ttrevenue in(z, since again

all copies of an edge fror&@ are assigned identical prices. Finally, since the numbgrioéable edges in
G1U...UGyisk - m, we obtain an approximation ratio 0f + ¢) Hy,,, as desired. O
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This reduction from the multiple to single follower casdeslessentially on the fact that we are considering
the single-price algorithm. Thus, the above does not impWtting about the relation of these two cases in
general.

3.2 A (1+e)m?-Approximation for Weighted Followers

We now turn to an even more general variation of Stackelbeaing, in which we allow multipleveighted
followers. This model, which has been previously considdre[6], arises naturally in the context of
network pricing games with different demands for each playermally, for each follower we are given her
demandd; € R({. Given followers buying subnetworks , . . . , Sk, the leader’s revenue is defined as

dodi Y ple)

j=1  e€S;NE,

It has been conjectured before that in the weighted case pmxmation guarantee essentially beyond
O(k -logm) is possible. We show that an alternative analysis of thdesipgce algorithm yields ratios that
do not depend on the number of followers.

Theorem 3 The single-price algorithm computes &n+ ¢)m?2-approximation with respect to*, the rev-
enue of an optimal pricing, for Stackelberg network pricimigh multiple weighted followers.

Proof: Let again graplG = (V, E), E = E; U E, with |E,,| = m, andk followers defined byS;, ..., Sy
and demandsd, ..., d; be given and consider the optimal pricipy. For each priceable edge, |EYe¢)
refer to the set of followers purchasiaginder price assignmept and denote by*(e) = E]EF(@) d;p*(e)
the corresponding revenue. Clea@,eeEp r*(e) =r*.

Fix some priceable edgeand define a corresponding prige= p*(e)/m. By r(p.) we denote the revenue
from assigning price. to all priceable edges. Lgte F(e) and assume that followegrbuys subnetwork
S; under price assignmept. By w*(S;), w.(S;) andc(S;) we refer to the total weight of; under price
assignmentg* andp. and the weight due to fixed price edges only, respectivelyoltis that

p*(e)

we(S5) < ¢(S;) +m =c(S;) +p*(e) < w*(S;)

Let c(]) denote the cost of a cheapest feasible subnetwork for fellgwonsisting only of fixed price edges.
It follows thatw.(S;) < w*(S;) < cé and, thus, followeyj is going to purchase a subnetwork containing
at least one priceable edge under price assignmemesulting in revenue at leadfp. = d;p*(e)/m from
this follower. We conclude that(p.) > 7*(e)/m and, thus

m? maxr(pe) > m Z r(pe) > Z r*(e) =r*

ecl
P e€ By e€ By

Finally, observe that for each prige the single-price algorithm checks some candidate pridagtsmaller
by at most a factor of1 + <), which finishes the proof. O
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3.3 Lower Bounds

Hardness of approximation of Stackelberg pricing with iipidtfollowers follows quite easily from known
results about other combinatorial pricing models, whicthehaeceived considerable attention lately. More
formally, we will show lower bounds on the approximability looth weighted and unweighted multi-
follower Stackelberg pricing games expressed in the nurabpriceable edges: and the number of fol-
lowersk based on hardness of the unit-demand and single-mindedfiese/pricing problems, respectively.
Theorem 4 is based on a reduction from the unit-demand vedfienvy-free pricing. The resulting Stack-
elberg pricing game is an instance of the so-calledr tarification problem in which each player needs to
route her demand along one out of a number of parallel linkeecting her respective source and sink pair.
This resolves an open problem from [6].

Theorem 4 The Stackelberg network pricing problem with multiple vagggl followers is hard to approx-
imate withinO(m?) for somes > 0, unlessNP C ;. BPTIME(2°("")). The same holds for the river
tarification problem.

Proof: The distribution-based unit-demand envy-free pricingofem with uniform budgets (DP-MIN) is
defined as follows. We are given a univetégli/| = m, of products and a set of consumérswhere each
¢ € C is defined by her budgét. Rar and the sef5. C U/ of products she is interested in. Additionally,
probability distributionD assigns to each consumea probabilityPrp(c). We want to find product prices
p : U — Ry maximizing the expected revenue

r(p) = ZPrp(c) - min p(u)

ceC ueAe(p)

from a sale to a consumer sampled accordin@towhere A.(p) = {u € U|u € S. A p(u) < b.}
denotes the set of productscan afford under price assignmemtand we definemin,¢ 4.,y p(u) = 0
wheneverA.(p) = (). UDP-MIN is hard to approximate withi®(m?®) for somes > 0, unlessNP C ;-

BPTIME(2°™") [7].

We can encode bP-MIN in terms of a weighted multi-follower shortest-path Stadlokeg pricing game in
a directed graph in a straightforward way. For every produetl/ we define two vertices,, w, and the
directed priceable edge,,, w, ). For each consumere C we add vertices,, t., directed fixed-price edge
(sc,t.) of costdb. and directed fixed-price edgés., vy, ), (wy,t.) of costO for every product. € S.. We
then define a follower seeking to route a total demand.cf Prp(c) along a shortest path from to ¢..

Obviously the leader’s revenue from assigning any pricebédopriceable edges equals the expected rev-
enue from assigning the same prices to the products of theMIN instance. Furthermore, the simple
structure of the constructed graph satisfies the requirtsadrihe river tarification problem from [6]. The
construction is depicted in Figure 3(a). O

In the unweighted case, a reduction from the single-mindedion of the envy-free pricing problem yields
lower bounds on the approximability of multi-follower Skatberg pricing games. Theorem 5 shows that
the single-price algorithm is essentially best possibl¢hia situation. The resulting pricing game is an
instance of bipartite Stackelberg Vertex Cover Pricing, dinds, yields the same result for this special case.
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We O b
(b)

Figure 3: Reductions from pricing problems to Stackelbeaigimg. (a) Unit-demand reduces to directed

STACKSP. Bold edges are priceable, edge labels indicate costuld&egdges without labels have cost

0. Vertex labels indicate source-sink pairs for the follesvegb) Single-minded pricing reduces to bipartite

STACKVC. Solid vertices are priceable, vertex labels indicatg.cBor each customer there is one fixed-cost
vertex and a corresponding follower, who needs to covehallricident edges.

Theorem 5 The Stackelberg network pricing problem with multiple uiglveed followers is hard to ap-
proximate withinO(log® k + log® m) for somes > 0, unlessNP C ;. BPTIME(29("")). In particular,
this holds for bipartite Stackelberg Vertex Cover Pricing.

Proof: We prove the theorem by a reduction from the single-mindeg-&ee pricing problem (8pP). In
this problem, given a universe of produtts|i/| = m, and a set of consumer sampgsC| = k, consisting
of budgetsh. € R and product setS§. C ¢, we need to find priceg : 4 — R} maximizing the revenue

rip) = Y. p(Se)

c€C:p(Se)<be

from sales to consumeid, wherep(S.) = > s p(u) is shorthand notation for the sum of prices of
products inS.. Intuitively, each consumer inM8 buys the whole set of products she is interested in, if the
sum of prices does not exceed her budgetp & hard to approximate withi®(log® k + log® m) for some

e > 0, unlessNP C ;., BPTIME(29("")) [17].

We encode 8P in terms of a Stackelberg vertex pricing game as follows. dwary product, € U we

define a priceable vertex,. For each consumere C we add a fixed-price vertex,. of costb. and edges
{we, v, } for every product. € S.. We then define a follower seeking to purchase a min-coseéx:ver
for the edges connected t®..

It is straightforward to check that the follower correspimigdto consumet in the Svp instance purchases
the priceable vertices corresponding to the products isékif and only if their assigned prices sum to at
mostb.. We observe that the constructed graph is clearly bipaatitk furthermore, all priceable vertices
are located on one side of the bipartition. The construdtaltustrated in Figure 3(b). O

We proceed by taking a closer look atA&KVC and especially focus on the interesting case of a single
follower.
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4 Stackelberg Vertex Cover

Stackelberg Vertex Cover Pricing is a vertex game. Nevkrssethe approximation results for the single-
price algorithm, which are completely independent of theeautying network structure, continue to hold. In
general the vertex-cover problem is hard and, consequevdlyocus on settings in which the problem can
be solved in polynomial time in order to stay within our ddfon of general Stackelberg network pricing
games laid out in Section 1.1. In bipartite graphs the pralbdan be solved optimally by using a classic
and fundamental max-flow/min-cut argumentation. If alcpéble vertices are in one side of the partition,
we have shown evidence that for multiple followers the siflice algorithm is essentially best possible.
Our main result in this section is the fact that the problem loa solved exactly if there is only a single
follower. This is despite the fact that the follower’s setfeésible vertex covers might of course still be
of exponential size and so the enumeration approach sketoHgection Proposition 1 is infeasible in this
setting. A simple extension of our algorithm shows that galngipartite SAckV Cwith a single follower
can be approximated within a factor of 2.

Theorem 6 If for a bipartite graphG = (A U B, E) we have priceable verticdg, C A only, then there is
a polynomial time algorithm computing an optimal price ftion p* for STACKV Cwith a single follower.

Assume that the pricegv) of all priceable vertices € V), are fixed. Lemma 3, which is essentially folklore
by now, briefly describes how the follower can find a min-castex-cover in this setting using a max-flow
approach. Given the bipartite gragh = (A U B, E), we define the correspondirftpw networkG, as
follows. We add a sourceand a sink to G and connecs to all verticesv € A with directed edgess, v),
andt to all verticesv € B with directed edgesv,t). Each such edge gets as capacity the price of the
involved original vertex, i.ep(v) for v € V,, or c(v) if v € V. Furthermore, we direct all original edges of
the graph fromA to B and set their capacity to infinity.

Given ans-t-flow ¢ on G ¢, we define thaesidual network’, in the standard fashion. If edde, w) in
G has a remaining free capacityG,. contains an edgev, w) of capacityc. Additionally, if (v,w) carries
flow ¢(v, w) > 0in Gy, thenG, contains edgéw, v) of capacityp(v, w). Finally, by an augmenting path
we refer to ars-t-path inG,..

Lemma3 Given a maximuns-t-flow f on Gy, we obtain a min-cost vertex-cover Gf by selecting all
vertices inA that are disconnected fromin G, and all vertices fromB which can be reached fromin G,..

Proof: Let V4 and Vs the selections of vertices described above, I/g.contains all vertices € A for
which no directeds-v-path exists inG,., Vg contains all vertices € B for which such a path exists. We
first argue thal’y U V3 is indeed a feasible vertex-cover. Towards a contradicassume that there is an
uncovered edgév, w} in G, thus,v € A\V4 andw € B\Vg. Then there is an edge, w) of infinite
capacity inG,. Sincev € A\Vy, there is ans-v-path in G, and by adding edgév, w) we obtain an
s-w-path, as well. It follows thatv € Vg, a contradiction.

Optimality of the constructed vertex-cover can be seen bewe. First, we observe that the cost of the
vertex-cover equals the total value of flofv This is immediate by considering the cut@f defined by
({s} U A\V4 U Vg, {t} UV4 U B\Vp) and applying the max-flow/min-cut theorem. One can theneargu
that the max-flow problem or; corresponds exactly to the dual of the LP-relaxation of the-cost
vertex-cover problem otv, and the claim follows. We omit the details of this part of greof. O
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Figure 4: Construction to solve bipartiter& KV C with priceable vertices in one partition and a single
follower. Solid vertices are priceable, vertex labels @ade cost. (a) A grapls; (b) The flow network
obtained fromG. Grey parts are source and sink added by the transformatimye labels indicate a
suboptimals-t-flow; (c) An augmenting patl® indicated by bold edges and the resulting flow. Every path
P starts with a priceable vertex, and all priceable vertiessain in the optimum cover at all times.

Algorithm 1 is based on the idea of computing a sequence offtmwnetworkG s. Throughout the itera-
tions, we interpret the flow on edde, v) for a priceable vertex € V), as the current price af. As we will
see, Algorithm 1 terminates with the optimum set of vertaggs. The key to the analysis lies in showing
that at any time all priceable vertices are part of the misi-eertex-cover. As we have argued before, this
is equivalent to saying that all priceable vertices ar&in(disconnected from in G,.) at all times.

Algorithm 1: Solving StAckVC in bipartite graphs with,, C A.

1 Construct the flow networks s by adding nodes andt.

2 Setp(v) =0forallv € V.

3 Compute a maximums-t-flow ¢ in G ;.

4 whilethere isv € V,, s.t. increasing(v) yields an augmenting path do
5 L Increasep(v) and¢ along P as much as possible.

Lemma4 For every priceable vertex € V), and all pricesp(v) and flows¢ computed by Algorithm 1, it
holds thatv € V4 in the corresponding residual netwo€k...

Proof: The claim clearly holds in the initial round with(v) = 0 for all v € V,,, since in this situation edge
(s,v) has capacity) and all edges leaving carry zero flow. We then only need to argue that the property is
preserved through a single iteration of the algorithm.

We first observe that all computed flows are maximal with ressfgethe current capacities. To see this, note,
that in each iteration the capacity of a single edge and teeatiflow are increased by the same margin.
Maximality is then immediate by the max-flow/min-cut theore

It follows that before and after each iteration, there is ngraenting path iz, and, thusG,. is discon-
nected. Now assume that in an iteration the algorithm irse@®the capacity of edge, v) for a givenv € V,
and this yields an augmenting path= (s, v, w1, ..., ws,t). Since there was net-path before increasing
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the capacity orts, v), there is no othes-w, -path except the one through This implies that assigning flow
to edge(v, wy) does not create asrv-path inG,. The exact same argument can be applied to any other
priceable vertex on the augmenting path, and the claimviglio O

We denoten = |V,| and again use the valuesfor 1 < j < n to denote the minimum sum of prices of
fixed-price vertices in any feasible vertex-cover contadrat mostj priceable vertices. Ther; = ¢y — ¢;
are again upper bounds on the revenue that can be extragte@fnetwork that includes at mgspriceable
vertices. For the optimal achievable reventiave haver* < A,,.

When computing the maximum flow af; holding allp(v) = 0, we get an initial flow ofc,,. In order
to prove optimality of Algorithm 1, we now only need to calatd the value of the flow computed in the
final iteration. ByC4rc we refer to the min-cost vertex-cover with respect to thegwicomputed by the
algorithm. Cy andC,, denote the min-cost vertex-covers with the prices of allgable vertices set tgoo

or 0, respectively.

Proof:[of Theorem 6] Suppose that after executing Algorithm 1 weréasep(v) aboveg(s,v) for every
priceable vertexw. As we are at the end of the algorithm, this does not createaagynenting path and,
thus, does not allow us to increase the flow any further. Gpresgly, the adjustment creates slack capacity
on all the edgess, v) with v € V, and causes all priceable vertices to le@yg. The new cover must be
the cheapest cover that excludes all priceable vertiamsjtimust beCy and have costy. As we have not
increased the flow, this implies that the cost’gf. ¢ is alsocg.

As we have argued before, the vertex-cover corresponditigetaitial flow with p(v) = 0 for all v € V},
was(C,, of costc,. As all flow increase in the while-loop was made over priceal@rtices and all the
priceable vertices stay in the cover, the revenué Qf; must becy — ¢, = A,,. This is an upper bound on
the optimum revenue, and hence the prices found by the Higoare optimal.

Notice that adjusting the price of the priceable verticesdnh iteration is very convenient for the analysis,
but not necessary for the algorithm to work. We can start waimputingC,, and for the remaining while-
loop set all prices tetoo. This will result in the desired flow, which directly generatthe final price for
every vertexv as flow on(s,v). Hence, we can get optimal prices with an adjusted run of tivedard
polynomial time algorithm for maximum flow i6' ;. This proves Theorem 6. O

In the next theorem we note that for the general bipartite egscan get a8-approximation for the optimum
revenue.

Theorem 7 Algorithm 2 is a2-approximation algorithm for bipartiteSTACKVC, and the analysis of the
ratio is tight.

Proof: Note that by setting 4 (v) = oo for all priceable vertices aB, we increase their price over the prices
in the optimum solution. This obviously allows us to extraxire revenue from the vertices ithanp*.

The same argument applies for the verticeBiandpp. Hence, the sum of both revenues is an upper bound
onr*, and our algorithm delivers Zxapproximation by preserving the greater of the two.

For a tight example consider a pdiy , vo, v3, vy, v5). The first vertexv; is a priceable vertex, then there
are two fixed-price vertices, andwvs of cost 1 and 0, respectivelyy is priceable vertex, and; has fixed
cost 1. The optimum prices aggv;) = p(vs) = 1. This yields the cove€* = {v;, v3,v4} and generates
a revenue of 2. A solution returned by the algorithm, howeigee.g. p(v1) = 1 andp(vy) = oo (or vice
versa), and hence generates only a revenue of 1. O
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Algorithm 2: A 2-approximation algorithm for ®8ckVC in bipartite graphs.

Fix pa(v) = oo forallv € V,N B.

Fix pp(v) = coforallv € V,N A.

Run Algorithm 1 to determing 4 (v) for v € V,, N A.

Run Algorithm 1 to determingg(v) for v € V,, N B.

Returnp4 or pp, depending on which one yields more revenue.

a b~ WO N -

We conclude the section with a lower bound and show that tipeBTACKkVC with a small number of
followers isNP-hard.

Theorem 8 It is weaklyNP-hard to compute revenue maximizing prices for bipa@tackVC with

e priceable vertices in one partition and at least three foléos.

e 0n a tree with priceable vertices in both partitions and atdetwo followers

Proof: We reduce from ERTITION, and the reduction is similar to the one used in [11] to shovdingss
of the highway pricing problem. For an instance @fRRITION given by integersA = {a,...,a,} we
introducen element gadgetsAn element gadget consists of a path of four edges, in whichvertices are
priceable (see Figure 5a). All non-priceable vertices Hesl costa;. The two outer edges belong to one
follower, the two interior edges to a second follower. Theiges of different element gadgets will not be
directly connected in the final construction, hence we cargenthese followers into a total of two for all
gadgets. By repeating arguments of [11] we observe thaktirldment gadget af we can at most extract a
revenue oRq;. In particular, follower 1 will purchase exactly one vertex each of her edges. Here we can
obtain a revenue dfa; by setting each price t@;. Follower 2 will either purchase one fixed cost vertex, or
both priceable vertices. In this case we can obtain a totelnge from both followers by setting two prices
that sum up taz;. Hence, the crucial decision is whether the prices in thgegashall sum t@a; or to a;.

In order to coordinate these decisions, we introduce a toaddination follower who owns a star with a
root vertex of fixed cosg >, a;. The leaves of the star are all priceable vertices from alneint gadgets
(see Figure 5b). In total, we can now gain at mgst, = %Ei a; in revenue? ) . a; from the followers

in the element gadgets and the rest from the coordinatidomiel. Suppose the instanceof PARTITION
has a solutior5 C A such thatzaies a; = ZaiQS a;. Then it is possible to obtain,,., as follows. We
decide to set the prices to equalfor all vertices in the element gadgets qf € S. For the remaining
gadgets we set the pricesdg/2. This extracts a revenue 2f; from each gadget and the f@lzi a; from
the coordination follower. On the other hand, it is easy tofyghat whenever we obtain,,,,, we must
decide for each gadget, in which way we intend to obtain thiemee of2a;. In order to extract all possible
revenue from the coordination follower, the set of gadgethk prices set tai; will compose a solution to
the RARTITION instance. This completes the first reduction.

For the second part we replace the element gadgets by a platimti five owned by a single follower. The
priceable vertices are located in both of the bipartitigee(Figure 5c¢). All fixed price vertices have cast
Observe that the follower has only 5 reasonable covers tosghévom. If both prices are less thaj) the
follower will pick one of two covers including both priceablertices. If one or both priceable vertices have
cost more thaw;, the follower will include only the cheaper vertex in his eavFinally, if both vertices have
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Figure 5: Construction of the reduction ta®riTioN. Solid vertices are priceable, vertex labels indicate
fixed cost. Edge labels indicate follower ownership, fokm\8 is the coordination follower. (a),(c) Element
gadgets with two (one) followers for an element (b),(d) Combination of element gadgets for an instance
using three (two) followers.

price more thar2a;, none of the priceable vertices will be bought. An optimureraie of2a; can again be
obtained in two ways: by setting prices @for 2q; to both vertices. Finally, we complete the construction
with a coordination player, who owns a star that connectstoriceable vertex of each element gadget
(see Figure 5d). The rest of the argument follows with similaservations as before. In particular, in order
to obtain the maximum revenue éle a;, the underlying instance ofARTITION must admit a solution.
This completes the proof of the theorem. O
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5 Open problems

In the model of Stackelberg games there are a number of immtaspen problems that arise from our work.
First, and foremost, we believe that the single-price dligor is essentially best possible even for the single
follower case and general Stackelberg pricing games. Hewmveélrere is no matching logarithmic lower
bound for this case. The best known lower bound to date isdhstant factor inapproximability presented
in [10].

In addition, we believe that for the most general case of hteig followers a better bound than? is
possible. It remains an open problem how to tighten the g&pdes this bound and th@(m*) lower
bound we observed.

More generally, extending other fundamental algorithmigtesechniques to cope with pricing problems
is a major open problem. We have shown here how ideas relatieB-tduality can be used in the case of
bipartite vertex-cover. It remains to be shown if these sdesn be adjusted to cope with minimum cut or
more general graph partitioning problems.

Another interesting issue that we explored in [8] is to exasrproblems, in which customers cannot effi-
ciently optimize over the set of feasible subnetworks. Thabviously the case in many non-trivial practical
(network) optimization problems. To obtain a solution d@lers must resort to approximation algorithms,
and pricing for such computationally bounded customersb@shfundamentally different properties than
the ones we observed here. It is an interesting open proldemténd the results in [8] for Min-Knapsack
and general vertex cover problems to more general scenarios
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