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Abstract

In Stackelberg pricing a leader sets prices for items in order to maximize revenue from a
follower purchasing a feasible subset of items. We consider computationally bounded followers
who cannot optimize exactly over the range of all feasible subsets, but who apply publicly known
algorithms to determine the items to purchase. This corresponds to general multi-dimensional
pricing when customers cannot optimize their valuation functions efficiently but still aim to act
rationally to the best of their ability.

We consider two versions of this novel type of pricing problem. In the Min-Knapsack

variant items are weighted objects and the follower seeks to purchase a min-cost selection of
objects of some bounded weight. When he uses a greedy 2-approximation algorithm, we pro-
vide a polynomial-time (2 + ε)-approximation algorithm for the leader’s revenue maximization
problem based on so-called near-uniform price assignments. We also prove the problem to be
strongly NP-hard.

In the Set-Cover variant items are subsets of some ground set which the follower seeks to
cover. When he uses a standard primal-dual approach, we prove that exact revenue maximiza-
tion is possible in polynomial time when elements have frequency 2 (Vertex-Cover variant).
This stands in sharp contrast to APX-hardness for the problem with elements of frequency 3.

1 Introduction

The problem of multi-dimensional pricing consists of assigning revenue maximizing prices to a set
of distinct items given information about the preferences of potential customers. A natural way to
describe customer preferences is via valuation functions that map subsets of items to non-negative
real numbers describing how much a set is valued by a certain customer. Given fixed item prices
a rational customer acting according to quasi-linear utilities chooses to purchase a subset of items
maximizing her utility, i.e., the difference between her value for the set and the sum of prices of
items contained in it. It is known that general multi-dimensional pricing with unlimited supply of
each item allows polynomial-time approximation algorithms achieving ratios that are logarithmic
in the number of customers or linear in the number of distinct items via considering only single-
price solutions [4, 10]. Lower bounds of the same order of magnitude have also been proven for
approximation guarantees in both parameterizations [8, 18].
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For the known algorithmic results it is sufficient that valuation functions can be accessed via
demand oracles, i.e., customers are treated as black boxes that can answer the question: “Given
some vector of prices, which set of items would you choose to buy?” But how much can it help us
to have more detailed information about the structure of customer preferences? If the number of
customers is large, unfortunately, the answer is “not at all” as follows readily from the known lower
bounds, which hold for special cases of the problem in which the exact preferences can be elicited
via demand queries. However, the situation is different when the number of distinct customers is
small.

In a 2-player Stackelberg Pricing Game, named after the underlying market model due to Hein-
rich Freiherr von Stackelberg [32], we are given a collection of items, some of which have fixed-costs.
A so-called leader may assign prices to the remaining items. A follower then purchases a feasible
set of items of minimum cost and pays the leader for the priceable items in the set. This problem
is equivalent to multi-dimensional pricing with a single follower if the follower’s feasible sets are
unrestricted. However, a standard assumption when considering Stackelberg games is that the
follower has to be able to optimize in polynomial time over her feasible sets. As an example, think
of items as edges in a graph and the follower’s feasible sets as all possible paths connecting some
vertices s and t. For some kinds of followers, e.g., buying a min-cost vertex cover in a bipartite
graph, it has been shown that improved approximation guarantees are possible [10].

In this paper we initiate the study of a closely related question: What if the follower is unable
to exactly optimize over her feasible sets, because the problem is computationally hard, but is still
guaranteed to act rationally to the best of her ability? More formally, we will assume that when
prices have been fixed the follower applies a publicly known approximation algorithm to find a
near-optimal feasible set of items to purchase. This assumption is quite reasonable when followers
are actually software agents with known implementation details. To the best of our knowledge,
this is the first analysis of multi-dimensional pricing with follower preferences that are neither
single-minded or unit-demand, nor expressible as exact optimization over the full domain of the
valuation function. Before describing our results in detail, we review some important related work
and introduce the notation used throughout the paper.

1.1 Related Work

Algorithmic aspects of multi-dimensional pricing problems, which are important in the context of
pure optimization as well as the design of revenue-maximizing auction mechanisms [3], were first
studied by Aggarwal et al. [1] and Guruswami et al. [24]. Subsequently, quite a number of improved
algorithmic results for special cases of the problem [2,12,16,17,19,20,25] and complexity theoretic
lower bounds [8, 13,18] have been derived.

Our introductory example of shortest-path Stackelberg pricing was first introduced in the op-
erations research literature. In particular, Labbé et al. [28] derived a bi-level LP formulation of the
problem and proved NP-hardness. Subsequently, Roch et al. [29] presented a first polynomial-time
approximation algorithm with a provable approximation guarantee of O(logm), where m is the
number of priceable edges. The current best lower bound is inapproximability within 2 − o(1)
shown by Briest and Khanna [11]. Initial results for a Stackelberg pricing game, in which the
follower purchases a single-source shortest path tree, are presented in [7].

Cardinal et al. [15] investigate the corresponding minimum spanning tree game, proving that
this version of the problem is APX-hard and that the very simple single-price algorithm achieves an
approximation guarantee of O(logm) for m priceable edges. More recently, improved algorithms
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for special cases like bounded-treewidth graphs [14] and other variants [6] have appeared. Finally,
Briest et al. [10] extend the analysis of the single-price algorithm to Stackelberg pricing in general
and prove that it yields a O(logm)-approximation for m priceable items. This analysis is tight for
the shortest-path and minimum spanning tree games.

Stackelberg pricing can also be considered with objectives other than revenue maximization.
When prices are tolls on network arcs, the problem of congestion minimization has received consid-
erable attention. Karakostas and Kolliopoulos [27], Fleischer, Jain and Mahdian [22], Fleischer [21]
and Swamy [30] show how to efficiently compute a set of optimal tolls for all arcs, which enforce
optimal routings as Nash equilibria for selfish network routing games. More closely related to Stack-
elberg pricing is the case when only a subset of arcs are taxable, which is considered by Hoefer et
al. [26]. They show that finding optimal tolls for subnetworks is NP-hard.

1.2 Preliminaries

In this paper we consider games falling in the following general class. There are two players in the
game, one leader and one follower. There is also a set of items I that is partitioned into fixed-cost
items F and priceable items P. Each fixed-cost item i ∈ F has a fixed-cost c(i) ≥ 0. For each
priceable item i ∈ P the leader can specify a price p(i) ≥ 0. The follower has a set S ⊂ 2I of
feasible subsets and is interested in buying some subset in S. The cost of a subset S ∈ S is given
by the cost of fixed-cost items and the price of priceable items:

cost(S) =
∑

i∈S∩F

c(i) +
∑

i∈S∩P

p(i) .

The revenue of the leader from subset S is given by the prices of the priceable items that are
included in S, that is,

r(S) =
∑

i∈S∩P

p(i) .

We let SA(p) be the feasible subset in S chosen by the follower when she uses polynomial-time
algorithm A given prices p. Naturally, the follower would like A to return the minimum-cost subset
in S, but this could be an NP-hard task in general. We capture this intuition by making no
assumption on optimality of the algorithm: A can return a suboptimal subset in S. Our interest
is to find a pricing function p∗ for the leader that generates maximum revenue when the follower
uses algorithm A, i.e.,

p∗ ∈ argmax
p

r(SA(p)) .

We denote this maximum revenue by r∗. To guarantee that the revenue is bounded and the
optimization problem is non-trivial, we assume that there is at least one feasible subset that is
composed only of fixed-cost items and that the follower algorithm outputs it under certain circum-
stances. Towards this aim, we further assume that for each priceable item there is a threshold price
above which no subset including it will be output by the follower algorithm. This last assumption
holds for every follower algorithm with bounded approximation ratio.

In the above class of games, we will consider the Min-Knapsack pricing problem and the
Set-Cover pricing problem. In the knapsack pricing problem, the set of items is a set of weighted
objects O. A subset of O is feasible if the total weight of the objects comprising it is at least a given
bound W . We will refer to the revenue optimization problem for the knapsack pricing problem by
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StackKP. In the set cover pricing problem, following our terminology, given some ground set to
be covered, every item corresponds to a given subset of the ground set. A subset of items is feasible
for the follower whenever it covers all the elements of the ground set. We will refer to the revenue
optimization problem for the set cover pricing problem by StackSC and denote the special case
of vertex cover pricing by StackVC.

1.3 Contributions and Outline

The focus of this paper are followers applying approximation algorithms that are (i) structurally
simple and (ii) sufficiently suboptimal to ensure that revenue maximization has to take into ac-
count the algorithm’s exact structure. We first consider StackKP and assume that the follower
uses the well known greedy algorithm (see Section 2) to compute a 2-approximate solution to the
minimization version of the knapsack problem she needs to solve. Even though structurally quite
simple, this problem seems to capture many of the fundamental problems of Stackelberg pricing
with computationally limited followers.

We show that in this case a careful adaptation of the known single-price strategy termed near-
uniform pricing, which essentially assigns a single price to a subset of items and removes the
remaining ones from the market by assigning a sufficiently high price (see below for a formal
definition), can be used to approximate optimal revenue in most of the solution space. Adding
some fairly standard enumeration techniques we are able to derive a polynomial-time (2 + ε)-
approximation for the revenue maximization problem. The main technical difficulty lies in the fact
that our analysis needs to argue about the exact computation done by the follower for a given price
vector rather than using some global optimality condition. We point out that our algorithm is best
possible among all algorithms based on near-uniform price assignments. Finally, we show that the
revenue maximization problem in this setting is strongly NP-hard.

We then turn our attention to StackSC and assume that the follower is using the primal-dual
schema based approximation algorithm (see Section 3) to find a selection of sets to purchase. We
view the problem in its equivalent formulation of Vertex-Cover in hypergraphs and start by
investigating the special case of regular Vertex-Cover in standard graphs. We prove that while
near-uniform price assignments cannot achieve better than logarithmic approximation guarantees
in this case, exploiting the algorithm’s structure nevertheless allows for exact revenue maximization
in polynomial time. Previously, it was shown that games with a follower purchasing a min-cost
vertex cover in a bipartite graph in the special case that all priceable vertices are located on one
side of the bipartition allows for polynomial-time revenue maximization [10]. It would be very
interesting to see whether there is a deeper connection between these two problems.

Turning to general hypergraphs it turns out that revenue maximization (StackSC) becomes
hard already with edges of cardinality 3 (or elements of frequency 3 in the Set-Cover view) and
is APX-hard in general. This is quite surprising given that the follower’s primal-dual algorithm
achieves approximation guarantee f for any frequency f , i.e., the approximation complexity of
the underlying problem scales quite smoothly. We also argue that in this general case neither
near-uniform price vectors nor our algorithm from the Vertex-Cover case can guarantee any
sub-exponential approximation ratio.

Finally, we conclude with interesting open problems for further research in Section 4.
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1.4 Knowing the Follower’s Algorithm

A central assumption in our analysis is that the leader has full knowledge of the follower’s algorithm.
This assumption might appear quite strong. It turns out, however, that this non-black-box attitude
on the leader’s side is necessary to achieve any reasonable approximation guarantees. Suppose the
leader only knows the approximation guarantee of the follower’s algorithm A and is given black-
box-access to it, but no specific details are revealed. In this case it is easy to argue that for both
StackKP and StackVC no algorithm can achieve a finite approximation guarantee.

Proposition 1. For any constant ρ > 1, there are instances of StackKP and StackVC in which
no leader’s algorithm can achieve a finite approximation guarantee given only information about ρ
and black-box-access to the follower’s ρ-approximation algorithm.

Proof. We present the argument only for StackVC, since it can be adjusted easily to hold for
StackKP as well. Let ρ = 1 + ε, and consider a star of n + 1 vertices with center node c. Now
assume that there is just one single priceable node v 6= c, and that any other node has cost 1.
We consider a special ρ-approximation algorithm A to be used by the follower: pick c, and only if
p(v) = x, also buy v, where 0 < x ≤ ε is a fixed value. Clearly, A returns a ρ-approximation. If
the leader does not know the value of x, the best thing she can do is to choose a value randomly.
However, the probability of guessing the right value x is 0. Moreover, the optimal solution provides
a revenue of x by pricing v at x and hence any pricing algorithm has an unbounded approximation
ratio.

Similarly, it is necessary to assume that the follower decides on the algorithm to be used in
advance. If the follower is allowed to choose the algorithm (from a known set of alternatives) once
the leader has set the prices, then an impossibility result similar to the one above applies.

2 Knapsack Pricing

In the Min-Knapsack problem we are given a set O of n objects, some of them with fixed cost
and some priceable. Each object o ∈ O has weight w(o) ∈ N and we are given an integer weight
bound W . Following the general framework given above, each subset X of O has a cost which is
defined as the sum of the cost of the fixed-cost objects in X and the prices of the priceable objects
in X. The follower wants to purchase a set of objects of minimum cost whose weight is at least
W . We assume that the follower uses the standard greedy algorithm outlined below to find an
approximation of such a minimum-cost set.

2.1 The Follower’s Algorithm

An object’s cost-efficiency (below referred to as efficiency for brevity) is defined as φ(o) = c(o)/w(o)
or φ(o) = p(o)/w(o), depending on whether it is fixed-cost or priceable. Algorithm 1 below proceeds
as follows. First, order all objects by non-decreasing efficiency (breaking ties by decreasing weight).
Then add objects to the knapsack in this order. If an object makes the weight of the solution it
completes at least W , remember this (feasible) solution and discard the object. Finally, return the
best solution found. Note that we assume that ties are broken according to decreasing weight, i.e.,
larger objects are considered first given identical efficiency. This is a natural tie breaking rule, as
it aims at minimizing the overlap of objects that exceed the knapsack’s remaining capacity when
they are considered.
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Algorithm 1: The greedy approximation algorithm for Min-Knapsack

Let o1, o2, . . . , on be the objects ordered by non-decreasing efficiency, i.e.,
φ(o1) ≤ · · · ≤ φ(on).
X ← Y ← ∅.
cY ← +∞.
for i = 1, . . . , n do

X ← X ∪ {oi}.
if w(X) ≥W then

if cost(X) < cY then

Y ← X.
cY ← cost(X).

X ← X \ {oi}.

Return Y .

2.2 Transforming the Optimal Solution

Let p∗ be the optimal price assignment and let P∗ be the set of priceable objects that are selected
by Algorithm 1 given these prices.

The key ingredient to our approximation algorithm for knapsack pricing is the observation that
price assignments that result in a large number of priceable objects being bought by the follower can
be approximated by almost uniform price assignments at the expense of reducing overall revenue
by no more than a constant factor.

Definition 1. We call a price assignment p near-uniform, if there exists a single efficiency φ > 0,
such that p(o) = w(o) · φ or p(o) = +∞ for every o ∈ P.

We call an object b blocking, if the weight of the current solution exceeds W when it is added
by the greedy algorithm. Let B = {b1, . . . , bl} denote the blocking objects with φ(b1) ≤ · · · ≤ φ(bl).
Since every blocking object corresponds to a unique solution checked by the greedy algorithm, our
approach to relating the algorithm’s behavior on two different price vectors is to relate the sets of
blocking objects in both cases.

Thus, in order to prove Theorem 1 below we need to argue that the set of blocking objects does
not change in completely uncontrolled ways when we transform optimal pricing p∗ into a near-
uniform pricing p̃. We will do so in two steps. Let φ̃ denote the single efficiency in the near-uniform
pricing p̃. We will first argue that blocking objects bj with φ(bj) < φ̃ are the same with respect to
both p∗ and p̃. We then show that even though blocking objects bj with φ(bj) ≥ φ̃ might change,
we can guarantee that the cheapest solution found contains most of our priceable objects.

Theorem 1. Let p∗ be the optimal price assignment for a given StackKP instance and let r∗

be the resulting revenue. Furthermore, assume that given prices p∗ the follower purchases at least
k ∈ N priceable objects, i.e., |P∗| ≥ k. Then there exists a near-uniform price assignment p̃ with
revenue at least r∗(k − 1)/(2k).

Proof. Define w∗ =
∑

o∈P∗ w(o), r∗ =
∑

o∈P∗ p∗(o) and let φ∗
ave = r∗/w∗. Let c∗ denote the

total cost of the solution bought by the follower given prices p∗. We define a near-uniform price

6



assignment p̃ by

p̃(o) =

{

(1/2) · w(o) · φ∗
ave for all o ∈ P∗,

+∞ otherwise.

There is a one-to-one correspondence between the blocking objects B = {b1, . . . , bl} given prices
p∗ and solutions checked by the greedy algorithm. Because of the fact that blocking objects do
not influence the set of solutions checked by the greedy algorithm (beyond the one they belong to
themselves), it is w.l.o.g. to assume that there is at most a single priceable blocking object given
prices p∗, and if it exists it belongs to P∗.

Proving the claimed revenue guarantee for p̃ consists of two parts. First, we show that with
prices p̃ the blocking objects of efficiency less than φ∗

ave/2 are still blocking with prices p̃ and their
corresponding solutions have cost greater than c∗− (r∗/2). We then show that among the solutions
with blocking objects of efficiency greater than or equal to φ∗

ave/2 there exist some with cost at most
c∗−(r∗/2) and the cheapest among these contains priceable objects of value at least r∗(k−1)/(2k).

We first deal with blocking objects with efficiency φ(bj) < φ∗
ave/2 and argue that they remain

blocking. Consider bj with φ(bj) = c(bj)/w(bj) < φ∗
ave/2. Since we have at most one blocking

priceable object (of efficiency at least φ∗
ave), bj must be fixed-cost. Let w<j and r<j denote the

weight and total price of priceable objects in the knapsack before object bj is considered. Similarly,
let w>j and r>j denote the weight and price of priceable objects from P∗ that are considered after
bj . Let φ<j = r<j/w<j and φ>j = r>j/w>j be these objects’ average efficiencies. This situation is
depicted in Fig. 1.

Using w<j < w∗ and φ<j < φ∗
ave/2, we obtain

r∗ = w<jφ<j + w>jφ>j < w∗(φ∗
ave/2) +w>jφ>j ,

and rearranging yields

r>j = w>jφ>j > r∗ − w∗(φ∗
ave/2)

= w∗(φ∗
ave/2) > w∗φ(bj) ,

since φ(bj) < φ∗
ave/2 by assumption. Finally, as the best solution found by the follower’s greedy

algorithm does not contain bj but additional priceable objects of total price r>j, we may write

w(bj)φ(bj) = c(bj) ≥ r>j > w∗φ(bj) ,

and so we conclude that w(bj) > w∗. In other words, even if we removed all priceable objects from
the solution, bj would still remain blocking.

The fact that blocking objects of efficiency less than φ∗
ave/2 remain blocking also implies that

no non-blocking objects with efficiency below φ∗
ave/2 can become blocking, since under prices p̃ the

knapsack contains less total weight when such an object is considered. Also, for given prices p̃, the
fact that r<j < r∗/2 implies that every solution found by the greedy algorithm with a blocking
object bj of efficiency less than φ∗

ave/2 has total cost greater than c∗ − (r∗/2).
We continue by considering blocking objects with efficiency φ(bj) ≥ φ∗

ave/2. If P∗ did not
contain a blocking object given prices p∗, then changing prices to p̃ does not change the set of
blocking objects of efficiency at least φ∗

ave/2. To see this, note that with prices p̃ the knapsack’s
remaining capacity is smaller than before at any point, so no previously blocking object can become
non-blocking. On the other hand, all the non-blocking objects left enough room to pack the objects
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r<j

w<j

w>j

c(bj)

w(bj)

φ<j =

r<j

w<j

φ>j =

r>j

w>j

φ(bj) =
c(bj)

w(bj)
< φ∗

ave

r>j

W

Figure 1: Situation from the first part of the proof of Theorem 1. Shaded blocks depict priceable
objects that are selected by Algorithm 1 as part of the eventually cheapest solution before and after
blocking object bj is considered, respectively.

from P∗, so changing the order in which they are considered cannot create new blocking objects
either. It follows that all solutions found by the greedy algorithm with blocking objects of efficiency
at least φ∗

ave/2 contain priceable objects with a total price of r∗/2. The previously cheapest solution
is still found and has cost c∗ − (r∗/2).

If P∗ did contain a blocking element with prices p∗, but does not given prices p̃, we consider
two cases. If the previously optimal solution is still found by the greedy algorithm, the same
argumentation as above guarantees revenue r∗/2. If it is not, it must be the case that some
previously non-blocking element has now become blocking. Consider the first such element bj .
Since all objects in the knapsack at the time bj is considered and bj itself were part of the cheapest
solution given prices p∗, we have again found a solution of total cost at most c∗ − (r∗/2). Since all
priceable objects are in the knapsack at this point and remain in it, a lower bound of r∗/2 on the
revenue follows immediately.

Finally, assume that P∗ contains a blocking element with both prices p∗ and p̃. In this case,
the solution with a priceable blocking object is guaranteed to have cost at most c∗− (r∗/2). By the
algorithm’s tie-breaking rule every solution with a blocking object of efficiency larger than φ∗

ave/2
found at a later time contains all but the smallest object from P∗. By the fact that |P∗| ≥ k, it
contains priceable objects of total value at least (1− 1/k) · w∗ · φ∗

ave/2 = r∗(k − 1)/(2k).

2.3 Approximation Results for Revenue Maximization

In this section we present our (2 + ε)-approximate algorithm for StackKP. Algorithm 2 proceeds
in two stages. First it checks for some given constant k ∈ N all possible price assignments to sets
of at most k − 1 priceable objects. Then for each possible weight w, it finds a set with k or more
priceable objects with total weight (roughly) w (if such a set exists), and considers all near-uniform
price assignments to that set.

Note that in both stages, checking all possible efficiencies cannot be done in polynomial time.
Instead we restrict our attention to the efficiencies of the fixed-cost objects plus all powers of (1+δ)
for some δ > 0 to guarantee that we efficiently find a near-optimal price assignment in which all
objects are considered by the greedy algorithm in the right order. Similarly, in the second stage we
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Algorithm 2: A (2 + ε)-approximation algorithm for StackKP

Let 1 be the minimum, Φ the maximum efficiency of fixed-cost objects, W the knapsack
capacity,

√

1 + ε/2− 1 ≥ δ > 0, rmax ← 0.
Choose k ≥ (2(2 + ε))/(2 + ε− 2(1 + δ)2) and let
Λ = {φ(o) | o ∈ F} ∪ {(1 + δ)j | j = 0, . . . , ⌈log1+δ Φ⌉}.
foreach set S ⊆ P of priceable objects with |S| ≤ k − 1 do

foreach price assignment p with p(o)/w(o) ∈ Λ for all o ∈ S and p(o) = +∞ else do

Let r be the resulting revenue.
rmax ← max{rmax, r}.

foreach 0 ≤ i ≤ ⌈log1+δ Φ⌉ do
Let φi = (1 + δ)i.
foreach 0 ≤ j ≤ ⌈log1+δ W ⌉ do

Let S be a set of at least k priceable objects with total weight between (1 + δ)j and
(1 + δ)j+1, if such set exists, else S = ∅.
Set p(o) = w(o)φi for all o ∈ S and p(o) = +∞ for all other priceable objects. Let r
be the resulting revenue.
rmax ← max{rmax, r}.

Return rmax.

cannot enumerate all possible weights for the objects in our near-uniform price assignments, but
again have to settle for powers of (1 + δ).

Theorem 2. Algorithm 2 computes in polynomial time a (2 + ε)-approximation for StackKP.

Proof. As outlined above, the algorithm proceeds in two stages. In the first stage it checks the
revenue from all possible price assignments of the following form: A total number of at most k− 1
objects are assigned prices, such that their respective efficiency is in the set Λ as defined in the
algorithm. All other objects are assigned price +∞. Note, that Λ consists of all powers of 1 + δ
between 1 and Φ and the efficiencies of the fixed price objects F .

Assume now that the optimal price assignment p∗ results in priceable objects P∗ being bought
by the follower and |P∗| ≤ k−1. W.l.o.g. we may assume that p∗(o) = +∞ for all o /∈ P∗. Consider
then the price assignment p′ defined as

p′(o) = w(o) ·max ([0, p∗(o)/w(o)] ∩ Λ)

for o ∈ P∗ and p′(o) = +∞ else, which is considered by our algorithm. It is straightforward to
argue that the solutions checked by the follower’s greedy algorithm are identical under prices p∗ and
p′, since all objects are considered in the exact same order. The cheapest solution under prices p′

is the same as under p∗ and the total revenue is reduced by a factor of at most (1+ δ)−1. Thus, we
obtain a (1+δ)-approximation whenever the optimal solution consists of selling at most k priceable
objects.

The second stage of the algorithm consists of approximating optimal solutions with more than
k priceable objects by good near-uniform price assignments, which are guaranteed to exist by
Theorem 1. Consider again p∗ and P∗ and assume that |P∗| ≥ k. Then by Theorem 1 there exists
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a near-uniform price assignment p̃ with p̃(o) = φw(o) for all o ∈ S̃ and p̃(o) = +∞ for o /∈ S̃ for
some appropriately chosen S̃ and φ. The resulting revenue is at least r∗(k − 1)/(2k). We may
w.l.o.g. assume that all priceable objects with a finite price are actually bought by the follower.

Let now S ⊂ P be a set of priceable objects with |S| ≥ k and

∑

o∈S̃

w(o) ≤
∑

o∈S

w(o) ≤ (1 + δ) ·
∑

o∈S̃

w(o).

Such a set is computed in line 11 by Algorithm 2. Consider the price assignment p′ defined as

p′(o) = w(o) · (1 + δ)⌊log1+δ φ⌋−1

for o ∈ S and p′(o) = +∞ else, which is considered by the algorithm. Given prices p′ the follower’s
greedy algorithm considers all priceable objects at an earlier time as with prices p̃. Let c̃ be the
total cost of fixed-price objects bought by the follower given prices p̃. Using the same arguments
as in the proof of Theorem 1 it follows that looking only at objects with efficiency at most φ the
greedy algorithm finds a solution with total cost

c̃+

(

∑

o∈S

w(o)

)

· (1 + δ)⌊log1+δ φ⌋−1

≤ c̃+



(1 + δ) ·
∑

o∈S̃

w(o)



 · ((1 + δ)−1 · φ)

≤ c̃+
1 + δ

1 + δ
·





∑

o∈S̃

w(o)



 · φ

= c̃+





∑

o∈S̃

w(o)



 · φ ,

which is exactly the cost of the cheapest solution found by the follower under price assignment p̃.
Any solution found before the priceable objects are considered was not optimal under prices p∗ and,
thus, is still not optimal. Every solution found at a later time contains the k − 1 largest objects
from S and, consequently, carries a (1− 1/k)-fraction of the revenue. Hence, the overall revenue r
from price assignment p′ is at least

r ≥

(

1−
1

k

)

· (1 + δ)−2 ·
k − 1

2k
· r∗ = r∗ ·

(k − 1)2

2(1 + δ)2k2
.

For δ ≤
√

1 + ε/2− 1 and k ≥ (2(2 + ε))/(2 + ε− 2(1 + δ)2) the approximation guarantee of 2 + ε
follows.

It remains to argue about the algorithm’s running time. In the first stage the algorithm tests
a total number of at most |P|k|Λ|k = |P|k(|F| + log Φ)k price assignments, which is polynomially
bounded for any constant value of k. In the second stage a total of (logW )(log Φ) price assignments
are tested. We only need to argue that we can compute a set S of at least k priceable objects and
total weight between (1 + δ)j and (1 + δ)j+1 in polynomial time, if such a set exists.
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This can be done by a straightforward extension of the dynamic programming approach for
the knapsack problem. Let n objects with weights w1, . . . , wn be given. By A(j, ℓ, w) we denote
the “cost” of any selection of at least ℓ of the first j objects with total weight exactly w. We set
A(0, 0, 0) = 0, A(0, ℓ, w) = +∞ for all ℓ, w 6= 0 and use the recurrence

A(j, ℓ, w) = min{A(j − 1, ℓ− 1, w − wj), A(j − 1, ℓ, w)} .

A selection of at least k objects and total weight w exists if and only if A(n, k,w) = 0. Applying
standard rounding techniques to the weights of the objects in the pricing instance we obtain the
desired result.

Note that the above analysis is essentially tight. Consider the following StackKP instance
with knapsack capacity W . There is a single fixed-price object with size W and price W . There
are W −1 priceable objects of size 1 and one priceable object of size W . By setting the prices of all
small priceable objects to 1 − ε/W and the price of the large one to W − ε/W we obtain revenue
of 2W − ε for arbitrary ε > 0, since in this case the greedy algorithm starts by fitting all the small
priceable objects into the knapsack and then adds the large priceable object to obtain a solution.

Consider then any pricing that assigns prices other than +∞ to at most some constant number
k ≪ W of objects. If the priceable object of size W is among these, total revenue is at most
W + k − 1, otherwise it is at most k. Finally, consider any near-uniform pricing. To obtain any
revenue at all, all priceable objects with price other than +∞ must have efficiency at most 1. If the
large priceable object is among these objects, it is considered first due to the tie breaking rule and,
thus, revenue is at most W . If it is not, revenue is clearly at most W −1. Hence, the approximation
guarantee achieved by Algorithm 2 is bounded below by (2W − ε)/(W + k− 1)→ 2 for W → +∞.

Observe that by choosing k = 2 in Algorithm 2, we obtain a constant factor approximation by
considering only near-uniform price assignments, since in this case the first step of the algorithm
considers price assignments to sets of size 1, which must trivially be uniform.

Finally, it turns out that revenue maximization against a follower using Algorithm 1 is strongly
NP-hard.

Theorem 3. StackKP is strongly NP-hard.

Proof. We prove the result by a reduction from the 3-Partition problem, which is known to be
strongly NP-complete [23]. Given a collection of integer weights w1, . . . , wn ∈ N with n = 3m,
∑

i∈[n]wi = W and W/(4m) < wi < W/(2m), we want to decide whether the weights can be
partitioned into subsets S1 ∪ · · · ∪ Sm = [n], such that

∑

i∈Sj
wi = W/m for 1 ≤ j ≤ m where, of

course, W is a multiple of m.
We construct a knapsack pricing instance as follows. The knapsack has capacity W . For each

weight wi in the 3-Partition instance we have a priceable object with size wi. There are two types
of fixed-cost objects. First, we have an object with size (1−j/m)W+1 and cost (1−j/m)W+1+1/W
for 1 ≤ j ≤ m−1. We denote these fixed-cost objects of type A as A1, . . . , Am−1 and their respective
efficiencies as φ1, . . . , φm−1. Then there are W/m additional fixed-cost objects, each with size 1 and
cost 1 + 1/W . We refer to these as fixed-cost objects of type B and denote their efficiency as φm.
Observe that even by multiplying all weights and costs above by mW , all numbers in the instance
are integers of size O(mW 2). The 3-Partition problem remains hard even for instances in which
m and W 2 have polynomial size.

We start with a simple observation about our pricing instance. First, note that the greedy
algorithm considers fixed-cost objects A1, . . . , Am−1 in this order before objects of type B. By a
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straightforward inductive argument it follows that after the greedy algorithm has considered object
Aj , the knapsack contains objects of total size at least jW/m and maximum efficiency φj. In
particular, this implies that after Am−1 has been considered the remaining capacity is at most
W − (m− 1)W/m = W/m and, thus, when fixed-cost objects of type B are considered the greedy
algorithm finds a solution with total weight exactly W , at which point it stops. This solution has
total cost at most W (1+1/W ) = W +1 by the fact that fixed-cost objects of type B have efficiency
φm = 1 + 1/W . Note that such a solution is found independently of the prices assigned to the
priceable objects.

We first argue about soundness. Assume that a partitioning S1∪· · ·∪Sm = [n] exists. We define
a corresponding pricing by assigning efficiency φj − ε, for some carefully chosen ε > 0 (specified
below), to the objects in Sj . Thus, because of the way the follower’s greedy algorithm works we
have that priceable objects are considered by the greedy algorithm before fixed-cost objects of
efficiency φj . It is easy to check that given this price assignment none of the fixed-cost objects will
fit into the knapsack and the algorithm finds a solution with total size exactly W that consists of
selecting all the priceable objects and has total price less than W + 1. Every other solution found
by the greedy algorithm has size at least W + 1 and, since all fixed-cost objects have efficiency at
least φ1, costs at least (W + 1)φ1 > W +1. It follows that the priceable objects form the cheapest
solution. Define φ0 = 0. The total revenue from the above price assignment is

r∗ =
m
∑

k=1

W

m
· (φk − ε)

=
W

m
·

m
∑

k=1

k−1
∑

j=0

(φj+1 − φj)−Wε

=

m−1
∑

j=0

(

W −
jW

m

)

· (φj+1 − φj)−Wε .

Assume then that a partitioning of the weights does not exist and consider an arbitrary price
assignment p. We are going to bound its revenue r. If the cheapest solution found by the greedy
algorithm contains a fixed-cost object, total revenue is bounded above by W + 1 − (1 + 1/W ) <
W < r∗. This follows by our initial observation that the greedy algorithm always finds a solution
with total cost at most W+1 and the cheapest fixed-price object has cost 1+1/W . Thus, any price
assignment with high revenue must ensure that no fixed-cost object becomes part of the cheapest
solution found by the greedy algorithm.

For the given price assignment p let π(1), . . . , π(n) be an ordering of the priceable objects
according to increasing efficiency, i.e., pπ(1)/wπ(1) ≤ · · · ≤ pπ(n)/wπ(n). Let ℓ(j) be the smallest
index, such that pπ(ℓ(j))/wπ(ℓ(j)) > φj. Denote by

ξj =

ℓ(j)−1
∑

i=1

wπ(i)

the total weight of priceable objects with efficiency at most φj and define ξ0 = 0. By the fact
that no fixed-cost object can fit into the knapsack it follows that ξj ≥ jW/m for all j. We define
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∆j = ξj − jW/m. The revenue r of price assignment p can now be bounded above by

r ≤
m
∑

j=1

(ξj − ξj−1) · φj

=

m−1
∑

j=0

(W − ξj) · (φj+1 − φj)

=
m−1
∑

j=0

(

W −
jW

m
−∆j

)

· (φj+1 − φj)

= r∗ +Wε−
m−1
∑

j=0

∆j · (φj+1 − φj) .

Now, the fact that no partitioning of the priceable objects into m subsets of identical size exists
implies that for any price assignment there must exist at least one index j, such that ∆j > 0. But
as such a ∆j is defined as the difference of two integers, we have ∆j ≥ 1. On the other hand, it easy
to see that for all j we have φj+1−φj ≥ 1/(m+W ). Therefore, we set ε such that Wε < 1/(m+W ).
This completes the proof of completeness.

3 Set Cover Pricing

In this section we consider the vertex and set cover pricing problems. In the simplest case the
follower wants to purchase a minimum vertex cover of a graph G = (V,E). Let V = P ∪ F , where
as above F and P denote the set of fixed-cost and priceable vertices respectively. More generally,
for set cover we consider an equivalent formulation of vertex cover in hypergraphs. Namely, given
the universe and its subsets of the set cover instance, we define a hypergraph where the vertices
are the universe subsets and hyperedges are the elements of the universe. In this case there can be
hyperedges in E connecting more than two vertices. We assume that the follower uses the standard
primal-dual algorithm to find an approximation to the minimum vertex cover.

3.1 The Follower’s Algorithm

The algorithm iteratively considers uncovered edges and raises budgets at the incident vertices until
(at least) one of the vertices becomes tight. The algorithm is given for the case of regular vertex
cover as Algorithm 3; for more details see [31, Chapter 15].

3.2 Revenue Maximization for Vertex Cover

At first, let us consider the approximation ratio of single-price and near-uniform price assignments.
For the latter, as from Definition 1, we have a φ ∈ R

+
0 and p(v) ∈ {φ,∞} for all v ∈ P. It turns

out that for these pricings there is a simple logarithmic lower bound.

Theorem 4. Single-price and near-uniform price assignments yield an approximation factor of
Ω(log n) for StackVC, where n is the number of priceable vertices.
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Algorithm 3: Primal-dual algorithm of the follower

γe ← 0 for all edges e ∈ E
For all v ∈ V let c′(v)← c(v) if v ∈ F and c′(v)← p(v) otherwise
Fix an order of edges e1, . . . , em
for i = 1, . . . ,m do

Let ei = (u, v) and σu ← c′(u)−
∑

e : e=(u,v′) γe
σv ← c′(v)−

∑

e : e=(u′,v) γe
γe ← min(σu, σv)

Add every vertex v with c′(v) =
∑

e : e=(u,v) γe to the cover.

Proof. The instance establishing the lower bound consists of n components of single edges. Each
edge is connected to exactly one fixed-cost and one priceable vertex. The fixed costs resemble the
harmonic sequence, i.e., 1, 1/2, 1/3,... It is obvious that any single price can only achieve a revenue
of 1, while the optimum revenue is Hn = Θ(log n). This argument holds also for near-uniform
pricings.

Instead, we present a natural greedy algorithm to compute optimal prices for the seller. It
simulates a run of the primal-dual algorithm and raises prices of the priceable vertices in the same
manner as the dual budgets γ are raised by the follower. In this way the algorithm greedily tries
to sell a vertex to the follower as soon as she is willing to pay for it.

Algorithm 4: Greedy pricing for StackVC

γe ← 0 for all edges e ∈ E
for each edge e = e1, e2, . . . , em in the order of the follower do

if e = (u, v) is incident to a priceable vertex v then
γe ← c(u)−

∑

e′:e′=(u,v′) γe′

p(v)←
∑

e′:e′=(u′,v) γe′

else
σu ← c(u)−

∑

e′:e′=(u,v′) γe′

σv ← c(v)−
∑

e′:e′=(u′,v) γe′

γe ← min(σu, σv)

Theorem 5. Algorithm 4 solves StackVC in polynomial time.

Proof. Consider an optimum pricing p∗, which yields a strictly larger revenue than the greedy
pricing pg computed with our algorithm. For such a given set of prices p∗, we denote by γ∗e the
dual contribution of edge e, which we call the budget of edge e resulting from p∗. This contribution
is the result of applying the follower’s algorithm to the instance using p∗.

The heart of our proof is an inductive argument that one can transform any pricing (including
p∗) by iteratively adjusting the prices without decreasing revenue, such that the budget of every
edge is equal to the one resulting from the greedy pricing pg. In particular, this implies that pg is
an optimal pricing.

We begin by restricting our attention to an optimal pricing p∗ for which the follower purchases
all priceable vertices. The existence of such a pricing follows from the next lemma.
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Lemma 1. Given any pricing p, there is a pricing pl with pl(v) ≤ p(v) for all v ∈ P, for which
the leader obtains at least as much revenue as for p and the follower purchases every vertex v ∈ P.

Proof. Consider any pricing p for which at least one vertex v is not bought by the follower. Note
that this is equivalent to p(v) >

∑

e=(u,v) γe, where the γe are the respective budgets computed by
the follower. If we lower pl(v) =

∑

e=(u,v) γe, the execution of the follower algorithm is not affected
and all the budgets remain the same. This means that the follower purchases exactly the same
priceable vertices as before and in addition vertex v. This can only increase the revenue. Thus, by
reducing prices to the sum of incident budgets, it is possible to construct a pricing pl with at least
as much revenue, for which all priceable vertices are bought by the follower.

Now consider the pricings p∗ and pg and the resulting budgets γ∗ and γ. Consider the smallest
i′, for which edge e′ = ei′ = (u, v′) has γ∗e′ 6= γe′ . It is easy to note that this edge must be incident
to a priceable vertex v′, and the difference in budgets is a result of setting different prices. By our
algorithm and Lemma 1 we know that in both p∗ and pg all vertices are bought by the follower.
This implies that p∗(v) < pg(v), and hence γ∗e′ < γe′ . We now compare the revenue of pricing p∗ to
a pricing p′ with p′(v) = p∗(v) for every vertex v 6= v′, and for which p′(v′) = p∗(v′) + γe′ − γ∗e′ . In
p′ the budgets γ′e are equivalent to γe from pg for every edge e1, . . . , ei′−1 and also ei′ = e′.

We call δj(v) =
∑

ei:ei=(v,u),i≤j γ
′
ei
− γ∗ei the reservation that is created by p∗ at vertex v at the

end of processing edge ej . The budget of e′ is raised to a smaller amount in p∗ than in p′, so after
processing e′ there is positive reservation at the other endpoint u of e′, i.e., δi

′
(u) = δi

′
(v′) at vertex

u. No other vertex except u and v′ has reservation at this point, so
∑

v 6=v′ |δ
i′(v)| ≤ δi

′
(v′). This

will be our invariant, and in the following we prove it holds for the remaining edges j > i′ and the
remaining iterations of the algorithm with pricing p′.

Lemma 2. For any iteration j ≥ i′ we have
∑

v 6=v′ |δ
j(v)| ≤ δi

′
(v′).

Proof. At first, notice that the reservation of vertex v′ satisfies δj(v′) = δi
′
(v′) for j ≥ i′. It will

remain unaltered during the remaining iterations of the algorithm, because the vertex becomes
tight in both runs at the time when considering edge e′. In both cases γ′ej = γ∗ej = 0 for any later
edge ej with j > i′, which is incident to v′. For the rest of the proof we consider several cases,
depending on the existing reservation at the incident vertices.

Case 1: Consider an edge ej = (u, v) with j > i′ such that no incident vertex has reservation. In
this case, the budget γ′ej = γ∗ej , thus the invariant continues to hold.

Case 2: Consider an edge ej = (u, v) with j > i′, for which vertex u has positive reservation
δj−1(u) > 0 and vertex v has 0 reservation. If v is the first vertex in both iterations to
become tight, then γ′ej = γ∗ej and we do not change the reservation at all. If u is the first
vertex to become tight for p∗, then u is still the first vertex to become tight for p′, because
of positive reservation. In this case the budget γ′ej can be raised to a smaller amount, and

we have γ′ej = γ∗ej − δj−1(u), δj(u) = 0, and δj(v) = −δj−1(u). The total absolute value of
all reservations remains the same. Now consider the case if v is the first vertex to become
tight for p∗, and u becomes tight for p′. Without loss of generality we assume u and v are
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fixed-price vertices. Then for the budget

γ′ej = c(u)−
∑

e∈E,e=(u,·)6=ej

γ′e

=



c(u) −
∑

e∈E,e=(u,·)6=ej

γ∗e



− δj−1(u)

≥ γ∗ej − δj−1(u)

holds. For the γ∗ej we observe

γ∗ej = c(v) −
∑

e∈E,e=(v,·)6=ej

γ∗e ≥ γ′ej .

The reservation removed at u is ε = γ∗ej − γ′ej ≤ δj−1(u), while the reservation created at
v is −ε. The total absolute reservation remains the same. The same argument holds with
reversed sign if one vertex has negative reservation while the other has no reservation. The
invariant is always preserved.

Case 3: Consider an edge ej = (u, v) with j > i′, for which vertex u has positive reservation
δj−1(u) > 0 and vertex v has negative reservation δj−1(v) < 0. In this case, we can combine
the arguments made above. If in both cases v becomes tight first, we add reservation on
both vertices, however at most |δj−1(v)|. If in both cases u becomes tight first, we subtract
reservation from both vertices, but at most δj−1(u). Similarly, for any other combination, we
add or subtract at most the absolute values of the corresponding reservations, which keeps
the invariant.

Case 4: Finally, consider an edge ej = (u,w) with j > i′, for which the vertices both have reser-
vation of the same parity. In this case we add or subtract to both reservations, which reduces
the absolute values of both reservations. Hence we reduce the total absolute reservation, which
keeps the invariant.

The lemma above shows that the sum of absolute values of reservation at all vertices except
v′ at any point during the remaining iterations in the follower’s algorithm is at most the initial
reservation δi

′
(v′). Note that v′ is bought in both cases. In p∗ all priceable vertices are bought

by the follower, but this might not be true for p′ and vertices v 6= v′: p′ might lose revenue there.
By Lemma 1, this can be fixed by reducing the price in p′ of every priceable vertex to the sum of
the budgets of incident edges. Note that in p∗ every vertex is bought, which implies every price
p∗(v) =

∑

e:e=(u,v) γ
∗
e is also the sum of budgets of incident edges. As the total absolute reservation

at the end of the algorithm is at most δi
′
(v′), the total decrease in revenue that is lost on vertices

v 6= v′ in this step is at most δi
′
(v′). This is exactly the revenue surplus that p′ generates over p∗

at vertex v′. Thus, pricing p′ yields at least as much revenue as p∗. This implies our claim, i.e.,
one can transform any pricing by iteratively adjusting the prices without decreasing revenue, such
that all budgets of the edges are equal to those resulting from pg. In particular, this implies that
the greedy pricing pg is optimal.
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v1 u v2

Figure 2: Instance with element frequency 3, for which the greedy pricing is suboptimal. Priceable
sets are displayed as filled vertices, fixed-cost sets are empty vertices. All fixed-cost sets have cost
1. Elements are displayed as boxed hyperedges. Follower considers at first the hyperedge incident
to u.

The next proposition shows that knowing the order of the edges when pricing for the primal-dual
algorithm in StackVC is essential.

Proposition 2. For every constant ε > 0, there exists an instance of StackVC such that if the
order of the edges in the follower’s primal-dual 2-approximation algorithm is unknown to the leader,
then every pricing p yields an approximation ratio of Ω(1/ε).

Proof. The instance is a path with four vertices, V = {u1, ..., u4} and E = {ei = (ui, ui+1) | i =
1, 2, 3}. Vertex u3 is the only priceable vertex. Moreover, c(u4) = ε, c(u1) = c(u2) = 1. For the
order (e3, e1, e2) the leader obtains revenue at most ε, while for the order (e3, e2, e1) she obtains
revenue 1 + ε. Without knowing the order she could either decide to price p(u3) > ε, which gives
revenue 0 with the first order. Otherwise, she could secure revenue ε using p(u3) = ε, but then she
might be able to obtain 1 + ε with the right order. Thus, any pricing strategy gives a ratio of at
least (1 + ε)/ε ∈ Ω(1/ε).

3.3 Hardness Results

The main argument in the previous section works only for the case of regular vertex cover. Let
us turn to the case of set cover with elements contained in at least three sets, i.e., elements with
frequency at least three. We understand them as hyperedges incident to more than two vertices.
In this case it might be profitable to reduce the price for a vertex from the value in the greedy
pricing. Consider the example in Fig. 2. If we set p(u) = 1, then there is no revenue at v1 and v2.
If instead we set p(u) = 0, then the optimum revenue is 2, as both v1 and v2 will be bought for a
price of 1. This property can be used to show that the set cover pricing problem is much harder to
solve.

Theorem 6. StackSC is APX-hard even if all elements have maximum frequency 3 and all fixed-
cost sets have cost 1.

We prove the APX-hardness in two steps. We begin by proving NP-hardness and introduce the
main technicalities. This allows for a simple proof of APX-hardness below.

Theorem 7. StackSC is NP-hard even if all elements have maximum frequency 3 and all fixed-
cost sets have cost 1.

Proof. We describe a reduction from MAX-2-SAT. An instance of MAX-2-SAT is given by a set
of {x1, . . . , xn} of boolean variables and a set {c1, . . . , cm} of clauses. Each clause has exactly 2

17



variables, and the problem is to find an assignment of variables such that the maximum number of
clauses is satisfied.

We construct an instance of vertex cover pricing with hyperedges. Our construction is layered
in three stages, in variable gadgets, distribution gadgets, and clause gadgets. There is a variable
gadget for each variable x with two priceable vertices ux and ux. The optimal pricing sets the
price of one vertex to 1 and the other price to 0. This corresponds to a decision about x, i.e., if
p(ux) < p(ux), then x is true and false otherwise. In the distribution gadgets the decision about
x is distributed to the gadgets for clauses that include x. In each clause gadget we can obtain a
maximum revenue of 1. It is obtained if and only if at least one of the variables evaluates the clause
to true. The reduction is complete by observing that it is possible to obtain a revenue of n + k if
and only if k clauses are satisfied.

In the first stage we introduce for each variable x a variable gadget as shown in Fig. 3(a).
There are two priceable vertices ux and ux, two fixed-cost vertices vx and vx of cost 1, and one
coordination vertex of cost 1. The two hyperedges incident to priceable vertices are considered
first, then the edge incident to vx and vx. Note that we can extract a total revenue of at most 1
from ux and ux. Independently of the prices we set, after execution of the algorithm at least one
of the vertices vx or vx is tight and bought. This encodes the decision about setting the variables
as follows. Namely, x is set to true (false) if and only if the corresponding set vx (vx) is not part
of the cover after running the algorithm on the variable gadget.

Based on the variable gadgets we construct distribution gadgets to distribute the information
about the setting of variables to the clause gadgets. For each non-negated occurrence of a variable
x in any of the clauses, we introduce a vertex v with fixed cost 1. Then, we introduce one hyperedge
incident to all these vertices and vx. The construction for negated occurrences of x and vx is similar.
The maximum frequency depends on the maximum number of occurrences of a variable in the sets.
This, however, can be reduced to 3 by using a layered construction that we describe in the end of
the proof.

Finally, for each clause there is a clause gadget starting with the two fixed-cost sets (denoted
v1 and v2) that were introduced for the corresponding clause in the distribution gadget. The
construction is depicted in Fig. 3(b). One edge, denoted ec, is incident to v1, v2, and an additional
fixed-cost vertex v3. The second edge is (v3, uc) for a priceable vertex uc. The follower considers
ec first.

The global order of the elements is given by first considering all the variable gadgets, then all the
distribution gadgets, and finally all the clause gadgets, while using for each gadget the respective
order of edges outlined before.

We now show that in the given instance one can obtain a revenue of at least n+ k if and only
if the corresponding instance of MAX-2-SAT has an assignment that satisfies at least k clauses. It
is obvious that we can always obtain at most a revenue of n from the variable gadgets. We already
outlined above that after the follower has considered all variable gadgets, at least one vertex vx
or vx from each gadget is bought and tight. For exposition consider a clause c = (x, y), such that
both vx and vy are tight. Then the budgets of the corresponding distribution edges are not raised,
and hence the budget of ec in the clause gadget is raised to 1. This means that v1, v2 and v3 are
bought, while there is no profit from uc. In contrast, if at least one set vx or vy is not tight after
processing the variable gadgets, the budget of the distribution elements is raised to the amount of
existing slack. Hence, the budget of ec decreases. In this case a profit corresponding to the slack
can be obtained at uc. Note that ec is designed such that the budget is raised until the v1 or v2
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Figure 3: Gadgets used in the reduction. Filled vertices are priceable, fixed-cost vertices have cost
1. Hyperedges are displayed as boxes. (a) Variable gadget with distribution gadgets for a variable
occurring in three clauses non-negated and in two clauses negated. (b) Clause gadget connecting
vertices from the distribution gadgets of the occurring variables.

with smaller budget becomes tight. Hence, in order to obtain a revenue of 1, there has to be at
least one vertex which is tight and bought by the distribution element. Then, v3 can be bought
together with uc at a cost of 1.

We use this observation in our argument. Consider any pricing of the vertices. If for a variable
gadget p(ux) = p(ux), then after processing the variable gadgets, both vx and vx are bought and
unnecessarily restrict the profit that can be obtained at the clause gadgets. Hence, we can w.l.o.g.
assume that p(ux) 6= p(ux). Now the set with larger price is the one, for which the corresponding
set vx or vx will be bought. Also, the total revenue extracted from ux and ux is at most 1. So
we can restrict attention to pricings such that in each variable gadget exactly one vertex has price
1 and one vertex has price 0. This encodes a decision about the variable as mentioned before.
In addition, we can obtain a revenue of at most 1 from each priceable vertex uc. The revenue is
obtained for clause c = (x, y) if and only if the budget of ec is restricted to 0. This requires that at
least one of the corresponding distribution vertices v1 or v2 is bought after processing the edges.
These vertices get bought if and only if one of the corresponding sets vx or vy remains unpurchased
after processing the variable gadgets. Hence, uc gets bought at a price of 1 if and only if at least one
of the corresponding priceable sets ux or uy has been restricted to price 0. In this way a revenue
of n+ k directly implies an assignment of variables such that k clauses are satisfied.

Finally, in order to satisfy maximum frequency 3, we can modify the construction with one
hyperedge in the distribution gadget to a layered tree construction with more vertices and edges as
shown in Fig. 4. The construction preserves the argument and generates only a constant overhead
in the size of the reduction.

We are now ready to show the APX-hardness proof for StackSC.
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vx

(a)

vx

(b)

Figure 4: Gadget to avoid hyperedges with high frequency. Hyperedges are displayed as boxes,
all vertices have fixed-cost 1. (a) Distribution gadget for non-negated occurrences of a variable x.
(b) Equivalent tree gadget with maximum frequency 3. Edges are considered in order from left to
right.

Proof of Theorem 6: We use the same reduction as for showing NP-hardness, however, we restrict
attention to the special case E3-OCC-MAX-2-SAT, in which each variable appears in exactly three
clauses. Note that by a simple majority vote, we can satisfy at least two literals per variable. As
there are at most two literals in each clause, we can always get at least n satisfied clauses, and
the optimum solution to an instance of E3-OCC-MAX-2-SAT has value between n and 2n2. Now
suppose it is possible to receive a revenue of at least n+ k such that (n+ k)(1 + ε) ≥ n+ k∗. This
means that k + ε(n + k) ≥ k∗. We observed that it is trivial to guarantee k ≥ n, hence we can
bound k + 2εk ≥ k∗. Thus, the existence of a (1 + ε)-approximation for set cover pricing implies a
(1+2ε)-approximation for E3-OCC-MAX-2-SAT. It is, however, known that for any δ < 1/459 this
problem is hard to approximate to within 460

459 − δ unless P=NP [5]. This implies that our pricing
problem is NP-hard to approximate to within 919

918 −ε, for any ε < 1/918, which proves the theorem.
�

Finally, we derive a devastating lower bound on greedy, single-price, and near-uniform price
assignments in StackSC. In particular, we outline an example, with n = k2+k+2 hyperedges and
n+1 vertices, in which both the pricings extract only a constant revenue, while the optimal pricing
gets a revenue of kk. This number must be set as a fixed cost, which dominates the representation
size. This means we get a lower bound on the approximation ratio of 2Ω(|I|), where |I| is the
representation size of the instance.

Theorem 8. The greedy, single-price, and near-uniform price assignments yield an approximation
factor of 2Ω(|I|) for StackSC, where |I| is the size of the representation.

Proof. Our family of instances essentially consists of k layers with k + 1 vertices each, leading to
an exponential increase in fixed costs. An instance for k = 3 is depicted in Fig. 5. The follower
considers hyperedges from left to right. If we set the price of the left priceable vertex to 0, the
follower raises the budgets of the hyperedges with frequency k, and we can obtain an optimal
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Figure 5: Structure of instances of set cover pricing establishing an exponential lower bound for
greedy, single-price, and near-uniform price assignments. Follower considers hyperedges in order
from left to right.

revenue of kk at the right vertex. If, however, we increase the price at the left vertex to 1 or
greater, this results in a revenue of 0 at the right vertex. Thus, none of the mentioned price
assignments can obtain a reasonable approximation guarantee.

Using the distribution construction outlined in the proof of Theorem 6 (Fig. 4 depicts the main
idea of the construction), it is possible to reduce the maximum frequency of any element to 3 with
only a constant overhead in the size of the instance.

4 Conclusions and Open Problems

In this paper we have initiated the study of algorithmic pricing with complex valuation functions
but computationally limited customers in the setting of Stackelberg pricing. We have presented
a number of results on the special cases of knapsack and vertex- or set-cover pricing. There are
a number of obvious open questions directly addressing the results presented here. In particular,
is the knapsack pricing problem APX-hard? Or is it possible to extend our enumeration-based
algorithm to achieve a PTAS? Note, however, that a PTAS cannot be based on near-uniform price
assignments, but necessarily needs to assign a super-constant number of different efficiencies to
a super-constant number of different objects. In the case of set-cover pricing, what is the best
approximation guarantee we can achieve for revenue maximization when elements have frequency
greater than 2? So far, we only know that the problem is APX-hard but do not know of any non-
trivial upper bounds. Finally, are there other interesting problems and general classes of follower
algorithms that allow for exact or near-optimal revenue maximization in polynomial time?
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