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Abstract. In a Stackelberg pricing game a leader aims to set prices on a subset
of a given collection of items, such as to maximize her revenue from a follower
purchasing a feasible subset of the items. We focus on the case of computationally
bounded followers who cannot optimize exactly over the range of all feasible
subsets, but apply some publicly known algorithm to determine the set of items
to purchase. This corresponds to general multi-dimensional pricing assuming that
consumers cannot optimize over the full domain of their valuation functions but
still aim to act rationally to the best of their ability.
We consider two versions of this novel type of Stackelberg pricing games. Assum-
ing that items are weighted objects and the follower seeks to purchase a min-cost
selection of objects of some minimum weight (the MIN-KNAPSACK problem)
and uses a simple greedy 2-approximate algorithm, we show how an extension
of the known single-price algorithm can be used to derive a polynomial-time
(2 + ε)-approximation algorithm for the leader’s revenue maximization problem
based on so-called near-uniform price assignments. We also prove the problem
to be strongly NP-hard.
Considering the case that items are subsets of some ground set which the follower
seeks to cover (the SET-COVER problem) via a standard primal-dual approach,
we prove that near-uniform price assignments fail to yield a good approxima-
tion guarantee. However, in the special case of elements with frequency 2 (the
VERTEX-COVER problem) it turns out that exact revenue maximization can be
done in polynomial-time. This stands in sharp contrast to the fact that revenue
maximization becomes APX-hard already for elements with frequency 3.

1 Introduction

The problem of multi-dimensional pricing consists of assigning revenue maximizing
prices to a set of distinct items given information about the preferences of potential cus-
tomers. A natural way to describe consumer preferences is via valuation functions that
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map subsets of items to non-negative real numbers describing how much a set is valued
by a certain customer. Given fixed item prices a rational customer acting according to
quasi-linear utilities chooses to purchase the subset of items maximizing her utility, i.e.,
the difference between her value for the set and the sum of prices of items contained in
it. It is known that general multi-dimensional pricing with unlimited supply of each item
allows polynomial-time approximation algorithms achieving ratios that are logarithmic
in the number of customers or linear in the number of distinct items via considering
only single-price solutions [4, 8]. Lower bounds of the same order of magnitude have
also been proven for approximation guarantees in both parameterizations [7, 14].

For the known algorithmic results it is sufficient that valuation functions can be
accessed via demand oracles, i.e., consumers are treated as black boxes that can answer
the question: “Given some vector of prices, which set of items would you choose to
buy?” But how much can it help us to have more detailed information about the structure
of customer preferences? If the number of customers is large, unfortunately, the answer
is “not at all” as follows readily from the known lower bounds, which hold for special
cases of the problem in which the exact preferences can be elicited via demand queries.
However, the situation is different when the number of distinct customers is small.

In a 2-player Stackelberg Pricing Game, named after the underlying market model
due to Heinrich Freiherr von Stackelberg [27], we are given a collection of items, some
of which have fixed-costs. A so-called leader may assign prices to the remaining items.
A follower then purchases a feasible set of items of minimum cost and pays the leader
for the priceable items in the set. This problem is equivalent to multi-dimensional pric-
ing with a single follower if the follower’s feasible sets are unrestricted. However, a
standard assumption when considering Stackelberg games is that the follower has to
be able to optimize in polynomial time over her feasible sets. As an example, think of
items as edges in a graph and the follower’s feasible sets as all possible paths connect-
ing some vertices s and t. For some kinds of followers, e.g., buying a min-cost vertex
cover in a bipartite graph, it has been shown that improved approximation guarantees
are possible [8].

In this paper we initiate the study of a closely related question: What if the follower
is unable to exactly optimize over her feasible sets, because the problem is computa-
tionally hard, but is still guaranteed to act rationally to the best of her ability? More for-
mally, we will assume that when prices have been fixed the follower applies a publicly
known approximation algorithm to find a near-optimal feasible set of items to purchase.
This assumption is quite reasonable when followers are actually software agents with
known implementation details. To the best of our knowledge, this is the first analysis of
multi-dimensional pricing with follower preferences that are neither single-minded or
unit-demand, nor expressible as exact optimization over the full domain of the valua-
tion function. Before describing our results in detail, we review some important related
work and introduce the notation used throughout the paper.

Related Work. Algorithmic aspects of multi-dimensional pricing problems, which are
important in the context of pure optimization as well as the design of revenue-maximizing
auction mechanisms [3], were first studied by Aggarwal et al. [1] and Guruswami et al.
[20]. Subsequently, quite a number of improved algorithmic results for special cases of



the problem [2, 9, 12, 13, 15, 16, 21] and complexity theoretic lower bounds [7, 14, 10]
have been derived.

Our introductory example of shortest-path Stackelberg pricing was first introduced
by Labbé et al. [23], who derived a bi-level LP formulation of the problem and proved
NP-hardness. Subsequently, Roch et al. [24] presented a first polynomial time approx-
imation algorithm with a provable (logarithmic) approximation guarantee. More re-
cently, Cardinal et al. [11] investigated the corresponding minimum spanning tree game,
proving that this version of the problem is APX-hard and that the very simple single-
price algorithm achieves a logarithmic approximation guarantee. Finally, Briest et al.
[8] extended the analysis of the single-price algorithm to Stackelberg pricing in general.
Stackelberg pricing in which the follower purchases a single-source shortest path tree
has been considered in [6].

Stackelberg pricing can also be considered with objectives other than revenue max-
imization. When prices are tolls on network arcs the problem of congestion minimiza-
tion has received considerable attention. Karakostas and Kolliopoulos [22], Fleischer,
Jain and Mahdian [17], Fleischer [18] and Swamy [25] show how tolls can be used to
enforce low-congestion Nash equilibria in selfish network routing games.

Preliminaries. In this paper we consider games falling in the following general class.
There are two players in the game, one leader and one follower. There is also a set of
items I that is partitioned into fixed-cost itemsF and priceable itemsP . Each fixed-cost
item i ∈ F has a fixed-cost c(i) ≥ 0. For each priceable item i ∈ P the leader can spec-
ify a price p(i) ≥ 0. The follower has a set S ⊂ 2I of feasible subsets and is interested
in buying some subset in S. The cost of a subset S ∈ S is given by the cost of fixed-cost
items and the price of priceable items: cost(S) =

∑
i∈S∩F c(i) +

∑
i∈S∩P p(i). The

revenue of the leader from subset S is given by the prices of the priceable items that
are included in S, that is, r(S) =

∑
i∈S∩P p(i). We let SA(p) be the feasible subset in

S chosen by the follower when she uses polynomial-time algorithm A given prices p.
Naturally, the follower would like A to return the minimum-cost subset in S, but this
could be a hard task to solve in polynomial-time. We capture this intuition by making
no assumption on optimality of the algorithm: A can return a suboptimal subset in S.
Our interest is to find the pricing function p∗ for the leader that generates maximum
revenue when the follower uses algorithm A, i.e., p∗ ∈ arg maxp r(SA(p)). We denote
this maximum revenue by r∗. To guarantee that the revenue is bounded and the opti-
mization problem is non-trivial, we assume that there is at least one feasible subset that
is composed only of fixed-cost items and that the follower algorithm outputs it under
certain circumstances. Towards this aim, we further assume that for each priceable item
there is a threshold price above which no subset including it will be output by the fol-
lower algorithm. This last assumption holds for every follower algorithm with bounded
approximation ratio.

In the above class of games, we will consider the MIN-KNAPSACK pricing prob-
lem and the SET-COVER pricing problem. In the knapsack pricing problem, the set of
items is a set of weighted objects O. A subset of O is feasible if the total weight of the
object comprising it is at least a given bound W . We will refer to the revenue optimiza-
tion problem for the knapsack pricing problem by STACKKP. In the set cover pricing
problem, following our terminology, given some ground set to be covered, every item



corresponds to a given subset of the ground set. A subset of items is feasible for the
follower whenever it covers all the elements of the ground set. We will refer to the rev-
enue optimization problem for the set cover pricing problem by STACKSC and denote
the special case of vertex cover pricing by STACKVC.

Contributions. The focus of this paper are followers applying approximation algo-
rithms that are (i) structurally simple and (ii) sufficiently suboptimal to ensure that
revenue maximization has to take into account the algorithm’s exact structure. We first
consider STACKKP and assume that the follower uses the well known greedy algorithm
(see Section 2) to compute a 2-approximate solution to the minimization version of the
knapsack problem she needs to solve. Even though structurally quite simple, this prob-
lem seems to capture many of the fundamental problems of Stackelberg pricing with
computationally limited followers.

We show that in this case a careful adaptation of the known single-price strategy
termed near-uniform pricing, which essentially assigns a single price to a subset of
items and removes the remaining ones from the market by assigning a sufficiently high
price (see Section 2 for a formal definition), can be used to approximate optimal revenue
in most of the solution space. Adding some fairly standard enumeration techniques we
are able to derive a polynomial-time (2 + ε)-approximation for the revenue maximiza-
tion problem. The main technical difficulty lies in the fact that our analysis needs to
argue about the exact computation done by the follower for a given price vector rather
than using some global optimality condition. We point out that our algorithm is best
possible among all algorithms based on near-uniform price assignments. Finally, we
show that the revenue maximization problem in this setting is strongly NP-hard.

We then turn our attention to STACKSC and assume that the follower is using the
primal-dual schema based approximation algorithm (see Section 3) to find a selection of
sets to purchase. We view the problem in its equivalent formulation of VERTEX-COVER
in hypergraphs and start by investigating the special case of regular VERTEX-COVER
in standard graphs. We prove that while near-uniform price assignments cannot achieve
better than logarithmic approximation guarantee in this case, exploiting the algorithm’s
structure nevertheless allows for exact revenue maximization in polynomial time. To
the best of our knowledge, this is the second example of polynomial-time revenue max-
imization being possible for a class of Stackelberg pricing games. Previously, it was
shown that games with a follower purchasing a min-cost vertex cover in a bipartite graph
in the special case that all priceable vertices are located on one side of the bipartition al-
lows for polynomial-time revenue maximization [8]. It would be very interesting to see
whether there is a deeper connection between these two problems. Turning to general
hypergraphs it turns out that revenue maximization (STACKSC) becomes hard already
with edges of cardinality 3 (or elements of frequency 3 in the SET-COVER view) and
is APX-hard in general. This is quite surprising given that the follower’s primal-dual
algorithm achieves approximation guarantee f for any frequency f , i.e., the approx-
imation complexity of the underlying problem scales quite smoothly. We also argue
that in this general case neither near-uniform price vectors nor our algorithm from the
VERTEX-COVER case can guarantee any sub-exponential approximation ratio.

Knowing the Follower’s Algorithm. A central assumption in our analysis is that the
leader has full knowledge of the follower’s algorithm. This assumption might appear



quite strong. It turns out, however, that this non-black-box attitude on the leader’s side
is necessary to achieve any reasonable approximation guarantees. Suppose the leader
only knows the approximation guarantee of the follower’s algorithm A and is given
black-box-access to it, but no specific details are revealed. In this case it is easy to argue
that for both STACKKP and STACKVC no algorithm can achieve a finite approximation
guarantee. We omit the simple proof of the following fact due to space limitations.

Proposition 1. For any constant ρ > 1, there are instances of STACKKP and STACKVC
in which no leader’s algorithm can achieve a finite approximation guarantee given only
information about ρ and black-box-access to the follower’s ρ-approximation algorithm.

Similarly, it is necessary to assume that the follower decides on the algorithm to be
used in advance. If the follower is allowed to choose the algorithm (from a known set
of alternatives) once the leader has set the prices, then an impossibility result similar to
the one above applies.

2 Knapsack Pricing

In the MIN-KNAPSACK problem we are given a set O of n objects, some of them with
fixed cost and some priceable. Each object o ∈ O has weight w(o) ∈ N and we are
given an integer weight bound W . Following the general framework given above, each
subsetX ofO has a cost which is defined as the sum of the cost of the fixed-cost objects
in X and the prices of the priceable objects in X . The follower wants to purchase a set
of objects of minimum cost whose weight is at least W . We assume that the follower
uses the standard greedy algorithm outlined below to find an approximation of such a
minimum-cost set.

The Follower’s Algorithm. An object’s cost-efficiency (below referred to as efficiency
for brevity) is defined as φ(o) = c(o)/w(o) or φ(o) = p(o)/w(o), depending on
whether it is fixed-cost or priceable. Algorithm 1 below proceeds as follows. First, order
all objects by non-decreasing efficiency (breaking ties by decreasing weight). Then add
objects to the knapsack in this order. If an object makes the weight of the solution it
completes at least W , remember this (feasible) solution and discard the object. Finally,
return the best solution found. Note that we assume that ties are broken according to de-
creasing weight, i.e., larger objects are considered first given identical efficiency. This
is a natural tie breaking rule, as it aims at minimizing the overlap of objects that exceed
the knapsack’s remaining capacity when they are considered.

Transforming the Optimal Solution. Let p∗ be the optimal price assignment and P∗
be the set of priceable objects that are selected by Algorithm 1 given these prices.

The key ingredient for our approximation algorithm for knapsack pricing is the
observation that price assignments that result in a large number of priceable objects
being bought by the follower can be approximated by almost uniform price assignments
at the expense of reducing overall revenue by no more than a constant factor.

Definition 1. We call a price assignment p near-uniform, if there exists a single effi-
ciency φ > 0, such that p(o) = w(o) · φ or p(o) = +∞ for every o ∈ P .



Algorithm 1: The greedy approximation algorithm for MIN-KNAPSACK

Let o1, o2, . . . , on be the objects ordered by non-decreasing efficiency, i.e.,
φ(o1) ≤ · · · ≤ φ(on).
X ← Y ← ∅.
cY ← +∞.
for i = 1, . . . , n do

X ← X ∪ {oi}.
if w(X) ≥W then

if cost(X) < cY then
Y ← X .
cY ← cost(X).

X ← X \ {oi}.

Return Y .

We call an object b blocking, if the weight of the current solution exceeds W when
it is added by the greedy algorithm. Let B = {b1, . . . , bl} denote the blocking objects
with φ(b1) ≤ · · · ≤ φ(bl). Since every blocking object corresponds to a unique solution
checked by the greedy algorithm, our approach to relating the algorithm’s behavior on
two different price vectors is to relate the sets of blocking objects in both cases.

Theorem 1. Let p∗ be the optimal price assignment for a given STACKKP instance
and r∗ the resulting revenue. Furthermore, assume that given prices p∗ the follower
purchases at least k ∈ N priceable objects, i.e., |P∗| ≥ k. Then there exists a near-
uniform price assignment p̃ with revenue at least r∗(k − 1)/(2k).

Proof. Define w∗ =
∑
o∈P∗ w(o), r∗ =

∑
o∈P∗ p

∗(o) and let φ∗ave = r∗/w∗. Let c∗

denote the total cost of the solution bought by the follower given prices p∗. We define
a near-uniform price assignment p̃ by p̃(o) = (1/2)w(o)φ∗ave for all o ∈ P∗, and
p̃(o) = +∞ else.

There is a one-to-one correspondence between the blocking objectsB = {b1, . . . , bl}
given prices p∗ and solutions checked by the greedy algorithm. Because of the fact that
blocking objects do not influence the set of solutions checked by the greedy algorithm
(beyond the one they belong to themselves), it is w.l.o.g. to assume that there is at most
a single priceable blocking object given prices p∗, and if it exists it belongs to P∗.

Proving the claimed revenue guarantee for p̃ consists of two parts. First, we show
that with prices p̃ the blocking objects of efficiency less than φ∗ave/2 are still blocking
with with prices p̃ and their corresponding solutions have cost greater than c∗−(1/2)r∗.
We then show that among the solutions with blocking objects of efficiency greater or
equal than φ∗ave/2 there exist some with cost at most c∗ − (1/2)r∗ and the cheapest
among these contains priceable objects of value at least r∗(k − 1)/(2k).

We first deal with blocking objects with efficiency φ(bj) < φ∗ave/2 and argue that
they remain blocking. Consider bj with φ(bj) = c(bj)/w(bj) < φ∗ave/2. Since we
have at most one blocking priceable object (of efficiency at least φ∗ave), bj must be
fixed-cost. Given prices p∗, let s<j be the remaining unfilled capacity of the knapsack
when bj is considered and let w<j and r<j denote the weight of priceable objects in



the knapsack at this point and their total price, respectively. Similarly, let w>j and r>j
denote the weight and price of priceable objects from P∗ that are considered after bj
and let φ>j = r>j/w>j be their average efficiency. Finally, define f>j to be the total
cost of fixed-cost objects in the optimal solution with higher efficiency than bj .

We are going to argue that moving all priceable objects to a position behind bj
(as happens with near-uniform pricing p̃) will not cause bj to become non-blocking.
First observe that r<j < w<jφ

∗
ave/2 ≤ w∗φ∗ave/2 = (1/2)r∗ and, thus, we have that

w>jφ>j > (1/2)r∗. By the fact that bj is not part of the cheapest solution, we know
that f>j + w>jφ>j ≤ c(bj). It follows that

w>jφ>j ≤ c(bj)− f>j ≤ c(bj)− (s<j − w>j)φ(bj), since f>j ≥ (s<j − w>j)φ(bj)
= (w(bj)− s<j + w>j)φ(bj).

Assume now that bj becomes non-blocking if we remove total weight w<j from the
knapsack, i.e., w(bj)− s<j ≤ w<j . We may then write that

φ>j ≤
(

1 +
w(bj)− s<j

w>j

)
φ(bj) ≤

(
1 +

w<j
w>j

)
φ(bj).

Using that w>jφ>j > (1/2)r∗ and φ(bj) < (1/2)φ∗ave we obtain 1
2r
∗ < w>jφ>j ≤

(w>j +w<j)φ(bj) < 1
2w
∗φ∗ave = 1

2r
∗, a contradiction. We conclude that bj remains a

blocking element.
Note, that the fact that blocking objects of efficiency at most φ∗ave/2 remain block-

ing also implies that no non-blocking objects with efficiency below φ∗ave/2 can become
blocking, since under prices p̃ the knapsack contains less total weight when such an ob-
ject is considered. Also observe that given prices p̃, the fact that r<j < (1/2)r∗ implies
that every solution found by the greedy algorithm with a blocking object bj of efficiency
less than φ∗ave/2 has total cost greater than c∗ − (1/2)r∗.

We continue by considering blocking objects with efficiency φ(bj) ≥ φ∗ave/2. If P∗
did not contain a blocking object given prices p∗, then changing prices to p̃ does not
change the set of blocking objects of efficiency at least φ∗ave/2. To see this, note that
with prices p̃ the knapsack’s remaining capacity is smaller than before at any point, so
no previously blocking object can become non-blocking. On the other hand, all the non-
blocking objects left enough room to pack the objects from P∗, so changing the order
in which they are considered cannot create new blocking objects either. It follows that
all solutions found by the greedy algorithm with blocking objects of efficiency at least
φ∗ave/2 contain priceable objects with a total price of r∗/2. The previously cheapest
solution is still found and has cost c∗ − (1/2)r∗.

If P∗ did contain a blocking element with prices p∗, but does not given prices p̃,
we consider two cases. If the previously optimal solution is still found by the greedy
algorithm, the same argumentation as above guarantees revenue r∗/2. If it is not, it
must be the case that some previously non-blocking element has now become blocking.
Consider the first such element bj . Since all objects in the knapsack at the time bj is
considered and bj itself were part of the cheapest solution given prices p∗, we have
again found a solution of total cost at most c∗ − (1/2)r∗. Since all priceable objects
are in the knapsack at this point and remain in it, a lower bound of r∗/2 on the revenue
follows immediately.



Finally, assume that P∗ contains a blocking element with both prices p∗ and p̃. In
this case, the solution with priceable blocking object is guaranteed to have cost at most
c∗− (1/2)r∗. By the algorithm’s tie-breaking rule every solution with a blocking object
of efficiency larger than φ∗ave/2 found at a later time contains all but the smallest object
from P∗ and, by the fact that |P∗| ≥ k, contains priceable objects of total value at least
(1− 1/k)w∗(1/2)φ∗ave = r∗(k − 1)/(2k). ut

Algorithm 2: A (2 + ε)-approximation algorithm for STACKKP
Let 1 be the minimum, Φ the maximum efficiency of fixed-cost objects, W the knapsack
capacity,

p
1 + ε/2− 1 ≥ δ > 0, rmax ← 0.

Choose k ≥ (2(2 + ε))/(2 + ε− 2(1 + δ)2) and let
Λ = {φ(o) | o ∈ F} ∪ {(1 + δ)j | j = 0, . . . , dlog1+δ Φe}.
foreach set S ⊆ P of priceable objects with |S| ≤ k − 1 do

foreach price assignment p with p(o)/w(o) ∈ Λ for all o ∈ S and p(o) = +∞ else
do

Let r be the resulting revenue.
rmax ← max{rmax, r}.

foreach 0 ≤ i ≤ dlog1+δ Φe do
Let φi = (1 + δ)i.
foreach 0 ≤ j ≤ dlog1+δW e do

Let S be a set of at least k priceable objects with total weight between (1 + δ)j

and (1 + δ)j+1, if such set exists, else S = ∅.
Set p(o) = w(o)φi for all o ∈ S and p(o) = +∞ for all other priceable objects.
Let r be the resulting revenue.
rmax ← max{rmax, r}.

Return rmax.

Approximation Algorithm for Revenue Maximization and Hardness Result. We
are now ready to present our (2 + ε)-approximate algorithm for STACKKP. Algorithm
2 proceeds in two stages. First it checks for some given constant k ∈ N all possible
price assignments to sets of at most k − 1 priceable objects. Then for each possible
weight w, it finds a set with k or more priceable objects with total weight (roughly) w
(if such a set exists), and considers all near-uniform price assignments to that set.

Note that in both stages, checking all possible efficiencies cannot be done in poly-
nomial time. Instead we restrict our attention to the efficiencies of the fixed-cost objects
plus all powers of (1 + δ) for some δ > 0 to guarantee that we efficiently find a near-
optimal price assignment in which all objects are considered by the greedy algorithm in
the right order. Similarly, in the second stage we cannot enumerate all possible weights
for the objects in our near-uniform price assignments, but again have to settle for powers
of (1 + δ). The proof of Theorem 2 is omitted due to space limitations.

Theorem 2. Algorithm 2 computes in polynomial time a (2 + ε)-approximation for
STACKKP.



We mention that we can provide an instance showing that the above analysis is
essentially tight. Finally, it turns out that revenue maximization against a follower using
Algorithm 1 is strongly NP-hard. Details are left for the full version of this paper.

Theorem 3. STACKKP is strongly NP-hard.

3 Set Cover Pricing

In this section we consider the vertex and set cover pricing problems. In the simplest
case the follower wants to purchase a minimum vertex cover of a graph G = (V,E).
Let V = P ∪ F , where as above F and P denote the set of fixed-cost and priceable
vertices respectively. More generally, for set cover we consider an equivalent formula-
tion of vertex cover in hypergraphs. Namely, given the universe and its subsets of the
set cover instance, we define an hypergraph where the vertices are the universe subsets
and hyperedges are the elements of the universe. In this case there can be hyperedges
in E connecting more than two vertices. We assume that the follower uses the standard
primal-dual algorithm to find an approximation to the minimum vertex cover.

The Follower’s Algorithm. The algorithm iteratively considers uncovered edges and
raises budgets at the incident vertices until (at least) one of the vertices becomes tight.
The algorithm is given for the case of regular vertex cover as Algorithm 3, for more
details see [26, Ch. 15].

Algorithm 3: Primal-dual algorithm of the follower
γe ← 0 for all edges e ∈ E
For all v ∈ V let c′(v)← c(v) if v ∈ F and c′(v)← p(v) otherwise
Fix an order of edges e1, . . . , em
for i = 1, . . . ,m do

Let ei = (u, v) and σu ← c′(u)−
P
e : e=(u,v′) γe

σv ← c′(v)−
P
e : e=(u′,v) γe

γe ← min(σu, σv)

Add every vertex v with c′(v) =
P
e : e=(u,v) γe to the cover.

Revenue Maximization for Vertex Cover. At first, let us consider the approximation
ratio of single-price and near-uniform price assignments. For the latter, as from Defini-
tion 1, we have a φ ∈ R+

0 and p(v) ∈ {φ,∞} for all v ∈ P . It turns out that for these
pricings there is a simple logarithmic lower bound (proof omitted).

Theorem 4. Single-price and near-uniform price assignments yield an approximation
factor of Ω(log n) for STACKVC, where n is the number of priceable vertices.

Instead, we present a natural greedy algorithm to compute optimal prices for the
seller. It simulates a run of the primal-dual algorithm and raises prices of the priceable
vertices in the same manner as the dual budgets γ are raised by the follower. In this way
the algorithm greedily tries to sell a vertex to the follower as soon as she is willing to
pay for it.



Algorithm 4: Greedy pricing for STACKVC
γe ← 0 for all edges e ∈ E
for each edge e = e1, e2, . . . , em in the order of the follower do

if e = (u, v) is incident to a priceable vertex v then
γe ← c(u)−

P
e′:e′=(u,v′) γe′

p(v)←
P
e′:e′=(u′,v) γe′

else
σu ← c(u)−

P
e′:e′=(u,v′) γe′

σv ← c(v)−
P
e′:e′=(u′,v) γe′

γe ← min(σu, σv)

Theorem 5. Algorithm 4 solves STACKVC in polynomial time.

Proof. Consider an optimum pricing p∗, which yields a strictly larger revenue than the
greedy pricing pg computed with our algorithm. For such a given set of prices p∗, we
denote by γ∗e the dual contribution of edge e, which we call the budget of edge e. This
contribution is the result of applying the follower’s algorithm to the instance using p∗.
We restrict our attention to an optimal pricing p∗ for which the follower purchases all
priceable vertices. The existence of such a pricing follows from the next lemma (proof
omitted).

Lemma 1. Given any pricing p, there is a pricing pl with pl(v) ≤ p(v) for all v ∈
P , for which the leader obtains at least as much revenue as for p and the follower
purchases every vertex v ∈ P .

Now consider the smallest i′, for which edge e′ = ei′ = (u, v′) has γ∗e′ 6= γe′ . It is
easy to note that this edge must be incident to a priceable vertex v′, and the difference
in budgets is a result from setting different prices. As in both p∗ and pg all vertices are
bought by the follower, it must be the case that p∗(v) < pg(v), and hence γ∗e′ < γe′ .
We now compare the revenue of pricing p∗ to a pricing p′ with p′(v) = p∗(v) for every
vertex v 6= v′, and for which p′(v′) = p∗(v′) + γe′ − γ∗e′ . In p′ the budgets γ′e are
equivalent to γe (i.e., the budgets generated by the greedy pricing pg) for every edge
e1, . . . , ei′−1 and also ei′ = e′.

We call δj(v) =
∑
ei:ei=(v,u),i≤j γ

′
ei
− γ∗ei

the reservation that is created by p∗ at
vertex v at the end of processing edge ej . The budget of e′ is raised to a smaller amount
in p∗ than in p′, so after processing e′ there is positive reservation at the other endpoint
u of e′, i.e. δi

′
(u) = δi

′
(v′) at vertex u. No other vertex except u and v′ has reservation

at this point, so it holds that
∑
v 6=v′ |δi

′
(v)| ≤ δi′(v′). This will be our invariant, and in

the following we prove it for the remaining edges j > i′ and the remaining iterations of
the algorithm with pricing p′ (proof omitted).

Lemma 2. For any iteration j ≥ i′ we have that
∑
v 6=v′ |δj(v)| ≤ δi

′
(v′).

The lemma above shows that the sum of absolute values of reservation at all vertices
except v′ at any point during the remaining runs of the followers algorithm is at most



the initial reservation δi
′
(v′). Note that v′ is bought in both cases. In p∗ all priceable

vertices are bought by the follower, but this might not be true for p′ and vertices v 6= v′.
p′ might lose revenue there. By Lemma 1, this can be fixed by reducing the price in
p′ of every priceable vertex to the sum of the budgets of incident edges. Note that in
p∗ every vertex was bought, which implies every price p∗(v) =

∑
e:e=(u,v) γ

∗
e is also

the sum of budgets of incident edges. As the total absolute reservation in the end of the
algorithm is at most δi

′
(v′), the total decrease in revenue that is lost on vertices v 6= v′

in this step is at most δi
′
(v′). This is exactly the revenue surplus that p′ generates over

p∗ at vertex v′. Thus, pricing p′ yields at least as much revenue as p∗. This implies
that we can transform any pricing by iteratively adjusting the prices without decreasing
revenue, such that all budgets of the edges are equal to those generated by the greedy
pricing pg . In particular, this implies that pg is an optimal pricing. ut

The next proposition, whose proof is left for the full version of this paper, shows that
knowing the order of the edges when pricing for the primal-dual algorithm in STACKVC
is essential.

Proposition 2. For every constant ε > 0, there exists an instance of STACKVC such
that if the order of the edges in the follower’s primal-dual 2-approximation algorithm
is unknown to the leader, then every pricing p yields an approximation ratio of Ω(1/ε).

Hardness Results. The main argument in the previous section works only for the case
of regular vertex cover. Let us turn to the case of set cover with elements contained
in at least three sets, i.e. elements with frequency at least three. We understand them
as hyperedges incident to more than two vertices. In this case it might be profitable to
reduce the price for a vertex from the value in the greedy pricing. Indeed, we show that
set cover pricing problem is much harder to solve. The proof is omitted due to space
limitations.

Theorem 6. STACKSC is APX-hard even if all elements have maximum frequency 3
and all fixed-cost sets have cost 1.

Finally, we derive a devastating lower bound on greedy, single-price, and near-
uniform price assignments in set cover pricing. Once again, we leave the proof for
the full version of this paper.

Theorem 7. The greedy, single-price, and near-uniform price assignments yield an ap-
proximation factor of 2Ω(|I|) for STACKSC, where |I| is the size of the representation.
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