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Abstract. Modularity is a recently introduced quality measure for graph clusterings. It has immediately received
considerable attention in several disciplines, and in particular in the complex systems literature, although its properties
are not well understood. We study the problem of finding clusterings with maximum modularity, thus providing
theoretical foundations for past and present work based on this measure. More precisely, we prove the conjectured
hardness of maximizing modularity both in the general case and with the restriction to cuts, and give an Integer
Linear Programming formulation. This is complemented by first insights into the behavior and performance of the
commonly applied greedy agglomaration approach.

1 Introduction

Graph clustering is a fundamental graph-theoretic problem in data and, more specifically, network analy-
sis [1]. Studied for decades and applied in many settings, it is currently popular as the problem of partitioning
networks into communities. In this line of research, a novel graph clustering index called modularity has
been proposed recently [2]. The rapidly growing interest in this measure prompted a series of follow-up stud-
ies on various applications and possible adjustments (see, e.g., [3,4,5,6,7]). Moreover, an array of heuristic
algorithms has been proposed to optimize modularity. These are based on a greedy agglomeration [8,9], on
spectral division [10,11], simulated annealing [12,13], or extremal optimization [14] to name but a few promi-
nent examples. While these studies often provide subjective plausibility arguments in favor of the resulting
partitions, we know of only one attempt to characterize properties of clusterings with maximum modular-
ity [3]. In particular, none of the proposed algorithms has been shown to produce partitions that are optimal
with respect to modularity.

In this paper we study the problem of finding clusterings with maximum modularity, thus providing theo-
retical foundations for past and present work based on this measure. More precisely, we proof the conjectured
hardness of maximizing modularity both in the general case and the restriction to cuts, and give an integer
linear programming formulation to facilitate optimization without enumeration of all clusterings. Since the
most commonly employed heuristic to optimize modularity is based on greedy agglomeration, we investigate
its worst-case behavior. In fact, we give a graph family for which the greedy approach yields an approxima-
tion factor no better than two. In addition, our examples indicate that the quality of greedy clusterings may
heavily depend on the tie-breaking strategy utilized. In fact, in the worst case, no approximation factor can
be provided. These performance studies are concluded by partitioning some previously considered networks
optimally, which does yield further insight.

This paper is organized as follows. Section 2 contains brief preliminaries, formulations of modularity
and an ILP formulation of the problem. Basic and counterintuitive properties of modularity are observed in
Sect. 3. Our N P -completeness proofs are given in Sect. 4, followed by an analysis of the greedy approach in
Sect. 5. Our work is concluded by characterizations of revisited examples from previous work in Sect. 6 and
a brief discussion in Sect. 7.

? This work was partially supported by the DFG under grants BR 2158/2-3, WA 654/14-3, Research Training Group 1042 ”Explo-
rative Analysis and Visualization of Large Information Spaces” and the EU under grant DELIS (contract no. 001907).



2 Preliminaries

Throughout this paper, we will use the notation of [15]. More precisely, we assume that G = (V,E) is an
undirected connected graph with n := |V | vertices, m := |E| edges. Denote by C = {C1, . . . ,Ck} a partition
of V . We call C a clustering of G and the Ci, which are required to be non-empty, clusters; C is called trivial if
either k = 1 or k = n. We denote the set of all possible clusterings of a graph G with A (G). In the following, we
often identify a cluster Ci with the induced subgraph of G, i. e., the graph G[Ci] := (Ci,E(Ci)), where E(Ci) :=
{{v,w} ∈ E : v,w ∈ Ci}. Then E(C ) :=

⋃k
i=1 E(Ci) is the set of intra-cluster edges and E \E(C ) the set of

inter-cluster edges. The number of intra-cluster edges is denoted by m(C ) and the number of inter-cluster
edges by m(C ). The set of edges that have one end-node in Ci and the other end-node in C j is denoted by
E(Ci,C j).

2.1 Definition of Modularity

Modularity is a quality index for clusterings. Given a simple graph G = (V,E), we follow [2] and define the
modularity q(C ) of a clustering C as

q(C ) := ∑
C∈C

[
|E(C)|

m
−
(
|E(C)|+∑C′∈C |E(C,C′)|

2m

)2
]

. (1)

Note that C′ ranges over all clusters, so that edges in E(C) are counted twice in the squared expression. This
is to adjust proportions, since edges in E(C,C′), C 6= C′, are counted twice as well, once for each ordering of
the arguments. We prefer to rewrite Equation (1) into the more informative

q(C ) = ∑
C∈C

[
|E(C)|

m
−
(

∑v∈C deg(v)
2m

)2
]

, (2)

which reveals an inherent trade-off: to maximize the first term, many edges should be contained in clusters,
whereas the minimization of the second term is achieved by splitting the graph into many clusters with small
total degrees. Note that the first term |E(C )|/m is also known as coverage [15].

2.2 Maximizing Modularity via Integer Linear Programming

The problem of maximizing modularity can be cast into a very simple and intuitive integer linear program
(ILP). Given a graph G = (V,E) with n := |V | nodes, we define n2 decision variables Xuv ∈ {0,1}, one for
every pair of nodes u,v ∈V . The key idea is that these variables can be interpreted as an equivalence relation
(over V ) and thus form a clustering. In order to ensure consistency, we need the following constraints, which
guarantee

reflexivity ∀u : Xuu = 1 ,

symmetry ∀u,v : Xuv = Xvu , and

transitivity ∀u,v,w :


Xuv +Xvw−2 ·Xuw ≤ 1
Xuw +Xuv−2 ·Xvw ≤ 1
Xvw +Xuw−2 ·Xuv ≤ 1

.

The objective function of modularity then becomes

1
2m ∑

(u,v)∈V 2

(
Euv−

deg(u)deg(v)
2m

)
Xuv ,

with Euv =

{
1 , if (u,v) ∈ E
0 , otherwise

.

Note that this ILP can be simplified by pruning redundant variables and constraints, leaving only
(n

2

)
variables

and
(n

3

)
constraints.



3 Fundamental Observations

In the following, we identify basic structural properties that clusterings with maximum modularity fulfill. We
first focus on the range of modularity, for which Lemma 1 gives the lower and upper bound.

Lemma 1. Let G be an undirected and unweighted graph and C ∈ A (G). Then −1/2≤ q(C )≤ 1 holds.

Lemma 1 is proven by minimizing modularity, for details see [16]. As a result, any bipartite graph Ka,b with
the canonic clustering C = {Ca,Cb} yields the minimum modularity of −1/2. The upper bound is obvious
from our reformulation in Equation (2), and has been observed previously [3,4,17]. It can only be attained in
the specific case of a graph with no edges, where coverage is commonly defined to be 1. The following four
results strongly characterize the rough structure of a clustering with maximum modularity.

Corollary 1. Isolated nodes have no impact on modularity.

Corollary 1 directly follows from the fact that modularity depends on edges and degrees, thus, an isolated
node does not contribute, regardless of its association to a cluster. Therefore, we exclude isolated nodes from
further consideration in this work, i. e., all nodes are assumed to be of degree greater than zero.

Lemma 2. A clustering with maximum modularity has no cluster that consists of a single node with degree 1.

Lemma 3. There is always a clustering with maximum modularity, in which each cluster consists of a con-
nected subgraph.

The proofs of Lemmas 2 and 3 can be found in [16] and are straightforward. Both rely on the fact that a strict
increase in modularity is possible, if they are violated.

Corollary 2. A clustering of maximum modularity does not include disconnected clusters.

Corollary 2 directly follows from Lemma 3 and from the exclusion of isolated nodes. Thus, the search for an
optimum can be restricted to clusterings, in which clusters are connected subgraphs and there are no clusters
consisting of nodes with degree 1.

3.1 Counterintuitive Behavior

In the last section, we listed some intuitive and desirable properties like connectivity within clusters for
clusterings of maximum modularity. However, due to the enforced balance between coverage and the sums
of squared cluster degrees, counter-intuitive situations arise. These are non-locality, scaling behavior, and
sensitivity to satellites.

(a) (b)

Fig. 1. Non-local behavior. Clusters are represented
by colors.

Non-Locality. At a first view, modularity seems to be a lo-
cal quality measure. Recalling Equation (2), each cluster con-
tributes separately. However, the example presented in Fig-
ures 1(a) and 1(b) exhibit a typical non-local behavior. In these
figures, clusters are represented by colors. By adding an addi-
tional node connected to the leftmost node, the optimal cluster-
ing is altered completely. According to Lemma 2 the additional
node has to be clustered together with the leftmost node. This leads to a shift of the rightmost black node
from the black cluster to the white cluster, although locally its neighborhood structure has not changed.

Sensitivity to Satellites. A clique with leaves is a graph of 2n nodes that consists of a clique Kn and n leaf
nodes of degree one, such that each node of the clique is connected to exactly one leaf node. For a clique,
the trivial clustering with k = 1 has maximum modularity. For a clique with leaves, however, the optimal
clustering changes to k = n clusters, in which each cluster consists of a connected pair of leaf and clique
nodes. Figure 2(a) shows such an example.



(a) (b)

Fig. 2. Scaling behavior. Clusters are represented by
colors.

Scaling Behavior. Figures 2(a) and 2(b) display the scaling be-
havior of modularity. By simply doubling the graph presented
in Figure 2(a), the optimal clustering is altered completely.
While in Figure 2(a) we obtain three clusters each consisting
of the minor K2, the clustering with maximum modularity of
the graph in Figure 2(b) consists of two clusters, each being a
graph equal to the one in Figure 2(a).

This behavior is in line with the previous observations in [3,5], where it was observed that size and
structure of clusters in the optimum clustering depend on the total number of links in the network. Hence,
clusters that are identified in smaller graphs might be combined to a larger cluster in a optimum clustering
of a larger graph. The formulation of Equation 2 mathematically explains this observation as modularity
optimization strives to optimize the trade-off between coverage and degree sums. This provides a rigorous
understanding of the observations made in [3,5].

4 N P -Completeness

It has been conjectured that maximizing modularity is hard [9], but no formal proof was provided to date. We
next show that decision version of modularity maximization is indeed N P -complete.

Problem 1 (MODULARITY) Given a graph G and a number K, is there a clustering C of G, for which
q(C )≥ K?

Note that we may ignore the fact that, in principle, K could be a real number in the range [0,1], because
4m2 · q(C ) is integer for every partition C of G and polynomially bounded in the size of G. Our hardness
result for MODULARITY is based on a transformation from the following decision problem.

Problem 2 (3-PARTITION) Given 3k positive integer numbers a1, . . . ,a3k such that the sum ∑
3k
i=1 ai = kb and

b/4 < ai < b/2 for an integer b and for all i = 1, . . . ,3k, is there a partition of these numbers into k sets, such
that the numbers in each set sum up to b?

We show that an instance A = {a1, . . . ,a3k} of 3-PARTITION can be transformed into an instance (G(A),K(A))
of MODULARITY, such that G(A) has a clustering with modularity at least K(A), if and only if a1, . . . ,a3k can
be partitioned into k sets of sum b = 1/k ·∑k

i=1 ai each.

Fig. 3. An example graph G(A) for the instance A =
{2,2,2,2,3,3} of 3-PARTITION. Node labels indi-
cate the corresponding numbers ai ∈ A.

It is crucial that 3-PARTITION is strongly N P -complete [18],
i.e. the problem remains N P -complete even if the input is rep-
resented in unary coding. This implies that no algorithm can
decide the problem in time polynomial even in the sum of the
input values, unless P = N P . More importantly, it implies that
our transformation need only be pseudo-polynomial.

The reduction is defined as follows. Given an instance A
of 3-PARTITION, construct a graph G(A) with k cliques (com-
pletely connected subgraphs) H1, . . . ,Hk of size a = ∑

3k
i=1 ai

each. For each element ai ∈ A we introduce a single element
node, and connect it to ai nodes in each of the k cliques in
such a way that each clique member is connected to exactly
one element node. It is easy to see that each clique node then
has degree a and the element node corresponding to element
ai ∈ A has degree kai. The number of edges in G(A) is m =
k/2 · a(a + 1). See Figure 3 for an example. Note that the size
of G(A) is polynomial in the unary coding size of A, so that our transformation is indeed pseudo-polynomial.

Before specifying bound K(A) for the instance of MODULARITY, we will show three properties of max-
imum modularity clusterings of G(A). Together these properties establish the desired characterization of
solutions for 3-PARTITION by solutions for MODULARITY.



Lemma 4. In a maximum modularity clustering of G(A), none of the cliques H1, . . . ,Hk is split.

The proof of Lemma 4 can be found in [16]. It is based on the fact that modularity can be increased by a
modification of the clustering, if Lemma 4 is violated. Next, we observe that the optimum clustering places
at most one clique completely into a single cluster.

Lemma 5. In a maximum modularity clustering of G(A), every cluster contains at most one of the cliques
H1, . . . ,Hk.

The proof of Lemma 5 follows the same intuition as that of Lemma 4. It can also be found in [16].
The previous two lemmas show that any clustering can be strictly improved to a clustering that contains

k clique clusters, such that each one completely contains one of the cliques H1, . . . ,Hk (possibly plus some
additional element nodes). In particular, this must hold for the optimum clustering as well. Now that we know
how the cliques are clustered we turn to the element nodes.
As they are not directly connected, it is never optimal to create a cluster consisting only of element nodes.
Splitting such a cluster into singleton clusters, one for each element node, reduces the squared degree sums
but keeps the edge coverage at the same value. Hence, such a split yields a clustering with strictly higher
modularity. The next lemma shows that we can further strictly improve the modularity of a clustering with a
singleton cluster of an element node by joining it with one of the clique clusters.

Lemma 6. In a maximum modularity clustering of G(A), there is no cluster composed of element nodes only.

Closely following the proofs of the previous two lemmas, we obtain the proof of Lemma 6 in [16].
We have shown that for the graphs G(A) the clustering of maximum modularity consists of exactly k

clique clusters, and each element node belongs to exactly one of the clique clusters. Combining the above
results, we now state our main result:

Theorem 3. MODULARITY is strongly N P -complete.

Proof For a given clustering C of G(A) we can check in polynomial time whether q(C )≥ K(A), so clearly
MODULARITY ∈ N P .

For N P -completeness we transform an instance A = {a1, . . . ,a3k} of 3-PARTITION into an instance
(G(A),K(A)) of MODULARITY. We have already outlined the construction of the graph G(A) above. For
the correct parameter K(A) we consider a clustering in G(A) with the properties derived in the previous lem-
mas, i. e., a clustering with exactly k clique clusters. Any such clustering yields exactly (k−1)a inter-cluster
edges, so the edge coverage is given by

∑
C∈C

|E(C)|
m

=
m− (k−1)a

m
= 1− 2(k−1)a

ka(a+1)
= 1− 2k−2

k(a+1)
.

Hence, the clustering C = (C1, . . . ,Ck) with maximum modularity must minimize deg(C1)2 +deg(C2)2 + . . .+
deg(Ck)2. This requires a distribution of the element nodes between the clusters which is as even as possible
with respect to the sum of degrees per cluster. In the optimum case we can assign each cluster element nodes
corresponding to elements that sum to b = 1/k · a. In this case the sum of degrees of element nodes in each
clique cluster is equal to k · 1/k · a = a. This yields deg(Ci) = a2 + a for each clique cluster Ci, i = 1, . . . ,k,
and gives

deg(C1)2 + . . .+deg(Ck)2 ≥ k(a2 +a)2 = ka2(a+1)2.

Equality holds only in the case, in which an assignment of b to each cluster is possible. Hence, if there is a
clustering C with q(C ) of at least

K(A) = 1− 2k−2
k(a+1)

− ka2(a+1)2

k2a2(a+1)2 =
(k−1)(a−1)

k(a+1)

then we know that this clustering must split the element nodes perfectly to the k clique clusters. As each
element node is contained in exactly one cluster, this yields a solution for the instance of 3-PARTITION. With



this choice of K(A) the instance (G(A),K(A)) of MODULARITY is satisfiable only if the instance A of 3-
PARTITION is satisfiable.

Otherwise, suppose the instance for 3-PARTITION is satisfiable. Then there is a partition into k sets such
that the sum over each set is 1/k ·a. If we cluster the corresponding graph by joining the element nodes of each
set with a different clique, we get a clustering of modularity K(A). This shows that the instance (G(A),K(A))
of MODULARITY is satisfiable if the instance A of 3-PARTITION is satisfiable. This completes the reduction
and proves the theorem. �

This result naturally holds also for the straightforward generalization of maximizing modularity in weighted
graphs [19]. Instead of using the numbers of edges the definition of modularity employs the sum of edge
weights for edges within clusters, between clusters and in the total graph.

4.1 Special Case: Modularity with a Bounded Number of Clusters

A common clustering approach is based on iteratively identifying cuts with respect to some quality measures,
see for example [20,21,22]. The general problem being N P -complete, we now complete our hardness results
by proving that the restricted optimization problem is hard as well. More precisely, we consider the two
problems of computing the clustering with maximum modularity that splits the graph into exactly or at most
two clusters. Although these are two different problems, our hardness result will hold for both versions, hence,
we define the problem cumulatively.

Problem 4 (2-MODULARITY) Given a graph G and a number K, is there a clustering C of G into exactly/at
most 2 clusters, for which q(C )≥ K?

Our proof uses a reduction similar to the one for showing the hardness of the “MinDisAgree[2]” problem of
correlation clustering [23]. The reduction is from MINIMUM BISECTION FOR CUBIC GRAPHS (MB3).

Problem 5 (MINIMUM BISECTION FOR CUBIC GRAPHS) Given a 3-regular graph G with n nodes and an
integer c, is there a clustering into two clusters of n/2 nodes each such that it cuts at most c edges?

This problem has been shown to be strongly N P -complete in [24]. We construct an instance of 2-MODULARITY

from an instance of MB3 as follows. For each node v from the graph G = (V,E) we attach n−1 new nodes
and construct an n-clique. We denote these cliques as cliq(v) and refer to them as node clique for v ∈ V .
Hence, in total we construct n different new cliques, and after this transformation each node from the original
graph has degree n + 2. Note that a cubic graph with n nodes has exactly 1.5n edges. In our adjusted graph
there are exactly m = (n(n−1)+3)n/2 edges.

We will show that an optimum clustering C ∗ of 2-MODULARITY in the adjusted graph has exactly two
clusters. Furthermore, such a clustering corresponds to a minimum bisection of the underlying MB3 instance.
In particular, we give a bound K such that the MB3 instance has a bisection cut of size at most c if and only
if the corresponding graph has 2-modularity at least K.

We begin by noting that there is always a clustering C with q(C ) > 0. Hence, C ∗ must have exactly two
clusters, as no more than two clusters are allowed. This serves to show that our proof works for both versions
of 2-modularity, in which at most or exactly two clusters must be found.

Lemma 7. For every graph constructed from a MB3 instance, there exists a clustering C = {C1,C2} such
that q(C ) > 0. In particular, the clustering C ∗ has two clusters.

The proof of Lemma 7 can be found in [16]. Next, we show that in an optimum clustering, all the nodes of
one node clique cliq(v) are located in one cluster. The proof is also published in [16]

Lemma 8. For every node v ∈V there exists a cluster C ∈ C ∗ such that cliq(v)⊆C.

The final lemma before defining the appropriate input parameter K for the 2-MODULARITY and thus
proving the correspondence between the two problem shows that the clusters in the optimum clusterings have
the same size. The proof can be found in [16].



Lemma 9. In C ∗, each cluster contains exactly n/2 complete node cliques.

Finally, we can state theorem about the complexity of 2-MODULARITY:

Theorem 6. 2-MODULARITY is strongly N P -complete.

Proof Let (G,c) be an instance of MINIMUM BISECTION FOR CUBIC GRAPHS, then we construct a new
graph G′ as stated above and define K := 1/2− c/m.

As we have shown in Lemma 9 that each cluster of C ∗ that is an optimum clustering of G′ with respect
to 2-MODULARITY has exactly n/2 complete node cliques, the sum of degrees in the clusters is exactly m.
Thus, it is easy to see that if the clustering C ∗ meets the following inequality

q(C ∗)≥ 1− c
m
− 2m2

4m2 =
1
2
− c

m
= K ,

then the number of inter-cluster edges can be at most c. Thus the clustering C ∗ induces a balanced cut in G
with at most c cut edges. �

This proof is particularly interesting as it highlights that maximizing modularity in general is hard due to
the hardness of minimizing the squared degree sums on the one hand, whereas in the case of two clusters this
is due to the hardness of minimizing the edge cut.

5 The Greedy Algorithm

In contrast to the abovementioned iterative cutting strategy, another commonly used approach to find clus-
terings with good quality scores is based on greedy agglomeration [15,25]. In the case of modularity, this
approach is particularly widespread [8,9]. It starts with the singleton clustering and iteratively merges those
two clusters that yield a clustering with the best modularity, i. e., the largest increase or the smallest decrease
is chosen. After n− 1 merges the clustering that achieved the highest modularity is returned. The algorithm
maintains a symmetric matrix ∆ with entries ∆i, j := q(Ci, j)−q(C ), where C is the current clustering and Ci, j

is obtained from C by merging clusters Ci and C j. Note that there can be several pairs i and j such that ∆i, j

is the maximum, in these cases the algorithm selects an arbitrary pair. An efficient implementation using ap-
propriate data structures requires O

(
n2 logn

)
runtime. Note that n− 1 is an upper bound on the number of

iterations and that one can terminate the algorithm as soon as the matrix ∆ contains only non-positive entries.
This is due to a property called single-peakedness, proven in [9].

Since it is N P -hard to maximize modularity in general graphs, it is unlikely that this greedy algorithm is
optimal. In fact, we sketch a graph family, where the above greedy algorithm has an approximation factor of
2, asymptotically (Theorem 9). In order to prove this statement, we introduce a general construction scheme
given in Definition 1. While the former result relies on a deterministic procedure of the algorithm, in the
following we even point out instances where a specific way of breaking ties of merges yield a clustering with
modularity of 0, while the optimum clustering has a strictly positive score (Theorem 7).

Modularity is defined such that it takes values in the interval [−1/2,1] for any graph and any cluster-
ing (Lemma 1). In particular the modularity of a trivial clustering placing all vertices into a single cluster
has a value of 0. We exploit this technical peculiarity to show that the greedy algorithm has an unbounded
approximation ratio.

Theorem 7. There is no finite approximation factor for the greedy algorithm for finding clusterings with
maximum modularity.

Proof We present a class of graphs, on which the algorithm potentially obtains a clustering of value 0, but
for which the optimum clustering has value close to 1/2. A graph G of this class is given by two cliques
(V1,E1) and (V2,E2) of size |V1| = |V2| = n/2, and n/2 matching edges Em connecting each vertex from V1
to exactly one vertex in V2 and vice versa. See Figure 4 for an example with n = 14. Note that we can define
modularity by associating weights w(u,v) with every existing and non-existing edge in G as follows:

w(u,v) =
Euv

2m
− deg(u)deg(v)

4m2 ,



where Euv = 1 if (u,v) ∈ E and 0 otherwise. The modularity of a clustering C is then derived by the summing
the weights of the edges covered by C

q(C ) = ∑
C∈C

∑
u,v∈C

w(u,v)

Note that in this formula we have to count twice the weight for each edge between different vertices u and v
(once for every ordering) and once the weight for a non-existing self-loop for every vertex u. Thus, the change
of modularity by merging two clusters is given by twice the sum of weights between the clusters.

Now consider a run of the greedy algorithm on the graph of Figure 4. Note that the graph is n/2-regular,
and thus has m = n2/4 edges. Each existing edge gets a weight of 2/n2− 1/n2 = 1/n2, while every non-
existing edge receives a weight of −1/n2. As the self-loop is counted by every clustering, the initial trivial
singleton clustering has modularity value of −1/n. In the first step each cluster merge along any existing
edge results in an increase of 2/n2. Of all these equivalent possibilities we suppose the algorithm chooses to
merge along an edge from Em to create a cluster C′. In the second step merging a vertex with C′ results in
change of 0, because one existing and one non-existing edge would be included. Every other merge along an
existing edge still has value 2/n2. We suppose the algorithm again chooses to merge two singleton clusters
along an edge from Em creating a cluster C′′. Afterwards observe that merging clusters C′ and C′′ yields a
change of 0, because two existing and two non-existing edges would be included. Thus, it is again optimal
to merge two singleton clusters along an existing edge. If the algorithm continues to merge singleton clusters
along the edges from Em, it will in each iteration make an optimal merge resulting in strictly positive increase
in modularity. After n/2 steps it has constructed a clustering C of the type depicted in Figure 4(a). C consists
of one cluster for the vertices of each edge of Em and has a modularity value of

q(C ) =
2
n
− n

2
· 4n2

n4 = 0.

Due to the single-peakedness of the problem [9] all following cluster merges can never increase this value,
hence the algorithm will return a clustering of value 0.

On the other hand consider a clustering C ∗ = {C1,C2} with two clusters, one for each clique C1 = V1 and
C2 = V2 (see Figure 4(b)). This clustering has a modularity of

q(C ∗) =
n(n−2)

n2 −2
4n2

16n2 =
1
2
− 2

n
.

This shows that the approximation ratio of the greedy algorithm can be infinitely large, because no finite
approximation factor can outweigh a value of 0 with one strictly greater than 0. �

(a) Clustering with modu-
larity 0

(b) Clustering with modu-
larity close to 1/2

Fig. 4. Worst-case agglomeration vs. optimum.

The key observation is, that the proof considers a
worst-case scenario in the sense that greedy is in each it-
eration supposed to pick exactly the ”worst” merge choice
of several equivalently attractive alternatives. If greedy
chooses in an early iteration to merge along an edge from
E1 or E2, the resulting clustering will be significantly bet-
ter. As mentioned earlier, this negative result is due to for-
mulation of modularity, which yields values from the in-
terval [−1/2,1]. For instance, a linear remapping of the
range of modularity to the interval [0,1], the greedy algo-
rithm yields a value of 1/3 compared to the new optimum
score of 2/3. In this case the approximation factor would
be 2.

Next, we provide a weaker lower bound for a different class of graphs, but making no assumptions on
random choices of the algorithm.



Definition 1. Let G = (V,E) and H = (V ′,E ′) be two non-empty, simple, undirected, and unweighted graphs
and let u∈V ′ be a node. The product G?u H is defined as the graph (V ′′,E ′′) with the nodeset V ′′ :=V ∪V×V ′

and the edgeset E ′′ := E ∪E ′′c ∪E ′′H where

E ′′c := {{v,(v,u)} | v ∈V} and

E ′′H :=
{{

(v,v′),(v,w′)
}
| v ∈V,v′,w′ ∈V ′′,

{
v′,w′

}
∈ E
}

.

Fig. 5. The graph K4 ?u P1.

An example is given in Figure 5. The product G?u H is a graph that contains
G and for each node v of G a copy Hv of H. For each copy the node in Hv

corresponding to u ∈ H is connected to v. We use the notation (v,w′) to refer to
the copy of node w′ of H, which is located in Hv. In the following we consider
only a special case: Let n ≥ 2 be an integer, H = (V ′,E ′) be an undirected
and connected graph with at least two nodes, and u ∈ V ′ an arbitrary but fixed
node. We denote by C g

k the clustering obtained with the greedy algorithm applied to Kn ?u H starting from
singletons and performing at most k steps that all have a positive increase in modularity. Furthermore, let m
be the number of edges in Kn ?u H. Based on the merging policy of the greedy algorithm we can characterize
the final clustering C g

n . It has n clusters, each of which includes a vertex v of G and his copy of H.

Theorem 8. Let n ≥ 2 be an integer and H = (V ′,E ′) be an undirected and connected graph with at least
two nodes. If 2|E ′|+ 1 < n then the greedy algorithm returns the clustering C g := {{v}∪{v}×V ′ | v ∈V}
for Kn ?u H (for any fixed u ∈ H). This clustering has a modularity score of

4m2 ·q(C g) = 4m
(
(|E ′|+1) ·n

)
−n
(
2|E ′|+1+n

)2
.

The proof of Theorem 8, which relies on the graph construction described above, builds upon three lemmas
which can be found in [16]. The next corollary reveals that the clustering, in which G and each copy of H form
individual clusters, has a greater modularity score. We first observe an explicit expression for modularity.

Corollary 3. The clustering C s is defined as C s := {V}∪{{v}×V ′ | v ∈V} and, according to Equation (2),
its modularity is

4m2 ·q(C s) = 4m
(
|E ′|n+

(
n
2

))
−n
(
2|E ′|+1

)2− (n · (n−1+1))2 .

If n≥ 2 and 2|E ′|+1 < n, then clustering C s has higher modularity than C g.

Theorem 9. The approximation factor of the greedy algorithm for finding clusterings with maximum modu-
larity is no better than 2.

The quotient q(C s)/q(C g) asymptotically approaches 2 for n going to infinity on Kn ?u H with H a path of
length 1/2

√
n. The full proof of Theorem 9 can also be found in [16].

6 Examples Revisited

Applying our results about maximizing modularity gained so far, we revisit two example networks that were
used in related work [26,27,10]. More precisely, we compare published greedy solutions with respective
optima, thus revealing two peculiarities of modularity. First, we illustrate a behavioral pattern of the greedy
merge strategy and, second, we relativize the quality of the greedy approach.

The first instance is the karate club network of Zachary originally introduced in [26] and used for demon-
stration in [27]. The network models social interactions between members of a karate club. More precisely,
friendship between the members is presented before the club split up due to an internal dispute. A represen-
tation of the network is given in Figure 6(a). The partition that has resulted from the split is given by the
shape of the nodes, while the colors indicate the clustering calculated by the greedy algorithm and blocks
refer to a optimum clustering maximizing modularity, that has been obtained by solving the above ILP. The



(a) Karate club network of Zachary [26]. The different clus-
terings are coded as follows: blocks represent the optimum
clustering (with respect to modularity), colors correspond
to the greedy clustering, and shapes code the split that oc-
curred in reality.

(b) The networks of books on politics compiled by
V. Krebs. The different clusterings are coded as follows:
blocks represent the clustering calculated with GMC, col-
ors correspond to the greedy clustering, and shapes code the
optimum clustering (with respect to modularity).

Fig. 6. Examples

corresponding scores of modularity are 0.431 for the optimum clustering, 0.397 for the greedy clustering, and
0.383 for the clustering given by the split. Observe the following peculiarity: Due to the attempt to balance
the squared sum of degrees (over the clusters), a node with large degree (white square) and one with small
degree (white circle) are merged relatively soon. Using the same argument, such a cluster will unlikely be
merged with another one. As a result, a cluster rarely has only one node, but relative small clusters still occur,
featuring skew distribution of node degrees.

The second instance is a network of books on politics, compiled by V. Krebs and used for demonstration
in [10]. The nodes represent books on American politics bought from Amazon.com and edges join pairs of
books that are frequently purchased together. A representation of the network is given in Figure 6(b). The
optimum clustering maximizing modularity is given by the shapes of nodes, the colors of nodes indicate a
clustering calculated by the greedy algorithm and the blocks show a clustering calculated by Geometric MST
Clustering (GMC) which is introduced in [28] using the geometric mean of coverage and performance, both
of which are quality indices discussed in the same paper. The corresponding scores of modularity are 0.527 for
the optimum clustering, 0.502 for the greedy clustering, and 0.510 for the GMC clustering. A key observation
is that GMC outperforms the greedy algorithm although it does not consider modularity in its calculations.
Moreover, the comparison of the structure of the calculated clusterings reveals that several clusterings close
to the optimum one still have relative large modularity score. Thus, the good performance of the greedy
approach comes as no surprise.

7 Conclusion

We provide the first formal assessments of a popular clustering index known as modularity. We have settled
the open question about the complexity status of modularity maximization by proving its N P -completeness
in the strong sense. We show that this even holds for the restricted version with a bound of two on the
number of clusters. This justifies the further investigation of approximation algorithms and heuristics, such
as the widespread greedy approach. For the latter we prove a first lower bound on the approximation factor.
Our analysis of the greedy algorithm also includes a brief comparison with the optimum clustering which
is calculated via ILP on some real-world instances, thus encouraging a reconsideration of previous results.
For the future we plan an extended analysis and the development of a clustering algorithm with provable
performance guarantees. The special properties of the measure, its popularity in application domains and
the absence of fundamental theoretical insights hitherto, render further mathematically rigorous treatment of
modularity necessary.
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