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We study a game-theoretic variant of the maximum circulation problem. In a flow allocation game, we are
given a directed flow network. Each node is a rational agent and can strategically allocate any incoming
flow to the outgoing edges. Given the strategy choices of all agents, a maximal circulation that adheres to
the chosen allocation strategies evolves in the network. Each agent wants to maximize the amount of flow
through her node. Flow allocation games can be used to express strategic incentives of clearing in financial
networks.

We provide a cumulative set of results on the existence and computational complexity of pure Nash
and strong equilibria, as well as tight bounds on the (strong) prices of anarchy and stability. Our results
show an interesting dichotomy: Ranking strategies over individual flow units allow to obtain optimal strong
equilibria for many objective functions. In contrast, more intuitive ranking strategies over edges can give
rise to unfavorable incentive properties.
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1. Introduction. Flows and circulations in networks are a classic problem domain in combi-
natorial optimization. A network flow is called a feasible circulation in a graph if it maintains flow
conservation at all nodes, and some given lower and maybe upper bounds on the flow on edges
are fulfilled. Dinitz [11] and Edmonds and Karp [13] provided strongly polynomial-time algorithms
for solving the existence problem of a circulation in a network. Tardos [45] even showed that the
minimum-cost circulation problem can be solved in strongly polynomial time. There is a vast num-
ber of applications of flow problems, and flows give rise to beautiful and favorable mathematical
and algorithmic properties. As a consequence, variants of flow and circulation problems have been
investigated for decades.
In this paper, we explore a novel game-theoretic model for circulations in networks. In our model,

each node belongs to a player who aims to maximize the flow through the node. We assume that

*An extended abstract of this paper has been published in the proceedings of the ITCS 2020 conference [4] with the
title “Strategic Payments in Financial Networks”. While we receive motivation from financial networks, we study a
fundamental game-theoretic approach in the context of classic flow and circulation problems that is not necessarily
restricted to financial networks. To reflect this property, we changed the title to “Flow Allocation Games”.
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players can strategically allocate the flow entering their node to outgoing edges. Given the strategy
choices of all players, a maximal circulation that adheres to the chosen allocation strategies evolves
in the network.
Flows and circulations have a broad range of applications to different areas. A fascinating area,

where circulations play a key role, is in the analysis of financial networks and systemic risks. A very
popular approach to model financial networks has emerged from the seminal work by Eisenberg
and Noe [14]. In their model, the financial market can be seen as a directed graph G= (V,E). The
node set V corresponds to the set of institutions (or firms). The set of directed edges E expresses
the debt relations among firms. Each edge e = (u, v) ∈ E has a capacity ce that corresponds to
the nominal liability of firm u to firm v. In addition, each firm v has a non-negative supply bv
that corresponds to external assets. Given this networked scenario, the goal is to understand the
properties of clearing, i.e., the resulting payments when firms have to clear their debt and “pay
their bills” to their creditors. For this clearing task, we view the graph as a flow network, where
payments constitute a flow of funds or assets (which we will call money). Each node has a non-
negative supply and potentially receives additional money over its’ incoming edges. It then can
use all this money to allocate flow towards its’ outgoing edges. As a consequence, money starts to
circulate in the network. Eventually, all edges of a node become tight (and all debt is cleared), or
the node runs out of funds.
In the majority of the literature, the circulation flow is governed by a static proportional (also

called pro-rata) strategy for each node. The node must allocate the entire outgoing flow in propor-
tion to the capacities of its outgoing edges. More recently, interest has emerged in more general,
decentralized, and monotone allocation strategies. Notably, in an influential work, Csóka and Her-
ings [9] consider flows based on an arbitrary integral, monotone allocation strategy for each node
(which we term unit ranking below). This extension leads to a variety of interesting questions for
the resulting money circulations.
In this work, our interest lies in the decentralized and, more concretely, incentive and stability

properties of the circulation problem. In our model, nodes can individually choose the flow allo-
cation strategy for the outgoing edges. Flow allocation games of this kind have been of interest
recently – in particular, Guha et al. [21] explore games, in which each agent controls the strate-
gies of one or more nodes and wants to maximize the flow routed to an agent-specific sink in the
network. Our game is closely related, with the difference that each agent corresponds to a single
node, but it might neither be a source nor a sink. Instead, the goal of the node in our game is to
maximize the flow circulating through the node. In a financial context, this is equivalent to the
natural goal of maximizing the equity (total assets minus total liabilities).
Each node can choose as strategy an allocation function that yields for each amount of available

flow an assignment of this flow to the outgoing edges. Similar to Csóka and Herings [9] our interest
lies in monotone, ranking-based strategies. Game-theoretic variants of maximum flows, even based
on rankings, have been of recent interest in economics. Fleiner [16] introduced stable flows, which
have been further developed by Király and Pap [32], Cseh et al. [8], and Cseh and Matuschke [7].
In stable flows, each node has an inherent preference ranking over the edges. A node v strives to
maximize the amount of flow on its preferred edges. Thus, a stable flow can be seen as a flow that
is immune to coalitional deviations of players, i.e., nodes of a non-saturated walk can jointly decide
to add flow on this walk. In our work, the ranking is not externally given, but represents a strategic
decision of the players.
To the best of our knowledge, flow allocation games studied in this paper have not been addressed

before. We provide a cumulative analysis of the properties of equilibria in these games. We focus
on pure Nash and strong equilibria. In these equilibria, nodes have no unilateral (pure Nash) or
coalitional incentives (strong) to deviate from their chosen strategies. Depending on the set of
strategies, the resulting games have different properties. If we assume that strategies are restricted
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to priority orderings over edges, existence of a pure Nash or a strong equilibrium is not guaranteed
and becomes strongly NP-hard to decide. Instead, if nodes can assign each unit of available flow in
an arbitrary monotone fashion, a strong equilibrium always exists and can be computed in strongly
polynomial time. Moreover, this strong equilibrium maximizes the total amount of flow circulating
in the network (and, as such, Pareto optimizes the utility of all nodes). In addition, we show that
for a diverse set of objective functions, there is a strong equilibrium that is optimal w.r.t. this
objective (such as, e.g., minimizing the number of nodes or firms that are in default and unable to
pay their liabilities).
This interesting technical dichotomy between games with different payment strategies (restricted

edge-based vs. arbitrary integral and monotone) offers insights into the properties of financial
networks. Our results show that a benevolent designer could realize a clearing mechanism with
monotone unit-based payment strategies that leads to a socially optimal state, for many different
notions of “social optimum”. It comes with the additional guarantee of giving no coalition of firms
an incentive to pay their debts differently. In contrast, if clearing payments are determined in a
decentralized fashion resulting in some arbitrary Nash or strong equilibrium, the total amount of
flow in the system can deteriorate drastically (and similarly the social quality for many objectives).
Similar problems arise if a centralized mechanism is restricted to edge-based priorities. This

can lead to non-existence of pure equilibria in the resulting games. Even if pure equilibria exist,
they can be undesirable since, e.g., the total amount of circulating flow can be very small. This
shows a marked contrast between centralized and decentralized approaches and highlights how the
structure of permissible strategies impacts the structural properties of the resulting flows.

1.1. Contribution and outline. In Section 2 we introduce our formal model of a flow allo-
cation game. We focus on natural classes of ranking-based payment strategies for the nodes as
introduced by Csóka and Herings [9]. For an edge-ranking strategy, a node ranks its outgoing edges
and assigns its incoming flow in the order of the ranking1. As a superset of strategies, we con-
sider unit-ranking strategies, where flow is considered in units. Instead of edges, each node ranks
single units of each edge capacity. Edge- and unit-ranking strategies both are classes of monotone
strategies, where the mapping of the available flow of a node to every outgoing edge is an arbitrary
monotone function.
There can be several feasible flows for a given strategy profile. In fact, the feasible flows form

a lattice with a partial order based on the total outgoing flow of each node [9]. There is a unique
feasible flow that forms the supremum of the lattice – it pointwise maximizes the outgoing flow to
each node (for the given profile of monotone strategies). We assume that this supremum flow is
the clearing flow and defines the utility of each node in the game. After discussing some structural
insights on the feasible flows in Section 3.1, we show in Section 3.2 that the supremum flow can be
computed in strongly polynomial time (Proposition 5) for profiles of unit-ranking strategies.
In Section 4 we study unit-ranking games, in which all nodes use unit-ranking strategies. Our

interest lies in the existence, computational complexity, and social quality of equilibria. We show
that in every such game there exists a strategy profile that represents a strong equilibrium, in which
no coalition of nodes has an incentive to deviate (Theorem 3). Furthermore, there are even strong
equilibria that represent a state that maximizes the circulation flow. Moreover, for a large variety
of natural notions of social objective functions (such as the sum, the minimum, or the geometric
mean of all utilities, the number of fully saturated nodes, etc.) there is a strong equilibrium that
maximizes the objective over all possible circulations (Corollary 1).
For simplicity, in the remainder of the paper we then focus on one standard objective in circu-

lation problems, the total amount of flow circulating in the network. A strong equilibrium that

1 Csóka and Herings called them priority rules.
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maximizes the circulation can be computed in strongly polynomial time (Theorem 3). It can even
be represented using a number of bits polynomial in the size of the input (i.e., the size of the graph
and the size of all numbers in logarithmic encoding), even though every strategy shall rank all
single flow units that a node might have available, and their number could be pseudo-polynomial
(i.e., linear in the unary encoding size of the input). In contrast, it is strongly NP-hard to find a
best-response strategy for a single node in a given arbitrary strategy profile of a unit-ranking game
(Theorem 5).
For worst-case equilibria and the strong price of anarchy, we show that the deterioration of the

circulation in a strong equilibrium compared to a max-circulation is tightly characterized by the
min-max length of cycles in any max-circulation (Theorem 6). This implies that in networks, in
which an optimal circulation is composed of small cycles, we see a small inefficiency in strong
equilibria. In contrast, the circulation of a worst-case Nash equilibrium, which is stable only against
unilateral deviations, can be arbitrarily worse than in an optimum, even in simple games with a
constant number of nodes (Proposition 6).
In Section 5 we study a natural and interesting restriction on the strategies and analyze edge-

ranking games, in which all nodes are restricted to edge-ranking strategies. Restricting the strategy
space to rankings over edges can have devastating consequences for the existence of equilibria and
the amount of circulating flow in an equilibrium. In edge-ranking games, pure Nash and strong
equilibria can be absent, and deciding their existence is strongly NP-hard (Theorem 7). The same
hardness applies for computing an optimal strategy profile, and for computing a pure Nash or
strong equilibrium when it is guaranteed to exist. Even the best strong equilibrium can be a factor
of Ω(n) worse than an optimum in terms of the circulating flow (Proposition 10). For pure Nash
equilibria, even the best one can be arbitrarily worse than an optimum (Proposition 11).
We conclude in Section 6 with a summary of the main findings, a discussion of our results, and

directions for future work.

1.2. Related work. Flow allocation games are based on circulations in financial network
models that emerged from [14]. Rather than proportional payments, Csóka and Herings [9] ana-
lyze edge- and unit-ranking strategies as well as arbitrary monotone strategies. They analyze the
structure of clearing flows and show that they constitute a complete lattice. For completeness, in
Section 2 we recapitulate these findings using our notation.

Flow games. Our game-theoretic approach is related to a number of existing game-theoretic
models based on flows in networks. In cooperative game theory, there are several notions of flow
games based on a directed flow network. Existing variants include games, where edges are play-
ers [12, 27, 28, 20, 10, 2], or each player owns a source-sink pair [36, 34]. The total value of a
coalition C is the profit from a maximum (multi-commodity) flow that can be routed through the
network if only the players in C are present. There is a rich set of results on structural characteriza-
tions and computability of solutions in the core, as well as other solution concepts for cooperative
games. In contrast to our work, these games are non-strategic. We consider each player as a single
node with a strategic decision about flow allocation.
More recently, a class of strategic flow games has been proposed in [21, 33]. There is a capacitated

flow network with a set of source nodes. At each source node, a given amount of flow enters
the network. Each node of the network is owned by a single player. Each player always owns a
designated sink node, as well as one or more additional nodes from the network. A player can
choose a flow strategy for each of her nodes. The flow strategy specifies, for every node v and every
x≥ 0, how an incoming flow of x at v is distributed onto the outgoing edges (if any). Each flow
strategy needs to fulfill flow conservation constraints at every node, subject to capacity on the
outgoing edges. Each player aims to maximize the incoming flow at its sink node.
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For these games there exist a number of Σp
2-completeness results for, e.g., determining the value of

a game in a two-player Stackelberg variant, or determining the existence of a pure Nash equilibrium
in a multi-player variant. In the latter game, computing a best response can also be NP-hard. Our
approach is related to these games. However, motivated by financial networks we assume each firm
is a single node. The firm optimizes the incoming flow at its node (without it being a designated
sink node). We study the computational complexity and social quality of equilibria. Moreover,
strategic incentives arise mainly from cycles in the network (see Section 2.4 below) – a condition
absent in the existing work on max-flow games [21, 33] where the network is assumed to be acyclic.
The problem of computing a clearing state for a given strategy profile in our games is closely

related to the notion of a stable flow studied in [16, 7]. In the stable flow problem, each node is
equipped with an intrinsic preference order over both incoming and outgoing arcs. The goal is to
route as much flow as possible over most preferred arcs. There always exists a stable flow, where
no group of agents all can benefit from rerouting the flow along a walk, and such a flow can be
computed in polynomial time. The set of stable flows forms a lattice. The model has been extended
to an over time setting [8] and to a multi-commodity variant [32].

Financial networks. We consider issues of strategic choice and computational complexity
in flow allocation games. Flow allocation games have a strong connection to clearings in financial
networks. There have been works addressing computational complexity of diverse issues in financial
networks, such as pricing options with [1] and without information asymmetry [5], finding clearing
payments with credit default swaps [42], or estimating the number of defaults when providing a
shock in the financial system [23].
In addition, many extensions to the model by Eisenberg and Noe have been proposed in the

literature on financial networks. However, even models including cross-holdings of equity [44],
default costs [41], or debt contracts of different seniorities [15] follow the idea of the basic approach
that all contracts have to be cleared consistently, i.e., clearing payments locally adhere to the
rather mechanical clearing rule and constitute a fixed point solution globally. Indeed, Barucca et al.
[3] have shown that many of the above models can be unified in terms of self-consistent network
valuations. A well-known result of such models is the “robust-yet-fragile” property exhibited by
financial networks, i.e., contagion arises in an all-or-nothing fashion akin to the formation of a
giant connected component in random graph models [19]. This provides important insights into
systemic risk and advises the need for macro-prudential regulation.
An extended abstract of this paper has appeared in the proceedings of the ITCS 2020 confer-

ence [4]. Subsequent to publication of the extended abstract, there has been a significant interest
in extending our results and analyzing closely related computational problems in the context of
financial networks. Kanellopoulos et al. [29] study flow allocation games with credit default swaps
(CDS). They obtain a number of NP-hardness results for equilibrium existence. Instead of CDSes,
Hoefer and Wilhelmi [24] consider extensions to seniorities (expressed by a class of threshold strate-
gies) along with minimal clearing based on the infimum (rather than the supremum) of feasible
flows. For endogeneous seniorities, they extend our main existence result for strong equilibria; for
exogenenous seniorities, they observe NP-hardness results for equilibrium existence.
More fundamentally, Ioannidis et al. [25, 26] prove FIXP-completeness results for computing

a strong approximation of clearing states with debts and CDSes, contrasting PPAD-completeness
for weaker notions of approximation [42]. Further hardness results for computing optimal clearing
states are provided by Papp and Wattenhofer [39]. They also study the question of computing the
set of banks that default in such networks [40]. Interestingly, for networks with CDSes, the point
in time at which a bank announces to default plays an important role. The same authors analyze
incentives for adjusting the network structure to optimize individual funds in the clearing state by
deleting an incoming edge or gifting some money to other banks [37]. Similar questions of optimally
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removing debt contracts or bail-outs are analyzed by Kanellopoulos et al. [30]. In a related spirit,
the effects of debt swaps of incoming payment obligations by two banks are analyzed in [38, 18].
In a broader context, strategic and financial aspects of networks have received substantial

attention over the last decade. A related, yet orthogonal, body of work considers trading net-
works [22, 35]. These models are closely related to two-sided matching under preferences and the
study of competitive equilibrium. Rather than circulation effects, agents strive to establish prof-
itable trades with their neighbors. Depending on the model variant, this results in agents matching
into pairs, exchanging goods, or establishing upstream/downstream relations with suppliers and
customers. The analysis of these networks usually addresses similar issues as the ones we consider
here, such as existence, structure, and computational complexity of equilibria. Equilibrium com-
putation in trading networks has recently been studied in, e.g., [6, 17]. These works also contain a
good overview of related work and pointers into the existing literature.

2. Flow allocation games.

2.1. Network model, monotone strategies, and utilities.

Network model. In a flow allocation game Γ = (G, (bv)v∈V , (ce)e∈E) we are given a graph
G = (V,E) with a node set V and a set of directed edges E. Each node v ∈ V corresponds to a
player and has a fixed supply bv ≥ 0. The capacity ce ≥ 0 of an edge e = (u, v) is the maximum
amount of flow that u can forward to v. In terms of financial networks, bv is the amount of external
assets of v, and e represents a liability of value ce of firm u to firm v. We follow standard notation in
graph theory and denote by E+(v) = {(v,u)∈E} and by E−(v) = {(u, v)∈E} the set of outgoing
and incoming edges of v ∈ V , respectively. The saturating output c+v of a node v is the maximum
amount of flow v can send to other players, specified by the weighted outdegree

c+v =
∑

e∈E+(v)

ce.

We strive to analyze issues of computational complexity. As such, we will assume that all numbers
in the input, i.e., all bv and ce, are integer numbers in binary encoding.

Allocation strategies. We analyze allocation strategies in flow allocation games. Each player
v ∈ V strategically allocates its total supply, i.e., the fixed supply bv plus the total amount of
incoming flow, to the outgoing edges E+(v). More formally, each player v ∈ V chooses as a strategy
a parametrized flow allocation function ae : R≥0→ R≥0 for every outgoing edge e ∈ E+(v). This
function specifies an amount of flow ae(y) that is forwarded to the edge e, for every y ∈R≥0. Here,
y represents a possible value of total supply. Intuitively, the strategy specifies for every possible
value y ≥ 0 of total flow that v might have available, how v will allocate this flow to the outgoing
edges. The strategy av = (ae)e∈E+(v) of player v ∈ V must satisfy for every y≥ 0 and e∈E+(v)

0≤ ae(y)≤ ce , (capacity constraint) (1)∑
e∈E+(v)

ae(y)≤ y , (weak flow conservation constraint) (2)

∑
e∈E+(v)

ae(y) =min{c+v , y} . (no-fraud constraint) (3)

The capacity constraint ensures that no edge is overused, and the weak-flow conservation constraint
ensures that v cannot generate additional flow. The no-fraud constraint ensures that each player
forwards as much of its total supply as possible. No-fraud strategies are desirable in the application
of financial networks, since they do not allow financial firms to hide or malversate assets while
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having unpaid debt (hence the name “no-fraud”)2. We assume this property in the strategies for
simplicity. Note that even if we drop the no-fraud condition as a constraint, then in flow allocation
games (with utilities resulting from monotone strategies defined below) it turns out that every
player always has a best response that satisfies the no-fraud condition (see Section 3.1 below).
A flow is a vector of edge valuations f = (fe)e∈E. Given some flow f , we slightly abuse notation

and denote the total supply of v by fv = bv +
∑

e∈E−(v) fe. For a strategy profile a= (ae)e∈E, a flow
is called feasible if for all edges (v,w)∈E it holds

f(v,w) = a(v,w)(fv) . (fixed point constraint) (4)

A node is called fully saturated if the feasible flow saturates all outgoing edges, i.e., fe = ce for all
e ∈ E+(v), or equivalently fv = c+v . Given some feasible flow f for a strategy profile a, the utility
of player v is defined by uv(a, f) =

∑
e∈E+(v) fe, i.e., v’s goal is to choose a strategy to maximize

the total outgoing flow. Capacity and weak flow conservation constraints are not sufficient for a
consistent definition of utility. In particular, even if a strategy profile satisfies capacity and weak
flow conservation constraints, it may not allow a feasible flow.
Example 1. Consider a graph with three nodes V = {v1, v2, v3} and edges (v1, v2), (v2, v1) and

(v1, v3). Let ce = 2 for all edges e∈E. For the strategy profile a, we assume

v2 plays a(v2,v1)(y) = y

v1 plays a(v1,v2)(y) =

{
y for y≤ 1

0 for y > 1

a(v1,v3)(y) = y− a(v1,v2)(y) for y≥ 0.

Informally, v1 forwards the total supply to v2 if it is at most 1.
Otherwise, v1 forwards all supply to v3. The fixed supply is bv1 = 1
and 0 for the other nodes.

v1

1

v2

v3

2

2

2

There is no feasible flow for strategy profile a. Suppose the total supply of v1 is 1, then v1
routes all supply to v2, who forwards it back to v1. The total supply of v1 must be at least 2, a
contradiction. Suppose the total supply of v1 is more than 1, then v1 forwards all supply to v3, so
v1 only has the fixed supply. The total supply of v1 must be 1, a contradiction. ■

The main problem with feasible flows in the example is that the strategies are not monotone.

Monotonicity. Monotonicity is a natural condition for payment strategies. In a flow alloca-
tion game with monotone strategies, each player v ∈ V forwards the flow in a monotone fashion.
Monotone strategies are characterized by capacity and weak-flow conservation constraints, and, for
every y, y′ ∈R≥0 with y≥ y′

ae(y)≥ ae(y
′) . (monotonicity constraint) (5)

Monotone strategies have been proposed and studied before by Csóka and Herings [9]. In the
following theorem, we recapitulate their main structural insight on feasible flows. Consider a flow-
allocation game and a strategy profile a of monotone strategies. Let F be the set of feasible flows
for a. We observe that F is non-empty, i.e., a feasible flow always exists. Moreover, (F ,≤) forms
a lattice with the coordinate-wise comparison. Formally, f ≤ f ′ iff fe ≤ f ′

e for all e ∈E; and f < f ′

iff fe ≤ f ′
e for all e and fe < f ′

e for at least one edge e.

2 For example, Eisenberg and Noe [14] restrict the choice of each player to a specific no-fraud strategy with pro-rata
payments: Each node v distributes its total supply in proportion to the edge capacities. Formally, for every edge

e∈E+(v) the strategy is fixed to ae(y) =min
{
ce, y · ce

c+v

}
.
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Theorem 1 ([9]). For every strategy profile a in a flow-allocation game with monotone strate-
gies, the pair (F ,≤) is a non-empty complete lattice.

Csoka and Herings state the result only for integral monotone strategy profiles a. We here
reiterate the proof to show that it works for all monotone ones. This theorem motivates the study
of flow allocation games with monotone strategies. It follows using the Knaster-Tarski theorem.

Theorem 2 ([46]). Let (L,≤) be any complete lattice. Suppose g :L→L is order-preserving,
i.e., for all x, y ∈L we have that x≤ y implies g(x)≤ g(y). Then the set of all fixed points of g is
a non-empty, complete lattice with respect to ≤.

Proof of Theorem 1. Consider F = {f | 0≤ fe ≤ ce, ∀e∈E}, a compact superset of all possible
flow vectors. Obviously, (F,≤) forms a complete lattice with the coordinate-wise comparison defined
above. For a given strategy profile a, the map g : F → F with

g(f)(u,v) = a(u,v)

 ∑
e′∈E−(u)

fe′ + bu

 for every (u, v)∈E (6)

is an order-preserving function for every edge e∈E, since the strategies are monotone. Obviously,
the set of feasible flows F is the set of fixed-points of g. The result follows by applying the Knaster-
Tarski theorem. □

Clearing states and utilities. We consider feasible flows that arise due to the strategic flow
allocation decisions. We determine the utility uv(a, f) of a player v by using a feasible flow f for
the given strategy profile a. We focus on monotone strategies in order to guarantee the existence
of at least one feasible flow. This is a necessary condition to make the game well-defined. In many
cases, for a fixed strategy profile a, there is a unique feasible flow f . However, even in very special
cases, there might be infinitely many feasible flows for the same strategy profile3 a.

Based on these properties, and similarly to the vast majority of the literature, we concentrate
on the supremum of the lattice. For every profile a, we focus on the unique feasible flow that
maximizes the total flow in the network. We denote this feasible flow by f̂ and call it the clearing
state of strategy profile a. The clearing state f̂ determines the utility of every player in a, i.e.,

uv(a) = uv(a, f̂) =
∑

e∈E+(v)

f̂e .

Clearly, the clearing state f̂ and the resulting utilities significantly depend on the strategy choices
of the nodes in the profile a.

2.2. Ranking-based strategies. In this paper we are interested in classes of intuitive,
expressive, and meaningful monotone strategies. We concentrate on strategies that can be derived
via rankings [9].

Unit-ranking strategies. In unit-ranking games, we rely on integrality of all values for ce
and bv, and choose the strategies such that the feasible flows will be integral. We define the
parametrized flow functions ae(y) for every outgoing edge e ∈ E+(v) on the non-negative integer
numbers ae(y) :N0→N0. Note that Theorem 1 can also be shown for ae(y) :N0→N0. The proof is
analogous, where we define F on integrals and replace compact by finite. This ensures that unit-
ranking strategies are well-defined in our model. We interpret the flow as being discretized into
unsplittable “units” or “particles” of size 1.

3 For example, consider a simple cycle with two nodes v and w. The capacities c(v,w) = c(w,v) = 1, the fixed supplies
bv = bw = 0, and the strategies a(v,w)(y) = a(w,v)(y) = y. Every flow with f(v,w) = f(w,v) ∈ [0,1] is a feasible flow.
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Unit-ranking strategies are relevant for the application of flow-allocation games to financial

networks. Usually, currencies have some smallest indivisible amount of money. In this way, unit-

ranking strategies provide a rich and powerful class of strategies that can be used to express

payments strategies in this context.

Edge-ranking strategies. In a flow-allocation game with edge-ranking strategies, each player

v ∈ V forwards its total supply according to a strict and total order over E+(v), which we rep-

resent by a permutation πv = (e1, e2, . . .). Player v first allocates the maximum possible flow to

edge e1 = πv(1), then e2 = πv(2), etc. until all edges are at their capacity or v has no supply left.

Formally, aei(y) =min{cei ,max{0, y−
∑

j<i cej}}. The edge-ranking strategy4 of v is fully described

by the ranking πv, hence we denote a strategy profile in edge-ranking games by π= (πv)v∈V .

Edge-ranking strategies are a special case of unit-ranking strategies in the sense that every

edge-ranking strategy can be written as a unit-ranking strategy. Maybe counterintuitively, every

unit-ranking game is also a special edge-ranking game – replacing each edge e with capacity ce
many multi-edges of unit capacity expands a unit-ranking game into an equivalent edge-ranking

game. There is a one-to-one correspondence between unit-ranking strategies in the original game

and edge-ranking strategies in the expanded game. Intuitively, for a unit-ranking strategy in the

original game, a player v assigns the first particle of flow to the multi-edge πv(1), the second particle

to πv(2), etc. in the expanded edge-ranking game until all outgoing edges are saturated or v runs

out of supply. The expansion of the game implies a pseudo-polynomial blowup in representation

size. Nevertheless, the structural equivalence turns out to be very useful for characterizing and

analyzing feasible flows and equilibria in unit-ranking games.

Note that the trivial representation of a unit-ranking strategy might be pseudo-polynomial in

the size of the original non-expanded game, since edge capacities are given in binary encoding.

We will address this issue briefly in Theorem 3 when we discuss polynomial-time computation of

equilibria. It turns out that there always exist equilibria with a representation that is polynomial

in the input size of the game.

2.3. Equilibria and Social Quality

Equilibrium concepts. We study pure Nash and strong equilibria of flow allocation games.

A (pure) Nash equilibrium in a flow allocation game is a strategy profile a such that no player v has

an incentive to unilaterally deviate from the strategy av. More formally, in a pure Nash equilibrium

a we have uv(a)≥ uv(a
′
v,a−v) for every player v ∈ V and every strategy a′

v. Here a−v denotes the

reduced profile composed of all entries of a except the entries for player v.

For the definition of a strong equilibrium, we first define the notion of a profitable deviation of a

coalition. A coalition C ⊆ V of nodes has a profitable deviation a′
C = (a′

v)v∈C if upon joint deviation

of C to a′
C , the resulting utility in the new profile (a′

C ,a−C) is strictly better for every player in

C, i.e., uv(a
′
C ,a−C)>uv(a) for every v ∈C. Here a−C denotes the reduced profile composed of all

entries of a except the ones for players v ∈ C. A strategy profile a is a strong equilibrium if no

coalition C ⊆ V has any profitable deviation. Thus, by definition, a strong equilibrium is a Nash

equilibrium.

In general, pure Nash or strong equilibria might not exist in a flow allocation game. If they are

guaranteed to exist, they might not be unique.

4 These strategies have also been termed singleton liability priority lists in [26].
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Prices of anarchy and stability. In addition to existence and computational complexity,
we also quantify the performance of a feasible flow in equilibrium in terms of natural notions of
social quality. For any non-negative objective function Q(a) measuring the quality of a strategy
profile, we rely on standard notions of price of anarchy and price of stability to relate the quality
in equilibrium to the one that could be obtained in a strategy profile that maximizes Q.

The price of anarchy for an equilibrium concept in a game Γ is given by the ratio

max
a∈AEq(Γ)

Q(a∗)

Q(a)
=

Q(a∗)

mina∈AEq(Γ)Q(a)
. (7)

Here AEq(Γ) is a set of equilibria (e.g., the set of all Nash equilibria, or the set of all strong
equilibria) of the game Γ, and a∗ is a strategy profile maximzing Q. The price of anarchy for a
class of games is the largest price of anarchy of any game in the class. The price of stability for an
equilibrium concept in a game Γ is defined by replacing max with min and vice versa in (7). The
price of stability for a class of games is the largest price of stability in any game in the class. Note
that both prices of anarchy and stability are at least 1.
Intuitively, an upper bound of ρ on the price of anarchy implies that every equilibrium has a

quality of at least Q(a∗)/ρ in every game of the class. A lower bound of ρ implies that for some
game there is some equilibrium in that game with quality at most Q(a∗)/ρ. Similarly, an upper
bound of ρ on the price of stability implies that at least one equilibrium has a quality of at least
Q(a∗)/ρ in every game of the class. A lower bound of ρ implies that for some game it holds that
every equilibrium in that game with quality at most Q(a∗)/ρ.
Our main result for unit-ranking games shows the existence of optimal strong equilibria. More

in detail, the price of stability is 1 for pure Nash and strong equilibria for every quality function
from a large class of so-called flow-monotone functions Q (for details see Corollary 1 below).
For the remaining results on prices of anarchy and stability in this paper, we concentrate on the

total amount of flow, which is a standard objective for circulation and flow allocation problems.
Formally, the total (amount of) flow for a strategy profile a is

Flow(a) =
∑
e∈E

f̂e =
∑
v∈V

∑
e∈E+(v)

f̂e =
∑
v∈V

uv(a) , (8)

since the clearing state f̂ determines the utilities for all players. Hence, Flow(a) also represents
the utilitarian welfare.

2.4. Games on DAGs Flow allocation games are designed to analyze incentives in networks
with circulation flows. In contrast to previous work [21, 33], incentives in our games are inherently
connected to cycles. To see this, we briefly discuss games on directed acyclic graphs (DAGs).

Proposition 1. In a flow allocation game on a DAG G, every strategy profile is a strong
equilibrium.

Proof. We prove the statement inductively. Consider an arbitrary profile a. We first discuss a
natural algorithm to construct a feasible flow. A DAG contains a node v without incoming edges.
Clearly, the incoming assets of v are fixed to bv. Thus, every strategy av allocates an amount of
min{c+v , bv} to the outgoing edges. This is independent of the behavior of v or any other player,
so av represents a best response. The algorithm then constructs an equivalent network for the
remaining players by (1) removing v and all its outgoing edges, and (2) increasing bw by a(v,w)(bv),
for every (v,w)∈E+(v). The new network is again a DAG and contains a node without incoming
edges. In this way, the algorithm proceeds until the remaining network contains no edges.
To show that a is a strong equilibrium, consider any coalition C and the first player v1 ∈C that

was processed by our algorithm above. v1 and all players being processed after v1 cannot increase
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the incoming assets of v1 by changing their strategies. As such, v1 has no incentive to deviate from
av1 . C has no profitable deviation. Therefore, a is a strong equilibrium. □

Our arguments do not rely on monotonicity – the algorithm constructs a feasible flow even for
non-monotone strategies a. Moreover, by the same induction, for any given strategy profile a the
feasible flow is unique. The proposition holds even for flow allocation games with non-monotone
strategies. Since every strategy profile is a strong equilibrium, it is stable against arbitrary devi-
ations of coalitions. Hence, the result continues to hold even when we restrict to games on DAGs
with monotone unit- or edge-ranking strategies.

3. Properties of feasible flows. We observe a useful circulation representation of feasible
flows in flow allocation games and some preliminary results that will be used in the subsequent sec-
tions. For edge-ranking games, the circulation representation can be used to describe a polynomial
time algorithm that computes the clearing state f̂ in polynomial time.

3.1. Preliminaries on feasible flows and clearing states.

Circulation structure. Given a game Γ on G with strategies a, we build a circulation network
G′ with strategies a′ and consider an extended game in G′ as follows. We add to G an auxiliary
node s. For every v ∈ V , we add an auxiliary edge (v, s) with capacity c(v,s) =∞. For every v ∈ V
with bv > 0 we add an auxiliary edge (s, v) with c(s,v) = bv, and choose b′v = 0 in the new game. In
this way, the supply of v becomes an incoming flow to v on edge (s, v). The strategy a′

s of player
s is arbitrary. For every strategy profile a of the original game, we modify av such that flow not
forwarded by some player v will now be a flow on edge (v, s) under a′

v.

Proposition 2. For every feasible flow f for a strategy profile a, the corresponding flow for
the modified strategy profile a′ in the extended game G′ can be decomposed and represented as a
circulation. The auxiliary node s has an incoming flow of

∑
v∈V bv, and all auxiliary edges (s, v)

are saturated.

Proof. The proposition is a simple consequence of fixed point constraint and no-fraud constraint.
Non-forwarded flow at firm v ∈ V in the original game exists only if v saturates all outgoing edges∑

e∈E+(v)

ae(fv) =min{fv, c+v } .

Moreover, the total sum of non-forwarded flow in the original game is exactly the sum of all fixed
supply: ∑

v∈V

bv =
∑
v∈V

bv +
∑
v∈V

∑
e=(u,v)∈E−(v)

ae(fu)−
∑
v∈V

∑
e=(u,v)∈E−(v)

ae(fu)

=
∑
v∈V

fv −
∑

e∈E+(v)

ae(fv)

 =
∑
v∈V

max{0, fv − c+v } .

The non-forwarded flow in the original game gets routed to the auxiliary node s in the extended
game. This constitutes the incoming flow of s, i.e., fs =

∑
v∈V max{0, fv − c+v }=

∑
v∈V bv, and all

auxiliary edges (s, v) are saturated. Overall, by routing the non-forwarded flow in the original game
to the auxiliary node s in the extended game, we obtain exact flow conservation at every node. As
such, the flow can be decomposed and represented as a circulation. □
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Fully saturated nodes. In flow allocation games Γ, it turns out that the clearing state f̂ is
fixed as long as all nodes that are not fully saturated stick to their strategies. Since every strategy
satisfies capacity and no-fraud constraints, the forwarded flow of fully saturated nodes remains the
same if they have the same total supply, and vice versa. Consequently, strategies of fully saturated
nodes have no impact on the clearing state f̂ . For any fully saturated node v, every strategy
constitutes a best response.

Proposition 3. For a given flow allocation game, consider any profile a, the corresponding
clearing state f̂ , and any fully saturated node v with f̂v ≥ c+v . Every strategy a′

v is a best response
for v against the other strategies a−v and results in the same clearing state f̂ .

Proof. Firm v is fully saturated under f̂ , thus f̂v ≥
∑

e∈E+(v) ce and f̂e = ce for all e ∈ E+(v).

Consider a deviation a′
v, the resulting profile a

′ = (a′
v,a−v). It suffices to show that f̂ is feasible under

a′. Note that capacity, weak flow conservation and no-fraud constraints ensure that a′
e(f̂v) = ce for

all e∈E+(v), which immediately implies the feasibility of f̂ under a′. □

No-Fraud Property. We observe that violating the no-fraud constraint is never in the interest
of any player in any game.

Proposition 4. Suppose a is a strategy profile of monotone strategies that do not necessarily
fulfill the no-fraud constraint (3), and strategy av of player v is such that for a value y of total supply
we have

∑
e∈E+(v) ae(y)<min{c+v , y}. There is a no-fraud strategy a′

v such that uw(a)≤ uw(a
′
v,a−v)

for every player w ∈ V .

Proof. Consider any no-fraud strategy a′
v arising from av by increasing the functions ae arbi-

trarily such that Condition (3) holds. Consider the clearing states f̂ for a and f̂
′
for (a′

v,a−v). For
the same total supply y of v we know ae(y)≤ a′

e(y) for every e ∈E+(v). Now consider f̂ . If f̂ is a

feasible flow for (a′
v,a−v), then f̂

′
≥ f̂ , so the utility of every player in (a′

v,a−v) is weakly improved
and we are done.
Otherwise, f̂ is not a feasible flow for (a′

v,a−v). We apply the straightforward monotone fixed-
point iteration based on the map g in Equation (6). Since the space F of possible flow vectors is
compact, the iteration converges to a feasible flow for (a′

v,a−v) that is coordinate-wise at least f̂ .

Hence f̂
′
≥ f̂ , so the utility of every player in (a′

v,a−v) is weakly improved. □

3.2. Structure and computation of feasible flows in edge-ranking games. For edge-
ranking games, we provide a more detailed analysis of the structure of feasible flows in a strategy
profile π. We observed above that every feasible flow f ∈F is in a one-to-one correspondence to a
circulation in the circulation network. Here, we observe that the circulation follows a partial order.
We use this structural insight to show that the clearing state f̂ can be computed in polynomial
time.
Before we describe the algorithm, we will define the notion of an active edge. For a given strategy

profile π, consider the circulation networkG′ = (V ′,E′) with auxiliary node s and the corresponding
auxiliary edges described in the previous section. We also extend π to π′ and define the auxiliary
edge (v, s) to be the least preferred edge by node v. For completeness, we treat s as a node with
a fixed strategy π′

s over its outgoing auxiliary edges. Due to Proposition 2, s exactly saturates all
outgoing edges in every feasible flow. As such, the strategy π′

s has no impact on the set of feasible
flows.
Let f be a feasible flow in a circulation network G′. In games with ranking-based strategies, we

can observe the following. Independent of the total supply fv of some node v, there is a uniquely
defined outgoing edge for the next unit of v’s supply. We call this edge the active edge of v. If
f ≡ 0, the active edge of a node v is π′

v(1). If
∑k−1

i=1 cπ′
v(i)
≤ fv <

∑k

i=1 cπ′
v(i)

for some k, the active
edge is π′

v(k).
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Algorithm 1: TopCycleIncrease

Input : The circulation network G′, strategy profile π′, auxiliary node s
Output: The circulation f representing the clearing state for π in G
fe← 0 for all e∈E′ .
while there is a cycle C of active edges under f do

Choose an arbitrary cycle C .
δ←min

e∈C
{ce− fe}

fe← fe + δ for all e∈C .
return f

In the following, we will describe the TopCycleIncrease algorithm. For a formal description
see Algorithm 1. In the description we distinguish necessary and optional cycles. This classification
builds on the lattice structure of feasible flows (c.f. Theorem 1). Since the algorithm computes the
supremum of the lattice, it raises flow along all – necessary and optional – cycles.

Necessary cycles. Consider the set of all active edges for f ≡ 0. Every node v ̸= s has exactly
one outgoing active edge π′

v(1). The set of active edges form disjoint cycles with attached trees.
Each tree attached to a cycle is rooted in a node from the cycle, and directed towards the cycle C.
We define the orbit of C by

o(C) = {v ∈ V | ∃ v-u-path of active edges, for some u∈C},

i.e., the set of nodes v from which we can reach C over active edges. Now, consider the auxiliary
node s. Note that f ≡ 0 is a feasible circulation in G′, but

∑
v f(v,s) = c+s =

∑
v bv is a necessary

constraint to ensure that f represents a feasible flow in the original graph G. However, as long as∑
v f(v,s) <

∑
v bv there is an active outgoing edge of s and all nodes (including s) belong to some

orbit. Hence, there is a cycle C with s∈ o(C). Flow conservation and the monotonicity of strategies
implies that some amount of flow of s must eventually reach C. Due to flow conservation in C, a
flow of at least δC =min{ce | e ∈C} must thus be present on every edge of C. This is a necessary
condition in every feasible flow f ∈F .
It is straightforward to inductively apply this argument, thereby obtaining a sequence of neces-

sary cycles C that must be filled with flow δC =min{ce− fe | e∈C}. In particular, when a flow of
fe = δC has been assigned to every edge e ∈C, the active edge of at least one of the vertices in C
changes. This implies that the orbits change, i.e., the orbit o(C) partitions into new suborbits, or
parts that get attached to other orbits. Note that once a vertex v becomes fully saturated and all
regular outgoing edges are filled, the active edge becomes (v, s).

Orbits present at the same time are always mutually disjoint. Thus, for two existing orbits o(C1)
and o(C2), pushing flow along C1 can never change the active edges of o(C2). Hence, it is necessary
that all the cycles C, where s eventually appears in the orbit, must get assigned a flow increase
δC in order to reach

∑
v f(v,s) =

∑
v bv. Once we reach a flow f where

∑
v f(v,s) =

∑
v bv, an “orbit”

o(s) emerges composed of a tree rooted in s. At this point, we have indeed constructed a feasible
flow, which by induction is the unique minimal circulation in G′ that represents a feasible flow in
G.

Optional cycles. In the following, we characterize the structure of all other feasible flows
f ∈ F by applying similar observations. Fix some flow f in the circulation network that is also
feasible in G, i.e.,

∑
v f(s,v) =

∑
v bv and consider the set of all active edges.

Suppose there is a cycle C with some orbit o(C), i.e., a set of nodes v that are not attached to
the tree rooted in s. In this case, one can push a non-zero amount of flow along C, i.e., increase fv
by a strictly positive amount for every v ∈ C. This obviously yields a new feasible clearing state.
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When an edge becomes saturated, the set of active edges changes and the orbit o(C) disappears,
i.e., gets split up as explained above (new suborbits, parts attached to other orbits, parts attached
to the tree rooted in s).
Note that there might exist multiple orbits at the same time and, thus, multiple possibilities

to extend f by increasing flow along a cycle. However, as observed above, orbits present at the
same time are always mutually disjoint, and pushing flow along cycle C1 can never change the
active edges in an orbit o(C2) present at that time. Now consider some vertex v ∈ o(C). In order
to create some feasible flow f ′ with f ′

v > fv it is necessary to push flow along C until fv is reached
(if v ∈ o(C) ∩ C) or o(C) disappears and splits up (if v ∈ o(C) \ C). Since the flow adjustments
monotonically increase all flow values, there is a one-to-one correspondence between sets of cycles
with flow increase and the feasible flows.
Note that the cycles chosen for flow increase form a partial order: A cycle C ′ might not be present

in the beginning – there might be predecessor-cycles C that have to be filled up to δC to break an
existing orbit o(C), change some of the active edges, and make C ′ appear. In the argumentation
above, it can be seen that the set of predecessor cycles pred(C ′) for some cycle C ′ is uniquely
defined resulting from the ranking of edges in π.
The arguments above imply a natural algorithm to compute f̂ , which is similar in spirit to the

classic Top-Trading-Cycles algorithm for house allocation [43]. TheTopCycleIncrease algorithm
iteratively raises flow along cycles among the active edges in the circulation network G′. Thereby
it computes the unique maximal feasible flow f̂ from the lattice. The algorithm runs in polynomial
time – in every round it increases the flow along a cycle C by δC . At this point at least one edge
(from G or auxiliary) becomes saturated. In terms of the original network G= (V,E), the algorithm
needs at most O(|V |+ |E|) rounds. Each round can easily be implemented in strongly polynomial
time.

Proposition 5. In every edge-ranking game, the TopCycleIncrease algorithm computes
the clearing state f̂ in strongly polynomial time.

Since unit-ranking games can be cast as edge-ranking games with unit-capacity multi-edges,
the algorithm can be applied in unit-ranking games as well. Note that the running time does not
necessarily remain polynomial due to the pseudo-polynomial blowup in representation size.

4. Unit-ranking games.

4.1. Existence and computation of equilibria. In this section we consider equilibria in
unit-ranking games. Our first result is that in every unit-ranking game there is a strong equilibrium
that can be computed in polynomial time. Moreover, for a large class of quality functions Q, we
can guarantee the existence of a strong equilibrium that is optimal with respect to Q. In particular,
every such equilibrium profile of unit-ranking strategies can be represented compactly. In the next
theorem, we prove the existence and representation result, and we show that the price of stability
is 1 for Flow. The extension to more general quality functions Q is discussed subsequently.

Consider an arbitrary flow allocation game and a circulation that maximizes the total flow in
the circulation network G′. We show that this circulation can be expressed as a clearing state of a
strong equilibrium in unit-ranking strategies.

Theorem 3. For every unit-ranking game, there is a strong equilibrium that maximizes the
total amount of flow. The strong equilibrium can be computed in polynomial time, and the equilib-
rium profile can be represented in polynomial space.

Proof. Consider the circulation network G′ = (V,E′). For a moment, assume this is a standard
flow network without strategic flow allocation. Consider an optimal circulation f∗ that maximizes
the total flow value, i.e., it maximizes the sum of flow on all edges. This implies, in particular, that
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it saturates all outgoing auxiliary edges from s. Clearly, f∗ yields an upper bound on the achievable
total amount of flow (denoted by Flow(f∗)) in any strategy profile a of the game∑

e∈E′

f∗
e = 2

∑
v∈V

bv +
∑
v∈V

∑
e∈E+(v)

f∗
e = 2

∑
v∈V

bv +Flow(f∗) ≥ 2
∑
v∈V

bv +Flow(a) .

f∗ can be computed in strongly polynomial time [45]. Since all edge capacities are integral, we can
assume all f∗

e are integral.
We now turn this circulation into a clearing state for a carefully chosen strategy profile a∗ of

unit-ranking strategies. We will choose a∗ such that it can be compactly represented by threshold-
ranking strategies.
In a threshold-ranking strategy, every firm v chooses a permutation πv over E

+(v) and thresholds
τe. The interpretation of threshold-ranking strategies is that node v first assigns τe particles to
every edge e∈E+(v), sequentially in the order given by πv. Then, it assigns the remaining ce− τe
particles to every edge in the order given by πv. That is, v first considers edge πv(1) and forwards
the first τπv(1) particles to this edge. The next τπv(2) particles are forwarded to edge πv(2) etc.

until
∑|E+(v)|

j=1 τπv(j) particles are sent to the edges (or v runs out of flow). Then, the remaining
cπv(1)−τπv(1) particles are forwarded to edge πv(1), then the next cπv(2)−τπv(2) particles to πv(2) etc.
Clearly, threshold-ranking strategies are more general than edge-ranking strategies. They constitute
a special class of unit-ranking strategies with compact representation.
We choose a∗ as follows. Every firm v chooses an arbitrary permutation πv over E+(v) and sets

τe = f∗
e . It is easy to see that in a∗, the optimal circulation f∗ corresponds to the clearing state. Let

us prove that a∗ is a strong equilibrium, i.e., that no coalition C ⊆ V has a profitable deviation.
Suppose for contradiction that there is a coalition C with a profitable deviation. Examine the new

profile (a′
C ,a

∗
−C) and assume f̂

′
is the clearing state. Consider a node v ∈C. Since uv(a

′
C ,a

∗
−C)>

uv(a
∗), there must be strictly more outgoing flow from v in the new profile. Due to the no-fraud

condition, this can only happen if v also has strictly more incoming flow in the new profile. Hence,
there is an incoming edge e= (w,v) ∈ E−(v) with f̂ ′

e > f∗
e . Now consider node w. If w ∈ C, then

uw(a
′
C ,a

∗
−C) > uw(a

∗), so by the same reasoning there is again some incoming edge in E−(w)

that has strictly more flow in f̂
′
. Otherwise, if w ̸∈ C, then w still plays the strategy a∗

w. Due to
monotonicity, a higher flow on (w,v) can only occur if w has larger total supply. Thus, there is

again some incoming edge in E−(w) that has strictly more flow in f̂
′
.

We can repeat this argument indefinitely. As such, there must be a cycle of edges that all have

more flow in f̂
′
than in f∗. Such a cycle can be used to increase the circulation, which contradicts

that f∗ is an optimal circulation in G′. □

Remark 1. For the profitable deviation, we can even allow arbitrary continuous strategies and
any choice of clearing state for the deviation profile. This applies even for games with non-monotone
and fraud strategies, as long as a feasible flow exists and the clearing state is chosen arbitrarily
among the feasible flows that are not weakly dominated in terms of coordinate-wise comparison.
Remark 2. If we consider deviations that weakly improve the coalition (i.e., uv(a

′
C ,a−C) ≥

uv(a) for all v ∈C and uw(a
′
C ,a−C)> uw(a) for at least one w ∈C), it is a simple exercise to see

that there are unit-ranking games, in which no such (often termed “super-strong”) equilibrium
exists.
As mentioned before, the result can be generalized quite substantially beyond Flow to a large

class containing various quality functions Q(a). Let A be the set of all possible strategy profiles of

a unit-ranking game. Let a,a′ ∈A be two strategy profiles and f̂ and f̂
′
the clearing states in a and

a′, respectively. Recall the coordinate-wise comparison of flows used in Theorem 1. The function

Q :A→R is flow-monotone if f̂ > f̂
′
implies Q(a)≥Q(a′).
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Corollary 1. For every unit-ranking game and every flow-monotone social welfare function
Q, there is a strong equilibrium that maximizes Q. The equilibrium profile can be represented in
polynomial space.

Proof. The proof uses the same argument as above. Consider the optimal value Qmax =
maxa∈AQ(a) and the set Amax = {a |Q(a) =Qmax} of optimal strategy profiles w.r.t. Q. Consider

a profile a∗ ∈Amax such that the clearing state f̂
∗
is not coordinate-wise dominated by a clearing

state of another optimal profile, i.e., there is no a′ ∈Amax with f̂
′
> f̂

∗
. We show that a∗ is a strong

equilibrium.
For contradiction, suppose there is a coalitional deviation in a∗. By the same arguments as in

the proof above, the deviation implies that there is a cycle that allows to increase the flow. Thus,
there is a circulation f > f̂

∗
in the flow network G′. By constructing a strategy profile a using

threshold-ranking strategies, f can be turned into the clearing state of a. Since Q is flow-monotone,
Qmax =Q(a∗)≤Q(a). Hence, a∈Amax and f > f̂

∗
, a contradiction to the choice of a∗.

Finally, by using threshold-ranking strategies the equilibrium profile has a compact representa-
tion. □

The corollary implies that the price of stability for strong equilibria is 1 for a very wide range of
natural quality functions. For example, instead of Flow(a) (representing utilitarian welfare (8))
we might prefer to express the quality of a strategy profile by
� egalitarian welfare EW(a) = minv∈V uv(a), i.e., the minimum utility of any player in the net-
work, or

� Nash social welfare NSW(a) =
(∏

v∈V uv(a)
)1/n

, i.e., the geometric mean of player utilities, or

� the number of fully saturated nodes FSN(a) = |{v ∈ V | f̂v = c+v }|, which in financial networks
corresponds to the number of solvent firms, or

� any monotone transformation or combination of the above functions.
Corollary 1 implies the existence of an optimal strong equilibrium for all these functions.
While we can compute any strong equilibrium in polynomial time, for some functions Q an

optimal strong equilibrium can be NP-hard to compute. A simple reduction shows that for each of
the objective functions in the list above it is NP-hard to compute an optimal strategy profile and,
consequently, also an optimal strong equilibrium.

Theorem 4. In unit-ranking games, it is strongly NP-hard to compute a strategy profile that
maximizes EW, NSW, or FSN.

Proof. We start by considering the problem of optimizing FSN. This task can be at least as
hard as deciding Exact Cover by 3-Sets (X3C). In an instance of X3C, we have a set R of 3k
elements for an integer k≥ 1 and a set S ⊆ 2E of m triplets (i.e., |S|= 3 for each S ∈ S). The goal
is to decide if there are k non-overlapping sets in S.
For the reduction, we construct a game containing a source node v with bv = 3k. Each S ∈ S is a

node, and for each r ∈R there are three nodes r1, r2, r3. We have edges (v,S) of capacity 3k+1, for
every S ∈ S, edges (S, r1) of capacity 1, for every r ∈ S, and two edges (r1, r2), (r2, r3) of capacity
1 for every r ∈ R. Note that all r3 are fully saturated, and v can never be fully saturated. By
routing the flow from v via the sets to the elements, we can fully saturate at least the 9k nodes
corresponding to elements in R. If nodes of overlapping sets are fully saturated, we route a flow of
x≥ 2 to some element node r1, which implies that 2(x−1) nodes for x−1 other elements r′ ∈R are
not fully saturated. This does not happen in an optimal profile if (and only if) the X3C instance is
a yes-instance. More formally, an optimal profile saturates at least 9k+ k nodes for elements and
sets if and only if there are k non-overlapping sets in S.

To prove the result for objectives EW and NSW, we introduce two auxiliary nodes Sa and ra.
For each S ∈ S, we add edges (S,Sa) and (Sa, S) with capacity 1. W.l.o.g. we can assume that all
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nodes S give first priority to the edge (S,Sa). Consequently, each S has a positive utility of at least
1. Sa has utility |S|. Similarly, for each node r3, we add edges (r3, ra) and (ra, r

3) with capacity 1.
As such, all nodes r3 can be assumed to have a utility of at least 1. ra has utility 3k.
Now the problem of optimizing EW or NSW reduces to deciding whether all nodes r1, r2 can

simultaneously obtain positive utility, since otherwise the objective value will be 0. This property,
however, is equivalent to choosing k non-overlapping sets to route the total demand of 3k from v
to the 3k nodes r1. As such, a positive value for EW or NSW can be obtained if and only if the
X3C instance is a yes-instance. □

Irrespective of the quality function, even computing a best-response strategy for a single node v
in a strategy profile can be strongly NP-hard, since best responses can provide answers to compu-
tationally hard decision problems. This holds even in games without fixed supply and with edge
capacities in {0,1}.

Theorem 5. For a given strategy profile a of a unit-ranking game with bv = 0 for all v ∈ V and
ce ∈ {0,1} for all e∈E, deciding whether a given node v has a best response resulting in utility at
least k is strongly NP-complete.

v

xi,1,0 zi,0

zi,1xi,1,1

xi,2,0

xi,2,1

xi,3,0

xi,3,1

xi,4,0

xi,4,1

zi

(a) Variable Gadget

v

c1

c2

c3

c4

x1,1,1

x2,1,1

x3,1,0

x1,2,1

x2,2,0

x4,2,1

x3,3,1

x4,3,0

x2,4,1

x3,4,0

x4,4,1

x5,4,1

(b) Example Construction of a Network

Figure 1. Structures used in the proof of Theorem 5.

Proof. For unit-ranking games with edge capacities in {0,1} and fixed supplies equal to 0, the
decision problem is obviously contained in NP: We can represent every unit-ranking strategy as a
ranking over edges. Then, ourTopCycleIncrease algorithm to compute f̂ discussed in Section 3.2
runs in polynomial time and we can efficiently verify the utilities for all players.
For strong NP-hardness, suppose we are given an instance I of Satisfiability in conjunctive

normal form with n variables and m clauses. We construct a unit-ranking game in edge-ranking
representation with a node v and a strategy profile π−v for the other players such that the following
holds: There is a strategy πv with utility uv(πv,π−v) ≥ k′ + n if and only if I has a variable
assignment that fulfills at least k′ clauses.
We construct the game as follows. We denote the variables of I by x1, . . . , xn and the clauses by

C1, . . . ,Cm. For each variable xi we create nodes xi,j,0 and xi,j,1 for all j ∈ {1, . . . ,m}, as well as a
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node zi. For each clause Cj we add a clause node cj. In addition, there is a separate node v, for
which we strive to find a best response.
For each clause Cj, we add a unit-capacity edge from xi,j,0 to cj if xi appears as ¬xi in Cj and

from xi,j,1 to cj if it appears as xi in Cj. Flow incoming to cj will eventually indicate a literal that
fulfills the clause Cj. There is an edge (cj, v) for all j ∈ {1, . . . ,m}. We will show below that this
edge ensures that satisfying clause Cj adds exactly one unit to the total supply of v.
For each variable xi, we add a variable gadget. It consists of nodes v,xi,j,0 and xi,j,1 for all

j ∈ {1, . . . ,m}, as well as auxiliary nodes zi, zi,0 and zi,1. There are unit-capacity edges (v,xi,j,0)
and (v,xi,j,1) for all j ∈ {1, . . . ,m}, edges (xi,j,0, xi,j+1,0), (xi,j,1, xi,j+1,1) for j ∈ {1, . . . ,m− 1}, and
edges (v, zi,0), (zi,0, xi,1,0) and (v, zi,1), (zi,1, xi,1,1). Firm zi has edges (xi,m,0, zi), (xi,m,1, zi), and
(zi, v). An example for the gadget that is constructed for a variable xi and m= 4 is depicted in
Fig. 1a. Note that for every strategy of v, there is at most one cycle emerging in this gadget, since
all cycles must include the outgoing edge of zi.
In Fig. 1b, we show an example of the network without the variable gadgets for the Satisfia-

bility instance I = (x1 ∨x2 ∨¬x3)∧ (x1 ∨¬x2 ∨x4)∧ (x3¬x4)∧ (x2 ∨¬x3 ∨x4 ∨x5).
We construct a strategy profile π−v as follows. Observe that nodes c1, . . . , cm and x1, . . . , xn each

have a single outgoing edge, their strategies are trivial. If a node xi,j,0 or xi,j,1 has multiple outgoing
edges, it always prioritizes the edge to nodes xi,j+1,0 and xi,j+1,1, respectively, or to zi if j =m.

In the following, we argue that there is a best response of v with utility k′+n if and only if there
is a variable assignment such that k′ clauses are fulfilled in I. Suppose there is a variable assignment
such that k′ clauses are fulfilled. Fix this assignment, and for every satisfied clause c choose a single
literal lc that evaluates to true in the clause. Let v choose the following strategy: First, prioritize
edges (v,xi,1,0) if xa = false in the assignment and (v,xi,1,1) if xa = true in the assignment. All these
edges will close a cycle (v,xi,1,0, xi,2,0, . . . , xi,m,0, xi, v) or (v,xi,1,1, xi,2,1, . . . , xi,m,1, xi, v). After that,
for all clause-fulfilling literals lc prioritize the edges (v,xi,j,0) if c= Cj and lc = ¬xi in any order.
Prioritize the edges (v,xi,j,1) if c=Cj and lc = xi. All these edges close a cycle via the clause node
cj, leading to a total inflow of k′ +n.
For showing the other direction, we observe the following structural property for all variables xi.

If there is some flow on an edge (xi,m,0, zi) there cannot be any flow on edge (xi,m,1, zi), and vice
versa. We conclude that flow on some edge (xi,j,0, cj) implies flow on edge (xi,j,0, xi,j+1,0) (since it
has a higher priority), and (xi,m,0, zi), and thus no flow on (xi,j′,1, cj′) for all j′. Analogously, we
observe that any flow on some edge (xi,j,0, cj) implies no flow on edges (xi,j′,1, cj′).
We observe that if there is a best response of node v with inflow equal to k′ + n, the node has

k′ + n incoming edges that carry flow. At most n of these edges can be (zi, v)-edges, so there are
at least k′ clause-edges (cj, v) that carry flow. Thus, all these k′ clause nodes receive incoming
flow. If this flow for some clause cj comes from a node xi,j,0, we know by the observation above
that no edge xi,j′,1 carries flow. Thus we can set the variable xi to false, which fulfills clause Cj.
Applying this and analogous operations for flow on an edge (xi,j,1, v) yields a variable assignment
which fulfills at least k′ clauses. □

4.2. Total flow in equilibrium. In this section, we analyze the quality of pure Nash and
strong equilibria in unit-ranking games, mostly in terms of the Flow objective. In the last section
we observed that the prices of stability for Nash and strong equilibria in unit-ranking games
are both 1. We here bound the prices of anarchy for Nash and strong equilibria. The total flow
depends crucially on the emergence of cycles in the strategy profile. This requires an effort that is
inherently coalitional. As such, it might be unsurprising that there are games in which the worst
Nash equilibrium may fail to provide any reasonable fraction of the optimal total flow.

Proposition 6. The price of anarchy for Nash equilibria in terms of Flow is unbounded,
even in unit-ranking games without fixed supplies.
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Proof. Consider the game depicted on the right. All edges
have capacity 1, fixed supplies are bv = 0 for all nodes v.
Consider π with π1 = (e1, e3) and π2 = (e2, e4). It is a pure
Nash equilibrium with Flow(π) = 0. No unilateral devi-
ation can close a cycle and increase the value of f̂ . The
optimal solution π∗ with π∗

1 = (e3, e1) and π∗
2 = (e4, e2) has

Flow(a∗) = 2. □

1 2

3 4

e3

e4

e1 e2

To analyze the quality of strong equilibria, we again consider the unit-ranking game in the
form of unit-capacity multi-edges. Consider an optimal circulation f∗ of maximum social welfare
in the circulation network G′. Since we have unit-capacity edges, we can assume that the optimal
circulation has binary flows on each edge. Let C(f∗) = {C1, . . . ,Ck} be a decomposition of f∗ into
cycles of unit flow. We denote by

d= min
f∗,C(f∗)

max
C∈C(f∗)

|Ci|

the min-max size of any cycle, in any decomposition C(f∗) of any optimal circulation f∗.

Theorem 6. In unit-ranking games, the price of anarchy for strong equilibria in terms of
Flow is at most d.

Proof. Consider an optimal circulation f∗ and a decomposition C(f∗) such that all flow cycles
Ci ∈ C(f∗) have size at most |Ci| ≤ d. As observed in the proof of Theorem 3, this circulation yields
the total flow of an optimal strategy profile a∗, i.e.,

Flow(a∗) =
∑
v∈V

∑
e∈E+(v)

f∗
e =

∑
Ci∈C(f∗)

|Ci| − 2
∑
v∈V

bv ≤
∑

Ci∈C(f∗)

d .

Now consider any strong equilibrium a in the unit-ranking game with clearing state f̂ . The flow f̂
can be assumed to have binary edge flows. Suppose there is a cycle Ci ∈ C(f∗) such that ae(̂fv) = 0
for all e= (v,w) ∈Ci. Then the nodes in this cycle have an incentive to jointly deviate and place
the edges of Ci on the first position in their ranking. Then the clearing state f̂ will emerge as
before, adding a flow of 1 along the cycle Ci. This is a profitable deviation for the nodes of Ci.
Consequently, for every cycle Ci ∈ C(f∗) there must be at least one edge e= (u, v)∈Ci such that

ae(̂fu) = 1. Thus, the total flow in the strong equilibrium a is

Flow(a)≥
∑

Ci∈C(f∗)

1

and, hence, the ratio is at most d. □

Proposition 7. For every d≥ 2, there is a unit-ranking game in which the price of anarchy
for strong equilibria in terms of Flow is at least d− 1.

Proof. The game is given by a graph G with d + (d − 1)(d − 2) nodes. G is constructed as
follows. The nodes v1, . . . , vd are called central nodes and they form a cycle of length d. For each
i= 1, . . . , d−1, there are nodes (vi,j)j=1,...,d−2 that form additional cycles of length d with the edge
(vi, vi+1). Thus, the set of edges is given by

E = {(vi, vi+1) | i∈ {1, . . . , d− 1}}∪ {(vd, v1)}
∪

⋃
i=2,...,d

(
(vi, v

1
i )∪{(v

j
i , v

j+1
i ) | j = 1, . . . , d− 3}∪ (vd+2

i , vi−1)
)
.
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Figure 2. A unit-ranking game with d= 5 and a price of anarchy for strong equilibria of d− 1 = 4.

All nodes have fixed supply of 0. All edges have unit capacity. An example of the instance with

d= 5 is depicted in Fig. 2. Observe that only nodes vi, i= 2, . . . , d have multiple outgoing edges

and, thus, these nodes are the only ones with a non-trivial strategy choice.

Since all edges have capacity 1, we will view this game equivalently as an edge-ranking

game. We claim that the strategy profile πi =
(
(vi, vi+1), (vi, v

1
i )
)
, for i = 2, . . . , d − 1, and πd =(

(vd, v1), (vd, v
1
d)
)
is a strong equilibrium in the game. In order to see this, let f̂ be the clearing

state of π. Note that

f̂v =

{
1 if v= v1, v2, . . . , vd ,

0 otherwise ,

that is, Flow(π) = d. Now suppose there is a non-empty coalition of nodes C ⊆ (v2, . . . , vd) that

all strictly increase their utility by a joint deviation. Note that vd only has a single incoming edge

that is saturated in π, so vd /∈ C. Thus, the cycle vd, v
1
d, . . . , v

d−2
d , vd−1 cannot carry any flow. We

conclude that vd−1 has only a single edge that can carry flow. Iterating this argument yields C = ∅,
a contradiction.

In constrast, the strategy profile with πi =
(
(vi, v

1
i ), (vi, vi+1)

)
for i = 2, . . . , d − 1 and πd =(

(vd, v
1
d), (vd, v1)

)
has social welfare of (d− 1)d. Thus, the price of anarchy for strong equilibria in

this instance is at least d− 1. □
For completeness, let us also provide a cumulative characterization of prices of anarchy for pure

Nash and strong equilibria for the three other quality functions mentioned in the previous section.

Proposition 8. In unit-ranking games, the prices of anarchy for pure Nash and strong equi-

libria in terms of

� EW are unbounded,

� NSW are unbounded,

� FSN are exactly n− 1.

The lower bounds apply even in games with d= 3.

Proof. Consider the game depicted on the right.
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Figure 3. An edge-ranking game without a pure Nash equilibrium.

All edges have capacity 1, fixed supplies are bv = 0 for all nodes.
Only v1 has a non-trivial strategy choice, π1 = (e1, e2) or π2 =
(e2, e1). Both choices yields a utility of 1 for v1, so both are a best
response for v1. Since v1 is the only player with a choice, both
options represent a strong equilibrium. Both EW and NSW are
0 in the strong equilibrium when v1 plays π1 and 1 in the optimal
state with π2. Hence, the prices of anarchy for both pure Nash
and strong equilibria are unbounded for both these objectives. In
the optimal state, the unique flow cycle has length 3.

v1 v2

v3

e1

e4

e2 e3

Towards the FSN objective, we note that in every strategy profile a of every unit-ranking game
there must be at least one node that is fully saturated. Otherwise, every node has an outgoing
active edge, and hence there must be cycle of active edges – a contradiction to the property that
the clearing state is maximal. Clearly, since there can be at most n saturated nodes, the prices of
anarchy for pure Nash and strong equilibria are at most n.
More precisely, suppose there is a state a∗ with FSN(a∗) = n. In Proposition 3 we proved that

the strategy choices of saturated nodes have no impact on the clearing state. As such, if all nodes
are fully saturated, then for each node her utility is independent of the entire strategy profile. In
this case, prices of anarchy for pure Nash and strong equilibria are 1. The prices are non-trivial
only if every strategy profile has at least one non-saturated node. Hence, they can be at most n−1.

To show the lower bound of n− 1, we slightly extend the construction above. We add nodes
v4, . . . , vn, each with two edges (v1, vi) and (vi, v2) of capacity 1. Edges (v1, v2) and (v2, v1) get an
increased capacity of n−2. Again, v1 is the only player with a non-trivial strategy choice. It is easy
to see that for any strategy, v1 obtains a utility of n−2. As such, every strategy is a best response,
and every state represents a pure Nash and a strong equilibrium. In the worst equilibrium a, v1
exchanges n− 2 units of flow with v2. v2 gets saturated and FSN(a) = 1. In the optimal state a∗,
v1 routes n− 2 units of flow in single units via v3, . . . , vn to v2. Then v2, . . . , vn get saturated and
FSN(a∗) = n− 1. Note that in a∗ every cycle has length 3. □

5. Edge-ranking games.

5.1. Existence and computation of equilibria. With unit-ranking strategies we assume
that nodes have flexibility in allocation of single particles. In this section, we focus on strategies, in
which nodes simply rank their outgoing edges and allocate flow in order of this ranking until they
run out of supply or all edges are saturated. In contrast to unit-ranking games, the restriction to
rankings over edges (with different capacity) can destroy the existence of (optimal) stable states.
In fact, there are even games without a single pure Nash equilibrium.

Proposition 9. There is an edge-ranking game without a pure Nash equilibrium.

Proof. Consider the game in Fig. 3. The capacities of the edges are depicted next to the edges.
Nodes v2 and v3 each have fixed supply of 2, the other nodes have fixed supply 0. Nodes v1, v2 and
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v3 are the only ones with multiple outgoing edges and, thus, a non-trivial strategy choice. Due to
the symmetry of the graph, we can assume w.l.o.g. πv1 = ((v1, v4), (v1, v6)). There are two possible
strategy choices for each of the nodes v2 and v3. Checking all four resulting strategy profiles yields
the following utility matrix for nodes v2 and v3:

πv2

πv3 ((v3, v1), (v3, v7)) ((v3, v7), (v3, v1))

4 3
((v2, v1), (v2, v5))

4 4
2 3

((v2, v5), (v2, v1))
5 3

Inspecting the utilities, we see that there is no pure Nash equilibrium. □
The next theorem shows that a number of natural decision and optimization problems in edge-

ranking games are indeed computationally intractable. Note that for unit-ranking games, these
problems are either trivial (a strong equilibrium always exists) or can be solved in polynomial time
(compute a strong equilibrium that represents a profile with maximum total flow).

Theorem 7. Given an edge-ranking game the following problems are strongly NP-hard:
1. Deciding whether a pure Nash equilibrium exists or not.
2. Deciding whether a strong equilibrium exists or not.
3. Computing a pure Nash equilibrium, when it is guaranteed to exist.
4. Computing a strong equilibrium, when it is guaranteed to exist.
5. Computing a strategy profile π that maximizes Flow(π).
6. For a given strategy profile π, deciding whether a given node has a best response resulting in

utility at least k.

Proof. We start by proving hardness for computing a pure Nash or a strong equilibrium when
it is guaranteed to exist.

Hardness of computing Nash or strong equilibria. Consider an instance I of the problem
3-Dimensional-Matching. I is given by a finite set T with |T |= 3k and a set U ⊆ T × T × T .
[31] proved it is strongly NP-complete to decide whether there is a subset W ⊆U such that |W |= k
and no two elements of W have a non-empty intersection. The existence of such a set |W | would
be an exact cover of T . Given an instance I of 3-Dimensional-Matching, we construct an edge-
ranking game as follows. Suppose there is a central node v. For each set u∈U , add a node u and
connect v to u by an edge (v,u) with capacity c((v,u)) = 3. For each pair t, u with t∈ T , u∈U and
t∈ u add a node t and add an edge (u, t) with capacity c((u, t)) = 1. Finally, connect each element
node t∈ T by an edge (t, v) with c((t, v)) = 1 to v.
The idea is that computing any pure Nash or strong equilibrium reduces to finding a best response

for player v. This best response, however, gives utility of 3k if and only if I has a solution. Hence,
by computing a pure Nash or strong equilbrium, we obtain a best response for v and thereby a
certificate as to whether I is solvable or not (and vice versa).
Let us first argue that there is always a strong equilibrium in this edge-ranking game. First, we

note that all nodes t ∈ T have a single outgoing edge. We fix an arbitrary feasible strategy vector
π′. We will argue that best-response dynamics yield a strong equilibrium. For every strategy of v,
there is at most one node ui with aui

∈ {1,2}. For all other nodes u∈U \{ui}, every strategy piu is
a best response for u due to Proposition 3. We conclude that if π′ is not a strong equilibrium, there
is a coalition S of players with an improvement move such that all players in S strictly increase
their utility. If v /∈ S, there is a player ui ∈ S ∪ U . The improving move of ui also increases the
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utility of v. Thus, the utility of v increases in every step of the dynamics. This shows that the
dynamics terminate with a strong equilibrium.
Let π be any Nash equilibrium in the edge-ranking game. We show the following claim. There

is a subset W such that |W |= k and no two elements of W have a non-empty intersection in I if
and only if uv(π) = |T | in π.
First, let us assume that π is a Nash equilibrium with uv(π) = |T |. Since each outgoing edge

from v has capacity 3 and |T |= 3k, we know by the definition of edge-ranking games that |{w ∈U |
uw(π) = 3}|= k. We denote these vertices by w1, . . . ,wk. Thus, uwi

(π) = 3 for i≤ k and uwi
(π) = 0

for all i > k. We will show that the sets corresponding to vertices w1, . . . ,wk form a solution to I.
Suppose there are two sets w1,w2 that have a non-empty intersection. If this is the case, there is
an element t ∈ T with t ∈ w1 ∩w2. There are edges (w1, t), (w2, t) in the edge-ranking game that
carry flow. This is a contradiction to the fact that uv(π) = |T |.

Now, let us assume there is a solution w1, . . . ,wk to I. We will show that every pure Nash
equilibrium π in the edge-ranking game yields utility uv(π) = 3k. The total capacity of all incoming
edges of v is exactly 3k, so uv(π) ≤ 3k clearly holds for all strategy profiles. We will now argue
that independent of the strategy choices of all other players, node v can always obtain uv(π) = 3k.
Let πv = ((v,w1), . . . , (v,wk), . . . ). Since w1, . . . ,wk exactly cover all elements t∈ T , this induces 3k
cycles in the TopCycleIncrease algorithm discussed in Section 3.2. This is independent of the
strategy choices of all other nodes since they always have the property that either all outgoing
edges are fully saturated, or there is no flow at all.
This shows that even in a class of games with guaranteed existence, computing a pure Nash

equilibrium or a strong equilibrium is strongly NP-hard.

Hardness of computing social optima. Consider the previous construction. Every simple
cycle in the network involves v and exactly two other nodes. There are no fixed supplies. As such,
the social welfare in the system is exactly 3uv(π). Hence, by computing a best-response for v, we
also obtain a strategy profile with maximum social welfare. This proves strong NP-hardness for
the computation of optimal strategy profiles. Note that this result is in contrast to unit-ranking
games, where an optimal strategy profile can be computed in strongly polynomial time.

Hardness of deciding existence of Nash and strong equilibria. For hardness of the
decision version, we adjust the construction from the first part of this proof and combine it with
the game without pure Nash equilibrium in Fig. 3. Observe that fixed supplies of 1 for node v7 in
Fig. 3 would lead to the dominant strategy πv3 = ((v3, v1), (v3, v7)) for v3. Given this strategy, it is
straightforward to derive the utilities for all strategy choices of v1 and v2.

πv1

πv2 ((v2, v1), (v2, v5)) ((v2, v5), (v2, v1))

4 4
((v1, v4), (v1, v6))

9 3
4 3

((v1, v6), (v1, v4))
9 5

Thus, given that v7 has fixed supply of 1 and v3 plays the dominant strategy πv3 = ((v3, v1), (v3, v7)),
the strategy profile with πv1 = ((v1, v6), (v1, v4)) and πv2 = ((v2, v1), (v2, v5)) is a strong equilibrium.
We use this insight to design a class of edge-ranking games based on instances of 3-Dimensional-

Matching with the following property. If instance I has a solution, the game has a strong equi-
librium (and hence a pure Nash equilibrium); if I has no solution, the game has no pure Nash
equilibrium (and hence no strong equilibrium). We adjust the construction from the first part of
this proof and combine it with |T | copies of the example of Fig. 3: In the construction from the
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first part of the proof above, delete all edges (t, v) for all t ∈ T and add a fixed supply of bv = 3k
for node v. We know that each t∈ T receives an inflow of 1 if and only if there is a solution to the
instance I of 3-Dimensional-Matching. The instance depicted in Fig. 3 is copied |T | times. We
denote the |T | copies of node v7 by v17, v

2
7, . . . , v

|T |
7 . Add an edge with capacity 1 from each ti ∈ T

to the corresponding copy of v7, i.e., edges (ti, v
i
7) for i= 1, . . . , |T |. If there is a solution to I, all

nodes ti ∈ T receive a flow of 1. This flow is forwarded to nodes vi7 and can be seen as their fixed
supply. Hence, there is a strong equilibrium in all copies and also in the game as a whole. On the
other hand, if there is no solution to I, there is always some ti ∈ |T | with uti(π) = 0, say, w.l.o.g.
ut1(π) = 0. The corresponding node v17 does not receive any inflow from the remaining network.
Hence, there is no Nash equilibrium in the respective copy and no Nash equilibrium in the game.

Hardness of deciding the existence of a best response with revenue at least k. The
instance constructed in the proof of Theorem 5 is an edge-ranking game and the proof immediately
carries over. □
Remark 3. It is unclear whether the problem of deciding existence of a pure Nash equilibrium

in an edge-ranking game is in NP or not, due to NP-hardness of verification that a node plays a
best response (see Theorem 5). It is easy to see that the decision problem is in Σp

2. The problem
could be Σp

2-complete, similar to related decision problems in strategic max-flow games [33, 21].
Proving such a result is an interesting open problem.

5.2. Total flow in equilibrium. For edge-ranking games, the lower bound on the price of
anarchy for Nash equilibria observed in Proposition 6 applies, i.e., the price of anarchy for Nash
equilibria in terms of Flow can be unbounded. The restriction to edge-ranking strategies can have
a drastic effect even on the total flow in the best equilibrium in case it exists. In particular, in
edge-ranking games the price of stability for strong equilibria in terms of Flow can be as high as
Ω(n), and the price of stability for Nash equilibria might even be unbounded.

Proposition 10. For every ε > 0, there is an edge-ranking game with price of stability for
strong equilibria in terms of Flow of at least n/2− ε.

Proof. We construct an edge-ranking game that consists of a single cycle plus one additional

edge. More formally, we have firms V = {v1, . . . , vn} and edges E =
{{

(vi, vi+1) | i∈ {1, . . . , n−1}
}
∪

(vn, v1)∪ (v1, vn)
}
. The edges (v1, vn), (vn, v1), (v1, v2) have a capacity M +1 and all other edges a

capacity ofM . The only node with more than a single outgoing edge is v1. If πv1 = ((v1, vn), (v1, v2)),
player v1 gets a total supply of M + 1, which is optimal. Observe that Flow(π) = 2M + 2, and
that π is the only Nash equilibrium and the only strong equilibrium.

In contrast, for profile π′ with π′
v1

= ((v1, v2), (v1, vn)), firm v1 only gets a utility of M , but
Flow(π′) = nM . Thus, the strong price of stability is at least nM/(2M +2) = n/2−n/(2M +2),
which is at least n/2− ε for M ≥ n/(2ε)− 1. □

Proposition 11. The price of stability for Nash equilibria in terms of Flow is unbounded in
edge-ranking games.

Proof. Consider the game in Fig. 4, which extends the game without pure equilibrium from
Fig. 3. We add three nodes. w1 has fixed supply 1, w2 and w3 no fixed supply. These nodes are
involved in a cycle C of edges (w1,w2) and (w2,w3) with capacity M ≫ 2, as well as edge (w3,w1)
with capacity M − 2. In addition, there are edges (w1, v9) and (w2, v9) of capacity 2.
In an optimal circulation, w1 and w2 prioritize the edges of C, leading to utilities of Θ(M). In

contrast, a pure Nash equilibrium can only exist if the w-nodes ensure that the fixed supply of
w1 is forwarded to v7, in which case a Nash equilibrium can exist (as observed in the proof of
Theorem 7). Clearly, both w1 and w2 have an incentive to deviate towards C. Hence, if either w1
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Figure 4. An edge-ranking game with unbounded price of stability for Nash equilibria.

or w2 places the edge to v7 in first rank and the other does not, a unilateral deviation suffices to
close C – thereby leaving the v-nodes with instability. However, if both w1 and w2 play strategies
πw1

= ((w1, v7), (w1,w2)) and πw2
= ((w2, v7), (w2,w3)), no unilateral deviation can lead to flow

along C. In this case, a pure Nash equilibrium evolves. Obviously the total flow in this equilibrium
is at most a constant. Hence, the price of stability is as large as Ω(M). □

6. Conclusions. In this paper, we have proposed and analyzed flow allocation games. Our
main results show that in these games, if firms are following priority rankings over units of flow
(i.e., unit-ranking strategies), there is always a strong equilibrium. Moreover, it can be computed
in strongly polynomial time and represented in polynomial space. More generally, for a large class
of flow-monotone quality functions Q, there is even an optimal strong equilibrium, i.e., the price of
stability for Nash and strong equilibria in terms of Q is 1. In terms of computational complexity,
the properties of such optimal strong equilibria depend highly on the quality function Q. While for
some objectives such as Flow the optimization problem of finding an optimal strong equilibrium
can be solved in polynomial time, for other objectives such as FSN the optimization problem can
become strongly NP-hard. Alternatively, when restricting the strategy spaces to priorities over
edges (i.e., edge-ranking strategies), pure Nash and strong equilibria can be absent, and even
deciding their existence is a NP-hard problem.

As a concrete example of a quality function, our results shed further light on the performance
of equilibria in terms of Flow. When considering decentralized clearing and arbitrary strong
equilibria in unit-ranking games, the price of anarchy for strong equilibria depends on the length of
cycles in the money circulation of an optimum profile. For pure Nash equilibria, the deterioration
in Flow can be severe due to the lack of coordination among firms. For edge-ranking strategies,
pure Nash and strong equilibria can have very poor quality in terms of Flow when they exist.
Our work provides a game-theoretic perspective on clearing in financial networks. In the context

of financial networks, unit-ranking functions allow a centralized market regulator to obtain a clear-
ing state, in which a desired social quality is maximized and no coalition of firms gets an incentive
to deviate. As such, our work reveals an intersting alignment of incentives – firms (even groups
of firms) share an intrinsic interest to implement these proposed clearing payments. This strate-
gic robustness represents an elegant game-theoretic complement to standard legal enforcement by
regulators in financial networks.
More generally, while we have initiated the analysis of flow allocation games, numerous recent

follow-up works in the context of financial networks (c.f. our discussion in Section 1.2) show that
our work has sparked interest in a variety of directions. Understanding these issues continues to be
of vital importance to improve the financial system and to inform the discussion about financial
regulation from a computational and game-theoretic perspective.
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