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Abstract We study the stable roommates problem in networks where players
are embedded in a social context and may incorporate positive externalities
into their decisions. Each player is a node in a social network and strives
to form a good match with a neighboring player. We consider the existence,
computation, and inefficiency of stable matchings from which no pair of players
wants to deviate. We characterize prices of anarchy and stability, which capture
the ratio of the total profit in the optimum matching over the total profit of
the worst and best stable matching, respectively. When the benefit from a
match (which we model by associating a reward with each edge) is the same
for both players, we show that externalities can significantly improve the price
of stability, while the price of anarchy remains unaffected. Furthermore, a
good stable matching achieving the bound on the price of stability can be
obtained in polynomial time. We extend these results to more general matching
rewards, when players matched to each other may receive different benefits
from the match. For this more general case, we show that network externalities
(i.e., “caring about your friends”) can make an even larger difference and
greatly reduce the price of anarchy. We show a variety of existence results
and present upper and lower bounds on the prices of anarchy and stability for
various structures of matching benefits. All our results on stable matchings
immediately extend to the more general case of fractional stable matchings.
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1 Introduction

Stable matching problems capture the essence of many important assignment
and allocation tasks in economics and computer science. The central approach
to analyzing such scenarios is two-sided matching, which has been studied
intensively since the 1970s in both the algorithms and economics literature.
Stable matchings are a special case of the much more general stable room-
mates problem which forms the basis of this work. An important variant of
stable matching is matching with cardinal utilities, when each match can be
given numerical values expressing the quality or reward that the match yields
for each of the incident players [6]. Cardinal utilities specify the quality of each
match instead of just a preference ordering, and they allow the comparison of
different matchings using measures such as social welfare. A particularly ap-
pealing special case of cardinal utilities is known as correlated stable matching,
where both players who are matched together obtain the same reward. Apart
from the wide-spread applications of correlated stable matching in, e.g., mar-
ket sharing [24], job markets [9], social networks [26], and distributed computer
networks [42], this model also has favorable theoretical properties. It guaran-
tees existence of a stable matching and convergence of dynamics even in the
non-bipartite case, where every pair of players is allowed to match [3, 4, 42].
However, it should also be mentioned that in many scenarios agents may not
be able to express their preferences in terms of cardinal utilities or may only
be able to do so approximately.

When matching individuals in a social environment, it is often unreason-
able to assume that each player cares only about their own match quality.
Instead, players incorporate the well-being of their friends/neighbors as well,
or that of friends-of-friends. Players may even be altruistic to some degree, and
consider the welfare of all players in the network. Such network externalities
are commonly observed in practice and have been documented in laboratory
experiments [39, 21]. In addition, in economics there exist recent approaches
towards modeling and analyzing other-regarding preferences [22]. Given that
other-regarding preferences are widely observed in practice, it is an impor-
tant fundamental question to model and characterize their influence in clas-
sic game-theoretical environments. Very recently, the impact of social influ-
ence on congestion and potential games has been characterized prominently
in [11, 27, 16, 18, 29, 17, 28].

In this paper, we consider a natural approach to incorporate externalities
from social networks into partner selection and matching scenarios. In particu-
lar, we study how social context influences stability and efficiency in matching
games. Our approach uses dyadic influence values tied to the hop distance in
the graph. In this way, every player may consider the well-being of every other
player to some degree, with the degree of this regardfulness possibly decay-
ing with the hop distance. The perceived utility of a player is then composed
of a weighted average of match utilities. Players who only care about their
neighbors, as well as fully altruistic players, are special cases of this model.
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Moreover, for matching in social environments, the standard model of cor-
related stable matching may be too constraining compared to general cardinal
utilities, because matched players receive exactly the same reward. Such an
equal sharing property is intuitive and bears a simple beauty, but there are
a variety of other reward sharing methods that can be more natural in dif-
ferent contexts. For instance, consider pairs of students working together on
class projects. Should both students in a pair receive the same grade/reward,
or should they be given a grade based on how much effort they put into the
project? In another example, when joint projects result in a publication, in
mathematics and theoretical computer science it is common practice to list au-
thors alphabetically, but in other disciplines the author sequence is carefully
designed to ensure a proper allocation of credit to the different participants
of a joint paper. Here the credit is often supposed to be allocated in terms of
input, i.e., the first author should be the one that has contributed most to the
project. Such input-based or proportional sharing is then sometimes overruled
with sharing based on intrinsic or acquired social status, e.g., when a distin-
guished expert in a field is easily recognized and subconsciously credited most
with authorship of an article. In this paper, we are interested in how such
unequal reward sharing rules affect stable matching scenarios. In particular,
we consider a large class of local reward sharing rules and characterize the
impact of unequal sharing on existence and inefficiency of stable matchings,
both in cases when players are embedded in a social context and when they
are not.

1.1 Stable Matching Within a Social Context

Correlated stable matching games is a prominent subclass of general cardinal
stable matching games. In this game, we are given a (non-bipartite) graph
G = (V,E) with edge weights re > 0 for all e ∈ E. Every node is a player
and strives to build (at most) one incident edge from E. A matching M ⊆ E
is a non-overlapping set of edges. In a matching M , if node u is unmatched,
the reward of node u is 0. Otherwise, if u is matched to node v, the reward
of node u is defined to be exactly re where e denotes the edge (u, v). This
can be interpreted as both u and v getting an identical reward from being
matched together. We will also consider unequal reward sharing, where for
each e = {u, v} ∈ E in addition to re we have two rewards rue , r

v
e ≥ 0 with

rue + rve = re. Therefore, the preference ordering of each node over its possible
matches is implied by the rewards that this node obtains from different edges.
A pair of nodes {u, v} is called a blocking pair in matching M if u and v are
not matched to each other in M , but can both strictly increase their rewards
by being matched to each other instead. A matching with no blocking pairs is
called a stable matching.

While the matching model above has been well-studied, in this paper we
are interested in stable matchings with externalities that arise in the presence
of social context. Denote the reward obtained by a node v in a matching M
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Fig. 1 The path of four nodes as described in Example 1

as Rv. We now consider the case when node u not only cares about its own
reward, but also about the rewards of its friends. Specifically, for node v ∈ V
we denote by Nd(v) the set of nodes that have shortest distance of exactly d
to v in G. Then the perceived utility or friendship utility of node v in matching
M is defined as

Uv(M) = Rv(M) +

diam(G)∑
d=1

αd
∑

u∈Nd(v)

Ru(M), (1)

where 1 ≥ α1 ≥ α2 ≥ . . . ≥ 0 (we use α to denote the vector of αi values).
In other words, for a node u that is distance d away from v, the utility of v
increases by an αd factor of the reward received by u. Thus, if αd = 0 for
all d ≥ 2, this means that nodes only care about their neighbors, while if all
αd > 0, this means that nodes are altruistic and care about the rewards of
everyone in the graph. The perceived utility is the quantity that the nodes
are trying to maximize, and thus, in the presence of externalities, a blocking
pair is a pair of nodes such that each node can increase its perceived utility
by matching to each other. Using this definition of blocking pair, a stable
matching is again a matching without such a blocking pair.

Example 1. Consider a simple path of four nodes (see Fig. 1), with edges
e1 = {w, u}, e = {u, v}, e2 = {v, z}. This structure will play a prominent role
throughout the paper. First assume that re1 = re2 = 1 and re = 1 + ε, for
ε > 0. We consider equal sharing, that is, both incident players receive the
same reward from an edge. For small values of ε, the matching with maximum
total reward is M∗ = {e1, e2}. For α = 0, however, the unique stable matching
is Ms = {e}, as both u and v can strictly improve their rewards for every
matching M with e 6∈M .

Now assume that ε < 0.33 and we have friendship utilities with α1 = 0.5
and α2 = α3 = 0. It is easy to observe that Ms remains a stable matching.
Consider one of the possible pairs {u,w} and {v, z}. In each one, the perceived
utility of u or v would go down from 1.5 · (1 + ε) to 1.5, respectively. Hence,
none of them constitutes a blocking pair and Ms is stable. If, however, both
of these edges are constructed, then M∗ is also a stable matching. The only
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possible blocking pair e destroys both {u,w} and {v, z}. Then the perceived
utility deteriorates from 2 to 1.5 · (1 + ε) < 2 for both u and v. Hence, e is not
a blocking pair, and M∗ is stable. �

We also study more general stable matching models with nodes u and v
receiving different rewards ruuv and rvuv from an edge {u, v} ∈M . Under these
conditions, a stable matching is not guaranteed to exist. Instead, we resort
to fractional stable matchings defined as follows. In a fractional matching M
there is a real number xe ∈ [0, 1] for each edge e. It represents the degree to
which edge e is “in the matching” and can be thought of as the strength of the
match between the nodes incident to e. In addition, for every node u there is
a budget constraint

∑
e∈E,e3u xe ≤ 1. Fractional matching is especially well-

motivated in a social context, since it captures the idea of relationships of
varying strengths, e.g., time spent together by friends or the extent of collab-
oration between two people, etc. The budget constraint models the fact that
a single person cannot be involved in an unlimited amount of strong relation-
ships. With fractional link strengths, the reward of a node u for an edge e
becomes xe · rue , and the total reward of node u becomes

∑
e∈E,e3u xer

u
e .

A fractional stable matching is a fractional matching without blocking
pairs. Analogous to a blocking pair for an integral matching, a blocking pair
for a fractional matching is an edge {u, v} such that by increasing the strength
of edge {u, v} (and possibly decreasing the strengths of some other edges {u,w}
and {v, z} to keep the budget constraints), both u and v strictly improve their
utilities. For fractional matching, the extension to friendships, social context,
and perceived utility is straightforward. Throughout the paper, the term stable
matching refers to an integral stable matching. We will explicitly mention when
fractional stable matchings are studied.

Example 1 (contd.). For our path example with equal sharing above without
friendship and α = 0, Ms is the unique stable matching. It is also the unique
fractional stable matching, as every fractional matching M that has xe < 1
allows u and v to jointly increase xe to 1 (and thereby possibly decreasing xe1
and xe2). In every case, this represents an increase of the reward of both u
and v.

For the case of friendship utilities with α1 = 0.5 and ε < 0.33, every linear
combination between the stable matchings Ms and M∗ constitutes a fractional
stable matching, and it is easy to see that these are the only fractional stable
matchings. For instance, xe1 = 0.75, xe = 0.25 and xe2 = 0.75 is one such
fractional stable matching. A small increase of δ on either xe1 or xe2 leads to
a decrease on xe by the same amount. The changes in perceived utility are
the same as observed above (times δ), so this represents a deterioration of the
reward of u or v, respectively. An increase on e is not profitable for neither u
nor v for the same reasons. �

Centralized Optimum and the Price of Anarchy. We study the social welfare
of stable matchings and compare them to an optimal centralized matching.
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The social welfare v(M) of a matching M is defined as the sum of rewards
obtained by all the nodes in the matching M , i.e.,

v(M) =
∑
u

Ru(M) .

A social optimum or a socially optimal matching, which we will denote by M∗,
is a matching with the maximum social welfare, i.e.,

M∗ = arg max
M is a matching

v(M) .

While this is equivalent to maximizing the sum of player utilities when α = 0,
this is no longer true for perceived utilities with externalities α 6= 0. Never-
theless, similar to, e.g. [43, 17], we believe this is a well-motivated and im-
portant measure of solution quality, as it captures the overall performance of
the system, while ignoring the perceived “good-will” effects of friendship and
altruism. For example, when considering projects done in pairs, the reward of
an edge can represent actual productivity, while the perceived utility may not.
Also note that a socially optimal matching need not be a stable matching.

To compare stable solutions with a social optimum, we will often consider
the price of anarchy (PoA) and the price of stability (PoS), defined over the
space I of all instances as follows:

PoA = max
I∈I

max
M,M∗are stable and

socially optimal resp. in I

v(M∗)

v(M)
.

PoS = max
I∈I

min
M,M∗are stable and

socially optimal resp. in I

v(M∗)

v(M)
.

Intuitively speaking, PoA quantifies the maximum possible gap between a so-
cially optimal matching and a stable matching in any instance. PoS quantifies
the gap to a socially optimal matching within some stable matching is guar-
anteed to exist in any instance.

Example 1 (contd.). Reconsider Example 1. If α = 0, the total reward of
the optimum matching M∗ is 4, while the reward of the unique (i.e., best
and worst) integral and fractional stable matching Ms is 2(1 + ε). For ε→ 0,
the example constitutes a lower bound on prices of anarchy and stability of 2
(which is also the correct upper bound, see, e.g., [8]). In this example, if we
start with α = 0 and begin increasing α1 until it reaches α1 = 1, we see the
following effects. (1) The set of stable matchings only expands, i.e., matchings
that are stable at small α1 values remain stable as we increase α1. (2) The
price of anarchy remains the same for all values of α1. (3) The price of stability
improves as α1 increases: more specifically in this example it remains 2 until
α1 becomes large enough, and then becomes equal to 1. Below, we will show
that these properties hold much more generally, and not just for this simple
example. �
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1.2 Our Results

Equal Sharing In Section 2, we consider stable matching with friendship util-
ities and equal reward sharing. Our first insight here is a monotonicity result
about the set of stable matchings – given any game, when we increase an en-
try of α, the set of stable matchings only expands. This implies that a stable
matching exists, the price of anarchy (ratio of the maximum-weight matching
with the worst stable matching) can only increase, and the price of stability
(ratio with the best stable matching) can only decrease. In fact, the price of
anarchy remains at most 2, the same as in the case without friendship. The
price of stability, on the other hand, improves in the presence of friendship,
as we can show a tight bound of 2+2α1

1+2α1+α2
. Moreover, we present a dynamic

process that converges to a stable matching of at least this quality in polyno-
mial time if initiated from a social optimum matching. Our results imply that
with network externalities, the price of stability can greatly improve: e.g., if
α1 = α2 = 1

2 , then the price of stability is at most 6
5 , and a solution of this

quality can be obtained efficiently.

The price of stability relies only on α1 and α2, because the existence of
a blocking pair {u, v} depends only on the α values of nodes in distance of
at most 2 from u and v. This is because by deviating, u and v cannot affect
the matches of any nodes which are farther than distance 2 away from them.
To construct a good stable matching we have to ensure resilience to such
deviations, and as their effect is “local” in this sense, this locality is reflected
also in the bound.

General Reward Sharing In Section 3 we study more general reward sharing
schemes. When two nodes matched together may receive different rewards, an
integral stable matching may not exist. Thus, we focus on fractional stable
matchings which we show to always exist, even with friendship utilities. We
show that for arbitrary reward sharing, prices of anarchy and stability depend
on the level of inequality among reward shares. Specifically, if R is the max-
imum ratio over all edges {u, v} ∈ E of the reward shares of node u and v,

then the price of anarchy is at most (1+R)(1+α1)
1+α1R

. Thus, compared to the equal
reward sharing case, if sharing is extremely unfair (R is unbounded), then ex-
ternalities become even more influential: changing α1 from 0 to 1

2 reduces the
price of anarchy from unbounded to at most 3. In addition, for several par-
ticularly natural local reward sharing rules, we show that an integral stable
matching exists, give improved price of anarchy guarantees, and show tight
lower bounds.

General Additive-Separable Externalities Some of our results continue to hold
when the values of α are not tied to hop distance. In particular, suppose for
each unordered pair u, v ∈ V there are values αuuv ≥ 0 and αvvu ≥ 0, possibly
independent of their distance, and perceived utility of a node v in a matching
M is given by Uv(M) = Rv(M) +

∑
u6=v α

v
uvRu(M).
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Fig. 2 An instance for which bad matchings become stable for friendship utilities with
general additive-separable externalities (See Example 2)

For equal sharing and αuv = αuuv = αvuv, a stable matching under friendship
utilities still exists. However, the set of stable matchings can change completely
when increasing α from 0. Both prices of anarchy and stability can strictly
increase in this case.

Example 2. As shown in Fig. 2, consider a path of length 2 with edges
e1 = {w, u} and e = {u, v}. Suppose re1 = 1 and re = 1

1+c + ε, for c > 0
and ε ∈ (0, c/(1 + c)). In this case, the optimum is edge e1, and it is also
the unique stable matching when α = 0. Hence, both prices of anarchy and
stability are 1 in this case. When we increase αuv from 0 to some value larger
than c, then edge e becomes the unique stable matching, and for ε → 0 the
prices of anarchy and stability become 1 + c. �

For αuv = c ∈ [0, 1], the above example provides both a price of anarchy
and stability lower bound of up to 2. In fact, there are games where the price
of anarchy can increase even beyond 2.

Example 3. Consider the same path structure as in Example 1 with edges
e1 = {w, u}, e = {u, v}, e2 = {v, z}. Here we assume that rewards are re1 =
re2 = 1 and re = 0.5. Also, assume αuv = 1 and all other values of the vector
α to be 0. It is straightforward to see that edge e is a stable matching here,
and the price of anarchy becomes 4. �

For general reward sharing, the existence of fractional stable matchings
even continues to hold when for each unordered pair u, v ∈ V there are possibly
different non-negative αuuv 6= αvuv. However, our bounds on the price of anarchy
cannot be extended to this case. A deeper study of the price of anarchy with
general externalities is an interesting avenue for future work.

1.3 Related Work

Stable matching problems have been studied intensively over the last few
decades. On the algorithmic side, existence, efficient algorithms, and improve-
ment dynamics for two-sided stable matchings have been of interest (for refer-
ences, see standard textbooks [25, 46, 40]). In this paper, we address the more
general stable roommates problem, in which every player can be matched to
every other player. For general preference lists, there have been numerous
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works characterizing and algorithmically deciding existence of stable match-
ings [34, 48, 19, 46]. In contrast, fractional stable matchings are always guar-
anteed to exist and exhibit interesting polyhedral properties [2, 1, 48]. For the
correlated stable roommates problem, existence of (integral) stable matchings
is guaranteed by a potential function argument [3, 42], and convergence time
of random improvement dynamics is polynomial [4]. In [7], bounds on prices
of anarchy and stability for approximate correlated stable matchings were pro-
vided. Similar studies in a setting with geometric distances were conducted
in [10]. In contrast, we study friendship, altruism, and unequal reward sharing
in stable roommates problems with cardinal utilities.

Another line of research closely connected to some of our results involves
game-theoretic models for contribution. In [8] we consider a contribution game
tied closely to matching problems. Here players have a budget of effort and
contribute parts of this effort towards specific projects and relationships. For
more related work on the contribution game, see [8]. All previous results for
this model concern equal sharing and do not address the impact of the player’s
social context. As we mention in the conclusion, many of our results for friend-
ship utilities can also be extended to such contribution games.

Analytical aspects of reward sharing have been a central theme in game
theory since its beginning, especially in cooperative games [44]. Recently, there
have been prominent algorithmic results also for network bargaining [37, 35]
and credit allocation problems [36]. Another recent line of work [49, 50] treats
extensions of cooperative games, where players invest into different coalitional
projects. The main focus of this work is global design of reward sharing schemes
to guarantee cooperative stability criteria. Our focus here is closer to, e.g., re-
cent work on profit sharing games [12, 41]. We are interested in existence,
computational complexity, and inefficiency of stable states under different re-
ward sharing rules, with an aim to examine the impact of social context on
stable matchings. Closely related to our approach is a recent study of design-
ing and allocating reward shares to reduce the price of anarchy and stability
in stable matching scenarios without externalities [31].

Our notion of a player’s social context is based on numerical influence
parameters that determine the impact of player rewards on the (perceived)
utilities of other players. A recently popular model of altruism is inspired
by Ledyard [38] and has generated much interest in algorithmic game the-
ory [18, 17, 29]. In this model, each player optimizes a perceived utility that
is a weighted linear combination of his own utility and the utilitarian welfare
function. Similarly, for surplus collaboration [11] perceived utility of a player
consists of the sum of players utilities in his neighborhood within a social
network. Our model is similar to [16, 28, 20, 45] and smoothly interpolates be-
tween these global and local approaches. The idea of utility being influenced
by friends and peers has also been explored in the contexts of many-to-one
two-sided matchings in housing allocation [14] and social choice [47]. Among
the several key differences between our work and [14], our work is not restricted
to two-sided matchings, and our definition of stability does not include edges
as the additional players (unlike their case, where houses also have preferences
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u v

 (both u and v were

  matched before)
w

z

Fig. 3 biswivel deviation

over sets of occupants). Moreover, in our paper social welfare sums the actual
utilities and not the perceived utilities. Another related work to assignment
problems and social context is [13], a different approach where they attempt
to infer and quantify different network externalities based on the dynamics of
the assignment process. In [15] the authors describe how “attitudes” of agents
can affect the agent deviations and the stability of matchings. However, their
focus is the computational complexity of the dynamics and, unlike in our work,
the perceived utility of an agent is not affected by the match quality of other
agents.

Very recently, our model has been analyzed in terms of convergence of
dynamics. The case of equal sharing and αuv = αuuv = αvuv can be captured
within a framework of consistent matching games, which encompass also other
classes of stable matching with visibility and externality constraints [26, 32,
30]. In [33] it is shown that, from every starting matching in such a game, there
is a sequence of polynomially many blocking-pair resolutions to a stable state.
Moreover, every state reachable via a sequence of blocking-pair resolutions can
also be reached within a polynomial number of steps. In contrast to our paper,
these works do not address prices of anarchy and stability and the computation
of good matchings.

A preliminary version of this paper appeared in the proceedings of the 21st
European Symposium on Algorithms (ESA 2013).

2 Stable Matching with Equal Reward Sharing

We begin by considering correlated stable matching in the presence of friend-
ship utilities. In this section, the reward received by both nodes of an edge in
a matching is the same, i.e., we use equal reward sharing, where every edge e
has an inherent value re and both endpoints receive this value if edge e is in
the matching. We consider more general reward sharing schemes in Section 3.
Recall that the friendship utility of a node v increases by αdRu for every node
u, where d is the shortest distance between v and u. We abuse notation slightly,
and let αuv denote αd, so if u and v are neighbors, then αuv = α1.

Given a matching M , let us classify the following types of improving devi-
ations that a blocking pair can undergo.

Definition 1. We call an improving deviation a biswivel whenever two neigh-
bors u and v switch to match to each other, such that both u and v were matched
to some other nodes before the deviation in M .
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u v

w

 (v was unmatched

  before the deviation)

u v

  before the deviation)

 (both u and v were unmatched

Fig. 4 swivel deviation

See Figure 3 for explanation. For such a biswivel to exist in a matching,
the following necessary and sufficient conditions must hold.

(1 + α1)ruv > (1 + α1)ruw + (α1 + αuz) rvz (2)

(1 + α1)ruv > (1 + α1)rvz + (α1 + αvw) ruw (3)

Intuitively, the left side of Inequality (2) quantifies the utility gained by u
because of getting matched to v and the right side quantifies the utility lost
by u because of u and v breaking their present matchings with w and z re-
spectively. Hence, Inequality (2) implies that u gains more utility by getting
matched with v than it loses because of u and v breaking their matchings with
v and z. Inequality (3) can similarly be explained in the context of node v.

Definition 2. We call an improving deviation a swivel whenever two neigh-
bors get matched such that at least one node among the two neighbors was not
matched before the deviation.

See Figure 4 for explanation. For such a swivel to occur, the following set
of conditions must hold.

(1 + α1)ruv > (1 + α1)ruw (4)

(1 + α1)ruv > (α1 + αvw)ruw (5)

Inequality (4) says that u gains more utility by getting matched with v than
it loses by breaking its matching with w. Inequality (5) says that v gains
more utility by getting matched with u than the utility it loses because of u
breaking its matching with w. As α1 +αvw ≤ 1 +α1, Inequality (5) is implied
by Inequality (4). This means that if v is unmatched, the only condition for
{u, v} to be a blocking pair is that u should have net increase in utility by
getting matched with v. This is true even if v and w are neighbors. Canceling
the factor of 1 + α1, we can thus summarize this (necessary and sufficient)
condition for swivel to be an improving deviation as:

ruv > ruw (6)

All improving deviations by a blocking pair can be classified as either a biswivel
or a swivel, depending only on whether both nodes are matched or not. The
following observation will later be useful. It is straightforward with inequali-
ties (2) and (3) for a biswivel and inequality (6) for a swivel.

Observation 1. Suppose nodes u and w are matched in M . If {u, v} forms
a blocking pair, then ruv > ruw.
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2.1 Existence and Welfare of Stable Matchings with Friendship Utilities

Theorem 1. A stable matching exists in stable matching games with equal
sharing and friendship utilities. Moreover, the set of stable matchings without
friendship (i.e., when α = 0) is a subset of the set of stable matchings with
friendship utilities on the same graph.

Proof. We know from [3] that a stable matching M exists in the special case of
correlated stable matching without friendship utilities, i.e., when α = 0. Now
we prove that the same matching M is stable even when we have friendship
utilities.

Suppose for contradiction that M is unstable for some value of α. This
is possible only if we have a blocking pair {u, v}. But this cannot happen
because:

– If both u and v were unmatched in M then M could not have been stable
for α = 0.

– If exactly one of u and v is unmatched in M , say u is matched to w
and v is unmatched, then for {u, v} to be a blocking pair, ruv > ruw by
Observation 1. But in such a case, M could not have been stable for α = 0.

– Suppose both u and v are matched in M , say u is matched to w and v is
matched to z. In such a case if {u, v} forms a blocking pair corresponding
to a biswivel, then by Observation 1, we have ruv > ruw and ruv > rvz and
thus M could not have been stable for α = 0.

Hence we have shown that no blocking pair exists inM with friendship utilities,
thus proving the theorem. ut

Let us quickly comment on coalitional deviations. Stable matchings exactly
compose the core of the stable matching game, i.e., every stable matching is
also resilient to coalitional deviations that allow each deviating player to im-
prove strictly. With externalities, however, this relation breaks. In particular,
while the set of stable matchings (resilient to blocking pairs) expands when
friendship increases, the core can become empty.

Example 4. As shown in Fig. 5, consider a game with 6 nodes V = {v1, . . . , v6}.
There is a square: e1 = {v1, v2}, e2 = {v2, v3}, e3 = {v3, v4}, e4 = {v4, v1}. In
addition, there are two leaves: e5 = {v1, v5}, e6 = {v3, v6}. The rewards are
re1 = re3 = 1, re2 = re4 = 0, re5 = re6 = 1.1. Consider α1 = 1 and αd = 0
for d > 1. Observe that v1 and v5 always have an incentive to deviate to e5
as this swivel improves both their (perceived) rewards. The same holds for v3
and v6. Hence, the unique stable matching is M = {e5, e6}. However, in M
the coalition {v1, . . . , v4} can then jointly deviate to {e1, e3}, increasing their
perceived utility from 2.2 to 3. This shows that there is no strong equilibrium,
i.e., the core of the game with friendship is empty. �

While the core might be empty, our previous existence argument for stable
matchings can be significantly generalized to the case of general symmetric,
non-negative influence values αuv = αuuv = αvuv ≥ 0. Let us define quv =
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Fig. 5 Example in which a strong equilibrium does not exist with friendship utilities

(1+αuv)ruv for each unordered pair u, v ∈ V . We term quv the “perceived edge
reward” for every edge {u, v} ∈ E. It is straightforward to set up the conditions
for profitable biswivels and swivels similar to (2)-(5) above. By inspection,
we see that necessary conditions for a profitable biswivel are quv > quw and
quv > qvz. Similarly, for a swivel it is necessary that quv > quw. This implies the
same statement as in Observation 1 using quv instead of ruv. The perceived
edge reward is the same for both incident players. Now define an auxiliary
stable matching game SMGq with equal sharing and no friendship, which has
exactly the same set of edges, and each edge {u, v} ∈ E has reward quv. A
stable matching M exists in SMGq. As we only strengthen the requirements
for a blocking pair when going from SMGq to our game with friendship, M is
also stable in our game with friendship.

Corollary 1. A stable matching exists in stable matching games with equal
sharing and friendship utilities based on general symmetric, non-negative α.

As the last result in this section, we bound the price of anarchy.

Theorem 2. The price of anarchy in stable matching games with equal sharing
and friendship utilities is at most 2, and this bound is tight.

Proof sketch. The idea of the proof is the following. Denote an optimal solution
and a stable matching by M∗ and M respectively. Let x∗uv and xuv denote the
fraction with which edge {u, v} is present in M∗ and M respectively. Consider
an edge {u, v} such that x∗uv > xuv. If the fraction of the edge {u, v} in M
was increased to x∗uv from xuv by decreasing fractions of some other edges
in M incident on u and v, then at least one of the endpoints of {u, v} does
not improve its utility. Tag this endpoint as corresponding to edge {u, v} and
denote the set of tagged nodes by B. We get one inequality for each node
u ∈ B for such a modification of fractions of adjoining edges. The critical step
is to add all such inequalities to obtain the following:∑

{u,v}
s.t. x∗

uv>xuv

quv · (x∗uv − xuv) ≤ 2 ·
∑
{u,v}

s.t. x∗
uv<xuv

quw · (xuw − x∗uw) . (7)
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The above inequality bounds the contribution made by the edges with a
“stronger presence” in M∗ in terms of the contribution made by the edges
with a stronger presence in M . Simple algebraic manipulations along with
adding the contribution from the remaining edges (with x∗uv = xuv) leads us
to proving our result: ∑

{u,v}

quvx
∗
uv ≤ 2 ·

∑
{u,v}

quvxuv

We give an intuition for Equation 7 by drawing analogy to the widely-known
result that a maximum matching in a graph has at most twice the number of
edges of a maximal matching. While proving this result, the common edges are
discounted and later the fact is used that each edge in a maximum matching
(which is not present in a maximal matching), is accounted by at least one
adjacent edge which is present in the maximal matching (and this edge is
absent in the maximum matching). The factor 2 results because each edge
present in a maximal matching can be used to account for two adjoining edges
in a maximum matching. Equation 7 extends this technique to the case of
fractionally stable matchings. ut

We omit the detailed proof of Theorem 2 because its proof can be obtained
as a special case of the proof of our much more general Theorem 6 presented
later, where we show a bound on the price of anarchy of 1 + R+α1

1+α1R
, with

R being a measure of how unequally players can share rewards on an edge.
When players share edge rewards equally, the bound on the price of anarchy
in Theorem 6 reduces to 1 + 1+α1

1+α1
= 2, as desired. Observe that Theorem 6

provides this bound even for all fractional stable matchings. We have seen in
Example 1 in the introduction that this bound is tight, and in Example 3
that it does not extend to friendship utilities based on general symmetric,
non-negative α.

2.2 Price of Stability and Convergence

The main result in this section bounds the price of stability in stable matching
games with friendship utilities to 2+2α1

1+2α1+α2
, and this bound is tight (see The-

orem 4 below). This bound has some interesting implications. It is decreasing
in each of α1 and α2, indicating that having friendship utilities (i.e., caring
about the rewards of your friends more, and thus having higher α1 or α2 val-
ues) results in lower price of stability than without friendship utilities (i.e.,
when all α values equal 0). Also, note that values of α3, α4, ..., αdiam(G) have
no influence on this bound. Thus, caring about players more than distance 2
away does not improve the price of stability in any way. Also, if α1 = α2 = 1,
then PoS = 1, i.e., there will exist a stable matching which will also be a social
optimum. Thus loving thy neighbor and thy neighbor’s neighbor but nobody be-
yond is sufficient to guarantee that there exists at least one socially optimal
stable matching. In fact, due to the shape of the curve, even small values of
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1. Initialize M = M∗ where M∗ is a socially optimum matching.

2. If there is no relaxed blocking pair, terminate. Otherwise, resolve relaxed

blocking pair {u, v} with maximum edge reward ruv by adding {u, v} to M and

removing from M any other matching edges incident to u and v.
3. Repeat step 2.

Fig. 6 Best-Relaxed-Blocking-Pair Algorithm

friendship quickly decrease the price of stability; e.g., setting α1 = α2 = 0.1
already decreases the price of stability from 2 to ∼ 1.7.

We will establish the bound on the price of stability by defining an algo-
rithm that creates a good stable matching in polynomial time. One possible
idea to create a stable matching that is close to optimum is to use a Best-
Blocking-Pair algorithm: Start with the best possible matching, i.e. a social
optimum, which may or may not be stable. Now choose the “best” blocking
pair {u, v}, the one with maximum edge reward ruv. Allow this blocking pair
to get matched to each other instead of their current partners. Check if the
resulting matching is stable. If it is not stable, then allow the best blocking
pair for this matching to get matched. Repeat the procedure until there are
no more blocking pairs, thereby obtaining a stable matching.

This algorithm gives the desired price of stability and running time bounds
for the case of “altruism” when all αi are the same, see Corollary 2 below. To
provide the desired bound with general friendship utilities, we must alter this
algorithm slightly using the concept of relaxed blocking pair.

Definition 3. Given a matching M , we call a pair of nodes {u, v} a relaxed
blocking pair if either {u, v} form an improving swivel, or u and v are matched
to w and z respectively, with the following inequalities being true:

(1 + α1)ruv > (1 + α1)ruw + (α1 + α2) rvz (8)

(1 + α1)ruv > (1 + α1)rvz + (α1 + α2) ruw (9)

In other words, a relaxed blocking pair ignores the possible edges between
nodes u and z, and has α2 in the place of αuz (similarly, α2 in the place of
αvw). It is clear from this definition that a blocking pair is also a relaxed
blocking pair, since the conditions above are less constraining than Inequali-
ties (2) and (3). Thus a matching with no relaxed blocking pairs is also a stable
matching. Moreover, it is easy to see that Observation 1 still holds for relaxed
blocking pairs. We will call a relaxed blocking pair satisfying Inequalities (8)
and (9) a relaxed biswivel, which may or may not correspond to an improving
deviation, since a relaxed blocking pair is not necessarily a blocking pair.

2.2.1 The Best-Relaxed-Blocking-Pair Algorithm

We use the Best-Relaxed-Blocking-Pair algorithm shown in Figure 6 to
compute a near-optimal stable matching. To establish the efficient running
time and the bound on the price of stability of the resulting stable match-
ing, we first analyze the dynamics of this algorithm and prove some helpful
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lemmas. We can interpret the algorithm as a sequence of swivel and relaxed
biswivel deviations, each inserting one edge into M , and removing up to two
edges. It is not guaranteed that the inserted edge will stay forever in M , as a
subsequent deviation can remove this edge from M . Let O1, O2, O3, · · · denote
this sequence of deviations, and e(i) denote the edge which got inserted into
M because of Oi. We analyze the dynamics of the algorithm as follows.

Observation 2. During the execution of Best-Relaxed-Blocking-Pair,
the first deviation O1 is a relaxed biswivel.

This is straightforward, as O1 being a swivel would strictly improve the
value of the matching by Observation 1. As we begin the algorithm with M =
M∗, O1 cannot be a swivel, because there is no matching with value strictly
greater than M∗.

Lemma 1. Let Oj be a relaxed biswivel that takes place during the execution
of the best relaxed blocking pair algorithm. Suppose a deviation Ok takes place
before Oj. Then we have re(k) ≥ re(j). Furthermore, if Ok is a relaxed biswivel
then e(k) 6= e(j) (thus at most |E(G)| relaxed biswivels can take place during
the execution of the algorithm).

It is important to note that this lemma does not say that re(i) ≥ re(j) for
i < j. We are only guaranteed that re(i) ≥ re(j) for i < j if Oj is a relaxed
biswivel. Between two successive relaxed biswivels Ok and Oj , the sequence of
re(i) for consecutive swivels can and does increase as well as decrease, and the
same edge may be added to the matching multiple times. All that is guaranteed
is that re(j) for a biswivel Oj will have a lower value than all the preceding
re(i)’s. Thus, this lemma suggests a nice representation of Best-Relaxed-
Blocking-Pair in terms of phases, where we define a phase as a subsequence
of deviations that begins with a relaxed biswivel and continues until the next
relaxed biswivel. Observation 2 shows that the start of the sequence is also the
start of the first phase. Lemma 1 guarantees that at the start of each phase,
the re(j) value is smaller than the values in all previous phases, and that there
is only a polynomial number of phases. Now we proceed to prove Lemma 1.

Proof. Let e(j) = {v, z} get inserted in M because of a relaxed biswivel Oj .
We first give a brief outline of the proof. Suppose that the claim re(k) ≥ re(j)
for k < j is false, and we have an Ok with k < j such that re(k) < re(j).
Clearly {v, z} could not have been a relaxed blocking pair just before Ok,
otherwise the algorithm would have chosen {v, z} as the best relaxed blocking
pair instead of Ok. We will show that this leads to a conclusion that {v, z}
cannot be a relaxed blocking pair even for Oj . This is a contradiction, hence
our assumption of re(k) < re(j) could not have been correct. Thus for all Ok
such that k < j we will have re(k) ≥ re(j). Later we will use similar reasoning
to prove that if Oi with i < j is a relaxed biswivel that takes place before a
relaxed biswivel Oj , then e(i) 6= e(j). Now let us proceed to the proof.

Suppose to the contrary that we have Ok with k < j such that re(k) < re(j)
with Oj being a relaxed biswivel. As discussed in the outline of the proof, this
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implies that {v, z} was not a relaxed blocking pair at the time Ok was selected.
Let S be the set of nodes with whom v and z are matched at the time that
Ok is selected. As long as S does not change, v and z will not be a relaxed
blocking pair, since the change in utility experienced by v and z from matching
to each other depends only on their partners in the current matching, i.e., the
set S. Thus for the relaxed biswivel Oj to occur, S must change between Ok
and Oj . We will show that this leads to a contradiction: {v, z} cannot be a
relaxed blocking pair at the time Oj is selected.

Fig. 7 Illustration for the proof of Lemma 1

Suppose v is matched to x and z is matched to y just before biswivel Oj
(see Figure 7). Since {v, z} is a relaxed blocking pair at this point, we thus
have

(1 + α1)rvz > (1 + α1)rvx + (α1 + α2)rzy (10)

(1 + α1)rvz > (1 + α1)rzy + (α1 + α2)rvx . (11)

Recall that {v, z} was not a relaxed blocking pair just before Ok, and to make
it a relaxed blocking pair for Oj , S must change between Ok and Oj . Let Ol
be the last deviation which changed S to {x, y}. Without loss of generality,
we can assume that Ol adds the edge {v, x}. Now we have two cases:

– {v, z} was a relaxed blocking pair at the time Ol is selected. In this case
{v, x} could not have been the best relaxed blocking pair for Ol, because
inequality (10) tells us rvz > rvx.

– {v, z} was not a relaxed blocking pair at the time Ol is selected. Suppose
v was matched with w before Ol. As {v, z} was not a relaxed blocking pair
just before Ol, we have

Either (1 + α1)rvz ≤ (1 + α1)rvw + (α1 + α2)rzy (12)

OR (1 + α1)rvz ≤ (1 + α1)rzy + (α1 + α2)rvw . (13)

(If v was unmatched just before Ol, then substitute rvw = 0 to obtain the
appropriate condition.) Assume that it is inequality (12) that holds. Then,
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because Ol removes edge {v, w} and adds edge {v, x}, we have rvx > rvw
as Observation 1 holds for relaxed blocking pairs. Thus, it holds

(1 + α1)rvz ≤ (1 + α1)rvx + (α1 + α2)rzy . (14)

This contradicts inequality (10), and thus {v, z} cannot be a relaxed block-
ing pair at the time Oj is selected. The same conclusion can be reached if
we assume inequality (13) holds true.

In either case we obtain a contradiction, thus showing that if Oj is a relaxed
biswivel, then for all Ok with k < j, we have re(k) < re(j).

The only remaining piece is to prove e(k) 6= e(j) if Ok is a relaxed biswivel.
Notice that if e(k) = e(j) = {v, z}, then S has to change between Ok and Oj .
Now we use exactly the reasoning from the previous paragraph to arrive at a
contradiction, thus proving that e(k) 6= e(j). ut

If α1 = α2, the conditions for a blocking pair are identical to the conditions
for a relaxed blocking pair. Hence, our algorithm corresponds to letting the
best blocking pair deviate at each step. As a special case, for α = 0 and corre-
lated stable matching, this algorithm is known to provide a stable matching in
polynomial time [4]. For friendship utilities, however, (quick) convergence was
previously unknown. We show that even with the addition of friendship, Best-
Relaxed-Blocking-Pair (and thus Best-Blocking-Pair when α1 = α2)
terminates and produces a stable matching in polynomial time.

If instead of the best we pick some arbitrary blocking pair, then there
exists an instance in which, starting from the empty matching, a sequence of
blocking pairs of length 2Ω(n) exists until reaching a stable matching, even
without friendship. This is directly implied by recent results in correlated
stable matching [26].1

Moreover, it was shown recently in [33] that there is also a sequence of
blocking pairs of polynomial length until reaching a stable matching with
friendship utilities. However, [33] does not consider Best-Relaxed-Blocking-
Pair at all, and the sequence is not necessarily the one computed by Best-
Blocking-Pair. Also, in contrast to our case, the resulting matching in [33]
does not yield guarantees on the social welfare, which we show below in the
next section.

Theorem 3. Best-Relaxed-Blocking-Pair outputs a stable matching af-
ter O(m3) iterations, where m is the number of edges in the graph.

1 A trivial adjustment of the gadget in [26] allows us to construct the exponential sequence
even when starting from the social optimum. We scale the reward of each (original) edge
i ∈ {1, . . . ,m} in the gadget from i to 1 + i · ε, for some tiny ε > 0. This preserves all
incentives and the structure of all blocking pairs. Then, we add an auxiliary neighbor for
each (original) player and connect it via an auxiliary edge of reward 1. The social optimum
is obviously given by matching each original player with his auxiliary neighbor. However, the
exponential sequence of blocking pairs still exists, because auxiliary edges are not rewarding
enough to influence blocking pairs among original players.
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Proof. Consider the three possible changes that can occur to the matching
M during each iteration: a swivel could add a new edge, or it could delete
an edge and add an edge with strictly higher re value. A relaxed biswivel
deletes two edges and adds an edge with higher re value than either. If no
biswivels takes place, and instead only swivel deviations take place, then the
number of edges in the matching cannot decrease. Also observe that swivel
deviations cannot form a cycle, i.e., if edge e1 is removed by a swivel and edge
e2 is added, and then later e2 is removed and e3 is added, and so on until
some edge ek, then it cannot be that ek = e1. Such a cycle would lead to
a contradiction since ruv > ruw if a swivel causes removal of edge {u,w} to
insert edge {u, v}. Since the number of edges in a matching cannot decrease
with swivel deviations and swivels cannot form a cycle, it implies that the
maximum number of consecutive swivels that can take place is O(m2).

Now by Lemma 1 there are at most m relaxed biswivel deviations, so the
algorithm terminates after O(m3) deviations. Since there are no more relaxed
blocking pairs for the algorithm to continue, and since a blocking pair is also a
relaxed blocking pair, the final matching produced by the algorithm is a stable
matching. ut

2.2.2 Upper Bound on the Price of Stability

As seen above, during the execution of Best-Relaxed-Blocking-Pair algo-
rithm we can have only a polynomial number of consecutive swivel deviations
between each relaxed biswivel. We also know that every phase (defined as a
maximal subsequence of consecutive swivels) lasts only a polynomial amount
of time, and there are only O(m) phases by Lemma 1. Moreover, in each phase,
the value of the matching only increases, since swivels only remove an edge
if they add a better one. Thus only relaxed biswivels operations can reduce
the cost of the matching during the execution of Best-Relaxed-Blocking-
Pair algorithm. We use these properties below to bound the cost of the stable
matching this algorithm produces.

To prove the bound, we will need some notation. We define a sequence of
mappings from M∗ to E(G). Define h0 : M∗ → E(G) as h0(e) = e. Depending
on Oi, we define hi as follows: Suppose Oi is a deviation that removes edge
hi−1(ej) from M . If Oi inserts edge el in M then set hi(ej) = el. For all other
ek ∈ M∗, keep hi(ek) same as hi−1(ek). Let us note that a deviation Oi may
not remove any edges from {hi−1(ej) : ej ∈ M∗}. This can happen because
during the course of the algorithm, two unmatched nodes can get matched,
say to insert ep into M . No edges in M∗ get mapped to ep. If this edge is
removed from M by a later deviation, the mapping may not change, since no
edge is mapped to ep. To summarize, hi may be the same as hi−1, or may
differ from hi−1 in one location (in case of a swivel), or in two locations (in
case of a relaxed biswivel). Denote the resulting mapping when our algorithm
terminates by hM .

Intuitively, think of the functions hi as labels for each edge in the current
matching. The set of possible labels is that of the edges in M∗. At the start,
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each edge of M∗ is labeled with itself. At the end, hM (e) is the edge of M
labeled with the label e. Our algorithm “converts” edge e into hM (e) during
its entire execution. Note that an edge of M can have many labels at the same
time, since after a biswivel in which e1 and e2 are removed and e3 is added,
e3 gets the labels of both e1 and e2.

Coupling Observation 1 with the definition of mappings hi, we get:

Observation 3. {rhi(e)}i≥0 is a nondecreasing sequence and rhi+1(e) > rhi(e)

whenever hi+1(e) 6= hi(e).

The observation holds because the only reason for rhi+1(e) 6= rhi(e) is when
the deviation Oi causes a node to obtain higher utility by switching to hi+1(e)
from hi(e) (either due to a biswivel or a swivel). Then Observation 1 states
that the edge reward of the new edge rhi+1(e) must be greater than rhi(e).
Now the next lemma will be instrumental in proving the bound on the price
of stability.

Lemma 2. If hM (ei) = hM (ej) with ei 6= ej then

1. There must exist a relaxed biswivel Ok such that hk−1(ei) 6= hk−1(ej) but
Ok makes hk(ei) = hk(ej). Furthermore, for all p ≥ k we have hp(ei) =
hp(ej).

2. There does not exist another el ∈ M∗ such that hM (el) = hM (ei) =
hM (ej).

3. rei + rej <
2+2α1

1+2α1+α2
· rhM (ei)

Proof. To prove the first part, sayOl was the first deviation such that hl−1(ei) 6=
hl−1(ej) and hl(ei) = hl(ej). This cannot happen because of a swivel deviation
because a swivel can make hl(e) 6= hl−1(e) for at most for one e ∈ M∗. Thus
Ol must be a relaxed biswivel. Set k = l, and it is easy to see that for p ≥ k
we have hp(ei) = hp(ej). Hence the first part is proven.

To prove the second part, suppose there exists an el with el 6= ei 6= ej such
that hM (el) = hM (ei) = hM (ej). From the first part, there must exist a relaxed
biswivel Ok s.t. hk−1(ei) 6= hk−1(el) but hk(ei) = hk(el). Similarly there must
exist a relaxed biswivel Op s.t. hp−1(ei) 6= hp−1(ej) but hp(ei) = hp(ej).
Without loss of generality say p > k. Using Lemma 1 we get re(k) ≥ re(p). But
from Observation 3, we have re(k) < re(p), since e(p) = hp(ei) 6= hk(ei) = e(k).
We obtain a contradiction here, thus proving that there does not exist another
el ∈M∗ with hM (el) = hM (ei) = hM (ej).

To prove the third part, consider a relaxed biswivelOk such that hk−1(ei) 6=
hk−1(ej) and hk(ei) = hk(ej). Substitute ruv = rhk(ei), ruw = rhk−1(ei) and
rvz = rhk−1(ej) in inequalities (2) and (3). Adding these inequalities and sim-
plifying we get

rhk−1(ei) + rhk−1(ej) <
2 + 2α1

1 + 2α1 + α2
· rhk(ei) . (15)

From Observation 3, we know {rhi(e)}i≥0 is a nondecreasing sequence. Using
this in (15) we get

rei + rej <
2 + 2α1

1 + 2α1 + α2
· rhM (ei) . (16)
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ut

Lemma 2 states that for every edge e ∈ M , at most two edges of M∗

can map to it, i.e., there are at most two edges ei and ej such that hM (ei) =
hM (ej) = e. Let B denote the set of edges ei ∈M∗ such that hM (ei) = hM (ej)
for some other ej ∈ M∗. These are the edges which “share” the edge e of M
they are mapped to because another edge of M∗ is mapped to the same edge
e. Let A denote the remaining edges in M∗, i.e., the edges ei ∈ M∗ so that
no other edge of M∗ is mapped to the same value hM (ei). We can further
partition set B into two sets P and Q as follows. B naturally consists of pairs
of edges ei and ej of M∗ which have the same value hM (ei) = hM (ej). We
will take one of these edges from each such pair and put it into P , while we
put the other one into Q. More formally, take one such pair ei and ej and
choose one of these two edges arbitrarily (say we choose ei). Add ei to P ,
and the other edge in the pair (which we will denote as µ(ei)) into Q. The
matching M computed by Best-Relaxed-Blocking-Pair has value at least∑
e∈A rhM (e) +

∑
e∈P rhM (e), since all of the edges of A and P are mapped to

unique edges of M . Possible additional edges in M may also exist because of
swivels which match two previously unmatched nodes with each other, but
this is certainly a lower bound on the value of M .

This allows us to prove the main theorem of this section.

Theorem 4. The price of stability in stable matching games with equal sharing
and friendship utilities is at most 2+2α1

1+2α1+α2
, and this bound is tight.

Proof. The value of M∗ is given by

w(M∗) =
∑
e∈A

re +
∑
e∈P

re +
∑
e∈Q

re

=
∑
e∈A

re +
∑
e∈P

(re + rµ(e)) .

Using Lemma 2, for e ∈ P we have re + rµ(e) <
2+2α1

1+2α1+α2
· rhM (e). Using

Observation 3, for e ∈ A we have re ≤ rhM (e). Thus, we get

w(M∗) ≤
∑
e∈A

rhM (e) +
∑
e∈P

2 + 2α1

1 + 2α1 + α2
· rhM (e)

≤ 2 + 2α1

1 + 2α1 + α2
·

(∑
e∈A

rhM (e) +
∑
e∈P

rhM (e)

)
.

Note that this inequality may not be strict since A may be empty. This could
happen if each edge in M∗ gets removed because of a relaxed biswivel as the
algorithm proceeds (though it may be possible that it is inserted later). We
also have w(M) ≥

∑
e∈A rhM (e) +

∑
e∈P rhM (e) for the final matching M of

the algorithm. Using this,

w(M∗) ≤ 2 + 2α1

1 + 2α1 + α2
· w(M) ,
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which proves the bound on the price of stability, since M is a stable matching.
To prove the tightness of the bound, assume α2 = 0 and set ruv = 1+2α1+ε

1+α1
,

ruw = rvz = 1 in Fig 3. Then we have {{u, v}} as the only stable matching
but the social optimum is {{u,w}, {v, z}}. Thus, we get a price of stability of
2+2α1

1+2α1+ε
. With ε→ 0, this yields a tight bound for α2 = 0. ut

Theorems 3 and 4, yield the following corollary about the behavior of best
blocking pair dynamics. It applies in particular to the model of altruism when
αi = α for all i = 1, . . . , diam(G), as for α1 = α2, Best-Relaxed-Blocking-
Pair is Best-Blocking-Pair.

Corollary 2. If α1 = α2 and we start from a socially optimum matching,
Best-Blocking-Pair converges in O(m2) time to a stable matching that is
at most a factor of 2+2α1

1+2α1+α2
worse than the optimum.

3 Stable Matching with Friendship and General Reward Sharing

In the previous section we assumed that for {u, v} ∈M both u and v get the
same reward ruv. Let us now treat the more general case where u and v receive
different rewards for {u, v} ∈ M . We define rxxy as the reward of x from edge
{x, y} ∈M . We interpret our model in a reward sharing context, where x and
y share a total reward of rxy = rxxy + ryxy. The correlated matching model of
Section 2 can equivalently be formulated as equal sharing with nodes u and v
receiving a reward of ruv/2.

Let us again write explicit conditions for nodes to form a blocking pair
in this context and define some helpful notation. The necessary and sufficient
conditions for nodes {u, v} to form a biswivel from nodes w and z (See Fig. 3)
in reward sharing with friendship are

ruuv + α1r
v
uv > ruuw + α1(rwuw + rvvz) + αuzr

z
vz

rvuv + α1r
u
uv > rvvz + α1(rzvz + ruuw) + αvwr

w
uw .

We define qxxy = rxxy + α1r
y
xy. Then the conditions for biswivel such as shown

in Fig. 3 are

quuv > quuw + α1r
v
vz + αuzr

z
vz (17)

qvuv > qvvz + α1r
u
uw + αvwr

w
uw . (18)

Similarly, the necessary and sufficient conditions for swivel (See Fig. 4) are

ruuv + α1r
v
uv > ruuw + α1r

w
uw

rvuv + α1r
u
uv > α1r

u
uw + αvwr

w
uw .

Using the definition of qxxy, the conditions for swivel become

quuv > quuw (19)

qvuv > α1r
u
uw + αvwr

w
uw . (20)

Let us define qxy = qxxy + qyxy. Thus we obtain qxy = (1 + α1)rxy.
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3.1 Existence of a Stable Matching

Without friendship utilities, our stable matching game reduces to the stable
roommates problem (i.e., non-bipartite stable matching), since reward shares
can be arbitrary and thus induce arbitrary preference lists for each node. It
is well known that a stable matching may not exist in instances of the stable
roommates problem [23]. While we are able to prove existence of integral
stable matching for several interesting special cases (see Section 3.4 below), the
addition of friendship further complicates matters. In Section 2.1 we showed
that for equal sharing, a stable matching without friendship utilities (i.e.,
α = 0) is also a stable matching when we have friendship utilities. This is no
longer true for unequal reward sharing: adding a social context can completely
change the set of stable matchings. To see this, consider the following example,
where adding a social context (i.e., increasing α above zero) destroys all stable
matchings that exist when α = 0. In fact, Example 5 goes even further to
show that the set of stable matchings with and without friendship could be
completely non-overlapping.

Example 5. Consider the graph on the left hand side from Fig. 4. We assign
ruuw = rwuw = 1, ruuv = 10/11, rvuv = 100/11 with α1 = 1/2 and α2 = α3 =
· · · = 0. Without friendship utilities, {{u,w}} is the only stable matching
as u and w will always want to get matched to each other. However, with
friendship utilities we have quuv = 60

11 , quuw = 3
2 , q

v
uv = 105

11 , qvuw = 3
2 . Thus,

using inequalities (19) and (20) we see that with friendship utilities, the only
stable matching is {{u, v}} as u will always want to get matched to v. Thus for
unequal reward sharing with friendship utilities, the set of stable matchings
can be completely non-overlapping with the set of stable matchings for unequal
reward sharing without friendship utilities. �

Although stable matchings may not exist in general non-bipartite graphs,
fractional stable matchings are guaranteed to exist [2]. Fortunately, as we
prove below, this holds even in the presence of friendship utilities with general
reward sharing: A fractional stable matching always exists.

A fractional stable matching is a fractional matching without blocking
pairs. Specifically, a biswivel occurs when there is an edge {u, v} such that
increasing the strength of edge {u, v}, and decreasing the strength of some
other edges {u,w} and {v, z} would strictly improve the utilities of both u and
v. The inequalities that would make this be true are exactly (17) and (18);
they do not change simply due to the fractional nature of the matching (note,
however, that for a biswivel to make sense, it is necessary that xuv < 1,
xuw, xvz > 0). Similarly, a swivel occurs when increasing the strength of an
edge {u, v} with node v not being tight (i.e.,

∑
e3v xe < 1), and decreasing the

strength of some edge {u,w} would strictly improve the utilities of both u and
v; or when there are two adjacent nodes that are not tight. The inequalities
that would make this be true are exactly (19) and (20).

Theorem 5. A fractional stable matching always exists, even for general re-
ward sharing and friendship utilities.
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Proof. We use the same line of reasoning as for equal sharing above. We de-
note by SMGq an auxiliary stable matching game where we have exactly the
same edges, no friendship, and rewards as in q, i.e., a node u will prefer node
v over w iff quuv > quuw, breaking ties arbitrarily. SMGq has at least one frac-
tional (and, in fact, half-integral) stable matching [2]. Similar as before, the
requirements for a blocking pair in our game with friendship are stronger than
in the auxiliary game. Hence, a (fractional) stable matching in SMGq remains
stable in our game with friendship.

More formally, suppose a fractional stable matching M for SMGq is not
a fractional stable matching for unequal reward sharing with friendship util-
ities. Then there exists a blocking pair {u, v} with one of the following two
possibilities:

– {u, v} forms a biswivel, so the inequalities (17) and (18) must hold true.
These inequalities imply quuv > quuw and qvuv > qvvz. But then {u, v} would
be a blocking pair in SMGq. This contradicts that M is stable in SMGq.

– {u, v} forms a swivel, say with v such that
∑
e3v xe < 1 and with u such

that
∑
e3u xe = 1. (It cannot be that both u and v are not tight, since

otherwise M would not be stable in SMGq.) Then for {u, v} to be a block-
ing pair inequalities (19) and (20) must hold true. But these inequalities
imply quuv > quuw and thus {u, v} would be a blocking pair in SMGq. This
contradicts that M is stable in SMGq.

Hence, M must be stable with unequal reward sharing and friendship utilities.
Moreover, the set of fractional stable matchings in SMGq is a subset of the
set of fractional stable matchings in unequal reward sharing with friendship
utilities. Since there exists at least one fractional stable matching in SMGq,
the theorem is proved. ut

Note that the argument extends to general non-negative values of α with
αuuv, α

v
uv ≥ 0. Setting up conditions for profitable biswivels and swivels, and

defining qxxy = rxxy+αxxyr
y
xy allows to derive the necessary conditions quuv > quuw

and qvuv > qvvz for profitable biswivel, and quuv > quuw for swivel. Hence, using
the relation to the auxiliary game SMGq, we see that our game has at least
one fractional stable matching.

Corollary 3. A fractional stable matching always exists, even for general
reward sharing and friendship utilities based on general non-negative α.

3.2 Price of Anarchy with General Reward Sharing

In this section we prove tight bounds for the price of anarchy of stable match-
ing with friendship utilities in the presence of general reward sharing. Since an
integral stable matching may not exist, we instead consider fractional match-
ing; by price of anarchy here we mean the ratio of the total reward in a socially
optimum fractional matching with the worst fractional stable matching. The
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corresponding ratio between the integral versions is trivially upper bounded
by this amount as well.

We define R as

R = max
{u,v}∈E(G)

ruuv
rvuv

. (21)

Note that we will always have R ≥ 1. By definition of q, we also have

qxxy
qyxy

=
rxxy + α1r

y
xy

ryxy + α1rxxy
.

Using the fact that p+α1

1+α1p
is an increasing function of p and using the definition

of R, we thus obtain

qxxy
qyxy
≤ R+ α1

1 + α1R
. (22)

We show the following theorem.

Theorem 6. The (fractional) price of anarchy for general reward sharing with

friendship utilities is at most 1 + Q, where Q = max{u,v}∈E(G)
quuv

qvuv
≤ R+α1

1+α1R
,

and this bound is tight.

The proof of this theorem is very similar in spirit to the proof for the case
without friendship (see, e.g., [8]) and is provided in Appendix A.1 for com-
pleteness. We can consider the quantity quuv = ruuv+α1r

v
uv to be the “perceived

edge reward” value of the edge (uv) for the node u, since it quantifies the con-
tribution of edge (uv) to the utility of node u if u and v are matched. Then
the ratio Q can be intuitively understood as the maximum disparity between
the perceived edge reward values of an edge for its two endpoints.

Let us consider the implications of this bound. If R = 1, the bound is 2.
This result implies Theorem 2, since when we have R = 1, then both u and v
get the same reward from an edge {u, v} ∈M . If α1 = 0, the bound is 1 +R.
The tightness of this bound implies that as sharing becomes more unfair, i.e.,
as R → ∞, we can find instances where the price of anarchy is unbounded.
Unequal sharing can make things much worse for the stable matching game.

Notice, however, that R+α1

1+α1R
is a decreasing function of α1. As α1 increases

from 0 to 1, the bound decreases from 1 +R to 2. Without friendship utilities
(α = 0), we have a tight upper bound of 1+R, which is extremely bad for large
R. As α1 tends to 1, however, the price of anarchy drops to 2, independent of
R. For example, for α1 = 1/2 it is only 3. Thus, social context can drastically
improve the outcome for the society, especially in the case of unfair and unequal
reward sharing.
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3.3 Price of Stability with General Reward Sharing

In this section, we give a simple lower bound Q′ = (1+α1)(1+R)
1+α1(R+1) on the price of

stability for stable matching games with friendship and reward sharing. Fur-
thermore, we show that this bound is within an addition of 1 to the optimum,
i.e., Q < Q′ ≤ PoS ≤ 1 +Q.

To prove the lower bound, we analyze the following example.

Example 6. Consider the 3-length path as shown in Fig. 3. Set α2 = α3 =
· · · = 0 and use the following rewards for an infinitesimal ε > 0:

ruuv =
1

1 + α1

(
1 + α1(R+ 1)

(1 + α1R)
+ ε

)
rvuv =

1

1 + α1

(
1 + α1(R+ 1)

(1 + α1R)
+ ε

)
ruuw =

1

1 + α1R
rwuw =

R

1 + α1R

rvvz =
1

1 + α1R
rzvz =

R

1 + α1R

As desired we have max{x,y}∈E(G)
rxxy

ryxy
= R. Using qxxy = rxxy+α1r

y
xy, we obtain

quuv =
1 + α1(R+ 1)

1 + α1R
+ ε qvuv =

1 + α1(R+ 1)

1 + α1R
+ ε

quuw = 1 qwuw =
R+ α1

1 + α1R

qvvz = 1 qzvz =
R+ α1

1 + α1R

As desired, we have max{x,y}∈E(G)
qxxy

qyxy
= R+α1

1+α1R
= Q. We have {{u, v}} as a

stable matching: {u,w} is not a blocking pair, because quuw ≤ quuv. Similarly
{v, z} will not be a blocking pair. Any other fractional matching is no longer
stable because {u, v} is a blocking pair as inequalities (17) and (18) are sat-
isfied. However, {{u,w}, {v, z}} is still the socially optimal matching. Hence,
the price of stability as ε→ 0 is given by

ruw + rvz
ruv

=
quw + qvz

quv
→ (1 + α1)(1 +R)

1 + α1(R+ 1)
.

�

Let us define Q′ = (1+α1)(1+R)
1+α1(R+1) . The above example 6 establishes a lower

bound on the price of stability of Q′. This along with the following theorem
will prove that Q < Q′ ≤ PoS ≤ 1 +Q.

Theorem 7. The (fractional) price of stability of stable matching games with
friendship and general reward sharing is in [Q′, Q+ 1], with Q < Q′ ≤ Q+ 1.
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Proof. The only part that is yet to be proven is Q ≤ Q′ and Q′ ≤ 1 +Q. We
have

Q′ −Q =
(1− α1 + α1R)(1 + α1)

(1 + α1 + α1R)(1 + α1R)
.

As (1 − α1 + α1R) ≤ (1 + α1 + α1R) and 1 + α1 ≤ 1 + α1R, we have that
Q′−Q ≤ 1. As R ≥ 1, the numerator is always positive. Hence 0 < Q′−Q ≤ 1.
With our lower bound on the price of stability of Q′, the theorem follows. ut

3.4 Specific Reward Sharing Rules

In this section we consider some particularly natural reward sharing rules and
show that games with such rules have nice properties. Specifically, while for
general reward sharing an (integral) stable matching may not exist, for the
reward sharing rules below we show they always exist (although only if there
is no social context involved) and how to compute them efficiently. We also
give improved bounds on prices of anarchy for these special cases. Specifically,
we consider the following sharing rules:

– Matthew Effect sharing: In sociology, “Matthew Effect” is a term coined by
Robert Merton to describe the phenomenon which says that, when doing
similar work, the more famous person tends to get more credit than other
less-known collaborators. We model such phenomena for our network by
associating brand values λu with each node u, and defining the reward that
node u gets by getting matched with node v as ruuv = λu

λu+λv
· ruv. Thus

nodes u and v split the edge reward in the ratio of λu : λv, and a node
with high λu value gets a very large share of the reward.

– Parasite sharing: This effect is opposite to the Matthew effect in the sense
that by collaborating with a renowned person, a less-known person becomes
famous, whereas the reputation of the already renowned person does not
change significantly from such a collaboration. We model this situation by
defining the reward that node u gets by getting matched with node v as
ruuv = λv

λu+λv
ruv. Thus nodes u and v split the edge reward in the ratio of

λv : λu, in the exactly opposite way to the Matthew Effect sharing.
– Additive sharing: Often people collaborate based on not only the quality

of a project but also how much the other person is comfortable to work
with. We model such a situation by associating an intrinsic value βu with
each node u, which represents how pleasant they are to work with. Each
edge {u, v} also has an inherent quality huv. Then, the reward obtained by
node u from being matched with node v is ruuv = huv + βv.

For the sake of analysis, Matthew Effect sharing and Parasite sharing are
the same if we change λu of Parasite sharing to 1/λu of Matthew Effect sharing.
We will refer to both these models as Matthew Effect sharing from now on.
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Fig. 8 Existence of a stable matching without friendship does not guarantee existence of a
stable matching with friendship

Existence Recall that by Theorem 5 a fractional stable matching always exists
for unequal reward sharing with friendship utilities. However, once we have
friendship utilities, even the above intuitive special cases of reward sharing do
not guarantee the existence of an integral stable matching. To see this, consider
the following example.

Example 7. Consider the Matthew Effect sharing example as shown in Fig. 8.
Edge labels indicate edge rewards, values in the brackets beside a node label
are the brand values (λ values). By Theorem 8, for α = 0 a stable matching
always exists for Matthew Effect sharing. Let us analyze the example in Fig. 8
with α1 = 4/5, α2 = α3 = · · · = 0. We have

qqqx = 90 > qqpq = 89.1667

qxxy = 91.7493 > qxqx = 90

qyyz = 92.1545 > qyxy = 91.8507

qzzp = 112 > qzyz = 111.2455

qppq = 103.4333 > qpzp = 102.2

Suppose there exists a stable (integral) matching. In such a matching exactly
one node would stay unmatched. Consider a candidate matching {{q, x}, {z, p}}.
Now y is unmatched and {x, y} is a blocking pair, because qxxy > qxqx and
qyxy > α1r

x
qx. Hence {{q, x}, {z, p}} is not a stable matching. Similarly every

other matching can be shown not to be stable. Thus, there exists no integral
stable matching in this example with friendship utilities, even though without
friendship (i.e., α = 0) an integral stable matching exists. �

Example 7 shows that no stable (integral) matching may exist with friend-
ship utilities. Without friendship, however, an integral stable matching exists
and can be efficiently computed for Matthew Effect sharing and additive shar-
ing, unlike in the case of general reward sharing [23].

Theorem 8. An integral stable matching always exists in stable matching
games with Matthew Effect sharing and additive sharing if α = 0 (i.e., if there
is no friendship). Furthermore, this matching can be found in O(|V ||E|) time.
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Proof. Let us define a preference cycle as a cycle (u1, u2, · · · , uk) in the graph
G such that rui

uiui+1
≥ rui

uiui−1
with at least one inequality being strict. Chung [19]

defines odd rings and proves that if a graph does not contain odd rings, then a
stable matching exists. It is straightforward to see that absence of preference
cycles implies absence of odd rings. Hence, if a graph has no preference cycles,
then a stable matching must exist. Below we prove the stronger statement
that such a matching can also be found efficiently.

In brief, we show below that whenever there exist no preference cycles in
a graph, we can always find two nodes which prefer getting matched to each
other over other nodes. We allow them to get matched to each other and
eliminate such matched nodes from the graph. Neither of these two nodes will
ever deviate from this matching. Applying the same greedy scheme on the
reduced graph will give us a stable matching. Then we will prove that this
algorithm produces a stable matching in O(|V ||E|) time. Let us now proceed
to the details.

Let Tu denote the sets of “best” neighbors of u as follows:

Tu = {v ∈ N1(u) : ruuv ≥ ruuw ∀{u,w} ∈ E} . (23)

Now we construct a directed graph GD as follows. For all nodes u, choose a
node v ∈ Tu and draw an edge from u directed to v. Every node in this graph
has one outgoing edge, so this graph contains a (directed) cycle. If we find a
cycle of length 2 then we have found two nodes which prefer each other the
most. If a (directed) cycle (u1, u2, . . . , uk) has length k > 2, then we have
rui
uiui+1

≥ rui
uiui−1

. Now we cannot have ru2
u2u3

> ru2
u1u2

, otherwise in the original
graph G, (u1, u2, . . . , uk) would have constituted a preference cycle. Hence we
have ru2

u1u2
= ru2

u2u3
. Thus u1 and u3 both are u2’s most preferred nodes. But

we also have u1 prefer u2 the most as GD has an edge from u1 to u2. Hence
u1 and u2 is the pair of nodes that prefer each other the most.

Therefore we will always be able to find two nodes in G which prefer each
other the most in their preference lists. Match them to each other and they will
never have incentive to deviate from this matching. Remove these two nodes
and repeat the procedure until no more nodes can be matched. Because no
nodes matched in this process will ever deviate, we obtain a stable matching.

It takes O(|E|) time to find each matched pair because for each edge we
check if two nodes prefer each other the most. Since the total number of nodes
to be matched are O(|V |), we find a stable matching in O(|V ||E|) time, as
long as there are no preference cycles. All that is left to show is that Matthew
effect sharing and additive sharing do not lead to preference cycles.

Suppose a preference cycle exists in Matthew Effect sharing. Then there
exists a cycle (u1, u2, . . . , uk) such that

λui

λui + λui+1

· ruiui+1
≥ λui

λui + λui−1

· ruiui−1
(24)

with at least one inequality being strict. Multiplying all these inequalities
and canceling common factors, we reach a contradiction that 1 > 1. Thus, a
preference cycle cannot exist in Matthew Effect sharing.
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Suppose a preference cycle exists in additive sharing. Then there exists a
cycle (u1, u2, . . . , uk) such that

huiui+1
+ βui+1

≥ huiui−1
+ βui−1

(25)

with at least one inequality being strict. Adding all these inequalities and can-
celing common factors, we reach a contradiction that 0 > 0. Thus, a preference
cycle cannot exist in additive sharing. ut

Price of Anarchy The price of anarchy of Matthew effect sharing can be as
high as the guarantee of Theorem 6, with R = max{u,v}

λu

λv
. For additive

sharing, however, things are much better. For a proof of this theorem see
Appendix A.2.

Theorem 9. The price of anarchy for (fractional) stable matching games with
additive sharing and friendship utilities is at most max{2 + 2α1, 3}.

4 Future Directions and Contribution Games

We showed that the presence of a social context, such as friendship or altruism,
can make a large difference in the existence and the quality of stable matchings,
especially if the rewards obtained by neighboring nodes are unequal/unfair.
Most of our results can be extended (with minor modifications) to contribution
games [8] as well, as they can be considered non-standard fractional versions
of stable matching. For details, see our arXiv preprint at [5].

There are many fascinating open problems resulting from our work. While
we have established existence of (fractional) stable matchings for a quite large
class of games, bounding the price of anarchy and stability in general, for
other classes of reward sharing rules, or for other classes of influence values
remains as a fascinating field for future study. In addition, structural results
are of interest, e.g., concerning polyhedral properties of fractional and integral
stable matchings, or the (non-)emptiness of the core in a stable matching game
with externalities. Finally, there are interesting questions regarding the design
and analysis of (polynomial-time computable) truthful mechanisms (with or
without monetary transfers).
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A Appendix: Proofs on the Price of Anarchy

A.1 Proof of Theorem 6

We first introduce some notation. We denote by M∗ an optimum fractional matching and use
M to denote a fractional or integral stable matching. Let x∗uv (or xuv) denote the fraction
of edge {u, v} present in M∗ (or M). Furthermore,

S = {e ∈ E(G) : x∗e > xe}
T = {e ∈ E(G) : x∗e ≤ xe}
Su = {e ∈ E(G) : e is incident on u and e ∈ S}
Tu = {e ∈ E(G) : e is incident on u and e ∈ T}
Eu = All edges incident on u. Note that Eu = Su ∪ Tu
yu = 1−

∑
{u,v}∈Eu

xuv

y∗u = 1−
∑

{u,v}∈Eu

x∗uv

∆u =
∑

{u,v}∈Tu

(xuv − x∗uv) + max{(yu − y∗u), 0}

The idea of the proof is the following. Consider an edge {u, v} ∈ S. If the fraction of the
edge {u, v} in M was increased to x∗uv from xuv by decreasing fractions of some other edges
in M incident on u and v, then at least one of the endpoints of {u, v} does not improve
its utility. Tag this endpoint as corresponding to edge {u, v} and denote the set of tagged
nodes by B. We get one inequality for each node u ∈ B for such a modification of fractions
of adjoining edges. We will show that adding all such inequalities gives us the following:

∑
{u,v}∈S,u∈B

quuv · (x∗uv − xuv) ≤
∑
u∈B

∑
{u,w}∈Tu

quuw · (xuw − x∗uw) . (26)

We prove (26) separately below. Now, recall that Q = max{u,v}∈E(G)
quuv
qvuv

. Thus we have

quuv ≥ quv/(1 +Q), giving us

∑
{u,v}∈S,u∈B

1

1 +Q
quv · (x∗uv − xuv) ≤

∑
u∈B

∑
{u,w}∈Tu

quuw · (xuw − x∗uw) .

Now as discussed above, for every edge {u, v} ∈ S, we tag one of the endpoints (say u) and
include it in the set B. Thus the left summation in the above equation can be simplified to
obtain:

∑
{u,v}∈S

1

1 +Q
quv · (x∗uv − xuv) ≤

∑
u∈B

∑
{u,w}∈Tu

quuw · (xuw − x∗uw) .

Using Tu ⊆ T with quw = quuw + qwuw, the above equation becomes

∑
{u,v}∈S

1

1 +Q
quv · (x∗uv − xuv) ≤

∑
{u,w}∈T

quw · (xuw − x∗uw) .
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Using algebraic simplifications and the fact that we have 1 ≥ 1/(1+Q), we get the following
sequence of inequalities:∑

{u,v}∈S

1

1 +Q
· quv · x∗uv +

∑
{u,v}∈T

quv · x∗uv

≤
∑

{u,w}∈T
quw · xuw +

∑
{u,w}∈S

1

1 +Q
· quw · xuw

⇒
∑

{u,v}∈S∪T

1

1 +Q
· quv · x∗uv ≤

∑
{u,w}∈S∪T

quw · xuw

⇒
∑
{u,v}∈G quv · x∗uv∑
{u,w}∈G quw · xuw

≤ 1 +Q , (27)

where for the last inequality we have used the fact that S ∪ T covers all the edges in the
graph. This proves the claim.

It remains to prove (26). Suppose node u gets tagged for edge {u, v} if we increase xuv
to x∗uv together with doing the following two compensatory steps:

– Decrease fraction xuw of each {u,w} ∈ Tu by (x∗uv−xuv)(xuw−x∗uw)/∆u and decrease
fraction of each {v, z} ∈ Tv by (x∗uv − xuv)(xvz − x∗vz)/∆v AND

– If yu > y∗u, then decrease yu by (x∗uv−xuv)(yu−y∗u)/∆u, and if yv > y∗v , then decrease
yv by (x∗uv − xuv)(yv − y∗v)/∆v .

If the utility of u does not improve, then

quuv · (x∗uv − xuv) ≤
∑

{u,w}∈Tu

quuw · (xuw − x∗uw) · cuvu

+
∑

{v,z}∈Tv

α1r
v
vz · (xvz − x∗vz) · cuvv

+
∑

{v,z}∈Tv

αuzr
z
vz · (xvz − x∗vz) · cuvv , (28)

where cuvu = (x∗uv − xuv)/∆u and likewise for cuvv . To understand (28), note that quuv ·
(x∗uv − xuv) denotes the utility gained by u on edge {u, v} by increasing xuv to x∗uv . The
term quuw · (xuw − x∗uw) · cuvu denotes the utility lost by u because of decreasing xuw for an
edge {u,w} ∈ Tu. When xvz decreases for an edge {v, z} ∈ Tv then by virtue of friendship
with v, node u loses α1rvvz · (xvz − x∗vz) · cuvv . When xvz decreases for an edge {v, z} ∈ Tv
then depending on αuz node u loses α1rzvz · (xvz − x∗vz) · cuvv . Note that decreasing yu is
important when xuv cannot be increased to x∗uv without decreasing yu.
As α1rvvz + αuzrzvz ≤ rvvz + α1rzuz = qvvz , one can simplify (28) to

quuv · (x∗uv − xuv) ≤
∑

{u,w}∈Tu

quuw · (xuw − x∗uw) · cuvu +
∑

{v,z}∈Tv

qvvz · (xvz − x∗vz) · cuvv .(29)

We can form one such inequality for all edges {u, v} ∈ S. Let us inspect the coefficient of a
term quuw(xuw−x∗uw) appearing on the right hand side if we add all these inequalities. Notice
that quuw(xuw − x∗uw)cuvu appears only once for each edge {u, v} ∈ S adjoining u. These are
precisely the edges in Su. Thus the coefficient of quuw(xuw − x∗uw) will be

∑
{u,v}∈Su

cuuv
if we add all the inequalities formed on the lines of (29). By definition of cuuv , we have∑
{u,v}∈Su

cuuv is at most 1. Thus a term quuw(xuw − x∗uw) can appear with coefficient at

most 1 if we add all these inequalities formed on the lines of (29). Thus we get,∑
{u,v}∈S,u∈B

quuv · (x∗uv − xuv) ≤
∑
u∈B

∑
{u,w}∈Tu

quuw · (xuw − x∗uw) .

We have proved (26) which in turn proves our claim.
The following example shows tightness of our bound.
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Example 8. Consider the path as shown in Fig. 3. Set α2 = α3 = · · · = 0 and use the
following values:

ruuv =
1

1 + α1
rvuv =

1

1 + α1

ruuw =
1

1 + α1R
rwuw =

R

1 + α1R

rvvz =
1

1 + α1R
rzvz =

R

1 + α1R

As desired, we have max{x,y}∈E(G)
rxxy

r
y
xy

= R. Using qxxy = rxxy + αryxy , we obtain

quuv = 1 qvuv = 1

quuw = 1 qwuw = Q

qvvz = 1 qzvz = Q

As desired, we have max{x,y}∈E(G)
qxxy

q
y
xy

= R+α1
1+α1R

= Q. We have {{u, v}} as a stable match-

ing: Given this matching, {u,w} is not a blocking pair, because quuw ≤ quuv . Similarly, {v, z}
is not a blocking pair in matching {{u, v}}. Another stable matching is {{u,w}, {v, z}}:
Given this matching, {u, v} will not be a blocking pair, becasue quuv < quuw + α1rvvz , and
so the condition in inequality (17) is violated. Since there are no other stable matchings for
this graph, the price of anarchy will be determined by the value of the worst stable matching
which is {{u, v}}. It is given by

ruw + rvz

ruv
=
quw + qvz

quv
= 1 +Q .

This completes the proof of Theorem 6. ut

A.2 Proof of Theorem 9

Recall that in additive sharing, we associate a value βu with each node u: how pleasant they
are to work with. Each edge {u, v} also has an inherent quality huv . Then, we model the
edge reward obtained by node u from partnering with node v as ruuv = huv+βv . Expressions
for (friendship) utility of a node and the conditions for swivel or biswivel remain unchanged.

Before proceeding to the proof, we first introduce some notation. We denote by M∗ an
optimum fractional matching and by M a fractional or integral stable matching. Let x∗uv
(or xuv) denote the fraction of edge {u, v} present in M∗ (or M). Furthermore,

S = {e ∈ E(G) : x∗e > xe}
T = {e ∈ E(G) : x∗e ≤ xe}
Su = {e ∈ E(G) : e is incident on u and e ∈ S}
Tu = {e ∈ E(G) : e is incident on u and e ∈ T}
Eu = All edges incident on u. Note that Eu = Su ∪ Tu
yu = 1−

∑
{u,v}∈Eu

xuv

y∗u = 1−
∑

{u,v}∈Eu

x∗uv

∆u =
∑

{u,v}∈Tu

(xuv − x∗uv) + max{(yu − y∗u), 0}

cuvu = (x∗uv − xuv)/∆u
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We will show later in the proof that the following holds

∑
{u,v}∈S

(
huv +

βu

2
+

βv

2

)
(x∗uv − xuv)

≤ max{2 + 2α1, 3} ·
∑

{u,w}∈T

(
huw +

βu

2
+
βw

2

)
(xuw − x∗uw)(30)

With some simple algebraic manipulations, we get∑
{u,v}∈S

(2huv + βu + βv) · x∗uv +
∑

{u,v}∈T
max{2 + 2α1, 3} · (2huv + βu + βv) · x∗uv

≤
∑

{u,w}∈T
max{2 + 2α1, 3} · (2huw + βu + βw) · xuw

+
∑

{u,w}∈S
(2huw + βu + βw) · xuw

Using max{2 + 2α1, 3} > 1, the above equation leads us to our result∑
{u,v}∈S∪T

(2huv + βu + βv) · x∗uv

≤
∑

{u,w}∈S∪T
max{2 + 2α1, 3} · (2huw + βu + βw) · xuw . (31)

Now S ∪ T covers all the edges in the graph. Also, for additive sharing with friendship
utilties we have quuv = (1 + α1)huv + α1βu + βv , thus qxy = qxxy + qyxy = (1 + α1)(2huv +
βu +βv). Using this, Eqn (31) implies that the price of anarchy is at most max{2 + 2α1, 3}.
All that remains to show is Eqn (30) which we do next.

To start with, notice that each edge {u, v} ∈ S can be classified into two categories:
a) {u, v} ∈ S such that yu ≤ y∗u and yv ≤ y∗v AND b) {u, v} ∈ S such that yu > y∗u and
yv ≤ y∗v . Note that we cannot have both yu > y∗u and yv > y∗v , because then the fraction
xuv can be increased by min(yu−y∗u, yv−y∗v) by decreasing yu and yv by the same quantity.
Both u and v would improve their utility in such a case, thus M could not be a (fractional)
stable matching.

We will show that whichever category {u, v} ∈ S belongs to, for one of the endpoints,
say u, the following inequality will hold true with ζ = max{1/2, α1}:(

huv +
1

2
βu +

1

2
βv

)
(x∗uv − xuv)

≤
∑

{u,w}∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

{v,z}∈Tv

((1 + α1)hvz + ζβv + ζβz) (xvz − x∗vz)cuvv .(32)

We call u a witness node for {u, v} ∈ S. We will observe that adding all the inequalities
like Eqn (32) corresponding to each edge {u, v} ∈ S leads us to Eqn (30), thus proving the
theorem in turn. Now let us see how Eqn (32) can be proved for every edge {u, v} ∈ S. As
mentioned before, {u, v} ∈ S can be classified into two categories and we will prove Eqn (32)
for each of them.

1. {u, v} ∈ S with yu ≤ y∗u and yv ≤ y∗v: Here we increase xuv to x∗uv by decreasing
fraction of each {u,w} ∈ Tu by (xuw − x∗uw)cuuv and decreasing fraction of each {v, z} ∈ Tv
by (xvz − x∗vz)cvuv . As M is a stable matching, this does not improve the utility of at least
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one of the endpoints of {u, v}, say u. Call u a witness node for edge {u, v}. Since the utility
of node u does not improve, we get

quv(x∗uv − xuv) ≤
∑

{u,w}∈Tu

quw(xuw − x∗uw)cuvu + α1 ·
∑

{v,z}∈Tv

rvvz(xvz − x∗vz)cuvv

+ αuz ·
∑

{v,z}∈Tv

rzvz(xvz − x∗vz)cuvv . (33)

Eqn (33) can be explained as follows: Its left-hand side represents utility gained by u by
increasing xuv to x∗uv . The first summation on the right hand side represents the utility
lost by u because of decreasing xuw by (xuw − x∗uw)cuvu for each {u,w} ∈ Tu. The second
summation on the right hand side represents the utility lost by u by virtue of friendship
with v when we decrease xvz by (xvz − x∗vz)cuvv for each {v, z} ∈ Tv . The third summation
on the right hand side represents the utility lost by u by virtue of friendship with w when
we decrease xvz by (xvz − x∗vz)cuvv for each {v, z} ∈ Tv . Because for additive sharing we
have rxxy = hxy + βu and qxxy = (1 + α1)huv + α1βu + βv , Eqn (33) implies that

((1 + α1)huv + α1βu + βv)(x∗uv − xuv)

≤
∑

{u,w}∈Tu

((1 + α1)huw + α1βu + βw)(xuw − x∗uw)cuvu

+
∑

{v,z}∈Tv

((α1 + αuz)hvz + αuzβv + α1βz)(xvz − x∗vz)cuvv . (34)

Eqn (34) has similar interpretation as Eqn (33). To simplify Eqn (34), notice that when
yu ≤ y∗u, calculating ∆u does not involve yu − y∗u giving us

∑
{u,w}∈Tu

(xuw − x∗uw)cuvu =

(x∗uv − xuv). Thus we have

(1/2− α1)βu(x∗uv − xuv) = (1/2− α1)βu
∑

{u,w}∈Tu

(xuw − x∗uw)cuvu . (35)

Let us add Eqn (35) to Eqn (34) and replace βv by βv/2 on the left-hand side. Additionally,
using αuz ≤ α1 ≤ ζ results into the following equation:

(
(1 + α1)huv +

1

2
βu +

1

2
βv

)
(x∗uv − xuv)

≤
∑

{u,w}∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

{v,z}∈Tv

((1 + α1)hvz + ζβv + ζβz)(xvz − x∗vz)cuvv . (36)

Thus we have proved (32) holds for a node u acting as witness for {u, v} ∈ S such that
yu ≤ y∗u and yv ≤ y∗v .

2. {u, v} ∈ S with yu > y∗u and yv ≤ y∗v: Here we find a constant ε > 0 such that
ε · (x∗uv − xuv) ≤ yu − y∗u. Then we increase xuv by ε · (x∗uv − xuv) by decreasing yu by the
same amount and by decreasing each {v, z} ∈ Tv by ε · (xvz − x∗vz)cuvv . By doing this the
utility of at least one of the endpoints of {u, v}, does not improve because M is a stable
matching. This endpoint can be either u or v. We will prove that Eqn (32) holds for each
of these cases.
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2(a): Suppose the utility of node u does not improve: Call u a witness node for edge
{u, v} ∈ S. Since the utility of node u does not improve, we have

((1 + α1)huv + α1βu + βv) · ε · (x∗uv − xuv)

≤
∑

{v,z}∈Tv

((α1 + αuz)hvz + αuzβv + α1βz) · ε(xvz − x∗vz)cuvv (37)

Eqn (37) can be explained on the similar lines of Eqn (33) and (34). The only difference
being that the first summation from Eqn (34) is absent from Eqn (37) as fractions xuw do
not change for {u,w} ∈ Tu. Canceling ε from each side of Eqn (37), we get

((1 + α1)huv + α1βu + βv) · (x∗uv − xuv)

≤
∑

{v,z}∈Tv

((α1 + αuz)hvz + αuzβv + α1βz) · (xvz − x∗vz)cuvv (38)

⇒ α1βu(x∗uv − xuv) ≤
∑

{v,z}∈Tv

((α1 + αuz)hvz + αuzβv + α1βz) · (xvz − x∗vz)cuvv .(39)

We multiply Eqn (39) by (1/2 − α1)/α1 on both sides and add it to Eqn (38) to get the
following:(

(1 + α1)huv +
βu

2
+ βv) · (x∗uv − xuv)

≤
∑

{v,z}∈Tv

(
α1 + αuz

2α1
hvz +

αuz

2α1
βv +

1

2
βz

)
· (xvz − x∗vz)cuvv .(40)

Note that to get to Eqn (40), we are performing division by α1 which requires α1 > 0.
However, also notice that if α1 = 0 (and hence all αi = 0) and yu > y∗u, then node u can
only improve its utility by increasing xuv by ε · (x∗uv − xuv). Thus the case of yu > y∗u and
u not improving its utility does not arise.

Now replacing βv by βv/2 and using αuz ≤ α1 in Eqn (40), we get(
(1 + α1)huv +

βu

2
+

βv

2

)
· (x∗uv − xuv)

≤
∑

{v,z}∈Tv

(
hvz +

1

2
βv +

1

2
βz

)
· (xvz − x∗vz)cuvv

⇒
(

(1 + α1)huv +
βu

2
+

βv

2

)
· (x∗uv − xuv)

≤
∑

{u,w}∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

{v,z}∈Tv

(
hvz +

1

2
βv +

1

2
βz

)
· (xvz − x∗vz)cuvv

⇒
(

(1 + α1)huv +
1

2
βu +

1

2
βv

)
(x∗uv − xuv)

≤
∑

{u,w}∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

{v,z}∈Tv

((1 + α1)hvz + ζβv + ζβz)(xvz − x∗vz)cuvv .

(41)

Thus, Eqn (32) holds in this case too.
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2(b): Suppose the utility of node v does not improve. Call node v a witness node for edge
{u, v}. As the utility of node v does not improve, we get

((1 + α1)huv + α1βv + βu) · ε(x∗uv − xuv)

≤
∑

{v,z}∈Tv

((1 + α1)hvz + α1βv + βz) · ε(xvz − x∗vz)cuvv . (42)

Eqn (42) can be explained similarly as Eqn (34) and (33). The only differences are that
the roles of u and v are reversed and the summation corresponding to the utility lost by v
because of decreasing xuw is absent from the right hand side as fractions xuw do not change
for {u,w} ∈ Tu in this case.
To simplify Eqn (42), we cancel ε from each side. We also note that as yv ≤ y∗v , calculating
∆v does not involve yv − y∗v giving us

∑
{v,z}∈Tv

(xvz − x∗vz)cuvv = x∗uv − xuv . This implies

that

(1/2− α1)βv(x∗uv − xuv) = (1/2− α1)βv
∑

{v,z}∈Tv

(xvz − x∗vz)cuvv . (43)

Adding Eqn (43) to Eqn (42) and replacing βu by βu/2 on the left hand side, we get(
(1 + α1)huv +

1

2
βv +

1

2
βu

)
(x∗uv − xuv)

≤
∑

{v,z}∈Tv

(
(1 + α1)hvz +

1

2
βv + βz

)
(xvz − x∗vz)cuvv

⇒
(

(1 + α1)huv +
1

2
βv +

1

2
βu

)
(x∗uv − xuv)

≤
∑

{v,z}∈Tv

(
(1 + α1)hvz +

1

2
βv + βz

)
(xvz − x∗vz)cuvv

+
∑

{u,w}∈Tu

((1 + α1)huw + ζβw + ζβw)(xuw − x∗uw)cuvu .

(44)

Thus, Eqn (32) holds in this case as well.
We showed in cases 2(a) and 2(b) that for every edge {u, v} ∈ S, for one of its endpoints,

say u, the inequality given by Eqn (32) holds true. Now we will show that adding these
inequalities leads us to Eqn (30) which in turn proves the theorem as discussed before. Let
us look at the coefficients of various terms after we add these inequalities:

– A term huw(xuw − x∗uw) on the right hand side will have coefficient at most

(1 + α1) · (
∑

{u,v}∈S
cuvu +

∑
(w,x)∈S

cwxw ) ,

which is at most 2(1 + α1) using
∑
{x,y}∈S c

xy
x ≤ 1.

– Let u = t(u, v) denote that u acts as witness node for edge {u, v} ∈ S. Then a term
βu(xuw − x∗uw) on the right hand side will appear with coefficient∑

{u,v}∈S
u=t(u,v)

1

2
· cuvu +

∑
{u,v}∈S
u6=t(u,v)

ζ · cuvu +
∑

{w,x}∈S
w=t(w,x)

cwxw +
∑

{w,x}∈S
w 6=t(w,x)

ζ · cwxw .

When α1 ≥ 1/2, we have ζ = α1, thus the coefficient of βu(xuw − x∗uw) becomes∑
{u,v}∈S
u=t(u,v)

1

2
· cuvu +

∑
{u,v}∈S
u6=t(u,v)

α1 · cuvu +
∑

{w,x}∈S
w=t(w,x)

cwxw +
∑

{w,x}∈S
w 6=t(w,x)

α1 · cwxw .
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This quantity can be at most α1 + 1.
On the other hand, when α1 < 1/2, we have ζ = 1/2, thus the coefficient of βu(xuw −
x∗uw) becomes∑

{u,v}∈S
u=t(u,v)

1

2
· cuvu +

∑
{u,v}∈S
u6=t(u,v)

1

2
· cuvu +

∑
{w,x}∈S
w=t(w,x)

cwxw +
∑

{w,x}∈S
w 6=t(w,x)

1

2
· cwxw .

This quantity can be at most 3/2.

Taking into account these coefficients when we sum the inequalities given by Eqn (32) over
all {u, v} ∈ S, we get

∑
{u,v}∈S

(
huv +

βu

2
+

βv

2

)
(x∗uv − xuv)

≤ max{2 + 2α1, 3} ·
∑

{u,w}∈T

(
huw +

βu

2
+
βw

2

)
(xuw − x∗uw)

and thereby prove Eqn (30) and our claim in turn. ut


