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Abstract

We study stable matching problems in networks where players are embedded in a social
context, and may incorporate friendship relations or altruism into their decisions. Each player
is a node in a social network and strives to form a good match with a neighboring player. We
consider the existence, computation, and inefficiency of stable matchings from which no pair of
players wants to deviate. When the benefits from a match are the same for both players, we
show that incorporating the well-being of other players into their matching decisions significantly
decreases the price of stability, while the price of anarchy remains unaffected. Furthermore, a
good stable matching achieving the price of stability bound always exists and can be reached
in polynomial time. We extend these results to more general matching rewards, when players
matched to each other may receive different utilities from the match. For this more general
case, we show that incorporating social context (i.e., “caring about your friends”) can make an
even larger difference, and greatly reduce the price of anarchy. We show a variety of existence
results, and present upper and lower bounds on the prices of anarchy and stability for various
matching utility structures.

1 Introduction

Stable matching problems capture the essence of many important assignment and allocation tasks
in economics and computer science. The central approach to analyzing such scenarios is two-
sided matching, which has been studied intensively since the 1970s in both the algorithms and
economics literature. An important variant of stable matching is matching with cardinal utilities,
when each match can be given numerical values expressing the quality or reward that the match
yields for each of the incident players [6]. Cardinal utilities specify the quality of each match
instead of just a preference ordering, and they allow the comparison of different matchings using
measures such as social welfare. A particularly appealing special case of cardinal utilities is known as
correlated stable matching, where both players who are matched together obtain the same reward.
Apart from the wide-spread applications of correlated stable matching in, e.g., market sharing [20],
job markets [9], social networks [22], and distributed computer networks [33], this model also
has favorable theoretical properties such as the existence of a potential function. It guarantees
existence of a stable matching even in the non-bipartite case, where every pair of players is allowed
to match [3, 33].
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When matching individuals in a social environment, it is often unreasonable to assume that
each player cares only about their own match quality. Instead, players incorporate the well-being
of their friends/neighbors as well, or that of friends-of-friends. Players may even be altruistic
to some degree, and consider the welfare of all players in the network. Caring about friends
and altruistic behavior is commonly observed in practice and has been documented in laboratory
experiments [17, 31]. In addition, in economics there exist recent approaches towards modelling
and analyzing other-regarding preferences [18]. Given that other-regarding preferences are widely
observed in practice, it is an important fundamental question to model and characterize their
influence in classic game-theoretical environments. Very recently, the impact of social influence on
congestion and potential games has been characterized prominently in [11,13–15,23–25].

In this paper, we consider a natural approach to incorporate social effects into partner selection
and matching scenarios. In particular, we study how social context influences stability and efficiency
in matching games. Our model to incorporate social context into player decisions is similar to recent
approaches in algorithmic game theory and uses dyadic influence values tied to the hop distance
in the graph. In this way, every player may consider the well-being of every other player to some
degree, with the degree of this regardfulness possibly decaying with the hop distance. The perceived
utility of a player is then composed of a weighted average of player utilities. Players who only care
about their neighbors, as well as fully altruistic players, are special cases of this model.

Moreover, for matching in social environments, the standard model of correlated stable matching
may be too constraining compared to general cardinal utilities, because matched players receive
exactly the same reward. Such an equal sharing property is intuitive and bears a simple beauty, but
there are a variety of other reward sharing methods that can be more natural in different contexts.
For instance, in theoretical computer science it is common practice to list authors alphabetically,
but in other disciplines the author sequence is carefully designed to ensure a proper allocation
of credit to the different participants of a joint paper. Here the credit is often supposed to be
allocated in terms of input, i.e., the first author should be the one that has contributed most to the
project. Such input-based or proportional sharing is then sometimes overruled with sharing based
on intrinsic or acquired social status, e.g., when a distinguished expert in a field is easily recognized
and subconsciously credited most with authorship of an article. In this paper, we are interested in
how such unequal reward sharing rules affect stable matching scenarios. In particular, we consider a
large class of local reward sharing rules and characterize the impact of unequal sharing on existence
and inefficiency of stable matchings, both in cases when players are embedded in a social context
and when they are not.

1.1 Stable Matching Within a Social Context

Correlated stable matching is a prominent subclass of general ordinary stable matching. In this
game, we are given a (non-bipartite) graph G = (V,E) with edge weights re. In a matching M ,
if node u is matched to node v, the utility of node u is defined to be exactly re. This can be
interpreted as both u and v getting an identical reward from being matched together. We will also
consider unequal reward sharing, where node u obtains some reward rue and node v obtains reward
rve with rue + rve = re. Therefore, the preference ordering of each node over its possible matches is
implied by the rewards that this node obtains from different edges. A pair of nodes (u, v) is called
a blocking pair in matching M if u and v are not matched to each other in M , but can both strictly
increase their rewards by being matched to each other instead. A matching with no blocking pairs
is called a stable matching.

While the matching model above has been well-studied, in this paper we are interested in stable
matchings that arise in the presence of social context. Denote the reward obtained by a node v in
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a matching M as Rv. We now consider the case when node u not only cares about its own reward,
but also about the rewards of its friends. Specifically, the perceived or friendship utility of node v
in matching M is defined as

Uv = Rv +

diam(G)∑
d=1

αd
∑

u∈Nd(v)

Ru,

where Nd(v) is the set of nodes with shortest distance exactly d from v, and 1 ≥ α1 ≥ α2 ≥ . . . ≥ 0
(we use ~α to denote the vector of αi values). In other words, for a node u that is distance d away
from v, the utility of v increases by an αd factor of the reward received by u. Thus, if αd = 0 for all
d ≥ 2, this means that nodes only care about their neighbors, while if all αd > 0, this means that
nodes are altruistic and care about the rewards of everyone in the graph. The perceived utility
is the quantity that the nodes are trying to maximize, and thus, in the presence of friendship, a
blocking pair is a pair of nodes such that each node can increase its perceived utility by matching
to each other. Given this defintion of blocking pair, a stable matching is again a matching without
such a blocking pair.

We also study more general stable matching models with nodes u and v receiving different
rewards ruuv and rvuv from an edge (u, v) ∈ M . Under these conditions, a stable matching is not
guaranteed to exist. Instead, we resort to fractional stable matchings defined as follows. In a
fractional matching M there is a real number xe ∈ [0, 1] for each edge e. It represents the degree to
which edge e is “in the matching” and can be thought of as the strength of the match between the
endpoints of e. In addition, for every node u there is a budget constraint

∑
e3u xe ≤ 1. Fractional

matching is especially well-motivated in a social context, since it captures the idea of relationships
of varying strengths. The budget constraint models the fact that a single person cannot be involved
in an unlimited amount of strong relationships. With fractional link strengths, the reward of a node
u for an edge e becomes xe · rue .

A fractional stable matching is a fractional matching without blocking pairs. Analogous to a
blocking pair for an integral matching, a blocking pair for a fractional matching is an edge (u, v)
such that by increasing the strength of edge (u, v) (and possibly decreasing the strengths of some
other edges (u,w) and (v, z) to keep the budget constraints), both u and v strictly improve their
utilities. For fractional matching, the extension to friendships, social context, and perceived utility
is straightforward. Througout the paper, the term stable matching refers to an integral stable
matching. We will explicitly mention when fractional stable matchings are studied.

Centralized Optimum and the Price of Anarchy We study the social welfare of equilibrium
solutions and compare them to an optimal centralized solution. The social welfare is the sum of
rewards, i.e., a social optimum is a matching that maximizes

∑
v Rv. Notice that, while this is

equivalent to maximizing the sum of player utilities when ~α = 0, this is no longer true with social
context (i.e., when ~α 6= 0). Nevertheless, as in e.g. [14, 34], we believe this is a well-motivated
and important measure of solution quality, as it captures the overall performance of the system,
while ignoring the perceived “good-will” effects of friendship and altruism. For example, when
considering projects done in pairs, the reward of an edge can represent actual productivity, while
the perceived utility may not.

To compare stable solutions with a social optimum, we will often consider the price of anarchy
and the price of stability. When considering stable matchings, by the price of anarchy (resp.
stability) we will mean the ratio of social welfare of the social optimum and the social welfare of
the worst (resp. best) stable matching.
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1.2 Our Results

In Section 2, we consider stable matching with friendship utilities and equal reward sharing. In
this case, a stable matching exists and the price of anarchy (ratio of the maximum-weight matching
with the worst stable matching) is at most 2, the same as in the case without friendship. The price
of stability, on the other hand, improves in the presence of friendship, as we can show a tight bound
of 2+2α1

1+2α1+α2
. Moreover, we present a dynamic process that converges to a stable matching of at

least this quality in polynomial time, if initiated from the maximum-weight matching. Our results
imply that for socially aware players, the price of stability can greatly improve: e.g., if α1 = α2 = 1

2 ,
then the price of stability is at most 6

5 , and a solution of this quality can be obtained efficiently.
In Section 3 we instead study general reward sharing schemes. When two nodes matched

together may receive different rewards, an integral stable matching may not exist. Thus, we focus
on fractional stable matchings which we show to always exist, even with friendship utilities. We
show that for arbitrary reward sharing, prices of anarchy and stability depend on the level of
inequality among reward shares. Specifically, if R is the maximum ratio over all edges (u, v) ∈ E
of the reward shares of node u and v, then the price of anarchy is at most (1+R)(1+α1)

1+α1R
. Thus,

compared to the equal reward sharing case, if sharing is extremely unfair (R is unbounded), then
friendship becomes even more important: changing α1 from 0 to 1

2 reduces the price of anarchy
from unbounded to at most 3. In addition, for several particularly natural local reward sharing
rules, we show that an integral stable matching exists, give improved price of anarchy guarantees,
and show tight lower bounds.

1.3 Related Work

Stable matching problems have been studied intensively over the last few decades. On the algorith-
mic side, existence, efficient algorithms, and improvement dynamics for two-sided stable matchings
have been of interest (for references, see standard textbooks [21, 36]). In this paper we address
the more general stable roommates problem, in which every player can be matched to every other
player. For general preference lists, there have been numerous works characterizing and algorithmi-
cally deciding existence of stable matchings [16,26,36,37]. In contrast, fractional stable matchings
are always guaranteed to exist and exhibit various interesting polyhedral properties [1, 2, 37]. For
the correlated stable roommates problem, existence of (integral) stable matchings is guaranteed
by a potential function argument [3, 33], and convergence time of random improvement dynamics
is polynomial [4]. In [7], price of anarchy and stability bounds for approximate correlated sta-
ble matchings were provided. Similar studies in a setting with geometric distances were conducted
in [10]. In contrast, we study friendship, altruism, and unequal reward sharing in stable roommates
problems with cardinal utilities.

Another line of research closely connected to some of our results involves game-theoretic models
for contribution. In [8] we consider a contribution game tied closely to matching problems. Here
players have a budget of effort and contribute parts of this effort towards specific projects and
relationships. For more related work on the contribution game, see [8]. All previous results for this
model concern equal sharing and do not address the impact of the player’s social context. As we
discuss in the conclusion, many of our results for friendship utilities can also be extended to such
contribution games.

Analytical aspects of reward sharing have been a central theme in game theory since its begin-
ning, especially in cooperative games [35]. Recently, there have been prominent algorithmic results
also for network bargaining [27,29] and credit allocation problems [28]. A recent line of work [38,39]
treats extensions of cooperative games, where players invest into different coalitional projects. The
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main focus of this work is global design of reward sharing schemes to guarantee cooperative stabil-
ity criteria. Our focus here is closer to, e.g., recent work on profit sharing games [12, 32]. We are
interested in existence, computational complexity, and inefficiency of stable states under different
reward sharing rules, with an aim to examine the impact of social context on stable matchings.

Our notion of a player’s social context is based on numerical influence parameters that deter-
mine the impact of player rewards on the (perceived) utilities of other players. A recently popular
model of altruism is inspired by Ledyard [30] and has generated much interest in algorithmic game
theory [14,15,24]. In this model, each player optimizes a perceived utility that is a weighted linear
combination of his own utility and the utilitarian welfare function. Similarly, for surplus collabo-
ration [11] perceived utility of a player consists of the sum of players utilities in his neighborhood
within a social network. Our model is similar to [13, 25] and smoothly interpolates between these
global and local approaches.

2 Stable Matching with Equal Reward Sharing

We begin by considering correlated stable matching in the presence of friendship utilities. In this
section, the reward received by both nodes of an edge in a matching is the same, i.e., we use equal
reward sharing, where every edge e has an inherent value re and both endpoints receive this value
if edge e is in the matching. We consider more general reward sharing schemes in Section 3. Recall
that the friendship utility of a node v increases by αdRu for every node u, where d is the shortest
distance between v and u. We abuse notation slightly, and let αuv denote αd, so if u and v are
neighbors, then αuv = α1.

Given a matching M , let us classify the following types of improving deviations that a blocking
pair can undergo.

Definition 1. We call an improving deviation a biswivel whenever two neighbors u and v switch to
match to each other, such that both u and v were matched to some other nodes before the deviation
in M .

See Figure 1 for explanation. For such a biswivel to exist in a matching, the following necessary
and sufficient conditions must hold.

(1 + α1)ruv > (1 + α1)ruw + (α1 + αuz) rvz (1)

(1 + α1)ruv > (1 + α1)rvz + (α1 + αvw) ruw (2)
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Intuitively, the left side of Inequality (1) quantifies the utility gained by u because of getting
matched to v and the right side quantifies the utility lost by u because of u and v breaking their
present matchings with w and z respectively. Hence, Inequality (1) implies that u gains more utility
by getting matched with v than it loses because of u and v breaking their matchings with v and z.
Inequality (2) can similarly be explained in the context of node v.

Definition 2. We call an improving deviation a swivel whenever two neighbors get matched such
that at least one node among the two neighbors was not matched before the deviation.

See Figure 2 for explanation. For such a swivel to occur, the following set of conditions must
hold.

(1 + α1)ruv > (1 + α1)ruw (3)

(1 + α1)ruv > (α1 + αvw)ruw (4)

Inequality (3) says that u gains more utility by getting matched with v than it loses by breaking
its matching with w. Inequality (4) says that v gains more utility by getting matched with u than
the utility it loses because of u breaking its matching with w. As α1 +αvw ≤ 1 +α1, Inequality (4)
is implied by Inequality (3). This means that if v is unmatched, the only condition for (u, v) to
be a blocking pair is that u should have net increase in utility by getting matched with v. This
is true even if v and w are neighbors. Canceling the factor of 1 + α1, we can thus summarize this
(necessary and sufficient) condition for swivel to be an improving deviation as:

ruv > ruw (5)

All improving deviations by a blocking pair can be classified as either a biswivel or a swivel,
depending only on whether both nodes are matched or not. The following observation will later be
useful.

Lemma 1. Suppose nodes u and w are matched in M . If (u, v) forms a blocking pair, then
ruv > ruw.

Proof. Straightforward with inequalities (1) and (2) for a biswivel and inequality (5) for a swivel.

2.1 Existence and Welfare of Stable Matchings with Friendship Utilities

Theorem 1. A stable matching exists in stable matching games with friendship utilities. Moreover,
the set of stable matchings without friendship (i.e., when ~α = 0) is a subset of the set of stable
matchings with friendship utilities on the same graph.

Proof. If ~α = 0, a stable matching M exists, because in this special case our model is correlated
stable matching. We prove now is that the same M is stable when we have friendship utilities.

Suppose for contradiction that M is unstable for some value of ~α. This is possible only if we
have a blocking pair (u, v). But this cannot happen because:

• If both u and v were unmatched in M then M could not have been stable for ~α = 0.

• If exactly one of u and v is unmatched in M , say u is matched to w and v is unmatched, then
for (u, v) to be a blocking pair, ruv > ruw by Lemma 1. But in such a case, M could not have
been stable for ~α = 0.
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• Suppose both u and v are matched in M , say u is matched to w and v is matched to z. In
such a case if (u, v) forms a blocking pair corresponding to a biswivel, then by Lemma 1, we
have ruv > ruw and ruv > rvz and thus M could not have been stable for ~α = 0.

Hence we have shown that no blocking pair exists in M with friendship utilities, thus proving the
theorem.

Theorem 2. The price of anarchy in stable matching games with friendship utilities is at most 2,
and this bound is tight.

Proof. This theorem is simply a special case of our much more general Theorem 6, which proves
a price of anarchy bound of 1 + R+α1

1+α1R
, with R being a measure of how unequally players can

share rewards on an edge. When players share edge rewards equally, the price of anarchy bound in
Theorem 6 reduces to 1 + 1+α1

1+α1
= 2, as desired. To show that this bound is tight, simply consider

a 3-edge path with all edge rewards being 1, for any value of ~α.

2.2 Price of Stability and Convergence

The main result in this section bounds the price of stability in stable matching games with friend-
ship utilities to 2+2α1

1+2α1+α2
, and this bound is tight (see Theorem 4 below). This bound has some

interesting implications. It is decreasing in each α1 and α2, hence having friendship utilities al-
ways yields a lower price of stability than without friendship utilities. Also, note that values of
α3, α4, ..., αdiam(G) have no influence. Thus, caring about players more than distance 2 away does
not improve the price of stability in any way. Also, if α1 = α2 = 1, then PoS = 1, i.e., there
will exist a stable matching which will also be a social optimum. Thus loving thy neighbor and
thy neighbor’s neighbor but nobody beyond is sufficient to guarantee that there exists at least one
socially optimal stable matching. In fact, due to the shape of the curve, even small values of friend-
ship quickly decrease the price of stability; e.g., setting α1 = α2 = 0.1 already decreases the price
of stability from 2 to ∼ 1.7.

We will establish the price of stability bound by defining an algorithm that creates a good
stable matching in polynomial time. One possible idea to create a stable matching that is close to
optimum is to use a Best-Blocking-Pair algorithm: start with the best possible matching, i.e. a
social optimum, which may or may not be stable. Now choose the “best” blocking pair (u, v): the
one with maximum edge reward ruv. Allow this blocking pair to get matched to each other instead
of their current partners. Check if the resulting matching is stable. If it is not stable then allow
the best blocking pair for this matching to get matched. Repeat the procedure until there are no
more blocking pairs, thereby obtaining a stable matching.

This algorithm gives the desired price of stability and running time bounds for the case of “al-
truism” when all αi are the same, see Corollary 1 below. To provide the desired bound with general
friendship utilities, we must alter this algorithm slightly using the concept of relaxed blocking pair.

Definition 3. Given a matching M , we call a pair of nodes (u, v) a relaxed blocking pair if either
(u, v) form an improving swivel, or u and v are matched to w and z respectively, with the following
inequalities being true:

(1 + α1)ruv > (1 + α1)ruw + (α1 + α2) rvz (6)

(1 + α1)ruv > (1 + α1)rvz + (α1 + α2) ruw (7)

In other words, a relaxed blocking pair ignores the possible edges between nodes u and z, and
has α2 in the place of αuz (similarly, α2 in the place of αvw). It is clear from this definition that a
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1. Initialize M = M∗ where M∗ is a socially optimum matching.

2. If there is no relaxed blocking pair, terminate. Otherwise, resolve relaxed

blocking pair (u, v) with maximum edge reward ruv by adding (u, v) to M and

removing from M any other matching edges incident to u and v.

3. Repeat step 2.

Figure 3: Best-Relaxed-Blocking-Pair Algorithm

blocking pair is also a relaxed blocking pair, since the conditions above are less constraining than
Inequalities (1) and (2). Thus a matching with no relaxed blocking pairs is also a stable matching.
Moreover, it is easy to see that Lemma 1 still holds for relaxed blocking pairs. We will call a
relaxed blocking pair satisfying Inequalities (6) and (7) a relaxed biswivel, which may or may not
correspond to an improving deviation, since a relaxed blocking pair is not necessarily a blocking
pair.

2.2.1 The Best-Relaxed-Blocking-Pair Algorithm

Our algorithm to compute a near-optimal stable matching is the Best-Relaxed-Blocking-Pair
algorithm shown in Fig.3. To establish the efficient running time and the price of stability bound of
the resulting stable matching, we first analyze the dynamics of this algorithm and prove some helpful
lemmas. We can interpret the algorithm as a sequence of swivel and relaxed biswivel deviations,
each inserting one edge into M , and removing up to two edges. It is not guaranteed that the
inserted edge will stay forever in M , as a subsequent deviation can remove this edge from M . Let
O1, O2, O3, · · · denote this sequence of deviations, and e(i) denote the edge which got inserted into
M because of Oi. We analyze the dynamics of the algorithm in the following two lemmas.

Lemma 2. The first deviation O1 during the execution of Best-Relaxed-Blocking-Pair is a
relaxed biswivel.

Proof. Having O1 as a swivel will strictly improve the value of matching by Lemma 1. Hence if
we begin the algorithm with M = M∗, having O1 as a swivel will produce a matching with value
strictly greater than M∗, which is a contradiction.

Lemma 3. Let Oj be a relaxed biswivel that takes place during the execution of the best relaxed
blocking pair algorithm. Suppose a deviation Ok takes place before Oj. Then we have re(k) ≥ re(j).
Furthermore, if Ok is a relaxed biswivel then e(k) 6= e(j) (thus at most |E(G)| relaxed biswivels can
take place during the execution of the algorithm).

It is important to note that this lemma does not say that re(i) ≥ re(j) for i < j. We are only
guaranteed that re(i) ≥ re(j) for i < j if Oj is a relaxed biswivel. Between two successive relaxed
biswivels Ok and Oj , the sequence of re(i) for consecutive swivels can and does increase as well as
decrease, and the same edge may be added to the matching multiple times. All that is guaranteed
is that re(j) for a biswivel Oj will have a lower value than all the preceding re(i)’s. Thus, this lemma
suggests a nice representation of Best-Relaxed-Blocking-Pair in terms of phases, where we
define a phase as a subsequence of deviations that begins with a relaxed biswivel and continues
until the next relaxed biswivel. Lemma 2 shows that the start of the sequence is also the start of
the first phase. Lemma 3 guarantees that at the start of each phase, the re(j) value is smaller than
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the values in all previous phases, and that there is only a polynomial number of phases. Now we
proceed to prove Lemma 3.

Proof. Let e(j) = (v, z) get inserted in M because of a relaxed biswivel Oj . We first give a brief
outline of the proof. Suppose that the claim re(k) ≥ re(j) for k < j is false and we have an Ok with
k < j such that re(k) < re(j). Clearly (v, z) could not have been a relaxed blocking pair just before
Ok, otherwise the algorithm would have chosen (v, z) as the best relaxed blocking pair instead of
Ok. We will show that this leads to a conclusion that (v, z) cannot be a relaxed blocking pair even
for Oj . This is a contradiction, hence our assumption of re(k) < re(j) could not have been correct.
Thus for all Ok such that k < j we will have re(k) ≥ re(j). Later we will use similar reasoning to
prove that if Oi with i < j is a relaxed biswivel that takes place before a relaxed biswivel Oj then
e(i) 6= e(j). Now let us proceed to the proof.

Suppose to the contrary that we have Ok with k < j such that re(k) < re(j) with Oj being a
relaxed biswivel. As discussed in the outline of the proof, this implies that (v, z) was not a relaxed
blocking pair at the time Ok was selected. Let S be the set of nodes with whom v and z are matched
at the time that Ok is selected. As long as S does not change, v and z will not be a relaxed blocking
pair, since the change in utility experienced by v and z from matching to each other depends only
on their partners in the current matching, i.e., the set S. Thus for the relaxed biswivel Oj to occur,
S must change between Ok and Oj . We will show that this leads to a contradiction: that (v, z)
cannot be a relaxed blocking pair for the time Oj is selected.

Suppose v is matched to x and z is matched to y just before biswivel Oj . Since (v, z) is a relaxed
blocking pair at this point, we thus have

(1 + α1)rvz > (1 + α1)rvx + (α1 + α2)rzy (8)

(1 + α1)rvz > (1 + α1)rzy + (α1 + α2)rvx. (9)

Recall that (v, z) was not a relaxed blocking pair just before Ok, and to make it a relaxed blocking
pair for Oj , S must change between Ok and Oj . Let Ol be the last deviation which changed S to
{x, z}. Without loss of generality, we can assume that Ol adds the edge (v, x). Now we have two
cases:

• (v, z) was a relaxed blocking pair at the time Ol is selected: in this case (v, x) could not have
been the best relaxed blocking pair for Ol because inequality (8) tells us rvz > rvx.

• (v, z) was not a relaxed blocking pair at the time Ol is selected: Suppose v was matched with
w before Ol. As (v, z) was not a relaxed blocking pair just before Ol we have

Either (1 + α1)rvz ≤ (1 + α1)rvw + (α1 + α2)rzy (10)

OR (1 + α1)rvz ≤ (1 + α1)rzy + (α1 + α2)rvw . (11)

(If v was unmatched just before Ol, then substitute rvw = 0 to obtain the appropriate
condition.) Assume that it is inequality (10) that holds. Then, because Ol removes edge
(v, w) and adds edge (v, x), we have rvx > rvw as Lemma 1 holds for relaxed blocking pairs.
Thus, it holds

(1 + α1)rvz ≤ (1 + α1)rvx + (α1 + α2)rzy . (12)

This contradicts inequality (8), and thus (v, z) cannot be a relaxed blocking pair at the time
Oj is selected. The same conclusion can be reached if we assume inequality (11) holds true.
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In either case we obtain a contradiction, thus showing that if Oj is a relaxed biswivel, then for all
Ok with k < j, we have re(k) < re(j).

The only remaining piece is to prove e(k) 6= e(j) if Ok is a relaxed biswivel. Notice that if
e(k) = e(j) = (v, z), then S has to change between Ok and Oj . Now we use exactly the reasoning
from the previous paragraph to arrive at a contradiction, thus proving that e(k) 6= e(j).

If α1 = α2, the conditions for a blocking pair are identical to the conditions for a relaxed blocking
pair. Hence, our algorithm corresponds to letting the best blocking pair deviate at each step. As
a special case, for ~α = 0 and correlated stable matching, this algorithm is known to provide
a stable matching in polynomial time [4]. For friendship utilities, however, (quick) convergence
was previously unknown. We now show that even with the addition of friendship, Best-Relaxed-
Blocking-Pair (and thus Best-Blocking-Pair when α1 = α2) terminates and produces a stable
matching. Moreover, it does so in polynomial time.

If instead of the best we pick some arbitrary blocking pair, then there exists an instance in
which, starting from the empty matching, a sequence of blocking pairs of length 2Ω(n) exists until
reaching a stable matching, even without friendship. This is directly implied by recent results in
correlated stable matching [22].

A trivial adjustment of the gadget in [22] allows us to construct the exponential sequence even
when starting from the social optimum. We scale the reward of each (original) edge i ∈ {1, . . . ,m}
in the gadget from i to 1 + i · ε, for some tiny ε > 0. This preserves all incentives and the structure
of all blocking pairs. Then, we add an auxiliary neighbor for each (original) player and connect
it via an auxiliary edge of reward 1. The social optimum is obviously given by matching each
original player with his auxiliary neighbor. However, the exponential sequence of blocking pairs
still exists, because auxiliary edges are not rewarding enough to influence blocking pairs among
original players. Given that such exponential-length sequences exist, it is perhaps surprising that
our algorithm indeed finds a stable matching and it terminates in polynomial time.

Theorem 3. Best-Relaxed-Blocking-Pair outputs a stable matching after O(m2) iterations,
where m is the number of edges in the graph.

Proof. Consider the three possible changes that can occur to the matching M during each iteration:
a swivel could add a new edge, or it could delete an edge and add an edge with strictly higher re
value. A relaxed biswivel deletes two edges and adds an edge with higher re value than either. If
no biswivels take place, the number of edges in the matching cannot decrease. Hence, the total
number of consecutive swivels is O(m2). Now consider the structure of the sequence in phases.
The relaxed biswivel in the beginning can allow at most m additional swivels to occur, since it
reduces the number of edges by one. As there are at most m relaxed biswivel deviations possible by
Lemma 3, the algorithm terminates after at most O(m2) deviations. At the end of the algorithm,
there exist no relaxed blocking pairs. Since a blocking pair is also a relaxed blocking pair, the final
matching produced by the algorithm is a stable matching.

As we can have only a polynomial number of consecutive swivel deviations between each relaxed
biswivel, we know that every phase (defined as a maximal subsequence of consecutive swivels) lasts
only a polynomial amount of time, and there are only O(m) phases by Lemma 3. Moreover, in
each phase, the value of the matching only increases, since swivels only remove an edge if they add
a better one. Below, we use the fact that only relaxed biswivel operations reduce the cost of the
matching to bound the cost of the stable matching this algorithm produces.
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2.2.2 Upper Bound on Price of Stability

To prove the bound, we need some notation and useful lemmas. We define a sequence of mappings
from M∗ to E(G). Define h0 : M∗ → E(G) as h0(e) = e. Depending on Oi, we define hi as follows:
Suppose Oi is a deviation that removes edge hi−1(ej) from M . If Oi inserts edge el in M then set
hi(ej) = el. For all other ek ∈ M∗, keep hi(ek) same as hi−1(ek). Let us note that a deviation Oi
may not remove any edges from {hi−1(ej) : ej ∈M∗}. This can happen because during the course
of the algorithm, two unmatched nodes can get matched, say to insert ep into M . No edges in
M∗ get mapped to ep. If this edge is removed from M by a later deviation, the mapping may not
change, since no edge is mapped to ep. To summarize, hi may be the same as hi−1, or may differ
from hi−1 in one location (in case of a swivel), or in two locations (in case of a relaxed biswivel).
Denote the resulting mapping when our algorithm terminates by hM .

Coupling Lemma 1 with the definition of mappings hi, we directly see:

Lemma 4. {rhi(e)}i≥0 is a nondecreasing sequence and rhi+1(e) > rhi(e) whenever hi+1(e) 6= hi(e).

The next lemma will be instrumental in proving the price of stability bound.

Lemma 5. If hM (ei) = hM (ej) with ei 6= ej then

1. There must exist a relaxed biswivel Ok such that hk−1(ei) 6= hk−1(ej) but Ok makes hk(ei) =
hk(ej). Furthermore, for all p ≥ k we have hp(ei) = hp(ej).

2. There does not exist another el ∈M∗ such that hM (el) = hM (ei) = hM (ej).

3. rei + rej <
2+2α1

1+2α1+α2
× rhM (ei)

Proof. To prove the first part, say Ol was the first deviation such that hl−1(ei) 6= hl−1(ej) and
hl(ei) = hl(ej). It cannot happen because of a swivel deviation because a swivel can make hl(e) 6=
hl−1(e) for at most for one e ∈ M∗. Thus Ol must be a relaxed biswivel. Set k = l and it is easy
to see that for p ≥ k we have hp(ei) = hp(ej). Hence the first part is proven.

To prove the second part, suppose there exists an el with el 6= ei 6= ej such that hM (el) =
hM (ei) = hM (ej). From the first part, there must exist a relaxed biswivel Ok s.t. hk−1(ei) 6=
hk−1(el) but hk(ei) = hk(el). Similarly there must exist a relaxed biswivel Op s.t. hp−1(ei) 6=
hp−1(ej) but hp(ei) = hp(ej). Without loss of generality say p > k. Using Lemma 3 we get
re(k) ≥ re(p). But from Lemma 4, we have re(k) < re(p), since e(p) = hp(ei) > hk(ei) = e(k).
We obtain a contradiction here, thus proving that there does not exist another el ∈ M∗, with
hM (el) = hM (ei) = hM (ej).

To prove the third part, consider a relaxed biswivel Ok such that hk−1(ei) 6= hk−1(ej) and
hk(ei) = hk(ej). Substitute ruv = rhk(ei), ruw = rhk−1(ei) and rvz = rhk−1(ej) in inequalities (1)
and (2). Adding these inequalities and simplifying, we get

rhk−1(ei) + rhk−1(ej) <
2 + 2α1

1 + 2α1 + α2
· rhk(ei) . (13)

From Lemma 4, we know {rhi(e)}i≥0 is a nondecreasing sequence. Using this in (13) we get

rei + rej <
2 + 2α1

1 + 2α1 + α2
· rhM (ei) . (14)
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Using Lemma 5, we can partition edges of M∗ into two sets as follows: Let B denote the set
of edges ei ∈ M∗ such that hM (ei) = hM (ej) for some ej ∈ M∗ and let A denote the remaining
edges in M∗. We can further partition set B into two sets P and Q as follows: choose a pair ei
and ej in B such that hM (ei) = hM (ej). Denote ej by µ(ei). Put ei in P and µ(ei) in Q. Notice
that value of the matching M that Best-Relaxed-Blocking-Pair gives as output is at least∑

e∈A rhM (e) +
∑

e∈P rhM (e). Possible additional edges in M are produced because of swivels which
match two previously unmatched nodes with each other.

This allows us to prove the main theorem of this section:

Theorem 4. The price of stability in stable matching games with friendship utilities is at most
2+2α1

1+2α1+α2
, and this bound is tight.

Proof. The value of M∗ is given by

w(M∗) =
∑
e∈A

re +
∑
e∈P

re +
∑
e∈Q

re

=
∑
e∈A

re +
∑
e∈P

(re + rµ(e)) .

Using Lemma 5, for e ∈ P we have re + rµ(e) <
2+2α1

1+2α1+α2
· rhM (e). Using Lemma 4, for e ∈ A we

have re ≤ rhM (e). Thus, we get

w(M∗) ≤
∑
e∈A

rhM (e) +
∑
e∈P

2 + 2α1

1 + 2α1 + α2
· rhM (e)

≤ 2 + 2α1

1 + 2α1 + α2
·

(∑
e∈A

rhM (e) +
∑
e∈P

rhM (e)

)
.

Note that this inequality may not be strict since A may be empty. This could happen if each edge
in M∗ gets removed because of a relaxed biswivel as the algorithm proceeds (though it may be
possible that it is inserted later). We also have w(M) ≥

∑
e∈A rhM (e) +

∑
e∈P rhM (e) for the final

matching M of the algorithm. Using this,

w(M∗) ≤ 2 + 2α1

1 + 2α1 + α2
· w(M) ,

which proves the bound on the price of stability, since M is a stable matching.
To prove the tightness of the bound, assume α2 = 0 and set ruv = 1+2α1+ε

1+α1
, ruw = rvz = 1 in

Fig 1. Then we have {(u.v)} as the only stable matching but the social optimum is {(u,w), (v, z)}.
Thus, we get a price of stability of 2+2α1

1+2α1+ε . With ε→ 0, this yields a tight bound for α2 = 0.

Theorems 3 and 4, yield the following corollary about the behavior of best blocking pair dy-
namics. It applies in particular to the model of altruism when αi = α for all i = 1, . . . , diam(G).

Corollary 1. If α1 = α2 and we start from the centrally optimum matching, Best-Blocking-
Pair converges in O(m2) time to a stable matching that is at most a factor of 2+2α1

1+2α1+α2
worse than

the optimum.

Proof. When α1 = α2, Best-Relaxed-Blocking-Pair is Best-Blocking-Pair.
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3 Stable Matching with Friendship and General Reward Sharing

In the previous section we assumed that for (u, v) ∈M both u and v get the same reward ruv. Let
us now treat the mode general case where u and v receive different rewards for (u, v) ∈ M . We
define rxxy as the reward of x from edge (x, y) ∈ M . We interpret our model in a reward sharing
context, where x and y share a total reward of rxy = rxxy + ryxy. The correlated matching model of
Section 2 can equivalently be formulated as equal sharing with nodes u and v receiving a reward
of ruv/2.

Let us again write explicit conditions for nodes to form a blocking pair in this context and define
some helpful notation. The necessary and sufficient conditions for nodes (u, v) to form a biswivel
from nodes w and z (See Fig. 1) in reward sharing with friendship are:

ruuv + α1r
v
uv > ruuw + α1(rwuw + rvvz) + αuzr

z
vz

rvuv + α1r
u
uv > rvvz + α1(rzvz + ruuw) + αvwr

w
uw.

We define qxxy = rxxy + α1r
y
xy. Then the conditions for biswivel such as shown in Fig. 1 are:

quuv > quuw + α1r
v
vz + αuzr

z
vz (15)

qvuv > qvvz + α1r
u
uw + αvwr

w
uw. (16)

Similarly, the necessary and sufficient conditions for swivel (See Fig. 2) are

ruuv + α1r
v
uv > ruuw + α1r

w
uw

rvuv + α1r
u
uv > α1r

u
uw + αvwr

w
uw.

Using the definition of qxxy(·, ·), the conditions for swivel become:

quuv > quuw (17)

qvuv > α1r
u
uw + αvwr

w
uw (18)

Let us define qxy = qxxy + qyxy. Thus we obtain qxy = (1 + α1)rxy.

3.1 Existence of a Stable Matching

Without friendship utilities, our stable matching game reduces to the stable roommates problem
(i.e., non-bipartite stable matching), since reward shares can be arbitrary and thus induce arbitrary
preference lists for each node. It is well known that a stable matching may not exist in instances
of the stable roommates problem [19]. While we are able to prove existence of integral stable
matching for several interesting special cases (see Section 3.4 below), the addition of friendship
further complicates matters. In Section 2.1 we showed that for equal sharing, a stable matching
without friendship utilities (i.e., ~α = 0) is also a stable matching when we have friendship utilities.
This is no longer true for unequal reward sharing: adding a social context can completely change
the set of stable matchings. In Section 3.5 we give such examples, including an example where
adding a social context (i.e., increasing ~α above zero) destroys all stable matchings that exist when
~α = 0.

Although stable matchings may not exist in general non-bipartite graphs, fractional stable
matchings are guaranteed to exist [2]. Fortunately, as we prove below, this holds even in the
presence of friendship utilities with general reward sharing: A fractional stable matching always
exists.
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A fractional stable matching is a fractional matching without blocking pairs. Specifically, a
biswivel occurs when there is an edge (u, v) such that increasing the strength of edge (u, v), and
decreasing the strength of some other edges (u,w) and (v, z) would strictly improve the utilities of
both u and v. The inequalities that would make this be true are exactly (15) and (16); they do not
change simply due to the fractional nature of the matching (note, however, that for a biswivel to
make sense, it is necessary that xuv < 1, xuw, xvz > 0). Similarly, a swivel occurs when increasing
the strength of an edge (u, v) with node v not being tight (i.e.,

∑
e3v xe < 1), and decreasing the

strength of some edge (u,w) would strictly improve the utilities of both u and v; or when there
are two adjacent nodes that are not tight. The inequalities that would make this be true are
exactly (17) and (18).

Theorem 5. A fractional stable matching always exists, even in the case of friendship utilities and
general reward sharing.

Proof. We denote by SRPq the instance of the stable roommates problem where we have exactly
the same edges in the graph as in our network. However, in SRPq the nodes prepare their preference
lists based on qxxy, i.e., a node u will prefer node v as roommate over w iff quuv > quuw, breaking ties
arbitrarily. Note that SRPp can be seen as an instance of the ordinary stable roommates problem
without friendships.

SRPq has at least one fractional (and, in fact, half-integral) stable matching [2]. We will now
show that a fractional stable matching for SRPq is a fractional stable matching for our matching
game with unequal reward sharing and friendship utilities as well.

Suppose a fractional stable matching M for SRPq is not a fractional stable matching for unequal
reward sharing with friendship utilities. Then there exists a blocking pair (u, v) with one of the
following two possibilities:

• (u, v) forms a biswivel, so the inequalities (15) and (16) must hold true. These inequalities
imply quuv > quuw and qvuv > qvvz. But then (u, v) would be a blocking pair in SRPq. This
contradicts that M is stable in SRPq.

• (u, v) forms a swivel, say with v such that
∑

e3v xe < 1 and with u such that
∑

e3u xe = 1.
(It cannot be that both u and v are not tight, since otherwise M would not be stable in
SRPq.) Then for (u, v) to be a blocking pair inequalities (17) and (18) must hold true. But
these inequalities imply quuv > quuw and thus (u, v) would be a blocking pair in SRPq. This
contradicts that M is stable in SRPq.

Hence, M must be stable with unequal reward sharing and friendship utilities. Moreover, the set of
fractional stable matchings in SRPq is a subset of the set of fractional stable matchings in unequal
reward sharing with friendship utilities. Since there exists at least one fractional stable matching
in SRPq, the theorem is proved.

3.2 Price of Anarchy with General Reward Sharing

In this section we prove tight bounds for the price of anarchy of stable matching with friendship
utilities in the presence of general reward sharing. Since an integral stable matching may not exist,
we instead consider fractional matching; by price of anarchy here we mean the ratio of the total
reward in a socially optimum fractional matching with the worst fractional stable matching. The
corresponding ratio between the integral versions is trivially upper bounded by this amount as well.

We define R as

R = max
(u,v)∈E(G)

ruuv
rvuv

(19)
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Note that we will always have R ≥ 1. By definition of q, we also have

qxxy
qyxy

=
rxxy + α1r

y
xy

ryxy + α1rxxy

Using the fact that p+α1

1+α1p
is an increasing function of p and using the definition of R, we thus obtain

qxxy
qyxy
≤ R+ α1

1 + α1R
(20)

Most of this section is devoted to proving the following theorem:

Theorem 6. The (fractional) price of anarchy for general reward sharing with friendship utilities
is at most 1 +Q, where Q = max(u,v)∈E(G)

quuv
qvuv
≤ R+α1

1+α1R
, and this bound is tight.

Let us quickly consider the implications of this bound. If R = 1, the bound is 2. This result
implies Theorem 2, since when we have R = 1, then both u and v get the same reward from an
edge (u, v) ∈ M . If α1 = 0, the bound is 1 + R. The tightness of this bound implies that as
sharing becomes more unfair, i.e., as R → ∞, we can find instances where the price of anarchy is
unbounded. Unequal sharing can make things much worse for the stable matching game.

Notice, however, that R+α1
1+α1R

is a decreasing function of α1. As α1 goes from 0 to 1, the bound
goes from 1 +R to 2. Without friendship utilities (~α = 0), we have a tight upper bound of 1 +R,
which is extremely bad for large R. As α1 tends to 1, however, the price of anarchy drops to 2,
independent of R. For example, for α1 = 1/2 it is only 3. Thus, social context can drastically
improve the outcome for the society, especially in the case of unfair and unequal reward sharing.

Now let us proceed to the proof of Theorem 6.

Proof. We first introduce some notation. We denote by M∗ an optimum fractional matching and
use M to denote a fractional or integral stable matching. Let x∗uv (or xuv) denote the fraction of
edge (u, v) present in M∗ (or M). Furthermore,

S = {e ∈ E(G) : x∗e > xe}
T = {e ∈ E(G) : x∗e ≤ xe}
Su = {e ∈ E(G) : e is incident on u and e ∈ S}
Tu = {e ∈ E(G) : e is incident on u and e ∈ T}
Eu = All edges incident on u. Note that Eu = Su ∪ Tu
yu = 1−

∑
(u,v)∈Eu

xuv

y∗u = 1−
∑

(u,v)∈Eu

x∗uv

∆u =
∑

(u,v)∈Tu

(xuv − x∗uv) + max{(yu − y∗u), 0}

The idea of the proof is the following. Consider an edge (u, v) ∈ S. If the fraction of the
edge (u, v) in M was increased to x∗uv from xuv by decreasing fractions of some other edges in M
incident on u and v, then at least one of the endpoints of (u, v) does not improve its utility. Tag
this endpoint as corresponding to edge (u, v) and denote the set of tagged nodes by B. We get
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one inequality for each node u ∈ B for such a modification of fractions of adjoining edges. We will
show that adding all such inequalities gives us the following:∑

(u,v)∈S,u∈B

quuv · (x∗uv − xuv) ≤
∑
u∈B

∑
(u,w)∈Tu

quuw · (xuw − x∗uw) . (21)

We prove Eqn (21) separately below. Now, as quuv ≥ quv/(1 + Q) and quw = quuw + qwuw, Eqn (21)
becomes ∑

(u,v)∈S

1

1 +Q
quv · (x∗uv − xuv) ≤

∑
(u,w)∈T

quw · (xuw − x∗uw) .

Using algebraic simplifications and the fact that we have 1 ≥ 1/(1 + Q), we get the following
sequence of inequalities:∑

(u,v)∈S

1

1 +Q
· quv · x∗uv +

∑
(u,v)∈T

quv · x∗uv ≤
∑

(u,w)∈T

quw · xuw +
∑

(u,w)∈S

1

1 +Q
· quw · xuw

⇒
∑

(u,v)∈S∪T

1

1 +Q
· quv · x∗uv ≤

∑
(u,w)∈S∪T

quw · xuw

⇒
∑

(u,v)∈G quv · x∗uv∑
(u,w)∈G quw · xuw

≤ 1 +Q , (22)

where for the last inequality we have used the fact that S ∪ T covers all the edges in the graph.
This proves the claim.

It remains to prove Eqn (21). Suppose node u gets tagged for edge (u, v) if we increase xuv to
x∗uv by doing the following two steps:

• Decrease fraction of each (u,w) ∈ Tu by (x∗uv − xuv)(xuw − x∗uw)/∆u and decrease fraction of
each (v, z) ∈ Tv by (x∗uv − xuv)(xvz − x∗vz)/∆v AND

• If yu > y∗u then decrease yu by (x∗uv − xuv)(yu − y∗u)/∆u and if yv > y∗v then decrease yv by
(x∗uv − xuv)(yv − y∗v)/∆v.

If the utility of u does not improve then

quuv · (x∗uv − xuv) ≤
∑

(u,w)∈Tu

quuw · (xuw − x∗uw) · cuvu

+
∑

(u,w)∈Tv

α1r
v
vz · (xvz − x∗vz) · cuvv

+
∑

(u,w)∈Tv

αuzr
z
vz · (xvz − x∗vz) · cuvv , (23)

where cuvu = (x∗uv − xuv)/∆u and likewise for cuvv . Eqn (23) can be explained as follows. quuv ·
(x∗uv − xuv) denotes the utility gained by u on edge (u, v) by increasing xuv to x∗uv. The term
quuw ·(xuw−x∗uw) ·cuvu denotes the utility lost by u because of decreasing xuw for an edge (u,w) ∈ Tu.
When xvz decreases for an edge (v, z) ∈ Tv then by virtue of friendship with v, node u loses
α1r

v
vz · (xvz − x∗vz) · cuvv . When xvz decreases for an edge (v, z) ∈ Tv then depending on αuz node u

loses α1r
z
vz · (xvz − x∗vz) · cuvv . Note that decreasing yu is important when xuv cannot be increased

to x∗uv without decreasing yu.

16



As α1r
v
vz + αuzr

z
vz ≤ rvvz + α1r

z
uz = qvvz, Eqn (23) can be simplified to

quuv · (x∗uv − xuv) ≤
∑

(u,w)∈Tu

quuw · (xuw − x∗uw) · cuvu +
∑

(u,w)∈Tv

qvvz · (xvz − x∗vz) · cuvv . (24)

We can form one such inequality for all edges (u, v) ∈ S. Let us inspect the coefficient of a
term quuw(xuw − x∗uw) appearing on right hand side if we add all these inequalities. Notice that
quuw(xuw − x∗uw)cuvu appears only once for each edge (u, v) ∈ S adjoining u. These are precisely
the edges in Su. Thus the coefficient of quuw(xuw − x∗uw) will be

∑
(u,v)∈Su

cuuv if we add all the
inequalities like Eqn (24). By definition of cuuv, we have

∑
(u,v)∈Su

cuuv is at most 1. Thus a term
quuw(xuw − x∗uw) can appear with coefficient at most 1 if we add all these inequalities like Eqn (24).
Thus we get, ∑

(u,v)∈S,u∈B

quuv · (x∗uv − xuv) ≤
∑
u∈G

∑
(uw)∈Tu

quuw · (xuw − x∗uw) .

We have proved Eqn (21) which in turn proves our claim.
Tightness of the bound: Consider the 3-length path as shown in Fig. 1. Set α2 = α3 = · · · = 0
and use the following values:

ruuv =
1

1 + α1
rvuv =

1

1 + α1

ruuw =
1

1 + α1R
rwuw =

R

1 + α1R

rvvz =
1

1 + α1R
rzvz =

R

1 + α1R

Note that as desired, max(x,y)∈E(G)
rxxy
ryxy

= R. Using qxxy = rxxy + αryxy, we obtain

quuv = 1 qvuv = 1

quuw = 1 qwuw = Q

qvvz = 1 qzvz = Q

Note that as desired, max(x,y)∈E(G)
qxxy
qyxy

= R+α1
1+α1R

= Q. We have {(u, v)} as a stable matching: Given

this matching, (u,w) is not a blocking pair, because quuw ≤ quuv. Similarly (v, z) too is not a blocking
pair in matching {(u, v)}. Another stable matching is {(u,w), (v, z)}: Given this matching, (u, v)
will not be a blocking pair, becasue quuv < quuw + α1r

v
vz, and so the condition in inequality (15)

is violated. Since there are no other stable matchings for this graph, the price of anarchy will be
determined by the value of the worst stable matching which is {(u, v)}. It is given by

ruw + rvz
ruv

=
quw + qvz

quv
= 1 +Q ,

proving tightness of our bound.

3.3 Price of Stability with General Reward Sharing

In this section, we give a simple lower bound Q′ on the price of stability for stable matching games
with friendship and reward sharing. Furthermore, we show that this bound is within an additive
factor of 1 of optimum, i.e., Q < Q′ ≤ PoS ≤ 1 +Q.
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To prove the lower bound, consider the 3-length path as shown in Fig. 1. Set α2 = α3 = · · · = 0
and use the following values:

ruuv =
1

1 + α1

(
1 + α1(R+ 1)

(1 + α1R)
+ ε

)
rvuv =

1

1 + α1

(
1 + α1(R+ 1)

(1 + α1R)
+ ε

)
ruuw =

1

1 + α1R
rwuw =

R

1 + α1R

rvvz =
1

1 + α1R
rzvz =

R

1 + α1R

As desired we have max(x,y)∈E(G)
rxxy
ryxy

= R. Using qxxy = rxxy + α1r
y
xy, we obtain

quuv =
1 + α1(R+ 1)

1 + α1R
qvuv =

1 + α1(R+ 1)

1 + α1R

quuw = 1 qwuw =
R+ α1

1 + α1R

qvvz = 1 qzvz =
R+ α1

1 + α1R

As desired, we have max(x,y)∈E(G)
qxxy
qyxy

= R+α1
1+α1R

= Q. We have {(u, v)} as a stable matching: (u,w)

is not a blocking pair, because quuw ≤ quuv. Similarly (v, z) will not be a blocking pair. Any other
fractional matching is no longer stable because (u, v) is a blocking pair as inequalities (15) and (16)
are satisfied. However, {(u,w), (v, z)} is still the socially optimal matching. Hence, the price of
stability is given by

ruw + rvz
ruv

=
quw + qvz

quv
=

(1 + α1)(1 +R)

1 + α1(R+ 1)

Let us define Q′ = (1+α1)(1+R)
1+α1(R+1) . The above instance establishes a lower bound on the price of

stability of Q′, where Q ≤ Q′ ≤ Q + 1. Q + 1 is an upper bound on the price of stability, so our
lower bound of Q′ is within an additive term of 1 of optimum.

Theorem 7. The price of stability of stable matching games with friendship and general reward
sharing is in [Q′, Q+ 1], with Q < Q′ ≤ Q+ 1.

Proof. The only part that is yet to be proven is Q ≤ Q′ and Q′ ≤ 1 +Q. We have

Q′ −Q =
(1− α1 + α1R)(1 + α1)

(1 + α1 + α1R)(1 + α1R)

As (1− α1 + α1R) ≤ (1 + α1 + α1R) and 1 + α1 ≤ 1 + α1R, we have that Q′ −Q ≤ 1. As R ≥ 1,
the numerator is always positive. Hence 0 < Q′ − Q ≤ 1. With our lower bound on the price of
stability of Q′, the theorem follows.

3.4 Specific Reward Sharing Rules

In this section we consider some particularly natural reward sharing rules and show that games with
such rules have nice properties. Specifically, while for general reward sharing an (integral) stable
matching may not exist, for the reward sharing rules below we show they always exist (although
only if there is no social context involved) and how to compute them efficiently. We also give
improved bounds on prices of anarchy for these special cases. Specifically, we consider the following
sharing rules:
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• Matthew Effect sharing: In sociology, “Matthew Effect” is a term coined by Robert Merton to
describe the phenomenon which says that, when doing similar work, the more famous person
tends to get more credit than other less-known collaborators. We model such phenomena for
our network by associating brand values λu with each node u, and defining the reward that
node u gets by getting matched with node v as ruuv = λu

λu+λv
· ruv. Thus nodes u and v split

the edge reward in the ratio of λu : λv, and a node with high λu value gets a disproportionate
amount of reward.

• Parasite sharing: This effect is opposite to the Matthew effect in the sense that by collabo-
rating with a renowned person, a less-known person becomes famous, whereas the reputation
of the already renowned person does not change significantly from such a collaboration. We
model this situation by defining the reward that node u gets by getting matched with node
v as ruuv = λv

λu+λv
ruv. Thus nodes u and v split the edge reward in the ratio of λv : λu, in the

exactly opposite way to the Matthew Effect sharing.

• Trust sharing: Often people collaborate based on not only the quality of a project but also
how much they trust each other. We model such a situation by associating a value βu with
each node u, which represents the trust value of player u, or how pleasant they are to work
with. Each edge (u, v) also has an inherent quality huv. Then, the reward obtained by node
u from partnering with node v is ruuv = huv + βv.

For the sake of analysis, Matthew Effect sharing and Parasite sharing are the same if we change
λu of Parasite sharing to 1/λu of Matthew Effect sharing. We will refer to both the models as
Matthew Effect sharing from now on.

Existence With friendship utilities, even these intuitive special cases of reward sharing do not
guarantee the existence of an integral stable matching; see examples in Section 3.5. Without
friendship, however, an integral stable matching exists and can be efficiently computed for Matthew
Effect sharing and Trust sharing, unlike in the case of general reward sharing [19].

Theorem 8. An integral stable matching always exists in stable matching games with Matthew
Effect sharing and Trust sharing if ~α = 0 (i.e., if there is no friendship). Furthermore, this
matching can be found in O(|V ||E|) time.

Proof. Let us define a preference cycle as a cycle (u1, u2, · · · , uk) in the graph G such that ruiuiui+1
≥

ruiuiui−1
with at least one inequality being strict. Chung [16] defines odd rings and proves that if a

graph does not contain odd rings, then a stable matching exists. It is straightforward to see that
absence of preference cycles implies absence of odd rings. Hence, if a graph has no preference cycles,
then a stable matching must exist. Below we prove the stronger statement that such a matching
can also be found efficiently.

In brief, we show below that whenever there exist no preference cycles in a graph, we can always
find two nodes which prefer getting matched to each other over other nodes. We allow them to
get matched to each other and eliminate such matched nodes from the graph. Neither of these
two nodes will ever deviate from this matching. Applying the same greedy scheme on the reduced
graph will give us a stable matching. Then we will prove that this algorithm produces a stable
matching in O(|V ||E|) time. Let us now proceed to the details.

Let Tu denote the sets of “best” neighbors of u as follows:

Tu = {v ∈ N1(u) : ruuv ≥ ruuw ∀(uw) ∈ G} . (25)
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Now we construct a directed graph GD as follows. For all nodes u, choose a node v ∈ Tu and draw an
edge from u directed to v. Every node in this graph has one outgoing edge, so this graph contains a
(directed) cycle. If we find a cycle of length 2 then we have found two nodes which prefer each other
the most. If a (directed) cycle (u1, u2, . . . , uk) has length k > 2, then we have ruiuiui+1

≥ ruiuiui−1
.

Now we cannot have ru2u2u3 > ru2u1u2 , otherwise in the original graph G, (u1, u2, . . . , uk) would have
constituted a preference cycle. Hence we have ru2u1u2 = ru2u2u3 . Thus u1 and u3 both are u2’s most
preferred nodes. But we also have u1 prefer u2 the most as GD has an edge from u1 to u2. Hence
u1 and u2 is the pair of nodes that prefer each other the most.

Therefore we will always be able to find two nodes in G which prefer each other the most in
their preference lists. Match them to each other and they will never have incentive to deviate from
this matching. Remove these two nodes and repeat the procedure until no more nodes can be
matched. Because no nodes matched in this process will ever deviate, we obtain a stable matching.

It takes O(|E|) time to find each matched pair because for each edge we check if two nodes
prefer each other the most. Since the total number of nodes to be matched are O(|V |), we find
a stable matching in O(|V ||E|) time, as long as there are no preference cycles. All that is left to
show is that Matthew effect sharing and Trust sharing do not lead to preference cycles.

Suppose a preference cycle exists in Matthew Effect sharing. Then there exists a cycle (u1, u2, . . . , uk)
such that

λui
λui + λui+1

ruiui+1 ≥ λui
λui + λui−1

ruiui−1 (26)

with at least one inequality being strict. Multiplying all these inequalities and canceling common
factors, we reach a contradiction that 1 > 1. Thus, a preference cycle cannot exist in Matthew
Effect sharing.

Suppose a preference cycle exists in Trust sharing. Then there exists a cycle (u1, u2, . . . , uk)
such that

huiui+1 + βui+1 ≥ huiui−1 + βui−1 (27)

with at least one inequality being strict. Adding all these inequalities and canceling common factors,
we reach a contradiction that 0 > 0. Thus, a preference cycle cannot exist in Trust sharing.

Price of Anarchy The price of anarchy of Matthew effect sharing can be as high as the guarantee
of Theorem 6, with R = max(uv)

λu
λv

. For Trust sharing, however, things are much better:

Theorem 9. The price of anarchy for (fractional) stable matching games with Trust sharing and
friendship utilities is at most max{2 + 2α1, 3}.

Proof. We first introduce some notation. We denote by M∗ an optimum fractional matching and
by M a fractional or integral stable matching. Let x∗uv (or xuv) denote the fraction of edge (u, v)
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present in M∗ (or M). Furthermore,

S = {e ∈ E(G) : x∗e > xe}
T = {e ∈ E(G) : x∗e ≤ xe}
Su = {e ∈ E(G) : e is incident on u and e ∈ S}
Tu = {e ∈ E(G) : e is incident on u and e ∈ T}
Eu = All edges incident on u. Note that Eu = Su ∪ Tu
yu = 1−

∑
(u,v)∈Eu

xuv

y∗u = 1−
∑

(u,v)∈Eu

x∗uv

∆u =
∑

(u,v)∈Tu

(xuv − x∗uv) + max{(yu − y∗u), 0}

cuvu = (x∗uv − xuv)/∆u

We will show below that the following is true:∑
(u,v)∈S

(
huv +

βu
2

+
βv
2

)
(x∗uv − xuv) ≤ max{2 + 2α1, 3} ·

∑
(u,w)∈T

(
huw +

βu
2

+
βw
2

)
(xuw − x∗uw) . (28)

This implies that∑
(u,v)∈S∪T

(2huv + βu + βv) · x∗uv ≤
∑

(u,w)∈S∪T

max{3, 2 + 2α1} · (2huw + βu + βw) · xuw . (29)

Now S ∪ T covers all the edges in the graph. Also, for trust sharing with friendship utilties we
have qxxy = (1 + α1)huv + α1βu + βv, thus qxy = qxxy + qyxy = (1 + α1)(2huv + βu + βv). Using this,
Eqn (29) implies that the price of anarchy is at most max{2 + 2α1, 3}. All that remains to show is
Eqn (28) which we do next.

To start with, notice that each edge (u, v) ∈ S can be classified into two categories: a) (u, v) ∈ S
such that yu ≤ y∗u and yv ≤ y∗v AND b) (u, v) ∈ S such that yu > y∗u and yv ≤ y∗v . Note that
we cannot have both yu > y∗u and yv > y∗v , because then the fraction xuv can be increased by
min(yu − y∗u, yv − y∗v) by decreasing yu and yv by the same quantity. Both u and v would improve
their utility in such a case, thus M could not be a (fractional) stable matching.

We will show that whichever category (u, v) ∈ S belongs to, for one of the endpoints, say u, the
following inequality will hold true with ζ = max{1/2, α1}:(

huv +
1

2
βu +

1

2
βv

)
(x∗uv − xuv) ≤

∑
(u,w)∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

(v,z)∈Tv

((1 + α1)hvz + ζβv + ζβz) (xvz − x∗vz)cuvv . (30)

We call u a witness node for (u, v) ∈ S. We will observe that adding all the inequalities like
Eqn (30) corresponding to each edge (u, v) ∈ S leads us to Eqn (28), thus proving the theorem in
turn.

Now let us see how Eqn (30) can be proved for every edge (u, v) ∈ S. As mentioned before,
(u, v) ∈ S can be classified into two categories and we will prove Eqn (30) for each of them.
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1. (u, v) ∈ S with yu ≤ y∗u and yv ≤ y∗v:
Here we increase xuv to x∗uv by decreasing fraction of each (u,w) ∈ Tu by (xuw−x∗uw)cuuv and
decreasing fraction of each (v, z) ∈ Tv by (xvz−x∗vz)cvuv. As M is a stable matching, this does
not improve the utility of at least one of the endpoints of (u, v), say u. Call u a witness node
for edge (u, v). Since the utility of node u does not improve, we get

quv(x∗uv − xuv) ≤
∑

(u,w)∈Tu

quw(xuw − x∗uw)cuvu + α1 ·
∑

(v,z)∈Tv

rvvz(xvz − x∗vz)cuvv

+ αuz ·
∑

(v,z)∈Tv

rzvz(xvz − x∗vz)cuvv . (31)

Eqn (31) can be explained as follows: Its left-hand side represents utility gained by u by
increasing xuv to x∗uv. The first summation on the right hand side represents the utility lost by
u because of decreasing xuw by (xuw − x∗uw)cuvu for each (u,w) ∈ Tu. The second summation
on the right hand side represents the utility lost by u by virtue of friendship with v when we
decrease xvz by (xvz − x∗vz)cuvv for each (v, z) ∈ Tv. The third summation on the right hand
side represents the utility lost by u by virtue of friendship with w when we decrease xvz by
(xvz − x∗vz)cuvv for each (v, z) ∈ Tv. Because for trust sharing we have rxxy = hxy + βu and
qxxy = (1 + α1)huv + α1βu + βv, Eqn (31) implies that

((1 + α1)huv + α1βu + βv)(x∗uv − xuv) ≤
∑

(u,w)∈Tu

((1 + α1)huw + α1βu + βw)(xuw − x∗uw)cuvu

+
∑

(v,z)∈Tv

((α1 + αuz)hvz + αuzβv + α1βz)(xvz − x∗vz)cuvv . (32)

Eqn (32) has similar interpretation as Eqn (31). To simplify Eqn (32), notice that when yu ≤
y∗u, calculating ∆u does not involve yu− y∗u giving us

∑
(u,w)∈Tu(xuw−x∗uw)cuvu = (x∗uv −xuv).

Thus we have

(1/2− α1)βu(x∗uv − xuv) = (1/2− α1)βu
∑

(u,w)∈Tu

(xuw − x∗uw)cuvu . (33)

Let us add Eqn (33) to Eqn (32) and replace βv by βv/2 on the left-hand side. Additionally,
using αuz ≤ α1 ≤ ζ results into the following equation:(

(1 + α1)huv +
1

2
βu +

1

2
βv

)
(x∗uv − xuv) ≤

∑
(u,w)∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

(v,z)∈Tv

((1 + α1)hvz + ζβv + ζβz)(xvz − x∗vz)cuvv . (34)

Thus we have proved (30) holds for a node u acting as witness for (u, v) ∈ S such that yu ≤ y∗u
and yv ≤ y∗v .

2. (u, v) ∈ S with yu > y∗u and yv ≤ y∗v:
Here we find a constant ε > 0 such that ε · (x∗uv − xuv) ≤ yu − y∗u. Then we increase xuv by
ε · (x∗uv − xuv) by decreasing yu by the same amount and by decreasing each (v, z) ∈ Tv by
ε · (xvz − x∗vz)cuvv . By doing this the utility of at least one of the endpoints of (u, v), does not
improve because M is a stable matching. This endpoint can be either u or v. We will prove
that Eqn (30) holds for each of these cases.

• Suppose the utility of node u does not improve: Call u a witness node for edge (u, v) ∈ S.
Since the utility of node u does not improve, we have

((1 + α1)huv + α1βu + βv) · ε(x∗uv − xuv) ≤
∑

(v,z)∈Tv

((α1 + αuz)hvz + αuzβv + α1βz) · ε(xvz − x∗vz)cuvv . (35)
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Eqn (35) can be explained on the similar lines of Eqn (31) and (32). The only difference
being that the first summation from Eqn (32) is absent from Eqn (35) as fractions xuw
do not change for (u,w) ∈ Tu. Canceling ε from each side of Eqn (35), we get

((1 + α1)huv + α1βu + βv) · (x∗uv − xuv) ≤
∑

(v,z)∈Tv

((α1 + αuz)hvz + αuzβv + α1βz) · (xvz − x∗vz)cuvv (36)

⇒ α1βu(x∗uv − xuv) ≤
∑

(v,z)∈Tv

((α1 + αuz)hvz + αuzβv + α1βz) · (xvz − x∗vz)cuvv . (37)

We multiply Eqn (37) by (1/2−α1)/α1 on both sides and add it to Eqn (36) to get the
following:(

(1 + α1)huv +
βu

2
+ βv

)
· (x∗uv − xuv) ≤

∑
(v,z)∈Tv

(
α1 + αuz

2α1
hvz +

αuz

2α1
βv +

1

2
βz

)
· (xvz − x∗vz)cuvv . (38)

Note that to get to Eqn (38), we are performing division by α1 which requires α1 > 0.
However, also notice that if α1 = 0 (and hence all αi = 0) and yu > y∗u, then node u can
only improve its utility by increasing xuv by ε · (x∗uv − xuv). Thus the case of yu > y∗u
and u not improving its utility does not arise.
Now replacing βv by βv/2 and using αuz ≤ α1 in Eqn (38), we get

(
(1 + α1)huv +

βu

2
+
βv

2

)
· (x∗uv − xuv) ≤

∑
(v,z)∈Tv

(
hvz +

1

2
βv +

1

2
βz

)
· (xvz − x∗vz)cuvv

⇒
(

(1 + α1)huv +
βu

2
+
βv

2

)
· (x∗uv − xuv) ≤

∑
(u,w)∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

(v,z)∈Tv

(
hvz +

1

2
βv +

1

2
βz

)
· (xvz − x∗vz)cuvv

⇒
(

(1 + α1)huv +
1

2
βu +

1

2
βv

)
(x∗uv − xuv) ≤

∑
(u,w)∈Tu

(
(1 + α1)huw +

1

2
βu + βw

)
(xuw − x∗uw)cuvu

+
∑

(v,z)∈Tv

((1 + α1)hvz + ζβv + ζβz)(xvz − x∗vz)cuvv .(39)

Thus, Eqn (30) holds in this case too.

• Suppose the utility of node v does not improve. Call node v a witness node for edge
(u, v). As the utility of node v does not improve, we get

((1 + α1)huv + α1βv + βu) · ε(x∗uv − xuv) ≤
∑

(v,z)∈Tv

((1 + α1)hvz + α1βv + βz) · ε(xvz − x∗vz)cuvv . (40)

Eqn (40) can be explained similarly as Eqn (32) and (31). The only differences are that
the roles of u and v are reversed and the summation corresponding to the utility lost by
v because of decreasing xuw is absent from the right hand side as fractions xuw do not
change for (u,w) ∈ Tu in this case.

To simplify Eqn (40), we cancel ε from each side. We also note that as yv ≤ y∗v ,
calculating ∆v does not involve yv − y∗v giving us

∑
(v,z)∈Tv(xvz − x∗vz)cuvv = x∗uv − xuv.

This implies that

(1/2− α1)βv(x
∗
uv − xuv) = (1/2− α1)βv

∑
(v,z)∈Tv

(xvz − x∗vz)cuvv . (41)
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Adding Eqn (41) to Eqn (40) and replacing βu by βu/2 on the left hand side, we get(
(1 + α1)huv +

1

2
βv +

1

2
βu

)
(x∗uv − xuv) ≤

∑
(v,z)∈Tv

(
(1 + α1)hvz +

1

2
βv + βz

)
(xvz − x∗vz)cuvv

⇒
(

(1 + α1)huv +
1

2
βv +

1

2
βu

)
(x∗uv − xuv) ≤

∑
(v,z)∈Tv

(
(1 + α1)hvz +

1

2
βv + βz

)
(xvz − x∗vz)cuvv

+
∑

(u,w)∈Tu

((1 + α1)huw + ζβw + ζβw)(xuw − x∗uw)cuvu .(42)

Thus, Eqn (30) holds in this case as well.

We showed that for every edge (u, v) ∈ S, for one of its endpoints, say u, the inequality given by
Eqn (30) holds true. Now we will show that adding these inequalities leads us to Eqn (28) which in
turn proves the theorem as discussed before. Let us look at the coefficients of various terms after
we add these inequalities:

• A term huw(xuw − x∗uw) on the right hand side will have coefficient at most

(1 + α1) · (
∑

(u,v)∈S

cuvu +
∑

(w,x)∈S

cwxw ) ,

which is at most 2(1 + α1) using
∑

(xy)∈S c
xy
x ≤ 1.

• Let u = t(u, v) denote that u acts as witness node for edge (u, v) ∈ S. Then a term βu(xuw−
x∗uw) on the right hand side will appear with coefficient∑

(u,v)∈S
u=t(u,v)

1

2
· cuvu +

∑
(u,v)∈S
u6=t(u,v)

ζ · cuvu +
∑

(w,x)∈S
w=t(w,x)

cwxw +
∑

(w,x)∈S
w 6=t(w,x)

ζ · cwxw .

When α1 ≥ 1/2, we have ζ = α1, thus the coefficient of βu(xuw − x∗uw) becomes∑
(u,v)∈S
u=t(u,v)

1

2
· cuvu +

∑
(u,v)∈S
u6=t(u,v)

α1 · cuvu +
∑

(w,x)∈S
w=t(w,x)

cwxw +
∑

(w,x)∈S
w 6=t(w,x)

α1 · cwxw .

This quantity can be at most α1 + 1.

On the other hand, when α1 < 1/2, we have ζ = 1/2, thus the coefficient of βu(xuw − x∗uw)
becomes ∑

(u,v)∈S
u=t(u,v)

1

2
· cuvu +

∑
(u,v)∈S
u6=t(u,v)

1

2
· cuvu +

∑
(w,x)∈S
w=t(w,x)

cwxw +
∑

(w,x)∈S
w 6=t(w,x)

1

2
· cwxw .

This quantity can be at most 3/2.

Taking into account these coefficients when we sum the inequalities given by Eqn (30) over all
(u, v) ∈ S, we get∑
(uv)∈S

(
huv +

βu
2

+
βv
2

)
(x∗uv − xuv) ≤ max{2 + 2α1, 3} ·

∑
(uw)∈T

(
huw +

βu
2

+
βw
2

)
(xuw − x∗uw)

and thereby prove Eqn (28) and our claim in turn.
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Figure 4: Existence of a stable matching without friendship does not guarantee existence of a stable
matching with friendship

3.5 Integral Stable Matchings with Social Context

In Section 2.1 we showed that for equal sharing with friendship utilities, an (integral) stable match-
ing always exists by observing that a stable matching without friendship utilities (i.e. ~α = 0)
remains a stable matching for friendship utilities.

For unequal reward sharing with friendship, the set of stable matchings for ~α = 0 is no longer
a subset of the set of stable matchings when we have friendship utilities. Moreover, existence of a
stable matching for ~α = 0 no more guarantees the existence of a stable matching with friendship
utilities. We will give examples below to justify both claims. Finally, we will conclude this section
by giving a sufficient condition for the existence of a stable matching for stable matching games
with unequal reward sharing and friendship utilities.

The following is an example which has non-overlapping sets of stable matchings with and
without friendship: Assign ruuw = rwuw = 1, ruuv = 10/11, rvuv = 100/11 with α1 = 1/2 and
α2 = α3 = · · · = 0 in Fig. 2. Without friendship utilities, {(u,w)} is the only stable matching as u
and w will always want to get matched to each other. However, with friendship utilities we have
quuv = 60

11 , quuw = 3
2 , q

v
uv = 105

11 , qvuw = 3
2 . Thus, using inequalities (17) and (18) we see that with

friendship utilities, the only stable matching is {(u, v)} as u will always want to get matched to
v. Thus for unequal reward sharing with friendship utilities, the set of stable matchings can be
completely nonoverlapping with the set of stable matchings for unequal reward sharing but without
friendship utilities.

Next, we give an example with a stable (integral) matching for ~α = 0 but no stable (integral)
matching with friendship utilities. Consider the Matthew Effect sharing example as shown in Fig. 4.
Edge labels indicate edge rewards, values in the brackets beside a node label are the brand values
(λ values). By Theorem 8, for ~α = 0 a stable matching always exists for Matthew Effect sharing.
Let us analyze the example in Fig. 4 with α1 = 4/5, α2 = α3 = · · · = 0. We have

qqqx = 90 > qqpq = 89.1667

qxxy = 91.7493 > qxqx = 90

qyyz = 92.1545 > qyxy = 91.8507

qzzp = 112 > qzyz = 111.2455

qppq = 103.4333 > qpzp = 102.2

Suppose there exists a stable (integral) matching. In such a matching exactly one node would stay
unmatched. Consider the candidate matching {(q, x), (z, p)}. Now y is unmatched and (x, y) is a
blocking pair, because qxxy > qxqx and qyxy > α1r

x
qx. Hence {(q, x), (z, p)} is not a stable matching.
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Similarly every other matching can be shown to be not stable. Thus, there is no stable matching
with friendship utilities, even though with ~α = 0 a stable matching exists.

4 Conclusion

We showed that the presence of a social context, such as friendship or altruism, can make a
large difference in the existence and the quality of stable matchings, especially if the rewards
obtained by neighboring nodes are unequal/unfair. Most of our results can be extended (with
minor modifications) to contribution games [8] as well, as they can be considered non-standard
fractional versions of stable matching. For details, see our arXiv preprint at [5].
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