
MATHEMATICS OF OPERATIONS RESEARCH
Vol. 00, No. 0, Xxxxx 0000, pp. 000–000

issn 0364-765X |eissn 1526-5471 |00 |0000 |0001

INFORMS
doi 10.1287/xxxx.0000.0000

© 0000 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Maximizing Nash Social Welfare in 2-Value Instances:
Delineating Tractability*

Hannaneh Akrami
Max Planck Institute for Informatics and Universität des Saarlandes, hakrami@mpi-inf.mpg.de

Bhaskar Ray Chaudhury
University of Illinois, Urbana-Champaign, Department of Computer Science, braycha@illinois.edu

Martin Hoefer
RWTH Aachen University, Department of Computer Science, mhoefer@cs.rwth-aachen.de

Kurt Mehlhorn
Max Planck Institute for Informatics and Universität des Saarlandes, mehlhorn@mpi-inf.mpg.de

Marco Schmalhofer
Goethe University Frankfurt, Institute for Computer Science, schmalhofer@em.uni-frankfurt.de

Golnoosh Shahkarami
Max Planck Institute for Informatics and Universität des Saarlandes, gshahkar@mpi-inf.mpg.de

Giovanna Varricchio
University of Calabria, Department of Mathematics and Computer Science, giovanna.varricchio@unical.it

Quentin Vermande
DIENS, École Normale Supérieure, Paris, qvermande@phare.normalesup.fr

Ernest van Wijland
IRIF, Paris, ernest.van.wijland@irif.fr

1

mailto:hakrami@mpi-inf.mpg.de
mailto:braycha@illinois.edu
mailto:mhoefer@cs.rwth-aachen.de
mailto:mehlhorn@mpi-inf.mpg.de
mailto:schmalhofer@em.uni-frankfurt.de
mailto:gshahkar@mpi-inf.mpg.de
mailto:giovanna.varricchio@unical.it
mailto:qvermande@phare.normalesup.fr
mailto:ernest.van.wijland@irif.fr

Akrami et al.: Maximizing NSW in 2-Value Instances
2 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

We study the problem of allocating a set of indivisible goods among a set of agents with 2-value additive

valuations. In this setting, each good is valued either 1 or p/q, for some fixed co-prime numbers p, q ∈N such

that 1≤ q < p. Our goal is to find an allocation maximizing the Nash social welfare (NSW), i.e., the geometric

mean of the valuations of the agents. In this work, we give a complete characterization of polynomial-time

tractability of NSW maximization that solely depends on the values of q.

We start by providing a rather simple polynomial-time algorithm to find a maximum NSW allocation

when the valuation functions are integral, that is, q= 1. We then exploit more involved techniques to get an

algorithm producing a maximum NSW allocation for the half-integral case, that is, q = 2. Finally, we show

it is NP-hard to compute an allocation with maximum NSW whenever q≥ 3.

Key words : Game Theory, Fair Division, Nash Social Welfare, 2-Value instances

MSC2000 subject classification :

OR/MS subject classification : Primary: Game Theory; secondary:

History :

1. Introduction Fair division of goods has developed into a fundamental field in economics

and computer science. In a classical fair division problem, the goal is to allocate a set of goods among

a set of agents in a fair (making every agent satisfied with her bundle) and efficient (achieving

good overall welfare) manner. One of the most well-studied classes of valuation functions is the

one of additive valuation functions, where the utility of a bundle is defined as the sum of the

utilities of the contained goods. When agents have additive valuation functions, Nash social welfare

(NSW), or equivalently the geometric mean of the valuations, is a direct indicator of the fairness

and efficiency of an allocation. In particular, Caragiannis et al. [14] show that any allocation that

maximizes NSW is envy-free up to one good (EF1), i.e., no agent envies another agent after the

removal of some single good from the other agent’s bundle, and Pareto-optimal, i.e., no allocation

gives a single agent a better bundle without giving a worse bundle to some other agent. Lee [31]

shows that maximizing NSW is APX-hard and allocations that achieve good approximations of

Nash social welfare may not have similar fairness and efficiency guarantees. Despite this, in the past

years, several algorithms with small constant approximation factors were obtained, Anari et al. [5],

Barman et al. [9], Cole et al. [18], Cole et al. [19]. The current best factor is e1/e ≈ 1.445, Barman

et al. [9]. The provided algorithm uses prices and techniques inspired by competitive equilibria,

along with suitable rounding of valuations to guarantee polynomial running time.

*An extended abstract of this paper has been published in the proceedings of the AAAI 2022 conference, Akrami

et al. [2], with the title “Maximizing Nash Social Welfare in 2-Value Instances”. The adjusted title emphasizes our

complete characterization of the tractable cases in terms of the denominator of the ratio of integer item values.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 3

While computing an allocation with maximum NSW is generally hard, it becomes computation-

ally tractable when the agents have binary additive valuations, i.e., when for each agent i and each

good g, we have vi(g) ∈ {0,1}, Barman et al. [10]. Although this class of valuation functions may

seem restrictive in its expressiveness, several real-world scenarios involve binary preferences and,

in fact, there is substantial research on fair division under binary valuations, Aleksandrov et al. [3],

Barman et al. [10], Bouveret et al. [11], Darmann et al. [21], Freeman et al. [24], Halpern et al. [30],

Suksompong et al. [36]. In this setting, Barman et al. [10] gave a polynomial-time algorithm to

find an allocation with maximum NSW. Furthermore, Halpern et al. [30] show that determining

a fair allocation via NSW maximization is also strategyproof, i.e., agents do not benefit by misre-

porting their real preferences. Such results have been extended to the case of asymmetric agents by

Suksompong et al. [36], i.e, agents with different entitlements. Indeed, they show that, for binary

additive valuations and asymmetric agents, a maximum NSW allocation satisfies strategyproofness,

together with other interesting properties, and can be computed in polynomial time.

A generalization of binary valuation functions are 2-value functions, where for each agent i and

each good g, we have vi(g) ∈ {a, b} for some a, b ∈ Q. W.l.o.g. we may assume a = 1 and b > a.

The case a = b is trivial as every agent gives the same value to all the goods. Binary valuations

are the special case a = 0 and b = 1. Amanatidis et al. [4] show that for 2-value functions, an

allocation with maximum NSW is envy-free up to any good (EFX), where no agent envies another

agent following the removal of any single good from the other agent’s bundle. The authors also

provide a polynomial-time algorithm providing an EFX allocation for 2-value instances. However,

the computed allocation is neither guaranteed to maximize NSW nor to be Pareto optimal. Garg

and Murhekar [29] show how to obtain an EFX and PO allocation efficiently and also provide

a 1.061-approximation algorithm for the maximum NSW in 2-value instances; this was improved

to 1.0345 in the conference version of this paper [2]. Both Amanatidis et al. [4] and Garg and

Murhekar [29] left the problem of (exactly) maximizing Nash social welfare for 2-value instances

open. For 3-value instances maximizing Nash social welfare is NP-complete [4].

1.1. Our Contribution In this paper, we solve the problem of maximizing Nash social welfare

for 2-value instances. Surprisingly, the tractability of this problem changes according to the ratio

between the two values a and b. Since scaling an agent’s valuation by a uniform factor for all goods

does not affect the optimality properties of allocations, let us assume w.l.o.g. that a= 1 and b= p/q,

for some coprime numbers p, q ∈N such that 1≤ q < p.

We first show two positive results. If q is either 1 or 2, there is a polynomial-time algorithm

computing a maximum NSW allocation.

Akrami et al.: Maximizing NSW in 2-Value Instances
4 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Theorem 1. There exists a polynomial-time algorithm computing a maximum NSW allocation

for integral instances, i.e., when q= 1 and p is an integer greater than one.

Theorem 2. There exists a polynomial-time algorithm computing a maximum NSW allocation

for half-integral instances, i.e., when q= 2 and p is an odd integer greater than two.

The proof and the algorithm for the half-integer result is considerably more complex than the

ones for the integer case. We complete the characterization in terms of computational complexity

by showing NP-hardness in the remaining cases, i.e., when q≥ 3.

Theorem 3. It is NP-hard to compute an allocation with optimal NSW for 2-value instances,

for any constant coprime integers p > q≥ 3.

The analysis of our algorithms requires a number of novel technical contributions. In the next

section, we highlight the main ideas and techniques.

1.2. Our Techniques We interpret the problem of maximizing NSW as a graph problem:

We have a weighted complete bipartite graph with the set of agents and the set of goods being the

independent sets. The edge weights represent the value of a good for an agent. They are either 1

(in which case we call the edge a light edge) or p/q (heavy edge). We say that a good is heavy if it

has at least one incident heavy edge and light otherwise. A (partial) allocation is a multi-matching

in which every good has a degree of at most one. We call an allocation complete if all goods have

degree one. This representation of allocations allows us to use the idea of alternating paths, similar

to the algorithm proposed by Barman et al. [10] for instances with binary valuations.

However, there are also crucial structural differences between 2-value instances and binary

instances. For binary instances, Halpern et al. [30] show that an allocation maximizes NSW if and

only if it is lexmax, i.e., the utility profile of the allocation is lexicographically maximum.1 This is

not true for 2-value instances. Consider the following example: There are two agents, 1 and 2, five

goods g1, g2, g3, g4, and g5, and heavy goods have value 5. Agent 1 values g1 and g2 as heavy, and

the remaining goods as light. For agent 2, all goods are light. In an optimal allocation agent 1 gets

{g1, g2} and agent 2 gets {g3, g4, g5}. However, this allocation is not lexmax, as it is lexicograph-

ically dominated by the allocation where agent 1 gets {g1} and agent 2 gets {g2, g3, g4, g5}. This

requires finding some other tractable characterization of the allocations with maximum NSW, in

particular, a characterization of the allocation of heavy goods in such an allocation.

Another crucial observation is that the structure of the heavy goods in an optimal allocation

may depend on the ratio between heavy and light goods’ values. To show how the allocation of

1 For an allocation A= (A1, . . . ,An), the utility profile is the vector (v1(A1), . . . , vn(An)) sorted into non-decreasing
order. A profile is lexmax if there is no other profile that it lexicographically larger.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 5

heavy goods changes in optimal allocations for different p/q values, let us modify the valuations in

the previous example instance with two agents and five goods.

Example 1. Suppose the two agents have identical valuations. Goods g1 and g2 are heavy, the

remaining goods are light. Heavy goods have value p/q and light goods have value 1. It is easy to see

that any optimal solution follows one of two patterns: (1) assign both heavy goods to one agent,

all light goods to the other agent; (2) assign one heavy good to each agent, and in addition, one

agent gets two light goods, the other gets one light good. Whether optimal allocations follow the

first and/or the second pattern depends on the ratio between p and q. In particular, it is easy to

see that all optimal allocations follow the first pattern if and only if p/q < 2; all follow the second

one if and only if p/q > 2. There are optimal allocations for both patterns when p/q = 2. Hence,

depending on the ratio p/q, the distribution of heavy and light goods in optimal allocations may

change. In particular, the first pattern yields an unbalanced allocation of heavy goods – one agent

receives both heavy goods while the other none. In contrast, in the second pattern the heavy goods

are balanced. ■

It turns out that understanding how heavy goods are distributed in optimal allocations is the

key challenge in computing a maximum NSW allocation. We characterize the allocation of heavy

goods and use these insights to design efficient algorithms.

Characterizing the allocation of heavy goods. First, we consider instances with q = 1

(which we call integral instances). We give a concise characterization of the distribution of heavy

goods in a maximum NSW allocation. We refer to the heavy-part AH of an allocation A as the set

of all heavy edges in the allocation, and we call an allocation heavy-only if the allocation contains

only heavy edges, i.e., if AH =A. One of our main structural results (shown in Lemma 2) is that

there exists a maximum NSW allocation OPT, such that the heavy-part of OPT is lexicographically

maximum (lexmax) among all heavy-only allocations of the same cardinality. Therefore, if we know

the number of heavy-edges in OPT, then the utility profile of the heavy-part of OPT is unique (as

it is lexmax).

For instances with q = 2 (called half-integral instances), the lexmax property is not necessarily

satisfied. The lexmax property may be interpreted as “the distribution of heavy goods is balanced

as much as possible”. Here, however, the heavy-part of the allocation might have to be unbalanced

in order to maximize the NSW (see Example 1). For this reason, we present a local search algorithm

using a number of improvement rules that allow us to redistribute heavy and light goods. Such

improvement rules tend to unbalance the heavy-part but also increase the NSW of the allocation.

For the efficient realization of the improvement rules we exploit a connection to generalized bipartite

matching. Consider a bipartite graph and let A be one of the sides of the graph. In a generalized

Akrami et al.: Maximizing NSW in 2-Value Instances
6 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

matching problem the goal is to find a subset of the edges such that the degree of any node a∈A
is in a prescribed set D(a). If the gaps (distance between consecutive values) in the D-sets are at

most two, generalized matching problems are polynomially solvable [33, 20].

Finding the right allocation of heavy goods. The crucial technical barrier lies in the fact

that we do not know the number of heavy edges in OPT. We briefly elaborate on how we overcome

this barrier. The key is to solve the computation of a maximum NSW allocation for a fixed number

of goods assigned as heavy. For both q = 1 and q = 2, we show this problem is polynomial-time

solvable. Therefore, our algorithms proceed in sequential phases. They start from an allocation

where every heavy good is allocated as heavy, that is, we start from an allocation where the number

of allocated heavy goods is maximized and produce an optimal allocation. In each of the subsequent

steps, we reduce the number of goods allocated as heavy by one by first converting an arbitrary

heavy good in a heaviest bundle to light and then re-optimizing.

Hardness results. For instances with q ≥ 3, it is NP-hard to compute a maximum NSW

allocation. Our proof is based on a reduction from Exact q-Dimensional Matching. Our proof

formalizes the intuition that determining the structure of heavy goods in an optimal allocation is

the main challenge in maximizing the NSW. In particular, we show that it is NP-hard to determine

the distribution of heavy goods in an optimal allocation.

1.3. Further Related Work Our algorithm for integral instances and the NP-hardness

results in the current paper have been presented as part of an extended abstract in the proceedings

of the AAAI’22 conference, Akrami et al. [2], where we also discussed APX-hardness for q ≥ 4

and showed that our algorithm for integral instances has an approximation factor of at most

24
29
exp

(
110
493

)
< 1.0345 for general 2-value instances. For the present paper, we decided to focus on

the computational complexity of optimal solutions and to omit the consideration of approximation.

In particular, we provide a new efficient algorithm for half-integral instances, which was left as an

open problem in Akrami et al. [2].

Beyond additive valuations, the design of approximation algorithms for submodular valuations

received considerable attention. While small constant approximation factors have been obtained

for special cases by Anari et al. [6], Garg et al. [25], and Chaudhury et al. [15]), such as a factor e1/e

for capped additive-separable concave valuations, only rather high constants for Rado valuations,

Garg et al. [27], and also general non-negative, non-decreasing submodular valuations, Li et al. [32],

have been obtained. The currently best approximation ratio for submodular valuations is 4+ ϵ by

Garg et al. [26].

Interestingly, for binary submodular valuations where the marginal value of every agent for

every good is either 0 or 1, an allocation maximizing the NSW can be computed in polynomial

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 7

time, Babaioff et al. [7]. In particular, in this case, one can in polynomial time find an allocation

that is Lorenz dominating, simultaneously minimizes the lexicographic vector of valuations, and

maximizes both utilitarian social welfare, i.e., the sum of the agents’ utilities, and NSW. Moreover,

this allocation is also strategyproof.

More generally, there are approximation algorithms for maximizing NSW with subadditive valu-

ations, Barman et al. [8], Chaudhury et al. [16], Dobzinski et al. [22], and even asymmetric agents,

Garg et al. [28] and Brown et al. [12].

There is also literature on guaranteeing high NSW with other fairness notions. For instance,

relaxations of EFX can be guaranteed with high NSW, Caragiannis et al. [13] and Chaudhury et

al. [16]. Moreover, approximations of groupwise maximin share (GMMS), Chaudhury et al. [17],

and maximin share (MMS), Caragiannis et al. [14] and Chaudhury et al. [17], are achieved with

high NSW.

1.4. Organization The rest of this paper is structured as follows. We start by providing

preliminary definitions and notations in Section 2. In Section 3, we discuss the polynomial-time

algorithm computing a maximum NSW allocation for integral instances. In Section 4, we elaborate

more involved techniques to fulfill the same goal in the case of half-integral instances. Finally, in

Section 5, we show that for other classes of 2-value instances the problem of maximizing the NSW

is NP-hard.

2. Preliminaries A fair division instance I is given by a triple (N,M,v), where N is a set of

n≥ 1 agents and M is a set of m≥ n indivisible goods. Every agent i∈N has an additive valuation

function vi : 2
M →R≥0, with vi(X) =

∑
g∈X vi({g}), for every X ⊆M . For the sake of simplicity, we

use vi(g) instead of vi({g}). Agents’ valuations are stored in the valuation vector v= (v1, . . . , vn).

In this paper, we study 2-value additive valuations, in which, for each g ∈M , vi(g)∈ {1, p/q} for

fixed p, q ∈N. To avoid trivialities, we assume 0< q < p, and p, q to be coprime numbers. Note that

for p= 0 one could recover the binary case studied in Babaioff et al. [7] and Barman et al. [10].

An allocation A= (A1, . . . ,An) is a partition of M among the agents, where Ai∩Aj = ∅, for each

i ̸= j, and
⋃

i∈N Ai =M . We evaluate an allocation using the Nash social welfare

NSW(A) =

(∏
i∈N

vi(Ai)

)1/n

.

We denote by NSW(A,v) the NSW of the allocation A under the utility vector v. In case v is clear

from the context, we simply write NSW(A).

Akrami et al.: Maximizing NSW in 2-Value Instances
8 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

1

2

g1

g2

g3

(a) Graph representation.

1

2

g1

g2

g3

(b) An allocation.

Figure 1. The depicted graph corresponds to an instance with two agents and three goods. Thick black edges and

thin gray edges correspond to heavy and light edges, respectively.

2.1. Utility Graphs and Utility Profiles In our paper, we exploit the connection between

the concepts of allocation in fair division and of one-to-many matchings in bipartite graphs. For

this reason, we find it more convenient to define an allocation in the context of a bipartite graph.

Consider the complete bipartite graph G = (N ∪M,E), where we have agents on one side and

goods on the other side. We call the edge between agent i and good g heavy, if vi(g) = p/q and light

otherwise. We use EH and EL to denote the set of heavy and light edges, respectively. Moreover,

good g is heavy for agent i if vi(g) = p/q and light otherwise. In Figure 1a we provide an instance

with two agents and three goods.

An allocation is a subset A⊆E such that for each g ∈M there is at most one edge in A incident

to g. Note that according to this definition allocations may be partial. If there is an edge (i, g)∈A,

we say that g is assigned to i in A, or i owns g in A, or A assigns g to i. Otherwise, g is unassigned.

An allocation is complete if all goods are assigned. For an agent i, we use Ai to denote the set of

goods assigned to i in A. We call Ai the bundle of i in A. Then vi(Ai) is the utility of i’s bundle

for i. Figure 1b shows an allocation for the instance depicted in Figure 1a.

The utility vector of an allocation A is given by (v1(A1), . . . , vn(An)), and its utility profile is

obtained by rearranging its components in non-decreasing order. A utility profile (a1, . . . , an) is

lexicographically larger than a utility profile (b1, . . . , bn) (denoted by (a1, . . . , an) ≻lex (b1, . . . , bn))

if the profiles are different and ai > bi for the smallest i with ai ̸= bi. An allocation A with utility

profile (a1, . . . , an) is lexmax in a family A of allocations if there is no allocation B ∈A with utility

profile (b1, . . . , bn) such that (b1, . . . , bn)≻lex (a1, . . . , an).

For an allocation A, its heavy part AH is the restriction of A to the heavy edges, i.e., AH =A∩EH .

An allocation A is heavy-only if A = AH . For an agent i, AH
i is the set of heavy edges incident

to agent i under allocation A. We refer to |AH
i | as the heavy degree of i in A and denote it by

degH(i,A) or degH(i).

2.2. Alternating Paths We reformulated the fair division setting so that allocations corre-

spond to multi-matchings. This is motivated by the fact that, in our algorithms, we improve the

NSW of an allocation using the notion of alternating paths.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 9

1

2

g1

g2

g3

(a) Allocation A and the heavy alternating path P .

1

2

g1

g2

g3

(b) A⊕P .

Figure 2. In both figures the path P = (g1,1, g2,2, g3) is depicted. In Figure 2, solid edges represent the allocation.

An alternating path with respect to an allocation A is any path whose edges alternate between

A and E \A. Alternating paths having only heavy edges will be of particular interest. A heavy

alternating path is an alternating path whose edges belong to EH . In Figure 2a, we give an example

of a heavy alternating path for the instance depicted in Figure 1a.

An alternating path with respect to two allocations A and B is any path whose edges alternate

between A \B and B \A, i.e., between edges only in A and edges only in B.

An alternating path decomposition is defined with respect to two heavy-only allocations A and

B. The graph A⊕B is defined on the same set of vertices as in A and B. Moreover, an edge e

appears in A⊕B, if and only if e is in exactly one of A or B. We decompose A⊕B into edge-disjoint

paths; this decomposition is not unique. Note that in A⊕B, goods have degree zero, one, or two.

For a good of degree two, the two incident edges belong to the same path. For an agent i, let ai,

respectively bi, be the number of A-edges, respectively B-edges, incident to i in A⊕B. Then we

have min(ai, bi) alternating paths passing through i, max(0, ai− bi) alternating paths starting in i

with an edge in A, and max(0, bi−ai) alternating paths starting in i with an edge in B. The paths

in the decomposition are maximal in the sense that no path can be extended without breaking

another one.

Let P be a heavy alternating path with respect to A of even length. Assume P connects two

agents i and j with the edge of P incident to i in EH \A and the edge incident to j in AH . Then

A⊕P contains the same number of heavy edges as A, i.e., |AH |= |(A⊕P)H |= |AH⊕P |. Moreover,

the heavy degree of i increases by one, the heavy degree of j decreases by one, and all other heavy

degrees are unchanged.

Example 2. Consider the example shown in Figure 1a and allocation A with

AH = {(1, g1), (2, g2)}

shown in Figure 1b. Let B be another allocation for which

BH = {(1, g1), (1, g2)}.

Figure 3 shows AH ⊕BH . Black edges are only in AH and dashed edges are only in BH . The path

decomposition of A⊕B consists of the unique path P = (1, g2,2) in A⊕B. ■

Akrami et al.: Maximizing NSW in 2-Value Instances
10 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

1

2

g1

g2

g3

Figure 3. AH ⊕BH

We will often compare distinct allocations and use a notion of distance between them. The

distance between two allocations is the number of edges that only exist in one of the allocations;

formally, the distance between two allocations A and B is |A⊕B|.

It will turn out that in half-integral instances dealing with alternating paths is not sufficient

to compute optimal allocations. For this reason, in Section 4 below, we will also rely on a more

involved path structure to deal with this problem; namely, improving walks.

In the rest of the paper, we denote by OPT an allocation maximizing the NSW and by OPTH

its heavy part. Furthermore, we specify the bundle of the agent i in OPT by OPTi and denote its

heavy part by OPTH
i .

2.3. Math Preliminaries The following Lemma is useful for showing that certain re-

allocations increase the NSW.

Lemma 1. Let a, b, c, d, d1, and d2 be non-negative reals.

a). If a≥ b and d∈ [0, a− b] then ab≤ (a−d)(b+d) with equality if and only if d= 0 or d= a− b.

b). If a≥ b≥ c, b≥ c+d2, and a≥ c+d1+d2 then abc≤ (a−d1)(b−d2)(c+d1+d2) with equality

if and only if c= 0 and d2 = b or d2 ∈ {0, b− c} and d1 ∈ {0, a− c− d2}.

Proof. For a) we have a≥ b+ d≥ b and d≥ 0 and hence

(a− d)(b+ d)− ab= (a− b− d)d≥ 0

with equality if and only if d= 0 or d= a− b.

Part b) is obvious if a= 0. Note that a= 0 implies b= c= d1 = d2 = 0. It is also obvious, if c= 0

and d2 = b. Then LHS and RHS are zero. So assume a> 0 and either c > 0 or d2 < b. In either case

b− d2 > 0. We apply part a) twice and obtain

abc≤ a(b− d2)(c+ d2) with equality iff d2 = 0 or d2 = b− c since a> 0.

≤ (a− d1)(b− d2)(c+ d1 + d2) with equality iff d1 = 0 or d1 = a− c− d2 since b− d2 > 0.

Q.E.D.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 11

3. Integral Instances In this section, we consider integral instances, i.e., q = 1 and p an

integer greater than one. We also term the valuation functions integral. Our main result is a

polynomial-time algorithm to find a maximum NSW allocation.

3.1. Properties of an Optimal Allocation We first study the properties of optimal allo-

cations. The main insight is stated in Lemma 2. Roughly speaking, it states that there exists an

optimal allocation OPT, in which heavy goods are assigned as evenly as possible. More formally,

the utility profile of OPTH is lexmax among all heavy-only allocations with the same cardinality.

Later, we use this property to prove that the utility profile of AH at the end of Algorithm 1 is equal

to the utility profile of OPTH , if OPT is chosen cleverly among the set of all optimal allocations.

After this, it will not be difficult to prove that the utility profiles of A and OPT match.

For an allocation A, min(A) =mini vi(Ai) denotes the minimum utility of any of its bundles.

Claim 1. Let OPT be an optimal allocation and let j be an agent. If vj(OPTj)≥min(OPT)+2

then all goods in OPTj are heavy for j.

Proof. Assume otherwise, and take a good that is light for j and reallocate it to an agent i for

which vi(OPTi) =min(OPT). This will improve the NSW by Lemma 1a). Q.E.D.

Corollary 1. Let OPT be any optimal allocation. Only bundles of utility min(OPT) and

min(OPT)+1 can contain light goods. Bundles with higher values only contain goods that are heavy

for their owner.

Claim 2. If there is a heavy alternating path with respect to OPT starting with an OPT-edge

from an agent i to an agent j then vi(OPTi)≤ vj(OPTj)+ p.

Proof. Assume such an alternating path exists and call it P . In OPT⊕P , i is incident to one

fewer heavy edge and j is incident to one more heavy edge, and hence the NSW changes by the

factor (vi(OPTi)− p)(vj(OPTj)+ p)/vi(OPTi)vj(OPTj). This factor must be no larger than one.

Thus vi(OPTi)≤ vj(OPTj)+ p. Q.E.D.

Claim 3. If a good g is allocated as a light good to an agent i but could be allocated as a heavy

good to an agent j who is allocated good g′ which is light for j, then the allocation is not optimal.

Proof. Swapping the goods g and g′ among agent i and agent j increases the value of agent j

by p− 1 and does not decrease the value of agent i. Q.E.D.

The rest of this section is dedicated to proving the following lemma.

Lemma 2. Among all allocations with maximum NSW, there exists an allocation A such that

the utility profile of AH is lexmax among all heavy-only allocations of the same cardinality.

Akrami et al.: Maximizing NSW in 2-Value Instances
12 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Proof. We choose A and heavy-only CH as follows: (1) A is an optimal allocation, (2) CH is

lexmax among all allocations of |AH | heavy goods, and (3) the distance between AH and CH is

minimum among all allocations satisfying (1) and (2).

We will show that AH and CH agree. Assume otherwise and let us consider AH ⊕CH . We label

an edge with either A or C indicating whether it belongs to AH or CH . Note that in this graph,

goods have degree zero, one, or two. AH ⊕CH decomposes into edge-disjoint maximal alternating

paths and cycles. We first show that there are no heavy alternating cycles.

Observation 1. There are no heavy alternating cycles.

Proof. Assume first that there is an alternating cycle, say D. Then CH⊕D has the same utility

profile as CH and is closer to AH , a contradiction. Q.E.D.

Hence, we have only alternating paths. We next make more subtle observations about the

edge-disjoint alternating paths in AH ⊕CH . First, we show that we cannot have an even-length

alternating path with both endpoints as goods.

Observation 2. There are no maximal even-length heavy alternating paths with both end-

points as goods.

Proof. Assume otherwise and let P be such a path. Then CH ⊕P has the same utility profile

as CH and is closer to AH , a contradiction. Q.E.D.

So at least one endpoint of each maximal alternating path is an agent. If there is an even length

maximal alternating path, both endpoints are agents. Let P be such a path, let i and j be its

endpoints, and assume w.l.o.g. that P starts in i with an edge in AH and ends in j with an edge

in CH . Then |AH
i |> |CH

i | and |CH
j |> |AH

j |. Set Q to the empty path.

If all maximal alternating paths have odd length, exactly one endpoint of each path is an agent.

Let i and j be agents with |AH
i |> |CH

i | and |CH
j |> |AH

j | respectively, and let P and Q be maximal

alternating path starting in i and j respectively. The other endpoints of P and Q are goods.

We next show |AH
j | ≤ |AH

i | − 2.

Observation 3. |AH
j |< |AH

i |.
Proof. Assume otherwise, i.e., |AH

j | ≥ |AH
i |. Then |CH

j | > |CH
i |+ 1 and hence CH ⊕ P ⊕Q is

lexicographically larger than CH , a contradiction. Q.E.D.

Observation 4. |AH
j |< |AH

i | − 1.

Proof. If |AH
j |= |AH

i | − 1, then AH ⊕P ⊕Q and AH have the same utility profile with respect

to heavy goods. Also AH ⊕ P ⊕Q is closer to CH than AH . Finally, we swap the goods that are

light for i in Ai with the goods that are light for j in Aj. The value of the resulting bundles for i

and j are at least vj(Aj) and vi(Ai), respectively. If either inequality is strict, A was not optimal, a

contradiction. So both inequalities are equalities, and thus the resulting allocation is again optimal,

and with respect to heavy edges, it has the same utility profile as before and is closer to CH , a

contradiction. Q.E.D.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 13

Observation 5. The paths P and Q do not exist.

Proof. By Observation 4, we have |AH
j | ≤ |AH

i | − 2. By Claim 2, vi(Ai)≤ vj(Aj)+ p, and hence

Aj contains p goods light for j. Augmenting P and Q to A and moving these light goods to Ai

yields an allocation that has the same NSW as A and is closer to CH , contradicting the choices of

A and CH . Q.E.D.

We can now complete the proof of Lemma 2. Since P and Q do not exist, AH =CH . Q.E.D.

Corollary 2. Among all allocations maximizing the NSW, let OPT be such that OPTH is

lexmax among the heavy parts of allocations maximizing the NSW. Then OPTH is lexmax among

all heavy-only allocations BH with |BH |= |OPTH |.

Lemma 3. Let OPT be an optimal allocation. Let L be the set of goods that are allocated as light

goods in OPT. Then the following allocation is also optimal. Start with OPTH (or any allocation

of the items in OPTH with the same utility profile) and then allocate the goods in L greedily, i.e.,

allocate the goods one by one and for each good g ∈ L choose an arbitrary agent i that currently

owns a bundle of minimum value and assign g to her.

Proof. Assume otherwise. Then there is a last allocation in the sequence of partial allocations

that can be extended to an optimal allocation. Let X be this partial allocation. Greedy allocates

the next light good g to agent i, but after the allocation of g to i the new allocation cannot be

extended to an optimal allocation. So vi(OPTi) ≤ vi(Xi) for all optimal allocations OPT. Also

vi(Xi)≤ vj(Xj) by the choice of i and vj(Xj)≤ vj(OPT∗
j) for some optimal allocation OPT∗ since

X can be extended to an optimal allocation. Since g is not allocated to i in OPT∗, there must be

an agent k such that vk(Xk)+ 1≤ vk(OPT∗
k) and OPT∗

k contains a light good. Now modify OPT∗

by moving a light good from OPT∗
k to OPT∗

i . The move does not decrease the Nash social welfare,

since vi(OPT∗
i)≤ vi(Xi)≤ vk(Xk)≤ vk(OPT∗

k)−1, and creates an optimal allocation extending X.

Q.E.D.

Before we move on to explain the algorithm, we remind the reader of Example 1 showing that

this approach fails when p/q is not an integer. In particular, the example shows that Lemma 2 is

not true in the half-integral case, where p/q = 3/2.

3.2. Algorithm In this subsection, we describe and analyze Algorithm 1. It operates in three

phases.

The first phase finds a heavy-only allocation that maximizes the NSW. This phase is equivalent

to maximizing the NSW in a binary instance. Barman et al. [10] proved that this is possible in

polynomial time. Notice that, after this phase, light goods remain unallocated.

Akrami et al.: Maximizing NSW in 2-Value Instances
14 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Algorithm 1: TwoValueMaxNSW

1 Input : N,M,v= (v1, ..., vn)

2 Output: allocation A

/* Phase 1: Heavy-Only Allocation */

3 let v′i : 2
M →N be an additive function with v′i(g) = 1 if vi(g) = p and v′i(g) = 0 otherwise for

all i∈N , g ∈M

4 v′← (v′1, . . . , v
′
n)

5 A= BinaryMaxNSW(N,M,v′)

/* Phase 2: Allocating Light Goods */

6 number the agents so that v1(A1)≤ v2(A2)≤ ...≤ vn(An)

7 while there is an unallocated good g do
/* v1(A1)≤ v2(A2)≤ ...≤ vn(An) */

8 let k be the maximum index s.t. vk(Ak) = v1(A1)

9 A←A∪{(k, g)}

/* Phase 3: Increasing NSW */

10 while vn(An)> p · v1(A1)+ p do
11 let k be the maximum index s.t. vk(Ak) = v1(A1)

12 let t be the minimum index s.t. vt(At) = vn(An)

13 let g be a good such that (t, g)∈A

14 A←A \ {(t, g)}

15 A←A∪{(k, g)}
16 return A

In the second phase, we greedily allocate the remaining goods (one by one) to an agent with

minimum utility. Note that all these goods are light for all agents. Otherwise, the output of the

first phase does not maximize NSW among all heavy-only allocations. As such, we term this phase

“allocating light goods”.

In the third phase, we try to improve the NSW by re-allocating heavy goods to agents considering

them light. More precisely, we take a heavy good from the bundle of an agent with maximum

utility and allocate it to an agent with minimum utility as long as the NSW increases. In Lemma 6

below we show that the reallocated goods are light for their new owners. This means that as long

as there is progress, we turn some heavy good into a light good.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 15

3.2.1. Heavy-Only Allocations In the first step, we compute a heavy-only allocation max-

imizing the NSW. For completeness, let us recapitulate Algorithm 2 from Barman et al. [10].

In order to compute a heavy-only allocation maximizing NSW, we start with a heavy-only

allocation A of maximum cardinality, i.e., in A any heavy good is assigned to an agent for which

it is heavy. We then improve the NSW of A by augmentation of some heavy alternating paths. We

search for a heavy even-length alternating path P connecting an agent i to an agent j, starting

with an edge outside A and ending with an edge in A, and with the heavy degree of j at least two

larger than the heavy degree of i in A. Given any such path P , we augment P to A, i.e., we update

A to A⊕P . When no such path can be found, the algorithm stops and returns allocation A.

Algorithm 2: BinaryMaxNSW

1 Input : N,M,v= (v1, ..., vn)

2 Output: allocation A

3 let G be the corresponding graph, i.e, agent i is connected to good g iff g is heavy for i, and

let A an arbitrary assignment of the items to the agents

4 while there is an alternating path a0, g1, ..., gk, ak such that |A0|≤ |Ak|−2 do
5 for ℓ← k to 1 do
6 A←A\(aℓ, gℓ)

7 A←A∪ (aℓ−1, gℓ)

8 return A

Barman et al. [10] proved that Algorithm 2 returns an allocation with maximum NSW for

binary instances. Furthermore, Halpern et al. [30] proved that in binary instances the set of lexmax

allocations is identical to the set of allocations with maximum NSW.

Lemma 4. Algorithm 2 (and hence the first phase of Algorithm 1) computes an allocation AH

with maximum NSW. Furthermore, the optimal allocations of the heavy items are exactly the lexmax

allocations.

Before proceeding to the next phase, we briefly explain how lexmax heavy-only (partial) allo-

cations of different cardinalities can be found. A heavy-only allocation maximizing the NSW is

a heavy-only allocation of maximum cardinality. In order to compute heavy-only allocations of

smaller cardinality, we repeatedly remove an edge from A. We take any bundle Ai with vi(Ai) =

maxj vj(Aj) and remove an edge of A incident to i. In this way, we will obtain optimal allocations

for every cardinality.

Akrami et al.: Maximizing NSW in 2-Value Instances
16 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 5. Let CH ⊆ EH be lexmax among all allocations DH ⊆ EH with |DH | = |CH |. Let

(c1, c2, . . . , cn) be the utility profile of CH and let t be such that ct−1 < ct = · · · = cn. Then an

allocation ĈH with utility profile (ĉ1, . . . , ĉn) = (c1, . . . , ct−1, ct− p, ct+1, . . . , cn), is lexmax among all

heavy-only allocations with the same cardinality.

Proof. Let D̂H be lexmax among all allocations with |ĈH | many heavy allocated goods and let

(d̂1, . . . , d̂n) be the utility profile of D̂H . Note that since |D̂H |= |ĈH |< |CH |, there exists a good g

that is unallocated under D̂H and is of value p for some agent a.

We need to show D̂H = ĈH . Assume otherwise. Consider the smallest i such that d̂i ̸= ĉi. Then

d̂i > ĉi since D̂H is lexmax. If i < t, allocating g to agent a results in an allocation DH with

|DH |= |CH | which is lexicographically larger than CH . This contradicts the choice of CH .

Therefore d̂i = ĉi for all i < t and hence Σn
i=td̂i =Σn

i=tĉi = (n−t+1)cn−p. Since (cn−p, cn, . . . , cn)

is lexmax among all (n− t+1) tuples with sum (n− t+1)cn− p, (d̂t, . . . , d̂n)⪯lex (cn− p, . . . , cn) =

(ĉt, . . . , ĉn). Hence ĈH is lexmax among all allocations D̂H with |D̂H |= |ĈH |. Q.E.D.

Corollary 3. Let (p ·a1, ..., p ·an) and (p · b1, ..., p · bn) be the utility profiles of two heavy-only

allocations A and B. Note that Σn
i=1ai = |AH | and Σn

i=1bi = |BH |. Assume |AH | ≤ |BH |. If the utility

profile of A is lexmax among all the utility profiles of heavy-only allocations C with |C|= |A| and

the same holds for B, then for all 1≤ i≤ n, ai ≤ bi.

Proof. Keep removing goods from the bundle with maximum utility and minimum index in B

until we reach an allocation B̂ with |B̂H |= |AH |. By Lemma 5, (p · b̂1, ..., p · b̂n)⪰lex (p ·a1, ..., p ·an)

and therefore (b̂1, ..., b̂n) = (a1, ..., an). The fact that b̂i ≤ bi for all i ∈ [n], completes the proof.

Q.E.D.

3.3. Correctness Phase 1 already gives us an optimal allocation X of the heavy-only goods,

which is also lexmax on the allocation of the heavy-only goods. In phase 2, we allocate the light

goods as “evenly” as possible. The only reason why our solution may not be optimal is that the

number of heavy goods in an optimal allocation Y may be less than that in X. However, if this is

the case, then we can move from X to Y by making small local improvements in NSW by moving

heavy goods from one bundle to the other.

Let A be the allocation computed by Algorithm 1. First, we prove that there is an allocation

OPT with maximum NSW such that the utility profile of OPTH and AH are the same. Then we

prove that in allocation OPT, the remaining goods are allocated the same way as in A. We start

by establishing some invariants of Algorithm 1.

Lemma 6. Fix a numbering of the agents at the beginning of phase 3 such that v1(A1) ≤

v2(A2)≤ . . .≤ vn−1(An−1)≤ vn(An). During phase 3, the following holds:

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 17

a. The ordering v1(A1)≤ v2(A2)≤ . . .≤ vn−1(An−1)≤ vn(An) is maintained.

b. Let i be any agent. If Ai contains a good that is light for i, then vi(Ai)≤ v1(A1)+ 1.

c. AH is lexmax among all heavy-only allocations of the same cardinality.

d. Whenever a good is moved in phase 3, say from bundle At to bundle Ak, all goods in At are

heavy for t and light for k.

e. Each iteration of the while-loop increases the NSW.

Proof. We prove statements a) to d) by induction on the number of iterations in phase 3. Before

the first iteration a) and d) trivially hold. Claim b) holds since in phase 2 we allocate only goods

that are light for every agent and since the next good is always added to a lightest bundle. Claim

c) holds by Lemma 4.

Assume now that a) to c) hold before the i-th iteration and that we move a good g from At to

Ak in iteration i. We will show that d) holds for At and Ak and that a) to c) hold after iteration i.

By the condition of the while-loop, we have vt(At)> p ·(vk(Ak)+1). Thus At contains only goods

that are heavy for t by part b) of the induction hypothesis. Let g be any good in At. If we also

have vk(g) = p, then moving g from At to Ak would result in an allocation of heavy goods that is

lexicographically larger, a contradiction to c). Thus vk(g) = 1.

After moving g, c) holds by Lemma 5. Note that g is given from an agent with maximum utility

and is not heavy for its new owner.

Since k is the largest index such that vk(Ak) = v1(A1) before the i-th iteration, b) holds after

the i-th iteration.

It remains to show that part a) holds after the i-th iteration. The value of the k-th bundle

increases by 1 and the value of the t-th bundle decreases by p. We need to show vt(At) − p ≥

vt−1(At−1)+ δ, where δ= 1 if k= t− 1 and δ= 0 otherwise.

• If k = t− 1, we have vt(At)≥ p · (vt−1(At−1) + 1)+ 1 and hence vt(At)− vt−1(At−1)− p− 1≥

(p− 1) · vt−1(At−1)≥ 0.

• If k < t− 1, by definition of t, vt(At) > vt−1(At−1). If all goods in At−1 are heavy for t− 1,

the difference in weight is at least p and we are done. If At−1 contains a good that is light for

t− 1, then vt−1(At−1)≤ vk(Ak)+1 by condition b) and hence vt(At)≥ p · vt−1(At−1)+1. This

implies vt(At)≥ vt−1(At−1) + p except if vt−1(At−1) = 0. In the latter case, k = t− 1, but we

are in the case k < t− 1.

We also need to show that after moving the good, vk(Ak)≤ vk+1(Ak+1). By the choice of k,

vk(Ak)≤ vk+1(Ak+1) + 1 holds before moving the good. After moving the good, by condition

d), vk(Ak) increases by 1 and therefore, vk(Ak)≤ vk+1(Ak+1).

Akrami et al.: Maximizing NSW in 2-Value Instances
18 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Let us finally show e). By d) we know that whenever a good is moved from bundle At to bundle

Ak, all goods in At are heavy for t and light for k. Therefore, moving a good from An to A1 increases

the NSW if and only if (vn(An)− p)(v1(A1) + 1) > vn(An)v1(A1) which holds true if and only if

vn(An)> p · v1(A1)+ p. Q.E.D.

Lemma 7. Let A be the output of Algorithm 1. Let OPT be an allocation that maximizes the

NSW and, subject to that, maximizes |OPTH |. Then |OPTH | ≥ |AH |.

Proof. Assume |OPTH | < |AH |. By the choice of OPT, A cannot maximize the NSW (since

|OPTH | is maximum for any allocation maximizing the NSW). We first show that we may assume

OPTH
i ⊆AH

i for all i. By Lemma 6c), AH is lexmax among all heavy-only allocations of cardinality

|AH |. We obtain a lexmax heavy-only allocation CH of cardinality |OPTH | from AH by repeatedly

removing a good from the lowest indexed bundle of maximum utility. Since OPTH is a lexmax

heavy-only allocation of cardinality |OPTH |, the utility profiles of CH and OPTH agree and hence

there is a bijection π of the set of agents such that |CH
i |= |OPTH

π(i)|. Let ℓi be the number of goods

in OPTπ(i) which are light for π(i). Note that the number of goods which are not allocated under

CH is equal to the number of goods that are light to their owner under OPT, i.e, Σi∈[n]ℓi. Obtain

an allocation C from CH by giving ℓi not yet allocated goods to Ci. Then vi(Ci)≥ vπ(i)(OPTπ(i))

for all i. Thus, C is optimal and vi(Ci) = vπ(i)(OPTπ(i)). Also CH
i ⊆AH

i for all i. So choosing OPT

as C, we may assume OPTH
i ⊆AH

i for all i.

Let t be such that AH
t \OPTH

t ̸= ∅ and let g ∈AH
t \OPTH

t . In OPT, g is allocated to some agent

j as a light good. Note that OPTt is heavy-only (Otherwise, interchange the light good in OPTt

with g and re-convert g to a heavy good, thus improving the NSW of OPT, a contradiction.), and

hence vt(OPTt)+ p≤ vt(At)≤ vn(An).

Since A is not optimal there is an agent k such that vk(OPTk)> vk(Ak). Since OPTH
k ⊆AH

k , the

bundle OPTk contains a good that is light for k.

Since A is the output of Algorithm 1, the while condition of Algorithm 1 (line 10) is violated

and hence,

vn(An)≤ p · v1(A1)+ p.

Therefore, we get

vt(OPTt)+ p≤ vn(An)≤ p · v1(A1)+ p≤ p · vk(Ak)+ p≤ p · vk(OPTk)

and hence,

vt(OPTt)≤ p · vk(OPTk)− p.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 19

Moving a light good from k to j, and taking g from j’s bundle and allocating it as a heavy good

to t increases the number of heavy goods allocated to t by one. This reallocation of goods does not

decrease the NSW as

(vk(OPTk)− 1)(vt(OPTt)+ p)− vk(OPTk)vt(OPTt) = p · vk(OPTk)− vt(OPTt)− p≥ 0.

For the new allocation ÔPT, we have

NSW(ÔPT)≥NSW(OPT) and |ÔPT
H

|> |OPTH |,

a contradiction to the choice of OPT. Q.E.D.

Lemma 8. Let Â be the partial allocation after phase 1 of Algorithm 1. Then |ÂH | ≥ |OPTH |

for any optimal allocation OPT.

Proof. Assume otherwise. Then there is a heavy edge (i, g) which is not in Â. Allocating g to

agent i increases the NSW, a contradiction to Lemma 4. Q.E.D.

By Lemma 7 and Lemma 8, we can assume in some round in phase 3 of Algorithm 1 with

allocation Ã, |ÃH | = |OPTH | for some optimal allocation OPT. Then, by Lemma 2 and Lemma

6.c, we get the following Corollary.

Corollary 4. There is an optimal allocation OPT such that ÃH and OPTH have the same

utility profile.

So far, we have proved that considering only heavy allocated goods in Ã and OPT, we end up

having the same utility profile. Light goods are allocated in a greedy manner during phases 2 and

3 of Algorithm 1. By Lemma 3 we conclude that Ã is of maximum NSW. In each round of the

phase 3 of Algorithm 1, the NSW increases, so NSW(A)≥NSW(Ã) =NSW(OPT).

Theorem 1. There exists a polynomial-time algorithm computing a maximum NSW allocation

for integral instances, i.e., when q= 1 and p is an integer greater than one.

Proof. We have already proved that the output of Algorithm 1 is an allocation maximizing

NSW. It remains to prove that this algorithm runs in polynomial time. Algorithm 2 (i.e., the

first phase of Algorithm 1) runs in polynomial time, Barman et al. [10]. The second phase clearly

takes polynomial time. By Lemma 6.d, the number of heavy goods under A is decreasing after

each iteration of the third phase. Therefore, this phase can be executed at most m times. Overall,

Algorithm 1 terminates in polynomial time. Q.E.D.

Akrami et al.: Maximizing NSW in 2-Value Instances
20 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

4. Half-Integral Instances We give a polynomial time algorithm for half-integral instances,

i.e., q = 2 and p is an odd integer greater than two. We will describe a set of improvement rules

that can turn any allocation into an optimal allocation. We will first deal with the case that all

heavy goods are allocated as heavy goods (Sections 4.1, 4.2, and 4.3). In the first section, we

discuss the improvement rules informally. In Section 4.2 we then introduce the improvement rules

formally. As for integral instances, in an optimal allocation OPT only bundles of value xO, xO+ 1/2

and xO + 1 can contain light goods; here xO is the minimal value of any bundle. The first set of

improvement rules optimizes the bundles of value larger than x+1. Such bundles are heavy-only.

The second set of improvement rules then optimizes the allocation of bundles which may also

contain light goods. We will introduce alternating walks as a generalization of alternating paths.

After the characterization of optimal allocations, we turn to the algorithm in Section 4.3. We

establish a connection to matchings with parity constraints, Akiyama et al. [1], and exploit known

algorithms for maximum matchings with parity constraints. In Section 4.4 we then deal with the

situation that heavy goods can be allocated as light goods. There the approach is similar to the

case of integral instances. We first compute an optimal allocation under the constraint that all

heavy goods are allocated as heavy goods. Then we repeatedly take a heavy good from a bundle of

highest value and allocate it as a light good to a bundle of minimum value. In contrast to integral

instances it will be necessary to reoptimize after each such move.

We will use s as a short-hand for p/q. Recall that q= 2 and p is an odd integer greater than two.

4.1. Improvement Rules As explained in the introduction, our goal is to identify improve-

ment rules that transform any suboptimal allocation into an optimal allocation. So if A is a sub-

optimal allocation, one of the rules applies and improves the NSW of A. In this section, we give an

informal introduction to our collection of improvement rules. For this discussion we assume that

all heavy goods are allocated as heavy goods, and that p/q = 3/2. Instead of using p/q, we sometimes

use s.

Example 3. Consider a light good. A light good can be given to any agent. So if one has two

bundles of values x and y with x< y, and an unallocated light good, one should allocate the good

to the lighter bundle, since (x+1)/x> (y+1)/y and hence allocating the light good to the lighter

bundle leads to a greater increase in NSW. This rule is called greedy allocation of light goods.

Another way of stating this rule is: If x is the minimum value of any bundle and there is a bundle

of value larger than x+1 containing a light good, move the light good to the bundle of value x. ■

Example 4. We turn to the allocation of heavy goods and the interaction between heavy and

light goods. Assume we have two agents i and j owning bundles of value x and x+1, respectively,

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 21

and i likes2 a heavy good in j’s bundle and owns a light good. Then moving a heavy good from j

to i and a light good from i to j would give both bundles value x+ 1/2 and improve the NSW. The

connection between i and j does not have to be direct, but can go through an alternating path as

the following example shows:

i
Ā
— g

A
— u

Ā
— g′

A
— j.

In this example, i owns a light good and likes a heavy good g which u owns, who in turn likes a

heavy good g′ owned by j. In this diagram, an edge between an agent and a good indicates that the

good is heavy for the agent. The superscript A indicates that the good is allocated to the agent,

the superscript Ā indicates that the good is not allocated to the agent. We move g′ from j to u

and g from u to i and move a light good from i to j. The change in the allocation of heavy goods

is akin to augmenting the path from i to j to AH ; here AH denotes the allocation of the heavy

goods in A. Of course, the path from i to j might have more than one intermediate agent. ■

Augmenting alternating paths is powerful, but not enough. We give four examples to illustrate

this point. The first three examples re-illustrate that it is advantageous to have bundles of value

x+ 1 containing a light good. In Example 7, we even make a preparatory move to create such a

bundle.

Example 5. Assume agents i and j own bundles of value x and agent h owns a bundle of value

x+1 containing a light good. i owns a light good and likes a heavy good in j’s bundle. Assume i

takes the heavy good from j in return for a light good and j gets another light good from h. There

are three agents involved in the update. Before the update, i and j own bundles of value x and

h owns a bundle of value x+ 1. After the update, we have two bundles of value x+ 1/2 and one

bundle of value x. There is another way to interpret this change. We first make a move that does

not change NSW: we move a light good from h to j turning h into a bundle of value x and j into

a bundle of value x+1. In a second step, we have the exchange between i and j; i receives a heavy

good from j in return for a light good. We will say that h plays the role of a facilitator for the

transformation, i.e., h owns a bundle of value x+1 containing a light good and gives up the light

good so that a transformation becomes possible. ■

Example 6. We can also start with two bundles of value x+1 and one bundle of value x. One

of the bundles of value x+ 1 contains two light goods, and its owner likes a heavy good in the

other bundle of value x+1. He takes the heavy good in return for a light good and gives the other

light good to a bundle of value x. As a consequence, both bundles of value x+1 turn into bundles

of value x+ 1/2. The bundle of value x becomes a bundle of value x+1. ■

2 Instead of saying that an agent consider a good heavy we also say that the agent likes the good.

Akrami et al.: Maximizing NSW in 2-Value Instances
22 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Example 7. We have four bundles with values x, x, x+ 1/2 and x+1, respectively. One of the

bundles of value x likes a heavy good in the other bundle of value x and owns a light good. We

would be in the situation of the previous example, if the bundle of value x+ 1 contains a light

good. Assume it does not, but the bundle of value x+ 1/2 likes a heavy good in the bundle of value

x+1 and contains two light goods. It pulls a heavy good from the bundle of value x+1 in return

for a light good. So the two bundles swap values and the utility profile does not change. However,

we now have a bundle of value x+1 containing a light good. Such bundles facilitate transactions.

■

Example 8. The final example shows that we need structures that go beyond augmenting

paths. Consider the following structure

i
A
— g1

Ā
— h

Ā
— g2

A
— j

and assume that h owns three light goods and i and j own bundles of value x and x+1 respectively.

Note that h is interested in g1 and g2. Then h gives two light goods to i and one light good to j

and we change the heavy part of the allocation to

i
Ā
— g1

A
— h

A
— g2

Ā
— j.

Note that the value of h’s bundle does not change; h gives away three light goods and obtains two

heavy goods; i and j now own bundles of value x+ 1/2. ■

4.2. All Heavy Goods are Allocated as Heavy Goods Throughout this section we

assume that all heavy goods are allocated as heavy. We drop this assumption in Section 4.4. When

we refer to the value of a bundle we mean the value to its owner. A is our current allocation which

the algorithm tries to change into an optimal allocation by the application of improvement rules,

O is either any optimal allocation or an optimal allocation closest to A in a sense to be made

precise below. We use xA or simply x to denote the minimum value of any bundle in A and xO for

the minimum value of any bundle in O. We use Ad and Od to denote the set of agents that own a

bundle of value xA+d in A or O, respectively. Note that we use the reference value xA also for O.

We will use this notation only with d ∈ {−1/2,0, 1/2,1, 3/2}. We will use the short-hand “a bundle

in Ad” for a bundle owned by an agent in Ad.

Ai is the bundle owned by agent i. We use h, i, j and sometimes u and v to denote agents and g

and g′ to denote goods. Remember vi is the valuation function of agent i and we define wi :=vi(Ai)

to be the value of i’s bundle for i in N . The heavy value of a bundle is the value of the heavy goods

contained in the bundle. We say that a bundle is heavy-only if all goods in the bundle are heavy

for its owner. A bundle of value x+1 containing a light good is called a facilitator.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 23

Our goal is to transform A into an optimal allocation by the application of improvement rules.

Each improvement lexicographically increases the potential function:

Φ= (NSW(A), number of agents in A1 owning a light good).

Let GH be the bipartite graph with agents on one side and heavy goods on the other side. There

is an edge connecting an agent i and a good g, if g is heavy for i. We use AH and OH to denote

the heavy part of the allocations A and O. They are subsets of edges of GH . The allocation O is

closest to A if AH ⊕OH has minimum cardinality among all optimal allocations.

The basic improvement rules are based on alternating paths. We will consider two kinds of alter-

nating paths in GH : A-Ā-alternating paths and A-O-alternating paths. In an A-B-alternating path,

the edges in AH \BH and BH \AH alternate. We will use A-Ā-alternating paths in the algorithm

and A-O-alternating paths for showing that some improvement rule applies to any suboptimal A.

Let i and j be agents. An A-B-alternating path from i to j is an A-B-alternating path with

endpoints i and j in which i is incident to an edge in A (and hence j is incident to an edge in B).

So a B-A-alternating path from i to j uses a B-edge incident to i.

4.2.1. Basic Improvement Rules

Lemma 9. Let A be any allocation and let x be the minimum value of any bundle in A. Let i

be any agent. For parts b) to g), let j be any other agent, and let P be an A-Ā-alternating path

from i to j.

a) If wi > x + 1 and Ai contains a light good, moving the light good to a bundle of value x

improves the NSW of A.

b) If wi ≥wj + ⌈s⌉, augmenting P to A improves the NSW of A.

c) If wi ≥wj +1 and Aj contains more than s− (wi−wj) light goods, augmenting P to A and

moving max(0, ⌈s− (wi−wj)+ 1/2⌉) light goods from j to i improves the NSW of A.

d) If wi ∈ {x+1, x+ 3/2}, wj = x+1, and Aj contains ⌈s⌉ light goods, augmenting P to A and

moving ⌊s⌋ light goods from Aj to Ai and another light good from Aj to any bundle of value

x improves the NSW of A.

e) If i owns at least two heavy goods more than j and wi ≥ x+ 3/2, one of the cases b), c), or d)

applies and the NSW of A can be improved.

f) If wi = x, wj = x+ 1, and Aj contains ⌈s⌉ light goods, augmenting P to A and moving ⌈s⌉

light goods from Aj to Ai improves the NSW of A.

g) If wi = x+1, wj = x+ 1/2, Ai is heavy-only, and Aj contains ⌈s⌉ light goods, augmenting P to

A and moving ⌊s⌋ light goods from Aj to Ai leaves the NSW of A unchanged and increases

the number of bundles of value x+1 containing a light good.

Akrami et al.: Maximizing NSW in 2-Value Instances
24 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

h) For a fixed agent i, one can determine in time O(m), whether any of the improvement rules

is applicable. For all agents, one can do so in time O(nm).

Proof.

a) The sum of the values of the two bundles does not change and the new values lie strictly inside

the interval defined by the old values. The claim follows from Lemma 1a).

b) The sum of the values of the two bundles does not change and the new values lie strictly in

the interval defined by the old values. The claim follows from Lemma 1a).

c) If wi ≥wj+⌈s⌉, the claim follows from part b). So assume wj+1≤wi ≤wj+s. By assumption,

Aj contains at least r = ⌈s− (wi−wj) + 1/2⌉ light goods. After augmenting P and moving r

light goods from Aj to Ai, the value of Ai is wi − s+ r > wi − s+ (s− (wi −wj)) = wj and

similarly the value of Aj is less than wi. Thus the NSW increases by Lemma 1a).

d) Before the augmentation, we have bundles of value x+1+d with d∈ {0, 1/2}, x+1 and x. After

the augmentation, we have bundles of value x+1+ d− s+ ⌊s⌋= x+ 1/2+ d, x+1+ s−⌈s⌉=

x+ 1/2 and x+1. By Lemma 1a), (x+1+d)x> (x+ 1/2+d)(x+ 1/2). Thus the NSW improves.

e) The heavy value of j is at most wi−2s. If j is heavy-only, augmenting P improves A according

to part b). If j owns a light good and part a) does not apply, wj ≤ x+1<wi and j owns at

least wj − (wi− 2s) = 2s− (wi−wj) light goods. If wi ≥wj +1, A can be improved according

to part c). Otherwise, we have wi = x+ 3/2 and wj = x+1, and A can be improved according

to part d).

f) Before the augmentation, we have bundles of value x and x+1, after augmentation we have

two bundles of value x+ 1/2. The NSW improves by Lemma 1a).

g) Before the augmentation we have bundles of value x+1 and x+1/2 and after the augmentation

we have bundles of value x+1− s+ ⌊s⌋= x+ 1/2 and x+ 1/2+ s−⌊s⌋= x+1. Thus the NSW

does not change. The bundle Aj now has value x+1 and contains a light good.

h) A depth first search for an augmenting path starting in an agent i takes linear time O(m).

4.2.2. Range Reduction We need a finer distinction of the rules in Lemma 9. Let x= xA be

the minimum value of a bundle in A and let k0 be minimal such that k0s > x+1. We call the rules

a) to e) when applied with an agent i of value larger than x+1 reduction rules. An allocation A

is reduced if no reduction rule applies to it. Throughout this section, A is a reduced allocation and

O is an optimal allocation closest to A. We will show that the bundles of value ks in A and O are

identical for all k ≥ k0. This will allow us to restrict attention to the bundles of value x, x+ 1/2,

and x+1 in A and to the bundles of value x, x± 1/2, and x+1 in O.

Observation 6. AH ⊕OH is acyclic.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 25

Proof. Assume otherwise. Let C be a cycle in AH ⊕OH . Replacing OH by OH ⊕C and leaving

the allocation of the light goods unchanged yields an optimal allocation closer to A.

Q.E.D.

We decompose D :=AH ⊕OH into maximal alternating paths. Goods have degree zero or two

in D. For a good of degree zero, there is no path using it. For a good of degree two, there is one

alternating path passing through it. For an agent i, let hdegA
i (hdegO

i) be the number of A-edges

(O-edges) incident to i in AH (OH). For i, we form min(hdegA
i ,hdeg

O
i)−|AH

i ∩OH
i | pairs of A- and

O-edges incident to i. Then max(hdegA
i ,hdeg

O
i)−min(hdegA

i ,hdeg
O
i) alternating paths start in i.

Depending on which degree is larger, the paths start with an A- or an O-edge. The decomposition

of AH ⊕OH into alternating paths needs not be unique.

Recall that N denotes the set of agents.

Lemma 10. Let A be reduced and let O be an optimal allocation closest to A. Let k0 be minimal

with k0s > x+1. For k≥ k0 let Rk be the set of agents that own a bundle of value ks in A and let

Sk =∪j≥kRj be the agents that own a bundle of value at least ks in A.

Agents in Rk own k heavy goods and no light good in A. O agrees with A on Sk0, i.e., Ai =Oi for

all i∈ Sk0. Moreover, in A and O each agent in N \Sk0 owns at most k0− 1 heavy goods. Finally,

xO +1≤ k0s.

Proof. We use downward induction on k to show that O and A agree on Sk. Assume that they

agree on Sk+1; then agents in Sk+1 have degree zero in AH ⊕OH . Since Sk+1 is empty for large

enough k, the induction hypothesis holds for large enough k. Let

R′
k := {j ∈N | j ̸∈ Sk+1 and there is an A-O-alternating path from i∈Rk to j}.

We will establish a sequence of Claims and then complete the proof of the Lemma.

Claim 4. xO <x+ s.

Proof. Let L0 be the set of agents owning a light item in A and let L be all agents that can be

reached from an agent in L0 by a Ā-A-alternating path. Then

a) Agents in L0 have value in {x,x+ 1/2, x+1}. Otherwise, Lemma 9a) allows to improve A.

b) All agents in L have value at most x+ s. Assume otherwise. Then there is an agent of value

x+ ⌈s⌉ or more that can be reached from an agent of value at most x+1 owning a light item

and Lemma 9c) allows to improve A.

c) All heavy goods that are liked by an agent in L are also owned by an agent in L. Assume

otherwise, say good g is liked by j ∈ L, but owned by h ̸∈ L. We could then extend the

alternating path ending in j by j
Ā
— g

A
— h and put h into L.

Akrami et al.: Maximizing NSW in 2-Value Instances
26 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

The total value of the goods assigned to the agents in L by O cannot be larger than the total

value in A and hence the average value of an agent in L is no larger in O than in A. This holds

since in A all light goods are owned by agents in L0, L0 ⊆L, and all heavy goods that are liked by

an agent in L are owned by an agent in L. So O cannot assign any additional value to the agents

in L. The average value of a bundle in L in allocation A is strictly less than x+s. Thus xO <x+s.

Q.E.D.

Claim 5. In A, each bundle in R′
k \Rk contains exactly k− 1 heavy goods.

Proof. By definition, bundles in N \ Sk+1 contain at most k heavy goods in A. Bundles that

contain exactly k heavy goods belong to Rk and hence the bundles in R′
k \Rk contain at most

k− 1 heavy goods. Each j ∈R′
k \Rk is reachable by an A-O-alternating path from an i ∈Rk and

wi = ks > x+1. If j does not contain k−1 heavy goods, Lemma 9e) implies that A is not reduced.

Thus, j contains exactly k− 1 heavy goods. Q.E.D.

Claim 6. In O, each bundle in N \Sk+1 contains at most k heavy goods.

Proof. Assume that there is an agent i in N \Sk+1 that owns k+1 or more heavy goods in O.

Then wO
i ≥ ks+ s≥ x+ 3/2+ s≥ xO + 3/2, where the last inequality comes from Claim 4. Since i

owns more heavy goods in O than in A, there is an O-A-alternating path starting in i. Consider a

maximal such path and let j be the other endpoint. Then j owns fewer heavy goods in O than in

A. Since we know already that A and O agree on Sk+1, j contains at most k− 1 heavy goods in

O, a contradiction to the optimality of O (Lemma 9e). Q.E.D.

Claim 7. Heavy goods assigned to agents in R′
k by A are also assigned to agents in R′

k by O.

Proof. Let g be any good that A assigns to an agent in R′
k, say j, and let h be the owner of g

in O. We need to show h∈R′
k. This is obvious if h= j. So assume otherwise. Since A and O agree

on Sk+1, h ̸∈ Sk+1. Let P be an A-O-alternating path from i∈Rk to j; i= j is possible. We extend

P by j
A
— g

O
— h and hence h can be reached by an alternating path starting with an A-edge from

i∈Rk. Thus, h∈R′
k. Q.E.D.

Claim 8. O assigns k heavy goods to at least |Rk| agents in R′
k.

Proof. In A, the agents in Rk own k heavy goods (by definition) and the agents in R′
k \Rk own

k− 1 heavy goods (Claim 5). So the number of heavy goods allocated by A to the agents in R′
k is

mA
k :=(k−1)|R′

k|+ |Rk|. All heavy goods assigned to agents in R′
k by A are also assigned to them by

O (Claim 7) and no agent in R′
k is assigned more than k heavy goods in O (Claim 6). Let mO

k be the

number of agents in R′
k to which O assigns k heavy goods. Then mO

k k+(|R′
k| −mO

k)(k− 1)≥mA
k

and hence mO
k + |R′

k|(k− 1)≥ (k− 1)|R′
k|+ |Rk|. Thus mO

k ≥ |Rk|. Q.E.D.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 27

Claim 9. xO +1≤ ks. Bundles in O of heavy value ks do not contain a light good.

Proof. Let L be the set of agents that own bundles of value less than ks in A. Then L=N \Sk

and A assigns all light goods to the agents in L. In A, there is at least one bundle of value x in L.

So the average value of a bundle in L is less than ks− 1/2 in A.

We know already that O and A agree on Sk+1, and that O assigns at least k heavy goods to at

least |Rk| many agents in R′
k (by Claim 8). Choose any |Rk| of them, and let L′ be the remaining

agents. Then |L′|= |L| and the total value of the O-bundles of the agents in L′ is at most the total

value of the A-bundles of the agents in L since the number of heavy goods assigned to them cannot

be larger and all light goods are assigned to agents in L by A. Thus their average value is less than

ks− 1/2 and hence xO <ks− 1/2.

A bundle of heavy value ks containing a light good would have value larger than xO + 1, a

contradiction to the optimality of O. Q.E.D.

Claim 10. Agents in Rk own k heavy goods in O.

Proof. Let i be an agent in Rk. Then hdegO
i ≤ k = hdegA

i ; the equality holds by the definition

of Rk and the inequality holds by Claim 6. Assume for the sake of contradiction, that there is

an agent i ∈ Rk with k = hdegA
i > hdegO

i . Consider an A-O-alternating path (in the alternating

path decomposition) starting in i. Let j be the other end of the path. Then, hdegO
j > hdegA

j . Also,

j ∈ R′
k and hence hdegA

j ≥ k − 1 (Claim 5). Since hdegO
j ≤ k (Claim 5), we have hdegO

j = k and

hdegA
j = k− 1. Therefore, the value of j in O is at least ks and j ∈R′

k \Rk.

If hdegO
i = k − 1, we augment P to O and also exchange the light goods (if any); the utility

profile of O does not change and O moves closer to A, a contradiction to the choice of O.

So hdegO
i ≤ k−2, and then the heavy value of i in O is at most ks−2s and hence i owns at least

wO
i − (ks− 2s)≥ 2s− (wO

j −wO
i)> s− (wO

j −wO
i) light goods. If the value of i is no larger than

ks− 1, O can be improved (Lemma 9c)).

So wO
i ≥ ks− 1/2 and hence i contains at least 2s light goods in O (since it heavy value in O

is at most ks− 2s). Thus wO
i ≤ xO + 1 and hence xO ≥ ks− 1/2− 1 = ks− 3/2. The heavy degree

of i in A is at least two more than the heavy degree of i in O. Therefore there is a second A-O-

alternating path starting in i, say Q. It ends in a node h. As above for j, we conclude hdegO
h = k

and hdegA
h = k − 1. Then, j ̸= h as only one alternating path can end in j as well as in h. It is

however possible, that j lies on the path from i to h or that h lies on the path from i to j.

We have wO
j ≥ ks and wO

h ≥ ks. We augment P and Q to O and use the 2s light goods on i as

follows: We give ⌊s⌋ light goods to each of j and h, and one to a bundle of value xO. The value of

i does not change, the values of j and h go down by 1/2 each and the value of an xO bundle goes

up by one. We may assume wO
j ≥wO

h . Since wO
j ≥ ks≥ xO +1 and wO

h ≥ ks≥ xO +1 by Claim 9,

Akrami et al.: Maximizing NSW in 2-Value Instances
28 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

we can apply Lemma 1b) with a :=wO
j , b :=wO

h , c := xO, d1 := 1/2 and d2 := 1/2, a contradiction to

the optimality of O. Q.E.D.

Claim 11. O agrees with A on Rk, i.e., Oi = Ai for all i ∈ Rk. Bundles owned by agents in

N \Sk do not contain k heavy goods in either A or O.

Proof. Consider the path decomposition of AH⊕OH . We first establish that there can be noO-A

alternating path from an agent j to an agent h with hdegA
j < hdegO

j = k and hdegO
h < hdegA

h = k−1.

Assume otherwise and let P be such a path. It uses an O-edge incident to j and an A-edge incident

to h. Also Oj contains no light good by Claim 9.

By assumption, hdegO
h ≤ k− 2 and hence the heavy value of h is at most ks− 2s. If the value of

h is no larger than ks− 1, we augment P to O and possibly move light goods from h to j; note

that h contains wO
h − (ks− 2s) light goods. This is Lemma 9c). This improves O, a contradiction.

So wO
h ≥ ks− 1/2 and hence Oh contains at least 2s light goods. Thus wO

h ≤ xO + 1 and hence

xO ≥ ks− 1/2− 1 = ks− 3/2. If wO
h = ks− 1/2 we augment the path to O and move ⌊s⌋ light goods

from h to j. This does not change the utility profile of O and moves O closer to A.

We cannot have wO
h >ks as this would imply xO +1>ks, a contradiction to Claim 9.

This leaves the case wO
h = ks. Then ks= xO+1, since wO

h ≤ xO+1 as shown above and ks≥ xO+1

by Claim 9. Also h owns at least 2s light goods. We augment the path to O and move ⌈s⌉ light

goods from h, ⌊s⌋ of them to j and one of them to a bundle of value xO. Before the augmentation we

have two bundles of value ks and one bundle of value xO, after the change, we have two bundles of

value ks− 1/2 and one bundle of value xO +1. Since ks= xO +1 (Lemma 9d)), the NSW improves,

a contradiction.

We can now proceed to the Claim proper.

By Claims 5 to 10, agents in Rk own exactly k heavy goods in A as well as in O. If O does not

agree with A on Rk, there is an A-O-alternating path P in the path decomposition of OH ⊕AH

passing through an agent i ∈ Rk. Let j and h be the endpoints of the path. Say j is incident to

an O-edge and h is incident to an A-edge. Thus j ∈R′
k. Since hdegO

j > hdegA
j ≥ k− 1 by Claim 10,

we have hdegA
j = k− 1 and hdegO

j = k. Since h is incident to an A-edge, hdegO
h < hdegA

h and hence

hdegA
h ≤ k− 1 since hdegA

h = k implies hdegO
h = k by the preceding claim.

But, as shown above, such a path P does not exist and hence OH
i =AH

i for all i ∈Rk; Ai does

not contain any light good. Oi does neither since it would have value at least k0s+1>xO +1 (by

Claim 9) otherwise. Thus, Oi =Ai for all i∈Rk.

Assume finally that there is a bundle Oj with j ̸∈ Sk containing k heavy goods. Since j ̸∈ Sk, Ak

contains fewer than k heavy goods. So there is an O-A-alternating path P starting in j. Let h be

the other endpoint. The path ends with an A-edge incident to h and hence there are more A-edges

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 29

than O-edges incident to h. We do not have h∈ Sk because this would imply hdegO
h = hdegA

h . Thus,

hdegA
h ≤ k−1 and hdegO

h ≤ k−2. But such a path does not exist and hence bundles Oj with j ̸∈ Sk

contain less than k heavy goods. Q.E.D.

We can now complete the proof of Lemma 10. The induction shows that A and O agree on Sk0 .

Also agents in N \ Sk0 own at most k0 − 1 heavy goods in A by definition of Sk0 and in O by

Claim 11. Finally, xO +1≤ k0s by Claim 9. Q.E.D.

At this point, we know that Ai = Oi for all i ∈ Sk0 , where k0 is minimal with k0s > x+ 1 and

Sk0 is the set of agents that own bundles of value at least k0s in A. We may therefore remove the

agents in Sk0 and their bundles from further consideration. We call A and O shrunken after this

reduction. The remaining bundles have value x, x+ 1/2, and x+1 in A and value xO, xO + 1/2, . . .

in O; in Lemma 15, we will show an upper of x+1 on the value of any bundle in O. Moreover, the

remaining bundles contain at most k0−1 heavy goods in both A and O, and xO ≤ x+ 1/2 since the

average value of a bundle in Alow =A0∪A1/2∪A1 is strictly less than x+1 as there is at least one

bundle of value x and the average for O is the same.

Lemma 11. Let A be reduced and let O be an optimal allocation closest to A. Then O consists of

A restricted to the agents in Sk0 and an optimal allocation for the bundles in Alow =A0∪A1/2∪A1.

Proof. By Lemma 10, Ai =Oi for all i ∈ Sk0 . The remaining bundles in A belong to Alow . O

allocates the goods in these bundles optimally to the agents in Alow . Q.E.D.

Lemma 12. A reduced and shrunken allocation can be constructed in time O(nm3).

Proof. We initialize A by allocating each heavy good to an agent that considers it heavy and

then adding the light items greedily, i.e., we iteratively add the light items to the least valued

bundle. We then apply the reduction rules. For each agent i with wi ≥ x+ 3/2, we search for an A-Ā

alternating path satisfying one of the cases a) to e) of Lemma 9. Whenever we find an improving

path, we apply it. Each search for an improving path takes time O(nm).

In order to bound the number of augmentations consider the potential
∑

iw
2
i . The potential is

non-negative, is at most m2, and decreases by at least 1/2 in each augmentation. For example, rule

d) converts bundles of value x+ 3/2, x+1 and x into bundles of value x+1, x+ 1/2, and x+1 and

decreases the potential by 1. Thus we have at most O(m2) augmentations. Q.E.D.

4.2.3. Only Bundles of Value x, x+1/2, and x+1 in A We derive further properties

of optimal allocations for Alow and then introduce an additional reduction rule.

Akrami et al.: Maximizing NSW in 2-Value Instances
30 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Further Properties of Optimal Allocations.

Lemma 13. Let A be reduced and shrunken. If there is an optimal allocation having at least as

many bundles of value x+1 as A does, A is optimal. In particular, if A has no bundles of value

x+1, A is optimal.

Proof. For d ∈ {0, 1/2,1}, let nd be the number of bundles of value x + d in A. Then n1 =

n−n0−n1/2 and the total value is xn+n1/2/2+n1. Split all goods into portions of 1/2 (i.e. a light

good becomes two portions and a heavy good becomes 2s portions for a total of 2xn+n1/2 +2n1

portions) and allow these portions to be allocated freely, i.e., any portion can be assigned to any

agent, subject to the constraint that there are at least n1 bundles of value x + 1. Consider an

optimal allocation O satisfying this constraint. In O, we have n′
1 ≥ n1 bundles of value x+1 and

at least one bundle of value less than x+1 as the average value of a bundle in A is less than x+1.

Also, if we have bundles of value y and y′ with y′ ≥ y+1 in O, we can replace them by bundles of

value y+ 1/2 and y′− 1/2 and improve the NSW except if x+1 ∈ {y, y′} and there are exactly n1

bundles of value x+1.

Thus, if n′
1 >n1, all bundles have value x+ 1/2 and x+1. This is impossible since n′

1(x+1)+(n−
n′
1)(x+ 1/2)− (nx+n1/2/2+n1) = n′

1 +(n−n′
1)/2−n1/2/2−n1 = (n′

1−n1 +n−n1−n1/2)/2> 0.

On the other hand, if n′
1 = n1, all bundles have value z, z+ 1/2 and x+1 for some z ≤ x. If z < x,

the average value of the bundles of value z and z+ 1/2 in O is less than x. However, the bundles of

value x and x+ 1/2 in A have average value at least x. Thus z = x, and the number of bundles in

O of value x and x+ 1/2 are n0 and n1/2, respectively. Thus A is optimal. Q.E.D.

Lemma 14. Let A be reduced and shrunken and let O be optimal and closest to A. Then xO ≥
x− 1/2.

Proof. Assume otherwise, i.e., xO ≤ x−1. In O, all light goods are contained in bundles of value

at most xO +1, and hence bundles of value larger than x are heavy-only. Any bundle contains at

most (k0 − 1) heavy goods (Lemma 10) and hence has heavy value at most (k0 − 1)s. Since k0 is

minimal with k0s > x+1, we have (k0− 1)s≤ x+1.

If (k0 − 1)s≤ x, the average value of a bundle in O is strictly less than x (there is a bundle of

value xO and all bundles have value at most x), but the average value of a bundle in A is at least

x, a contradiction.

Let y= (k0− 1)s and assume y ∈ {x+ 1/2, x+1}. In O, bundles of value y are heavy-only. Let S

be the set of owners of the bundles of value y in O. If their bundles in A have value y or more, the

average value of a bundle in A is larger than the average value in O, a contradiction. Note that

bundles in N \ S have value at least x in A, have value at most x in O, and there is a bundle of

value xO in O.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 31

So there is an agent i ∈ S whose bundle in A has value less than y. Then hdegA
i ≤ (k0 − 2) <

hdegO
i . Consider an O-A-alternating path starting in i. It ends in a node j with hdegO

j < hdegA
j .

Then hdegO
j ≤ k0 − 2 and hence the value of Oj is at most x. The bundle Oj contains at least

⌈wO
j − (k0− 2)s⌉ light goods since its heavy value is at most (k0− 2)s. We augment the path to O

and move ⌈wO
j − (k0− 2)s⌉ light goods from j to i. Let δ ∈ {0, 1/2} be such that ⌈wO

j − (k0− 2)s⌉=

wO
j − (k0− 2)s+ δ. Then the new values of bundles Oi and Oj are wO

j + δ and wO
i − δ. Thus either

the utility profile of O does not change (if wO
i =wO

j + 1/2) and O moves closer to A or the NSW of

O improves (if wO
i ≥wO

j +1), a contradiction. Q.E.D.

Lemma 15. Let A be reduced and shrunken and let O be optimal and closest to A. There is no

bundle of value more than x+1 in O.

Proof. The average value of a bundle in A is less than x+1. Thus xO <x+1, as otherwise the

average value of a bundle in O would be at least x+1. Assume there is a bundle of value x+ 3/2 or

more in O. The bundle contains at most k0− 1 heavy goods and hence its heavy value is at most

x+1. So it contains a light good and hence xO = x+ 1/2, and the bundle under consideration has

value x+ 3/2. The bundles in O have values in {x+ 1/2, x+1, x+ 3/2}. Any bundle of value x+ 1/2

can be turned into a bundle of value x+ 3/2 by moving a light good to it from a bundle of value

x+ 3/2.

Recall that Od denotes the set of agents owning bundles of value x+ d in O. If A1 ⊆ O1, A is

optimal by Lemma 13 and hence A= O since O is optimal and closest to A. So there is an i in

(O1/2 ∪O3/2) ∩A1. Then the parities of hdegA
i and hdegO

i differ since the weights of the bundles

differ by 1/2. By the first paragraph, we may assume i∈O3/2.

Assume first that hdegO
i > hdegA

i . Then there exists an O-A-alternating path starting in i. The

path ends in j with hdegO
j < hdegA

j ≤ k0−1. The heavy value of Oj is at most (k0−2)s which is at

most x+1−s. Since the value of Oj is at least xO, Oj contains at least xO−(x+1−s) = s−1/2= ⌊s⌋

light goods. If wO
j = x+ 1/2, we augment the path, move ⌊s⌋ light goods from j to i and improve

O, a contradiction, by Lemma 9.c). If wO
j = x+1, we augment the path and move ⌊s⌋ light goods

from j to i. This does not change the utility profile of O and moves O closer to A, a contradiction.

If wO
j = x+ 3/2, j contains at least ⌈s⌉ light goods. We augment the path, move ⌊s⌋ light goods

from j to i and one light good from j to a bundle of value xO. This improves O, a contradiction,

by Lemma 9.d).

Assume next that hdegO
i < hdegA

i ≤ k0−1. Then there exists an A-O-alternating path starting in

i. The path ends in j with hdegA
j < hdegO

j ≤ k0− 1. Since Oi has value x+ 3/2 and hdegO
i ≤ k0− 2,

Oi contains at least x+ 3/2− (x+1− s) = ⌈s⌉ light goods. We augment the path to O and remove

⌈s⌉ light goods from Oi. So the value of Oi becomes x+1. If Oj has value x+ 3/2, we put ⌊s⌋ light

Akrami et al.: Maximizing NSW in 2-Value Instances
32 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

goods on j and one light good on a bundle of value xO. If Oj has value x+1 or x+ 1/2, we put ⌈s⌉

light goods on j. This either improves O or does not change the utility profile of O and moves O

closer to A, a contradiction. Q.E.D.

In the technical introduction (Section 4.1) we pointed to the importance of bundles of value x+1

containing a light good. The following lemma formalizes this observation.

Lemma 16. Let A be reduced and shrunken and assume further that Lemma 9.g) is not appli-

cable. Let O be optimal and closest to A, and consider an agent i ∈A1. If Ai is heavy-only, Oi is

heavy-only and has value x+1. If all bundles in A1 are heavy-only, A is optimal.

Proof. Consider a heavy-only bundle Ai of value x+1. Then hdegA
i = k0−1 and x+1= (k0−1)s.

Assume for the sake of a contradiction that Oi has either value less than x+1 or is not heavy-only.

In either case, hdegA
i > hdegO

i and hence Oi contains at most k0− 2 heavy goods and thus at least

wO
i − (x+1−s) =wO

i −x−1+s light goods. If i∈O0∪O1, Oi contains at most k0−3 heavy goods

as the parity of the number of heavy goods is the same as for Ai. This holds since the value of Ai

and Oi differ by an integer, namely either zero or one.

Consider an A-O-alternating path starting in i and let j be the other end of the path. Then

hdegA
j < hdegO

j and hence Aj contains at most k0− 2 heavy goods; its heavy value is therefore at

most x+ 1− s. Since the value of Aj is at least x, Aj contains at least ⌊s⌋ light goods. At least

⌈s⌉, if Aj has value x+1.

By Lemma 9c) wA
j ̸= x, by part d) wA

j ̸= x+ 1. So wA
j = x+ 1/2. Then by part g), Aj contains

less than ⌈s⌉ light goods and hence contains at least k0− 2 heavy goods.

So we are left with the case where Aj has value x+ 1/2 and contains k0− 2 heavy goods. Then

Oj contains k0 − 1 heavy goods and hence is a heavy-only bundle of value x+ 1. If the value of

Oi is x− 1/2, Oi contains at least s− 3/2 light goods. We augment the path to O and move s− 3/2

light goods from i to j. This does not change the utility profile of O and moves O closer to A,

a contradiction. If the value of Oi is either x or x+ 1/2, Oi contains at least ⌊s⌋ light goods. We

augment the path to O and move ⌊s⌋ light goods from i to j. This improves the NSW of O if the

value of Oi is x and does not change the utility profile of O and moves O closer to A, otherwise.

If the value of Oi is x+1, Oi contains at least ⌈s⌉ light goods. We augment the path to O, move

⌊s⌋ light goods from i to j and one light good from i to a bundle of value x. This improves O. In

either case, we have obtained a contradiction.

If all bundles in A1 are heavy-only, A1 ⊆O1 and hence A is optimal by Lemma 13. Q.E.D.

In the rest of this section, we briefly summarize what we have obtained so far. Let A be reduced

and shrunken and let O be optimal and closest to A. Assume further that Lemma 9g) is not

applicable to A. The minimum value of any bundle in A is x and k0 is minimal such that k0s > x+1.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 33

• The bundles in A have value x, x+ 1/2, or x+1, and there is a bundle of value x.

• x− 1/2≤ xO ≤ x+ 1/2.

• In A and O, bundles contain at most k0 − 1 heavy goods. Any bundle of value more than

(k0− 1)s must contain a light good.

• If Ai has value x+1 and is heavy-only, Oi has value x+1 and is heavy-only. If all bundles of

value x+1 in A are heavy-only, A is optimal. Conversely, if A is suboptimal, there is a bundle

of value x+1 in A containing a light good.

• Bundles in O have value at least xO and at most x+1. Since xO ≥ x− 1/2, bundles in O have

values in {x− 1/2, x,x+ 1/2, x+1}.

In the next section, we will introduce improving walks as an additional improvement rule and

then show that an allocation to which no improvement is applicable is optimal. For the optimality

proof, we consider a suboptimal allocation and an optimal allocation closest to it and then exhibit

an applicable improvement rule. In the light of Lemma 16, we may assume that A contains a bundle

of value x+1 containing a light good. The goal of the improvement rules is to create more bundles

of value x+ 1/2.

Lemma 17. Let A and A′ be allocations in which all bundles have value in {x,x+ 1/2, x+1},

the total value of the bundles is the same, and A′ contains more bundles of value x+ 1/2. Then the

NSW of A′ is higher than the NSW of A.

Proof. For d ∈ {x,x + 1/2, x + 1}, let ad and a′
d be the number of bundles of value x + d in

A and A′, respectively. From
∑

d ad =
∑

d a
′
d, we conclude a′

1/2 − a 1
2
= a1 + a0 − a′

1 − a′
0. From∑

d dad =
∑

d da
′
d, we conclude a′

1/2− a 1
2
= 2(a1− a′

1) and further a1− a′
1 = a0− a′

0. Let z = a1− a′
1.

Then
NSW(A′)

NSW(A)
=

(x+ 1/2)2z

xz(x+1)z
=

(
x2 +x+ 1/4

x2 +x

)z

> 1.

Q.E.D.

Improving Walks. As already mentioned in the introductory section on improvement rules

(Section 4.1), we need more general improving structures than alternating paths. We need improv-

ing walks which we introduce in this section. Improving walks are also used in the theory of parity

matchings, i.e., generalized matchings in which degrees are constrained to a certain parity; see, for

example, the chapter on parity factors in Akiyama et al. [1].

Let A be reduced and let O be optimal and closest to A. Our goal is to show that, whenever A

is suboptimal, an improving walk exists. Improving walks use only edges in AH ⊕OH . As a first

step, we show that for a suboptimal A there is an agent i ∈ (A0 ∪A1)∩O1/2 and that for such an

agent |AH
i | ̸= |OH

i |.

Akrami et al.: Maximizing NSW in 2-Value Instances
34 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 18. Let A be reduced and shrunken, let x be the minimum value of any bundle in A,

and let O be any allocation in which all bundles have value at least x− 1/2 and at most x+1. For

d∈ {−1/2,0, 1/2,1}, let ad and od be the number of bundles of value x+ d in A and O respectively,

and let z = a1− o1.

a) The parity of the number of heavy goods is the same in bundles of value x and x+1 and in

bundles of value x− 1/2 and x+ 1/2 and the former parity is different from the latter.

b) The parity of the number of bundles of value x or x+1 is the same in A and O and equally for

the number of bundles of value x− 1/2 or x+ 1/2. More precisely, (the first equation is trivial;

it is there for completeness)

a−1/2 = 0= o−1/2− o−1/2 a0 = o0 +2o−1/2+ z

a1/2 = o1/2− 2z− o−1/2 a0 + a1 = o0 + o1 +2(o−1/2+ z).

c) Let A be a suboptimal allocation and let O be an optimal allocation. Then z > o−1/2 ≥ 0, a0 > 0,

a1 > 0, and (A0∪A1)∩O1/2 is non-empty. In particular, O contains a bundle of value x+ 1/2.

Proof. If the values of two bundles differ by an integral amount, the numbers of heavy goods

in both bundles differ by an even number. If the values differ by a multiple of 1/2 which is not an

integer, the numbers of heavy goods differ by an odd integer. This proves the first claim.

For the second claim, observe that
∑

d ad =
∑

d od,
∑

d add=
∑

d odd, and a−1/2 = 0. Thus

a1/2 = 2(
∑
d

odd− a1) = o1/2− o−1/2+2(o1− a1) = o1/2− 2z− o−1/2,

a0 + a1 =
∑
d

od− a1/2 = o−1/2+ o0 + o1/2+ o1− a1/2 = o0 + o1 +2(o−1/2+ z),

and finally

a0 = o0 + o1 +2(o−1/2+ z)− a1 = o0 +2o−1/2+ z.

So a0 + a1 and o0 + o1 have the same parity. As a consequence, a−1/2 + a1/2 and o−1/2 + o1/2 also

have the same parity. This proves the second claim.

We come to the third claim.

If x= 0, o−1/2 = 0. Since A is suboptimal, the NSW of O is positive and hence o0 = 0. Also, z > 0

by Lemma 13. Thus a0 > o0, a1 > o1, a0 + a1 > o0 + o1 and hence (A0 ∪A1)∩O1/2 ̸= ∅.

If x> 0, we have

1<
NSW(O)

NSW(A)
=

(x− 1/2)o−1/2(x+ 1/2)2z(x+ 1/2)o−1/2

x2o−1/2xz(x+1)z
=

(
x2− 1/4

x2

)o−1/2

·
(
x2 +x+ 1/4

x2 +x

)z

,

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 35

and hence z > o−1/2 since (x2− 1/4)(x2 +x+ 1/4)/(x2(x2 +x))< 1. Thus

a0 + a1 = o0 + o1 +2(o−1/2+ z)> o0 + o1 + o−1/2

and hence (A0∪A1)∩O1/2 ̸= ∅ and o1/2 = a1/2+2z+o−1/2 > 0. Also, a0 ≥ z > 0 and a1 = o1+ z > o1.

Q.E.D.

Remark: It is not true that A0 ∩O±1/2 is guaranteed to be non-empty. Same for A1 ∩O±1/2.

We will next prove a number of lemmas that guarantee ownership of light goods for certain

agents. The heavy parity of a bundle is the parity of the number of heavy goods in the bundle. A

node v is unbalanced if |AH
v | ̸= |OH

v |. A node v is A-heavy if |AH
v |> |OH

v | and O-heavy if |AH
v |< |OH

v |.

Lemma 19. Let v be unbalanced.

a) v ∈ ((A0 ∪A1)∩ (O0 ∪O1))∪ (A1/2 ∩ (O−1/2 ∪O1/2):

• If v is A-heavy, Ov contains at least 2s− 1 light goods if v ∈O0 ∩A1 or v ∈A1/2 ∩O−1/2,

and at least 2s light goods otherwise.

• If v is O-heavy, Av contains at least 2s− 1 light goods if v ∈O1 ∩A0 and at least 2s light

goods otherwise.

b) v ∈ (A0 ∪A1)∩O±1/2:

• If v is A-heavy, Ov contains at least ⌊s⌋ light goods if v ∈O1/2 and at least ⌊s⌋ − 1 light

goods if v ∈O−1/2.

• If v is O-heavy, Av contains at least ⌊s⌋ light goods. If v ∈ A1, Ov contains at least ⌈s⌉

light goods.

c) v ∈A1/2 ∩ (O0 ∪O1):

• If v is A-heavy, Ov contains at least ⌊s⌋ light goods if v ∈O0 and at least ⌈s⌉ light goods

if v ∈O1.

• If v is O-heavy, Av contains at least ⌊s⌋ light goods. If v ∈ O0, Av contains at least ⌈s⌉

light goods.

Proof.

a) Av and Ov have the same heavy parity. If v is A-heavy, |AH
v | ≥ |OH

v |+2. Hence the number

of light goods in Ov is at least 2s minus the value difference between Av and Ov. This value

difference is non-positive except if v ∈ A1 ∩O0 or v ∈ O−1/2 ∩A1/2. In these cases, the value

difference is 1. If v is O-heavy, a symmetric argument applies.

b) If v is A-heavy, |OH
v |< |AH

v |. If v ∈O1/2, the value of Ov is at most 1/2 less than the value of

Av and hence Ov contains at least ⌊s⌋ light goods. If v ∈O−1/2, the value of Ov is at most 3/2

less than the value of Av and hence Ov contains at least ⌊s⌋− 1 light goods.

Akrami et al.: Maximizing NSW in 2-Value Instances
36 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

If v is O-heavy, |AH
v |< |OH

v |. If v ∈A0, the value of Av is at most 1/2 lower than the value

of Ov and hence Av contains at least ⌊s⌋ light goods. If v ∈A1, A1 contains at least ⌈s⌉ light
goods.

c) If v is A-heavy, |AH
v | ≥ |OH

v |+1. If v ∈O0, the value of Ov is 1/2 lower than the value of Av

and hence Ov contains at least ⌊s⌋ light goods. If v ∈O1, Ov contains at least ⌈s⌉ light goods.
If v is O-heavy, |AH

v | ≤ |OH
v | − 1. If v ∈O1, Av contains at least ⌊s⌋ light goods, if v ∈O0,

Av contains at least ⌈s⌉ light goods.
Q.E.D.

The type of an edge is either A or O and we use T for the generic type. If T =A, T̄ denotes O.

If T =O, T̄ denotes A. An A-O-walk from i to j is a sequence of i= h0, e0, h1, . . . eℓ−1, hℓ−1, eℓ,

hℓ = j of agents, goods, and edges such that:

a) i and j are agents, i is unbalanced and lies in (A0 ∪ A1) ∩ O1/2, j is unbalanced and j ∈
A0 ∪A1 ∪O0 ∪O1 (i.e., j ̸∈A1/2 ∩O±1/2).

b) All edges belong to AH ⊕OH and the edges of the walk are pairwise distinct.

c) For 1≤ t < ℓ, ht is called a through-node if the edges et and et+1 have different types and a

T -hinge if both edges have type T . Hinges lie in A1/2 ∩O±1/2 and are unbalanced.

For a good ht, the edges et−1 and et have different types (one in AH , one in OH). The nodes i

and j are the endpoints of the walk and h1 to hℓ−1 are intermediate nodes. The type of i is the

type of e0 and the type of j is the type of eℓ. Goods have degree zero or two in AH ⊕OH . We will

augment A-O-walks to either A or O. Augmentation to A will improve A and augmentation to O

will either improve O or move O closer to A. We allow i= j; we will augment such A-O-walks to O.

There is no requirement on ownership of light goods by hinges and endpoints. We will later show

that A-hinges own 2s light goods in O and O-hinges own 2s light goods in A and that endpoints

own an appropriate number of light goods.

Lemma 20. Let W be an A-O-walk. Then |W ∩A|= |W ∩O|.

Proof. Every good of the walk is adjacent to one A-edge and one O-edge, and the edges of a

walk are pairwise distinct. Q.E.D.

Lemma 21. If A is sub-optimal, a non-trivial A-O-walk exists. Let i and j be the endpoints of

the walk. If i= j and the walk starts and ends with an edge of the same type, |AH
i | and |OH

i | differ
by at least two.

Proof. We construct the walk as follows. The walk uses only edges in D=AH ⊕OH and visits

each good at most once. We start with a node i ∈ (A0 ∪ A1) ∩O1/2; by Lemma 18 such a node

exists. For such a node the parities of |AH
i | and |OH

i | differ. If |AH
i |> |OH

i |, we start tracing a walk

starting at i with an A-edge, otherwise, we start with an O-edge.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 37

Suppose we reach a node h on a T -edge e where T ∈ {A,O}. If there is an unused edge, i.e., not

part of the walk, of type T̄ incident to h, we continue on this edge. This will always be the case

for goods. We come back to this claim below.

So assume that there is no unused edge of type T̄ incident to h. Then h is an unbalanced T -heavy

agent. This can be seen as follows. Any visit to a node uses edges of different types for entering

and leaving the node as long as an unused edge of a different type is available for leaving the node.

Any later visit either uses the same type for entering and leaving or uses up the last unused edge

incident to the node.

If h ∈ A0 ∪A1 ∪O0 ∪O1, we stop. Then set j = h. If, in addition, h = i, the first and the last

edge of the walk have the same type, say T , and the number of T -edges incident to i is at least

two more than the number of T̄ -edges.

Otherwise, h∈A1/2∩O±1/2 and hence the number of heavy edges of both types incident to h has

the same parity. Thus there is an unused T -edge incident to h. We pick an unused T -edge incident

to h and continue on it.

Since the walk always proceeds on an unused edge and the first visit to a good uses up the A-

and the O-edge incident to it, the walk visits each good at most once. Q.E.D.

A walk may pass through the same agent several times. A walk is semi-simple if for different

occurrences of the same agent, the incoming edges have different types. In particular, any agent

can appear at most twice. Goods appear at most once in a walk. If a walk exists, a semi-simple

walk exists. We will not use this fact in the sequel of the paper, but state it for completeness.

Lemma 22. If there is an A-O-walk, there is a semi-simple walk with the same endpoints.

Proof. Consider the walk and assume that an agent v is entered twice on an edge of the same

type, say once from g and once from g′; the second occurrence of v could be the last vertex of the

walk.

. . .— g
T
— v

T ′
— . . .— g′

T
— v

T ′′
— . . .

If the second occurrence of v is the last vertex of the walk, we end the walk at the preceding

occurrence of v. Otherwise, the edge of type T ′′ exists. Either occurrence of v could be a hinge.

We cut out the subpath starting with the first occurrence of v and ending with the edge entering

the second occurrence of v and obtain

. . .— g
T
— v

T ′′
— . . .

If T ′′ ̸= T , we still have a walk. If T ′′ = T , the second occurrence of v is a hinge and hence

v ∈A1/2 ∩O±1/2. After the removal of the subpath, it is still a hinge. Q.E.D.

Akrami et al.: Maximizing NSW in 2-Value Instances
38 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Hinge nodes lie in A1/2∩O±1/2. If none of the basic improvement rules applies to A, hinge nodes

actually lie in O1/2 and T -hinges own 2s light goods in the allocation T̄ for T ∈ {A,O} as we show

next.

Lemma 23. If A is reduced, all hinge nodes belong to O1/2, A-hinges own at least 2s light goods

in O and O-hinges own at least 2s light goods in A.

Proof. By definition, the hinge nodes are unbalanced and lie in A1/2 ∩ O±1/2. Consider two

consecutive hinges h and h′ and the alternating path P connecting them. Assume that their values

in O differ by one, i.e, one has value x+ 1/2 and the other value x− 1/2. The A-endpoint of the

path owns at least 2s− 1 light goods in O according to Lemma 19. When we augment the path

to O, the A-endpoint receives an additional heavy good and the O-endpoint loses a heavy good.

Depending on whether the A-endpoint is the heavier endpoint or not, we move ⌈s⌉ or ⌊s⌋ light

goods to the other endpoint. This improves the NSW of O, a contradiction. We have now shown

that all hinge nodes have the same value in O.

It remains to show that the first hinge of the walk lies in O1/2; call it h. Assume h ∈O−1/2. We

distinguish cases according to whether i is A-heavy or not.

If i is O-heavy, h is A-heavy and hence owns at least 2s− 1 light goods in O (Lemma 19). We

augment P to O and move ⌊s⌋ light goods from h to i. After the change i and h belong to O0 and

the NSW of O has improved, a contradiction.

If i is A-heavy, i owns at least 2s− 1 light goods in O (Lemma 19). We augment P to O and

move ⌈s⌉ light goods from i to h. After the change i and h belong to O0 and the NSW of O has

improved, a contradiction.

So, all hinges are unbalanced and belong to A1/2 ∩O1/2. Thus Lemma 19 applies and A-hinges

own at least 2s light goods in O and O-hinges own at least 2s light goods in A. Q.E.D.

At this point, we have established the existence of an A-O-walk with endpoint i∈ (A0∪A1)∩O1/2.

If A is reduced, all hinge nodes belong to A1/2 ∩ O1/2 and T -hinges own 2s light goods in the

allocation T̄ . We will next show that we can use the A-O walk to improve A. This might require the

existence of a facilitator. We therefore apply Lemma 9g) if possible. We distinguish cases according

to whether i is O-heavy or A-heavy.

Case i ∈ (A0 ∪A1)∩O1/2 and i is O-heavy. The value of Ai is x or x+1 and the value of

Oi is x+ 1/2 and Ai contains fewer heavy goods than Oi. Therefore Ai contains at least ⌈s⌉ light

goods if i∈A1 and at least ⌊s⌋ light goods if i∈A0 by Lemma 19. Let W be an A-O-walk starting

in i and let j be the endpoint of the walk. The types of the hinges alternate along the path, the

type of the first (last) hinge is opposite to the type of i (j). Each A-hinge holds 2s light goods in O

and each O-hinge holds 2s light goods in A (Lemma 23). If the types of i and j differ, the number

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 39

of hinges is even, if the types are the same, the number of hinges is odd. There is also a bundle of

value x+1 in A containing a light good and there is a bundle of value x in A.

We distinguish three cases: j ∈A0∪A1 and i ̸= j, j ∈A0∪A1 and i= j, and j ∈ (O0∪O1)∩A1/2.

In the first case, we show how to improve A and in the other two cases we will derive a contradiction

to the assumption that O is closest to A.

Case j ∈A0∪A1, and i ̸= j: We augment the walk to A. The heavy parity of i and j changes;

i gains a heavy edge and j gains or loses one. The heavy parity of all intermediate nodes does not

change. Each O-hinge releases 2s light goods and each A-hinge requires 2s light goods. If j is an

O-endpoint, j gains a heavy edge and the number of A-hinges exceeds the number of O-hinges by

one.

Assume first that j is an O-endpoint. Each endpoint gives up ⌈s⌉ light goods if in A1 and ⌊s⌋
light goods if in A0. Note that by Lemma 19, i and j own that many light goods. So i and j together

give up between 2s−1 and 2s+1 light goods; 2s of them are needed for the extra A-hinge. If they

give up 2s+1 and hence i, j ∈A1, one goes to an arbitrary bundle in A0, and if they give up 2s−1

and hence i, j ∈A0, we take a light good from an arbitrary bundle in A1 owning a light good. This

bundle plays the role of a facilitator for the transformation. Recall that if A is suboptimal, there

is a bundle in A1 containing a light good.

If j is an A-endpoint, i gains a heavy edge and j loses a heavy edge, i has ⌊s⌋ or ⌈s⌉ light goods.
We move ⌊s⌋ light goods from i to j. If j ∈ A0, we put an additional light good on j which we

take from a bundle in A1 containing a light good, otherwise. The bundle in A1 plays the role of a

facilitator for the transformation. If j ∈A1 and i had ⌈s⌉ light goods, we put the extra light good

on any bundle in A0.

As a result of the transformation, the values of i and j become x+ 1/2. Also, if i, j ∈ A1, the

value of some agent changes from x to x+1, and if i, j ∈A0, the value of an agent changes from

x+1 to x. The value of no other agent changes. In either case, we did not change the total value

of the bundles and increased the number of agents in A1/2 by two and hence improved A. This is

by Lemma 17.

Case j ∈ A0 ∪A1, and i = j: We augment the walk to O. For the intermediate nodes the

heavy parity does not change. For i the heavy parity also does not change; it either gains and loses

a heavy good or it loses two heavy goods. It remains to show that there are sufficiently many light

goods to keep the values of all bundles in O unchanged.

If i loses and gains a heavy good, the number of A- and O-hinges is the same and we use the

light goods released by the A-hinges for the O-hinges. If i loses two heavy goods, there is one more

A-hinge and we use the light goods from the extra A-hinge for i. The change brings O closer to A,

a contradiction to the choice of O. Hence this case cannot arise.

Akrami et al.: Maximizing NSW in 2-Value Instances
40 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Case j ∈ (O0 ∪O1)∩A1/2: We augment the walk to O. The heavy parity of the intermediate

nodes does not change. The heavy parity of i and j changes; i loses a heavy good and j either gains

or loses a heavy good. It remains to show that there are sufficiently many light goods to keep the

utility profile of O unchanged.

The A- and O-hinges on the walk alternate and their numbers are either the same, if i and j

have different types, or there is an extra A-hinge if i and j are both O-endpoints. Each A-hinge

releases 2s light goods and each O-hinge requires 2s light goods.

If j is an O-endpoint, we use the 2s light goods provided by the extra A-hinge as follows: If

j ∈O0, we give ⌈s⌉ light goods to j and ⌊s⌋ light goods to i, moving j to O1/2 and i to O0 and if

j ∈O1, we give ⌊s⌋ light goods to j and ⌈s⌉ light goods to i, moving j to O1/2 and i to O1.

If j is an A-endpoint, it gains a heavy good. By Lemma 19, j owns ⌊s⌋ light goods if j ∈O0 and

owns ⌈s⌉ light goods if j ∈ O1. We move these goods to i. In either case, j moves to O1/2 and i

moves to O0 ∪O1.

In all cases, the utility profile of O does not change and O moves closer to A, a contradiction to

our choice of O. So this case cannot arise.

Case i ∈ (A0 ∪A1)∩O1/2 and i is A-heavy. The value of Oi is x+ 1/2, the value of Ai is x

or x+1, and Ai contains at least one more heavy good than Oi. We observe first that Oi contains

at least ⌈s⌉ light goods. If i∈A0, the heavy value of Oi is at most x− s and hence Oi contains at

least ⌈s⌉ light goods. If the value of Ai is x+1, Ai cannot be heavy-only since then Oi would also

have value x+ 1 according to Lemma 16 (recall that we apply Lemma 9.g if possible)and hence

the heavy value of Oi is at most x+1−1− s. So Oi contains at least ⌈s⌉ light good by Lemma 19.

Let W be an A-O-walk starting in i and let j be the other endpoint of the walk. The types of

the hinges along the walk alternate, O-hinges hold 2s light goods in A, and O-hinges hold 2s light

goods in O. If the types of i and j differ, there is an equal number of hinges of both types, if i and

j are A-endpoints, there is an extra O-hinge on the walk. There is also a bundle of value x+1 in

A containing a light good and there is a bundle of value x in A.

Similar to the case where i is O-heavy, we distinguish three cases: j ∈ A0 ∪A1 and i ̸= j, j ∈

A0∪A1 and i= j, and j ∈ (O0∪O1)∩A1/2. In the first case, we show how to improve A and in the

other two cases we will derive a contradiction to the assumption that O is closest to A.

Case j ∈A0∪A1, and i ̸= j: We augment the walk to A. The heavy parity of i and j changes

and the heavy parity of all intermediate nodes does not change.

If i and j are A-endpoints, both lose a heavy edge and there is an extra O-hinge releasing 2s

light goods. We give ⌊s⌋ light goods to any endpoint in A1 and ⌈s⌉ light goods to any endpoint in

A0. So we need between 2s− 1 and 2s+ 1 light goods. If we need only 2s− 1, we put the extra

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 41

light good onto any bundle in A0, if we need 2s+1, we take one light good from any bundle in A1

with a light good.

If j is an O-endpoint, j gains a heavy good. By Lemma 19, Aj contains ⌊s⌋ light goods if j ∈A0

and contains ⌈s⌉ light goods if j ∈A1. We give ⌊s⌋ light goods to i if i∈A1 and ⌈s⌉ light goods if

i∈A0. If an extra light good is needed, we take it from a bundle in A1, if we have one more light

good than necessary, we put it on a bundle in A0.

In either case, we increased the number of agents in A1/2 by two and hence improved A.

Case j ∈A0∪A1, and i= j: We augment the walk to O. The heavy parity of the intermediate

nodes does not change and the heavy parity of i changes neither. It either gains and loses a heavy

good and then the number of hinges is even or it gains two heavy goods and then the number of

hinges is odd and there is an extra O-hinge. We show that there are sufficiently many light goods

to keep the values of all bundles in O unchanged.

This is obvious, if i loses and gains a heavy good. Then there is an equal number of hinges of

both types and we simply move the light goods between them.

If i gains two heavy goods, the first and the last edge of the walk are A-edges. Hence |AH
i | ≥

|OH
i |+ 2 (Lemma 21). Since i ∈ O1/2, the parity of the number of heavy goods in Ai and Oi is

different. Thus, |AH
i | ≥ |OH

i |+3. Since the value of Oi is by at most 1/2 lower than the value of Ai,

Oi contains at least 2s light goods. We give 2s light goods to the extra O-hinge. Note that i gains

two heavy goods and hence the value of Oi does not change.

We have now moved O closer to A, a contradiction to our choice of O. Thus this case cannot

arise.

Case j ∈ (O0 ∪O1)∩A1/2: We augment the walk to O. For the intermediate nodes, the heavy

parity does not change. For i and j the heavy parity changes; i gains a heavy good and j either

loses a heavy good and then the number of hinges is even or gains a heavy good and then the

number of hinges is odd and there is an extra O-hinge. There are sufficiently many light goods to

keep the values of all bundles in O unchanged, except for the bundles of i and j; i and j change

values. Recall that Oi contains at least ⌈s⌉ light goods.

If j is A-heavy, i and j gain a heavy good and there is an extra O-hinge. Since j is A-heavy, the

heavy value of j in O is at most x+ 1− s. Thus j owns at least ⌈s⌉ light goods if j ∈O1 and at

least ⌊s⌋ light goods if j ∈O0. If j ∈O1, we move ⌊s⌋ light goods from i and ⌈s⌉ light goods from j

to the extra O-hinge. If j ∈O0, we move ⌈s⌉ light goods from i and ⌊s⌋ light goods from j to the

extra O-hinge. In either case, the values of i and j interchange. Thus the utility profile of O does

not change and O moves closer to A, a contradiction.

Akrami et al.: Maximizing NSW in 2-Value Instances
42 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

If j is O-heavy, j loses a heavy good and the number of hinges is even. If j ∈O1, we move ⌊s⌋

light goods from i to j, if j ∈O0, we move ⌈s⌉ light goods from i to j. In either case i and j swap

values. Thus the utility profile of O does not change and O moves closer to A, a contradiction.

We have now established the existence of improving walks.

Lemma 24. If A is sub-optimal, an improving A-O-walk exists.

4.3. The Algorithm Let A be reduced. Let x be the minimum value of any bundle and let

k0 be minimal such that k0s > x + 1. Lemma 11 tells us that an optimal allocation consists of

all bundles of value at least k0s in A plus an optimal allocation of Alow =A0 ∪A1/2 ∪A1. So our

algorithm consists of three steps.

We start with an arbitrary allocation A and reduce it.

Let x and k0 as above. We remove all bundles of value k0s or more from A and are left with

bundles of value x, x+ 1/2 and x+1. The removed bundles also exist in an optimal allocation.

We then optimize Alow by repeated augmentation of improving walks by exploiting a connection

to matchings with parity constraints as described next.

Matchings with Parity Constraints. Consider a generalized bipartite matching problem,

where for each node v of a graph G we have a constraint concerning the degree of v in the matching

M . We are interested in parity constraints of the form degM(v) ∈ {pv, pv +2, pv +4, . . . , pv +2rv},

where pv and rv are non-negative integers. Matchings with parity constraints can be reduced to

standard matching, Tutte [37], Tutte [38], Lovasz [33], Cornuejols [20], Sebo [35]. For completeness,

we review the construction given in Cornuejols [20].

Consider any node v and let tv be the degree of v. We may assume pv + 2rv ≤ tv; otherwise

decrease rv. We replace v by the following gadget. We have tv vertices v1 to vtv and tv−pv vertices

z1 to ztv−pv . We refer to them as v-vertices and z-vertices respectively. We connect each vi with

each zj. Finally, we create the edges (z1, z2), . . . , (z2rv−1, z2rv). Note that tv−pv−2rv of the z-nodes

are not incident to one of these inter-z-edges. This ends the description of the gadget for v. For

every edge (v,w) of the original graph, we have the complete bipartite graph between the vertices

vi and wj of the auxiliary graph.

Lemma 25 ([20]). The auxiliary graph has a perfect matching if and only if the original graph

has a matching satisfying the parity constraints.

Proof. We include a proof for completeness. Assume first that G has a matching M satisfying

the parity constraints. We construct a perfect matching P in the auxiliary graph. For each edge

(v,w) ∈M , we pick one of the edges (vi,wj) in the auxiliary graph such that at most one edge

incident to any vi or wj is picked. Then pv + 2ℓv with ℓv ∈ {0,1,2, . . . , rv} of the v-vertices are

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 43

matched outside the gadget and tv−pv−2ℓv are not. We match tv−pv−2rv of them to the z-nodes

that are not incident to any of the inter-z-edges, 2(rv− ℓv) with the two vertices in rv− ℓv pairs of

z-nodes connected by an inter-z-edge and use inter-z-edges for the remaining pairs of z-nodes. In

this way, we obtain a perfect matching in the auxiliary graph.

Conversely, assume that there is a perfect matching P in the auxiliary graph. Then P contains ℓv

of the inter-z-edges for some ℓv ∈ {0,1, . . . , rv} and hence tv−pv−2ℓv of the z-vertices are matched

with v-vertices. Thus pv + 2ℓv v-vertices are matched outside the gadget. Remove the z-vertices

and collapse all v-vertices into v. In this way, we obtain a matching M in G satisfying the parity

constraints. Q.E.D.

As usual, let n and m be the number of edges in the input graph. The number of ver-

tices of the auxiliary graph is O(m) and the number of edges of the auxiliary graph is

O(
∑

v deg
2
v +
∑

(v,w)∈E degv degw) =O(mn2) since degree in the original graph are bounded by n.

The Reduction to Parity Matching. Let g be the maximum number of heavy goods that

a bundle of value x + 1/2 may contain. Then g = ⌊(x + 1/2)/s⌋, The following lemma gives the

maximum number of heavy goods in bundles of value x and x+1.

Lemma 26. Let g be the maximum number of heavy goods that a bundle of value x+ 1/2 may

contain. The following table shows the maximum number of heavy goods in bundles of value x and

x+1. We use sN to denote {s · t | t∈N}.

x x+ 1/2 x+1 Condition
g− 1 g g+1 x+1∈ sN
g+1 g g+1 x+1 ̸∈ sN and x+1> (g+1)s
g− 1 g g− 1 x+1 ̸∈ sN and x+1< (g+1)s

Clearly, x+1 ̸∈ sN implies x+1 ̸= (g+1)s.

Proof. For t ∈ {0, 1/2,1}, let mt be the maximum number of heavy goods in a bundle of value

x+t. Thenm0 ≤m1 ≤m0+2. The first inequality is obvious (add a light good to the lighter bundle)

and the second inequality holds because we may remove two heavy goods from the heavy bundle

and add 2s− 1 light goods. Also m0 and m1 have the same parity. Finally m1/2 −m0 =±1 since

the two numbers have different parity and we can switch between the two values by exchanging a

heavy good by either ⌊s⌋ or ⌈s⌉ light goods.
Let x+ 1/2= gs+y with y ∈N0. Then x+1= gs+y+ 1/2. If y+ 1/2= s, m1 = g+1. Also m0 <m1

and hence m0 = g− 1. If y+ 1/2> s then y− 1/2≥ s and therefore m1 =m0 = g+1. If y+ 1/2< s,

then x+1= (g−1)s+(s+y+1/2) and x−1 = (g−1)s+(s+y−1/2) and therefore m1 =m0 = g−1.

Q.E.D.

We use N0, N1/2, and N1 to denote the set of allowed number of heavy goods in bundles of value

A0, A1/2 and A1 respectively.

Akrami et al.: Maximizing NSW in 2-Value Instances
44 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

Lemma 27. Let A be an allocation with all values in {x,x+ 1/2, x+1}. A is sub-optimal if and

only if there is an allocation BH of the heavy goods in A and a pair of agents i and j in A0 ∪A1

such that

• all agents in A1/2 ∪ {i, j} own a number of heavy goods in N1/2 and for each of the agents in

A0 ∪A1 \ {i, j}, the number of owned heavy goods is in the same N -set as in A, and,

• if i and j own bundles of value x in A, there must be a bundle of value x+1 in A containing

a light good and if i and j own bundles of value x+1 in A, there must be a bundle of value x

in A.

Proof. If A is sub-optimal there is an improving walk W . Let i and j be the endpoints of the

walk. Augmenting the walk and moving the light goods around as described in Section 4.2.3

• adds i and j to A1/2,

• reduces the value of a bundle of value x+ 1 containing a light good to x if Ai and Aj have

value x and increases the value of a bundle of value x to x+1 if Ai and Aj have value x+1,

and

• leaves the value of all other bundles unchanged.

Thus, in the new allocation, the number of heavy goods owned by i and j lies in N1/2. For all other

agents the number of owned heavy goods stays in the same N -set. This proves the only-if direction.

We turn to the if-direction. Assume that there is an allocation BH of the heavy goods in which for

two additional agents i and j the number of owned heavy goods lies in N1/2 and for all other agents

the number of owned heavy goods stays in the same N -set. We will show how to allocate the light

goods such that BH becomes an allocation B, in which all bundles have value in {x,x+ 1/2, x+1}
and B1/2 =A1/2 ∪{i, j}. Then the NSW of B is higher than the one of A.

We next define the values of the bundles in B and in this way fix the number of light goods that

are required for each bundle. For i and j, we define vBi = vBj = x+ 1/2. If Ai and Aj have both value

x, let k be an agent owning a bundle of value x+1 containing a light good and define vBk = x. If Ai

and Aj have both value x+1, let k be an agent owning a bundle of value x and define vBk = x+1.

Then vAi + vAj + vAk = vBi + vBj + vBk in both cases. If one of Ai and Aj has value x and the other

one has value x+1, let k be undefined. Then vAi + vAj = vBi + vBj . For all ℓ different from i, j, and

k, let vAℓ = vBℓ . Then the total value of the bundles in A and B is the same.

For an agent ℓ let hℓ and h′
ℓ be the number of heavy goods allocated to ℓ in A andBH , respectively.

Then
∑

ℓ hℓ =
∑

ℓ h
′
ℓ. Moreover, hℓ ∈ N1/2 iff ℓ ∈ A1/2 and h′

ℓ ∈ N1/2 iff ℓ ∈ A1/2 ∪ {i, j}. For all

ℓ ∈A0 ∪ {k} \ {i, j}, h′
ℓ ∈N0 and for all ℓ ∈A1 \ {i, j, k}, h′

ℓ ∈N1. Then vBℓ − sh′
ℓ is a non-negative

integer for all ℓ and∑
ℓ

(vBℓ − sh′
ℓ) =

∑
ℓ

vBℓ −
∑
ℓ

sh′
ℓ =
∑
ℓ

vAℓ −
∑
ℓ

shℓ =
∑
ℓ

(vAℓ − shℓ).

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 45

We conclude that the allocation B exists Q.E.D.

Example 9. Let s = 3/2 and assume we have two agents owning bundles of value 3 and 4

respectively. We have either zero or two or four heavy goods and accordingly seven, four or one

light good. Both agents like all heavy goods. We have N1/2 = {1}. If there are two heavy goods, the

optimal allocation has two bundles of value 7/2. If we have zero or four heavy goods, there is no

way to assign exactly one heavy good to each agent and hence the optimal allocation has bundles

of value 3 and 4. In the case of four heavy goods, 1 and 3 is possible. Both numbers are odd, but

3 is too large. ■

Example 10. Let s = 3/2 and assume we have two agents owning bundles of value 2 and 3

respectively. The bundle of value 3 consists of two heavy goods and both agents like all heavy

goods. We have N1/2 = {1}. Since the two agents have values x and x+1, there is no need for an

agent k. In the optimal allocation both bundles contain a heavy and a light good. ■

In order to check for the existence of the allocation BH , we set up the following parity matching

problem for every pair i and j of agents.

• For goods the degree in the matching must be equal to 1.

• For all agents in A1/2 ∪{i, j}, the degree must be in N1/2.

• If Ai and Aj have value x, let Ak be any bundle of value x+1 containing a light good. If Ai

and Aj have value x+1, let Ak be a bundle of value x. The degree of k must be in N0.
3

• For an a∈A0 \{i, j, k}, the degree must be in N0, and for an a∈A1 \{i, j, k}, the degree must

be in N1.

If BH exists for some pair i and j, we improve the allocation. If BH does notexist for any pair i

and j, A is optimal.

Each improvement increases the size of A1/2 by two and hence there can be at most n/2 improve-

ments. In order to check for an improvement, we need to solve n2 perfect matching problems in an

auxiliary graph with m vertices and mn2 edges.

Lemma 28. An optimal allocation for Alow can be computed in time O(n4m
3/2).

Proof. A perfect matching in a graph with m vertices and n2m edges can be constructed in

time O(m
1/2n2m). In order to check for an improvement, one needs to solve n2 matching problems,

and there can be at most n/2 improvements. The time bound follows. Q.E.D.

We conjecture that this time bound can be improved.

3 It would be incorrect to require that the degree of k must be in N1 because we want to allocate a light good to k.

Akrami et al.: Maximizing NSW in 2-Value Instances
46 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

4.4. The General Case: Heavy Goods can be Allocated as Light Finally, we show our

main theorem.

Theorem 2. There exists a polynomial-time algorithm computing a maximum NSW allocation

for half-integral instances, i.e., when q= 2 and p is an odd integer greater than two.

Let Ot be a best allocation in which t heavy goods are allocated to agents that consider them

light and let At be a best allocation in which t heavy goods are converted to light, i.e., the

valuation functions are changed such that these t goods are light for all agents. We are interested in

maxtNSW(Ot), but we will compute maxtNSW(At). Note that Ot might not exist. For example,

if all goods are heavy for all agents then Ot does not exist for t≥ 1. If Ot does not exist, we abuse

notation and define NSW(Ot) =−∞.

Lemma 29. maxtNSW(Ot) =maxtNSW(At).

Proof. The allocation Ot is a contender for At and hence NSW(Ot)≤NSW(At) for all t. Let

t∗ = argmaxtNSW(At) and assume that in At∗ one of the converted heavy goods is allocated to an

agent that considers it heavy. Re-converting the good to heavy improves the NSW, a contradiction

to the choice of t∗. Q.E.D.

We follow the approach taken in the integral case in Section 3. We determine allocations At for

t= 0,1,2, . . .; we determined A0 in the previous section (we used the notation A0 there). In At, t

goods are converted. Which t? We will next derive properties of the optimal set of converted goods.

For a set G of goods, let C(G) be the allocation A0 interpreted with the following modified

valuation function: The goods in G are light for all agents and for any agent i, i owns the heavy

goods AH
i \G and |AH

i ∩G| light goods in addition to the light goods already owned by it.4 Let B(G)

be an optimal allocation for the modified valuation function closest to C(G), i.e., with minimal

|CH(G)⊕BH(G)|. We choose G such that

• NSW(B(G)) is maximum and

• among the sets G that maximize NSW(B(G)), |G| is minimum.

• among the minimum cardinality sets G that maximize NSW(B(G)), |CH(G) ⊕ BH(G)|) is

smallest.

For simplicity, let us write B and C instead of B(G) and C(G) for this choice of G. We also write

xj for the value of j’s bundle in C and x′
j for the value of j’s bundle in B. We use S to denote the

set of agents i with AH
i ∩G ̸= ∅. In Lemmas 30, 31, and 32 we derive properties of G.

Lemma 30. Let G and S be as defined above and let x be the minimum value of any bundle

in A0. Then x′
ℓ ≤ s+mini∈S x

′
i ≤mini∈S xi for all agents ℓ. For i ∈ S: Bi contains no light good,

BH
i ⊆AH

i \G, x− 1≤ x′
i ≤ xi− |AH

i ∩G| ≤ xi− s, and xi >x+1.

4 We write Ai instead of A0
i for the bundles of A0.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 47

Proof. If G is empty, the Lemma obviously holds. So assume G ̸= ∅ and hence S ̸= ∅. Let

j = argmini∈S x
′
i and assume there is an ℓ such that x′

ℓ >x′
j +s. Then ℓ’s bundle in B is heavy-only

and hence ℓ owns at least two heavy items more than j in B. We return one of the converted items

to j, reconvert it to a heavy, and replace it by a converted from ℓ. This changes x′
j to x′

j + s and

x′
ℓ to x′

ℓ− s and hence improves NSW by Lemma 1a).

For the other claims consider any i ∈ S and let g ∈ AH
i ∩G. Let j be the agent to which g is

allocated in B; j = i is possible.

Assume first that Bi contains a light good, say g′. We interchange g and g′, i.e., we allocate g′

to j and g to i. This does not change the NSW. We now reconvert g back to a heavy good and

improve the NSW, a contradiction to the optimality of B. So, Bi contains no light good.

Assume next that BH
i \CH

i is non-empty. With respect to BH ⊕CH goods have degree zero or

two. Also BH ⊕CH contains no cycles as augmenting a cycle to BH would decrease the distance

between CH and BH . Thus BH ⊕CH is a collection of B-C-alternating paths. One of these paths,

call it P , starts in i with a B-edge and ends with a C-edge (g′, h) at some agent h. We augment P

to B, re-allocate g to i as a heavy good, convert g′ to a light good and give it to j. The values of

all bundles stay unchanged. We obtain an allocation D with the same NSW as B, G′ = (G\ g)∪ g′

as the set of converted goods, and |DH ⊕CH(G′)|< |BH ⊕CH |, a contradiction to the choice of G.

So, BH
i ⊆CH

i =AH
i \G and hence x′

i ≤ xi− |AH
i ∩G| ≤ xi− s since Bi contains no light good.

From the preceding and the first paragraph of the proof, we obtain x′
ℓ ≤ s +mini∈S x

′
i ≤ s +

mini∈S xi− s=mini∈S xi for any agent ℓ.

We next prove x′
i ≥ x− 1 for all i ∈ S. If S comprises all agents, x′

i ≤ xi − s for all agents and

hence B is not optimal. So assume that S does not comprise all agents and there is an agent i∈ S

with x′
i ≤ x− 3/2. Consider the following allocation D. Starting with C(G), we move for all i ∈ S,

the light goods in Ci to agents outside S and the heavy goods in CH
i \BH

i to their owners in B.

At this point, the allocation agrees with B for all i ∈ S. We then apply the optimization rules

to the bundles outside S. We obtain an allocation with the same NSW as B. Since none of the

optimization rules decreases the value of the minimum bundle, all bundles in D outside S have

value at least x and one of them contains a light good. Moving this light good to i improves the

NSW according to Lemma 9a), a contradiction to the optimality of B.

We finally show xi > x+1 for all i ∈ S. For s≥ 5/2, we have xi ≥ x′
i + s≥ x− 1+ s > x+1. So

assume s = 3/2: If xi = x, we have x′
i ≤ x− 3/2, and if i’s bundle in A0 contains a light item, we

have x′
i ≤ x+ 1− 1− s ≤ x− 3/2, a contradiction to x′

i ≥ x− 1. We are left with the i such that

xi ∈ {x+ 1/2, x+1} and i’s bundle in A0 is heavy-only. Let S′ ⊆ S be the set of such i and assume

S′ ̸= ∅. Let i0 ∈ S and let g ∈Ai0 ∩G. For i∈ S′, Ai contains exactly one item in G and BH
i =CH

i

as otherwise x′
i < x− 1, and the conversion of the items in G changes the value of i’s bundle to a

Akrami et al.: Maximizing NSW in 2-Value Instances
48 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

value of at most xi − s (which is less than x) and creates a light good. We cannot have that S′

comprises all agents and bundles Bi, i ∈ S′, are heavy-only and there are light goods. We move

any light item in a bundle in S′ to a bundle outside S′. We now have Ci =Bi for i ∈ S′. We next

re-optimize the bundles outside S′ to obtain B. Since the NSW of C is worse than the NSW of A0,

after re-optmization there will be an agent h owning a bundle of value x+ 1/2 containing a light

good. Note that bundles of value x+1 or more cannot contain a light good, because i’s bundle has

value less than x. Let j be the agent to which g is allocated. We move a light good from h to j

and we move g from j to i0 and reconvert it to a heavy good. The multiplicative change in NSW

is at least
x− 1/2

x+ 1/2
· x+1

x− 1/2
=

x+1

x+ 1/2

and hence the change improves NSW, a contradiction. Q.E.D.

Corollary 5. Let x be the minimum value of any bundle in A0. If A0 contains no bundle of

value more than x+1, A0 is optimal.

Proof. If A0 is not-optimal, S ̸= ∅. Finally, xi >x+1 for i∈ S by Lemma 30. Q.E.D.

Recall that k0 = argmink ks > x+1 and that for k ≥ k0, Rk denotes the bundles with exactly k

heavy items in A0 and R′
k denotes the bundles with exactly k− 1 heavy items in A0 to which an

heavy item can be pushed from Rk.

Lemma 31. Let k1 be such that (k1 − 1)s =mini∈S x
′
i. Then k1 ≥ k0 and R≥k1+1 ⊆ S ⊆ R≥k1.

Also Bi =CH
i \G for i∈ S.

Proof. Since no heavy item in a bundle of value x+ 1 or less is converted, we have k1 ≥ k0.

Also, x′
i ∈ {(k1 − 1)s, k1s} for all i ∈ S. So S ⊆R≥k1 . Then G contains ℓ− k1 heavy items in any

bundle in Rℓ for ℓ > k1 and the remaining r= |G| −
∑

ℓ>k1
(ℓ− k1)|Rℓ| heavy items in R≥k1 . After

the conversion, all bundles in R≥k1 contain at most k1 heavy items and at least r of them contain

at most k1− 1 heavy items.

We next show BH
i = CH

i for i ∈ S. Assume, for the sake of a contradiction, that there is an

i∈ S with CH
i \BH

i ̸= ∅. Since (k− 1)s≤ x′
i <xi− |Ai ∩G|s= ks, we have x′

i = (k− 1)s. As above,

we conclude that BH ⊕CH contains no cycle and hence decomposes into paths. Then there is an

BH ⊕CH alternating path P connecting i and h, starting with a C-edge in i and ending with a

B-edge in h. Furthermore, the heavy degree of h in B is larger than its heavy degree in C. Since

BH
h ̸⊆CH

h , we have h ̸∈ S and hence h∈R≤k1 . Write R≤k1 = (R<k1 \R′
k1
)∪R′

k1
∪Rk1 .

We cannot have h ∈ R<k1 \ R′
k1

as agents in R<k1 \ R′
k1

consider goods owned by agents in

R′
k1
∪R≥k1 light. More precisely, trace P from i until an agent h′ ∈R<k1 \R′

k1
is reached. The good

g′ preceding h′ is owned by an agent in R′
≥k1
∪R≥k1 in C and hence considered light by h′.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 49

We cannot have h∈Rk1 , because then x′
h ≥ (k1 +1)s, a contradiction.

So assume h ∈R′
k1
. Then x′

h ≥ ks. Consider the allocation D obtained by augmenting P to B.

The heavy degree of i increases to k and the heavy degree of h decreases to at most k− 1. Thus

the NSW does not decrease and D is closer to C than B, a contradiction to the choice of B.

Since Bi is heavy-only, B
H
i =CH

i implies Bi =CH
i . Q.E.D.

Lemma 32. Either G= ∅ or for every i ∈N such that vi(Ai) is maximal and for every g ∈Ai

there exists an optimal G such that g ∈G.

Proof. We may assume G ̸= ∅. Let i ∈N be such that vi(Ai) is maximal and g ∈Ai. We may

assume g /∈G.

Assume first that x′
i < xi and i is incident to a C-edge in CH ⊕ BH . Let P be a maximal

alternating path starting at i with an edge in CH \ BH . Since every good has even degree in

CH ⊕BH , P ends at an agent k with a B-edge. Then k ̸∈ S by Lemma 30 and, by Claim 5 from

Section 4.2.2, Ak contains at most one heavy good less than Ai, so x′
k ≥ xi > x′

i. We augment P

to B. If x′
k ≥ x′

i + s, the NSW of B does not decrease. Otherwise, i has ⌈x′
i− (xi− s)⌉ light goods

that we give to k. Now, i has value x′
i + s − ⌈s + x′

i − xi⌉ = x′
i + (xi − x′

i − δ) and k has value

x′
k − s+ ⌈s+ x′

i − xi⌉= x′
k − (xi − x′

i − δ), where δ ∈ {0, 1/2}. Since the sum of their utilities does

not change and 0≤ xi−x′
i− δ ≤ x′

k−x′
i, the NSW of B does not decrease. But B moves closer to

C, a contradiction to the choice of B. So we have either x′
i ≥ xi or C

H ⊆BH .

Assume that i /∈ S. If x′
i <xi, then i is incident to a C-edge in CH ⊕BH , a case we have already

excluded. Hence, x′
i ≥ xi. Since G ̸= ∅, there is a j ∈ S. We have x′

i ≥ xi = vi(Ai)≥ vj(Aj)≥ x′
j + s.

By Lemma 9.a), Bi is heavy-only. Let g
′ ∈Bi, h ∈Cj ∩G and j′ the owner of h in B. We convert

g′ to a light good and give it to j′ and give h back to j as a heavy good. This does not decrease

the NSW of B, does not change the size of G, and yields an allocation at least as close to C as B,

so we may assume that i∈ S.
If i∈ S, x′

i <xi and hence CH ⊆BH . Thus g ∈Bi, so we may exchange g with any good in Ai∩G
and the result holds. Q.E.D.

It is now easy to complete the proof of Theorem 2. We start with A0. If there is no bundle of

value more than x(A0) + 1, A0 is optimal. Otherwise, we select any bundle of maximal value and

any good in this bundle, convert the good to a light good and re-optimize to obtain A1. If there is

no bundle of value more than x(A1)+ 1, we stop. Otherwise, we select a bundle of maximal value

and any good in this bundle, convert the good to a light good and re-optimize to obtain A2. We

continue in this way and then select the best allocation among A0, A1,

Polynomial Time: We construct iteratively allocations A1, A2, Each time we convert

a heavy good to a light good and re-optimize. There are at most m conversions and each re-

optimization takes polynomial time O(n4m
3/2) by Lemma 28. Thus the overall time is polynomial.

Akrami et al.: Maximizing NSW in 2-Value Instances
50 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

5. NP-Hardness when q ≥ 3 In this section, we complement our positive results on

polynomial-time NSW optimization. In particular, we show:

Theorem 3. It is NP-hard to compute an allocation with optimal NSW for 2-value instances,

for any constant coprime integers p > q≥ 3.

We provide a reduction from the NP-hard q-Dimensional-Matching (q-DM). Given a graph G

consisting of q disjoint vertex sets V1, . . . , Vq, each of size n, and a set E ⊆ V1× . . .×Vq of m, m≥ n,

edges, decide whether there exists a perfect matching in G or not. Note that for q= 3 the problem

is the well-known 3-DM and thus NP-hard. NP-hardness for q > 3 follows by simply copying the

third set of vertices in the 3-DM instance q− 3 times, thereby also extending the edges to the new

vertex sets.

Transformation: There is one good for each vertex of G, call them vertex goods. Additionally,

there are p(m−n) dummy goods. For each edge of G, there is one agent who values the q incident

vertex goods p/q and all other goods 1.

Lemma 33. If G has a perfect matching, then there is an allocation A of the goods with

NSW(A) = p. If G has no perfect matching, then for any allocation A of goods, NSW(A)< p.

Proof. Suppose there exists a perfect matching in G. We allocate the goods as follows: Give each

agent corresponding to a matching edge all q incident vertex goods. Now there are m− n agents

left. Give each of them p dummy goods. As each agent has utility p, the NSW of this allocation is

p as well.

For the second claim, assume there is an allocation A= (A1, . . . ,Am) of goods with NSW(A)≥ p.

We show that in this case there is a perfect matching in G. First, observe that if we allocate each

good to an agent with maximal value for it, we obtain an upper bound on the average utilitarian

social welfare of A, i.e., 1/m
∑

i vi(Ai)≤ 1/m(qn ·p/q+p(m−n)) = p. Applying the AM-GM inequality

gives us NSW(A) = (
∏

i vi(Ai))
1/m ≤ p, and, furthermore, NSW(A) = p iff vi(Ai) = p for all agents

i. Hence each agent’s utility is p in A and each vertex good is allocated to an incident agent. The

next claim allows us to conclude that there are only two types of agents in A:

Claim 12. If an agent i has valuation vi(Ai) = p, then she either gets her q incident vertex

goods or p other goods.

Proof. Let i, j ∈N0 be such that p= i · p/q+ j. Then j ≤ p since i≥ 0, and (p− j)q= ip. Since p

and q are co-prime, p divides j. Thus either j = 0 and i= q or j = p and i= 0. Q.E.D.

By Claim 12, an agent either receives 0 or q of its vertex goods. As there are qn vertex goods,

and each of them must be given to an incident agent, there must be n agents receiving their q

incident vertex goods, which implies that there is a perfect matching in G.

Lemma 33 yields the proof of Theorem 3.

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 51

6. Conclusions We have delineated the border between tractable and intractable 2-value

NSW instances. If goods have weights 1 and p/q with co-prime p and q, instances with q = 1 and

q= 2 are tractable and for q≥ 3 the problem of maximizing the NSW is NP-complete. We suggest

three directions for further research.

Our algorithms, in particular for the half-integral case, are fairly complex. Find simpler algo-

rithms.

Find a succinct certificate of optimality in the spirit of McConnell et al. [34], i.e., can one in

addition to the optimal allocation compute a succinct and easy-to-check certificate that witnesses

the optimality of the allocation. Such certificates are available for many generalized matching

problems, see for example the book by Akiyama et al. [1]. An early example is Tutte’s certificate for

the non-existence of a perfect matching, Tutte [37]. An undirected graph G has no perfect matching

if and only if there is a subset U of the vertices such that odd(G−U)> |U |, where odd(G−U) is

the number of connected components of G−U of odd cardinality. Of course, a perfect matching

witnesses the existence of a perfect matching.

In Akrami et al. [2] a 1.0345 approximation algorithm is given and APX-hardness is shown for

q ≥ 4. APX-hardness for q = 3 is shown in [23]. It is not known whether the approximation factor

is best possible.

Acknowledgments. Martin Hoefer and Giovanna Varricchio were supported by DFG grant

Ho 3831/5-1.

References

[1] Akiyama J, Kano M (2011) Factors and Factorizations of Graphs, volume 2031 of Lecture Notes in

Mathematics (Springer).

[2] Akrami H, Chaudhury BR, Hoefer M, Mehlhorn K, Schmalhofer M, Shahkarami G, Varricchio G,

Vermande Q, Wijland Ev (2022) Maximizing Nash social welfare in 2-value instances. Proc. 36th Conf.

Artif. Intell. (AAAI) 36(5):4760–4767.

[3] Aleksandrov M, Aziz H, Gaspers S, Walsh T (2015) Online fair division: Analysing a food bank problem.

Proc. 24th Intl. Joint Conf. Artif. Intell. (IJCAI), 2540–2546.

[4] Amanatidis G, Birmpas G, Filos-Ratsikas A, Hollender A, Voudouris AA (2021) Maximum Nash welfare

and other stories about EFX. Theor. Comput. Sci. 863:69–85.

[5] Anari N, Gharan SO, Saberi A, Singh M (2017) Nash social welfare, matrix permanent, and stable

polynomials. Proc. 8th Symp. Innovations in Theoret. Computer Science (ITCS).

[6] Anari N, Mai T, Gharan SO, Vazirani VV (2018) Nash social welfare for indivisible items under sepa-

rable, piecewise-linear concave utilities. Proc. 29th Symp. Discrete Algorithms (SODA), 2274–2290.

Akrami et al.: Maximizing NSW in 2-Value Instances
52 Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS

[7] Babaioff M, Ezra T, Feige U (2021) Fair and truthful mechanisms for dichotomous valuations. Proc.

35th Conf. Artif. Intell. (AAAI), 5119–5126.

[8] Barman S, Bhaskar U, Krishna A, Sundaram R (2020) Tight approximation algorithms for p-mean

welfare under subadditive valuations. Proc. 28th European Symp. Algorithms (ESA), 11:1–11:17.

[9] Barman S, Krishnamurthy SK, Vaish R (2018) Finding fair and efficient allocations. Proc. 19th Conf.

Economics and Computation (EC), 557–574.

[10] Barman S, Krishnamurthy SK, Vaish R (2018) Greedy algorithms for maximizing Nash social welfare.

Proc. 17th Conf. Auton. Agents and Multi-Agent Systems (AAMAS), 7–13.

[11] Bouveret S, Lemâıtre M (2016) Characterizing conflicts in fair division of indivisible goods using a scale

of criteria. Auton. Agents and Multi-Agent Syst. 30(2):259–290.

[12] Brown A, Laddha A, Pittu MR, Singh M (2024) Approximation algorithms for the weighted nash social

welfare via convex and non-convex programs. Woodruff DP, ed., Proceedings of the 2024 ACM-SIAM

Symposium on Discrete Algorithms, SODA 2024, Alexandria, VA, USA, January 7-10, 2024, 1307–1327

(SIAM), URL http://dx.doi.org/10.1137/1.9781611977912.52.

[13] Caragiannis I, Gravin N, Huang X (2019) Envy-freeness up to any item with high Nash welfare: The

virtue of donating items. Proc. 20th Conf. Economics and Computation (EC), 527–545.

[14] Caragiannis I, Kurokawa D, Moulin H, Procaccia AD, Shah N, Wang J (2019) The unreasonable fairness

of maximum Nash welfare. ACM Trans. Econom. Comput. 7(3):12:1–12:32.

[15] Chaudhury BR, Cheung YK, Garg J, Garg N, Hoefer M, Mehlhorn K (2018) On fair division for

indivisible items. Proc. 38th Conf. Foundations of Software Tech. and Theoret. Comp. Sci. (FSTTCS),

25:1–25:17.

[16] Chaudhury BR, Garg J, Mehta R (2021) Fair and efficient allocations under subadditive valuations.

Proc. 35th Conf. Artif. Intell. (AAAI), 5269–5276.

[17] Chaudhury BR, Kavitha T, Mehlhorn K, Sgouritsa A (2020) A little charity guarantees almost envy-

freeness. Proc. 31st Symp. Discrete Algorithms (SODA), 2658–2672.

[18] Cole R, Devanur N, Gkatzelis V, Jain K, Mai T, Vazirani V, Yazdanbod S (2017) Convex program

duality, Fisher markets, and Nash social welfare. Proc. 18th Conf. Economics and Computation (EC),

459–460.

[19] Cole R, Gkatzelis V (2018) Approximating the Nash social welfare with indivisible items. SIAM J.

Comput. 47(3):1211–1236.

[20] Cornuéjols G (1988) General factors of graphs. J. Comb. Theory, Ser. B 45(2):185–198.

[21] Darmann A, Schauer J (2015) Maximizing Nash product social welfare in allocating indivisible goods.

Europ. J. Oper. Res. 247(2):548–559.

http://dx.doi.org/10.1137/1.9781611977912.52

Akrami et al.: Maximizing NSW in 2-Value Instances
Mathematics of Operations Research 00(0), pp. 000–000, © 0000 INFORMS 53

[22] Dobzinski S, Li W, Rubinstein A, Vondrák J (2023) A constant factor approximation for nash social wel-

fare with subadditive valuations. CoRR abs/2309.04656, URL http://dx.doi.org/10.48550/ARXIV.

2309.04656.

[23] Fitzsimmons Z, Viswanathan V, Zick Y (2024) On the hardness of fair allocation under ternary valua-

tions.

[24] Freeman R, Sikdar S, Vaish R, Xia L (2019) Equitable allocations of indivisible goods. Proc. 28th Intl.

Joint Conf. Artif. Intell. (IJCAI), 280–286.

[25] Garg J, Hoefer M, Mehlhorn K (2018) Approximating the Nash social welfare with budget-additive

valuations. Proc. 29th Symp. Discrete Algorithms (SODA), 2326–2340.

[26] Garg J, Husić E, Li W, Végh LA, Vondrák J (2022) Approximating Nash social welfare by matching

and local search. arXiv preprint arXiv:2211.03883 .

[27] Garg J, Husic E, Végh L (2021) Approximating Nash social welfare under Rado valuations. Proc. 53rd

Symp. Theory of Computing (STOC), 1412–1425.

[28] Garg J, Kulkarni P, Kulkarni R (2020) Approximating Nash social welfare under submodular valuations

through (un)matchings. Proc. 31st Symp. Discrete Algorithms (SODA), 2673–2687.

[29] Garg J, Murhekar A (2021) Computing fair and efficient allocations with few utility values. Proc. 14th

Symp. Algorithmic Game Theory (SAGT), 345–359.

[30] Halpern D, Procaccia AD, Psomas A, Shah N (2020) Fair division with binary valuations: One rule to

rule them all. Proc. 16th Conf. Web and Internet Economics (WINE), 370–383.

[31] Lee E (2017) APX-hardness of maximizing Nash social welfare with indivisible items. Inf. Process. Lett.

122:17–20.

[32] Li W, Vondrák J (2021) A constant-factor approximation algorithm for Nash social welfare with sub-

modular valuations. Proc. 62nd Symp. Foundations of Computer Science (FOCS), 25–36.

[33] Lóvasz L (1970) Subgraphs with prescribed valencies. Journal of Combinatorial Theory 8:391–416.

[34] McConnell R, Mehlhorn K, Näher S, Schweitzer P (2011) Certifying algorithms. Computer Science

Review 5(2):119–161, ISSN 1574-0137.

[35] Sebö A (1993) General antifactors of graphs. J. Comb. Theory, Ser. B 174–184.

[36] Suksompong W, Teh N (2022) On maximum weighted Nash welfare for binary valuations. Mathematical

Social Sciences 117:101–108.

[37] Tutte W (1952) The factors of graphs. Canad. J. Math 314–328.

[38] Tutte W (1954) A short proof of the factor theorem for finite graphs. Canad. J. Math 347–352.

http://dx.doi.org/10.48550/ARXIV.2309.04656
http://dx.doi.org/10.48550/ARXIV.2309.04656

	Introduction
	Our Contribution
	Our Techniques
	Further Related Work
	Organization

	Preliminaries
	Utility Graphs and Utility Profiles
	Alternating Paths
	Math Preliminaries

	Integral Instances
	Properties of an Optimal Allocation
	Algorithm
	Heavy-Only Allocations

	Correctness

	Half-Integral Instances
	Improvement Rules
	All Heavy Goods are Allocated as Heavy Goods
	Basic Improvement Rules
	Range Reduction
	Only Bundles of Value x, x + 1/2, and x + 1 in A

	The Algorithm
	The General Case: Heavy Goods can be Allocated as Light

	NP-Hardness when q3
	Conclusions

